Resource Management in Computer Clusters: Algorithm Design and Performance Analysis

Céline Comte

Nokia Bell Labs France - Télécom Paris

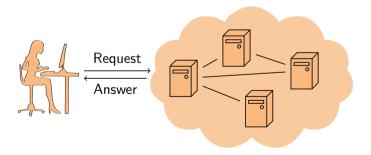
Ph.D. defense September 24, 2019

The NIST Definition of Cloud Computing (Mell and Grance, 2011)

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources

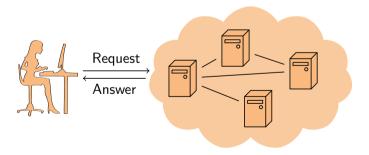
The NIST Definition of Cloud Computing (Mell and Grance, 2011)

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources

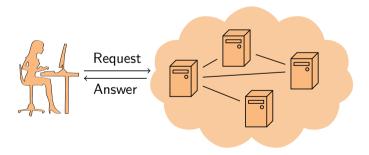


The NIST Definition of Cloud Computing (Mell and Grance, 2011)

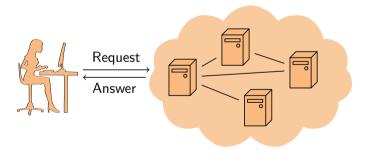
Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a **shared pool of configurable computing resources** (e.g., networks, servers, storage, applications, and services)



Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a **shared pool of configurable computing resources** (e.g., networks, servers, storage, applications, and services) that can be **rapidly provisioned and released** with minimal management effort or service provider interaction

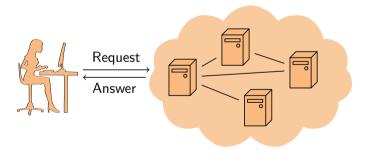


Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a **shared pool of configurable computing resources** (e.g., networks, servers, storage, applications, and services) that can be **rapidly provisioned and released** with minimal management effort or service provider interaction



- On-demand self-service
- Broad network access
- Rapid elasticity
- Measured service
- Resource pooling

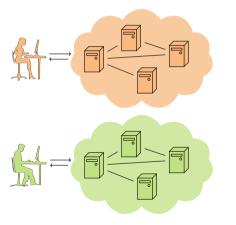
Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a **shared pool of configurable computing resources** (e.g., networks, servers, storage, applications, and services) that can be **rapidly provisioned and released** with minimal management effort or service provider interaction

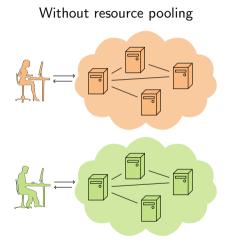


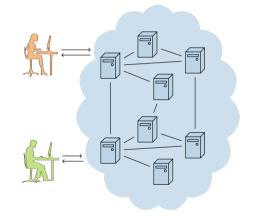
- On-demand self-service
- Broad network access
- Rapid elasticity
- Measured service
- Resource pooling

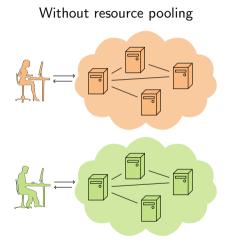
Without resource pooling

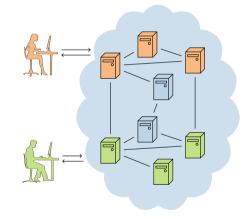
Without resource pooling

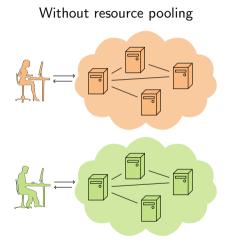


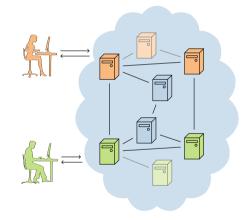


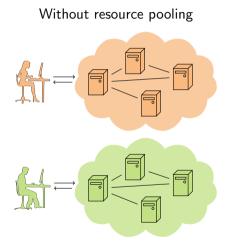


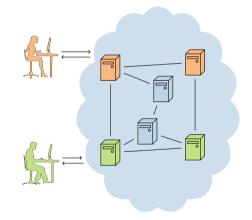


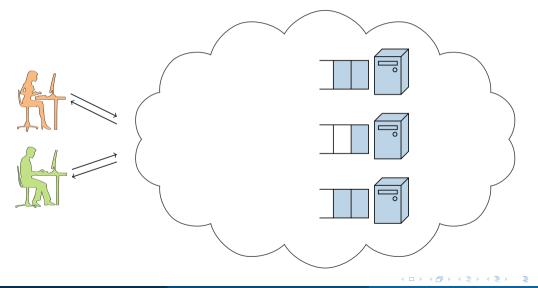


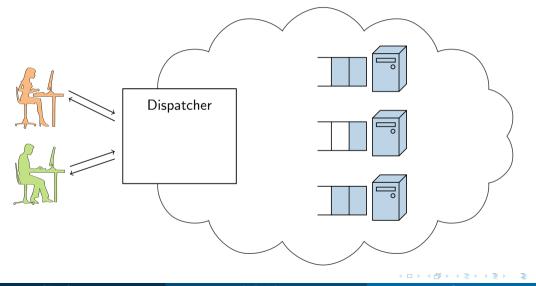


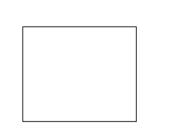


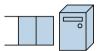




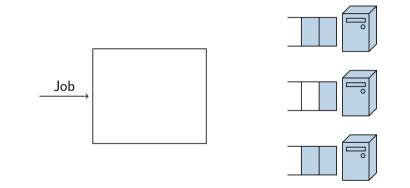


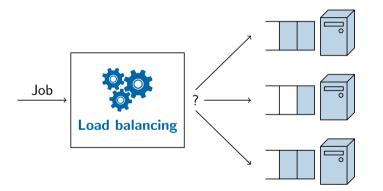


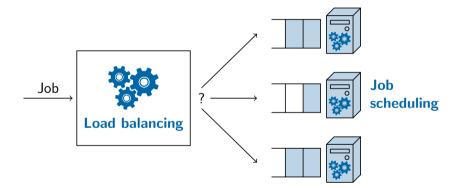


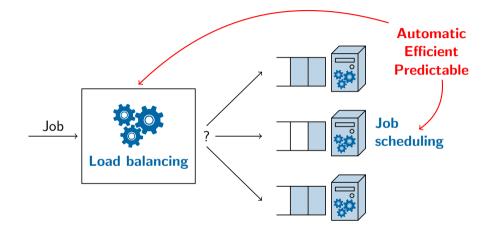


September 24, 2019 4 / 30

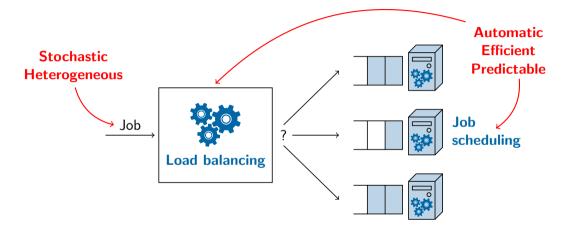




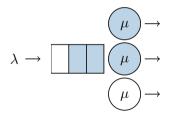




Céline Comte

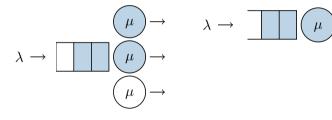


- \rightarrow Telephone networks
- \rightarrow Optical networks



- \rightarrow Telephone networks
- \rightarrow Optical networks

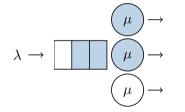
Single-server queue (Kendall, 1951, 1953)

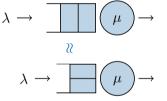


 \rightarrow Telephone networks

 \rightarrow Optical networks

Single-server queue (Kendall, 1951, 1953)

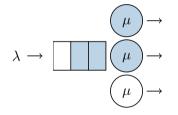


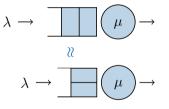


 \rightarrow Telephone networks

 \rightarrow Optical networks

Single-server queue (Kendall, 1951, 1953)





 \rightarrow Telephone networks

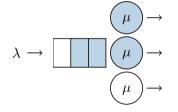
 \rightarrow Optical networks

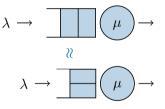
 \rightarrow Process schedulers

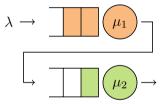
 \rightarrow Network schedulers

Single-server queue (Kendall, 1951, 1953)

Networks of queues (Jackson, 1957)







 \rightarrow Telephone networks

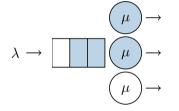
 \rightarrow Optical networks

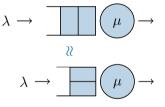
 \rightarrow Process schedulers

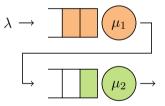
 \rightarrow Network schedulers

Single-server queue (Kendall, 1951, 1953)

Networks of queues (Jackson, 1957)





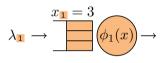


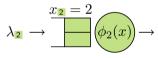
- \rightarrow Telephone networks
- ightarrow Optical networks

- \rightarrow Process schedulers
- \rightarrow Network schedulers

- $\rightarrow\,$ Hospital planning
- $\rightarrow \ {\sf Manufacturing}$

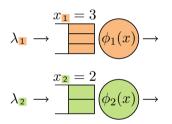
Whittle networks (Whittle, 1986)





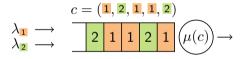
- \rightarrow Data networks
- \rightarrow Computer systems

Whittle networks (Whittle, 1986)



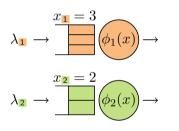
- \rightarrow Data networks
- \rightarrow Computer systems

Order-independent queues (Berezner et al., 1995)



- $\rightarrow~$ Partitioned bus systems
- \rightarrow Circuit-switched networks

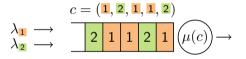
Whittle networks (Whittle, 1986)



ightarrow Data networks

 \rightarrow Computer systems

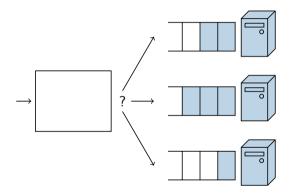
Order-independent queues (Berezner et al., 1995)

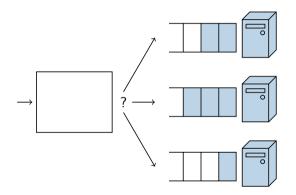


 \rightarrow Partitioned bus systems

 \rightarrow Circuit-switched networks

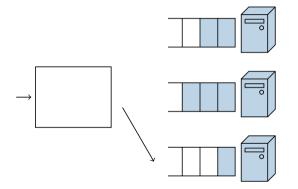
 \approx





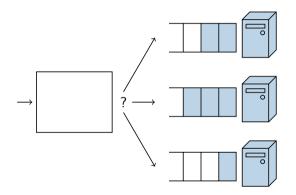
Classical algorithms

• Join-the-shortest-queue



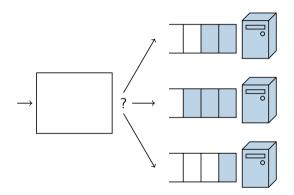
Classical algorithms

• Join-the-shortest-queue



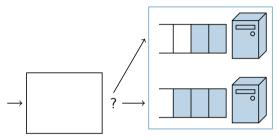
Classical algorithms

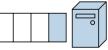
• Join-the-shortest-queue



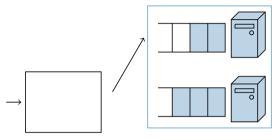
Classical algorithms

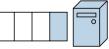
- Join-the-shortest-queue
- Power-of-two-choices (Mitzenmacher, 1996)



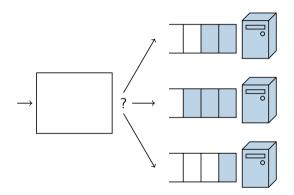


- Join-the-shortest-queue
- Power-of-two-choices (Mitzenmacher, 1996)

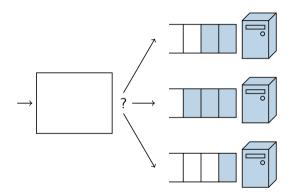




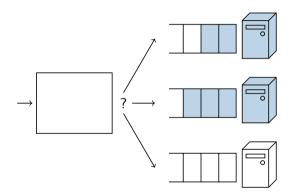
- Join-the-shortest-queue
- Power-of-two-choices (Mitzenmacher, 1996)



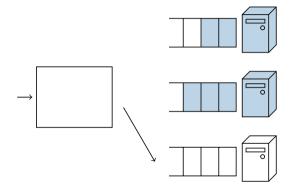
- Join-the-shortest-queue
- Power-of-two-choices (Mitzenmacher, 1996)



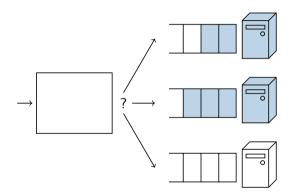
- Join-the-shortest-queue
- Power-of-two-choices (Mitzenmacher, 1996)
- Join-idle-queue (Lu et al., 2011)



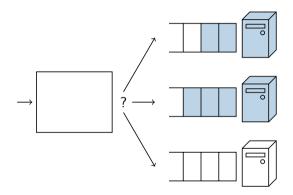
- Join-the-shortest-queue
- Power-of-two-choices (Mitzenmacher, 1996)
- Join-idle-queue (Lu et al., 2011)



- Join-the-shortest-queue
- Power-of-two-choices (Mitzenmacher, 1996)
- Join-idle-queue (Lu et al., 2011)



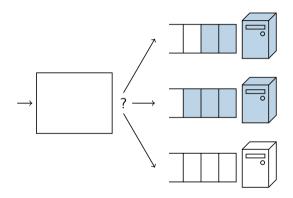
- Join-the-shortest-queue
- Power-of-two-choices (Mitzenmacher, 1996)
- Join-idle-queue (Lu et al., 2011)



Classical algorithms

- Join-the-shortest-queue
- Power-of-two-choices (Mitzenmacher, 1996)
- Join-idle-queue (Lu et al., 2011)

Exact analyses with two computers and approximations otherwise (Gupta et al., 2007)

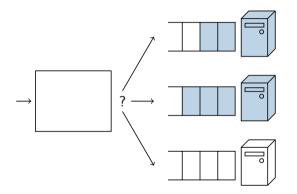


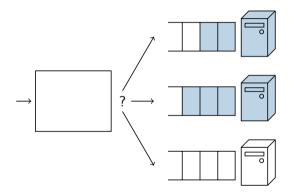
Classical algorithms

- Join-the-shortest-queue
- Power-of-two-choices (Mitzenmacher, 1996)
- Join-idle-queue (Lu et al., 2011)

Exact analyses with two computers and approximations otherwise (Gupta et al., 2007)

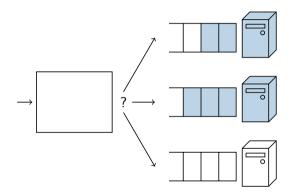
Asymptotic scaling regimes (van der Boor et al., 2018)





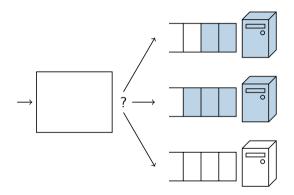
Insensitive algorithms

Céline Comte

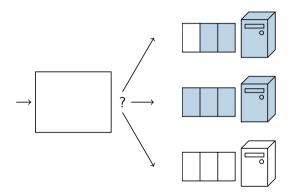


Insensitive algorithms

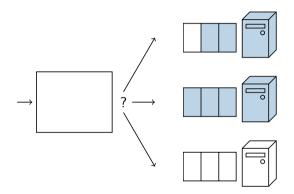
• Static random



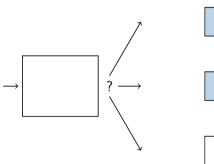
- Static random
- Dynamic random (Bonald et al., 2004)



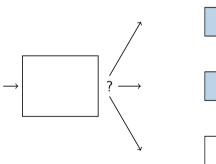
- Static random
- Dynamic random (Bonald et al., 2004)



- Static random
- Dynamic random (Bonald et al., 2004)
- Assign-to-the-longest-idle-server (Adan and Weiss, 2012)



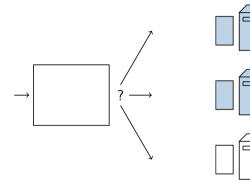
- Static random
- Dynamic random (Bonald et al., 2004)
- Assign-to-the-longest-idle-server (Adan and Weiss, 2012)



Insensitive algorithms

- Static random
- Dynamic random (Bonald et al., 2004)
- Assign-to-the-longest-idle-server (Adan and Weiss, 2012)

Product-form queueing networks

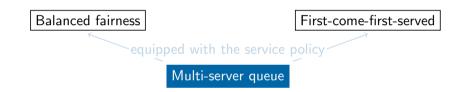


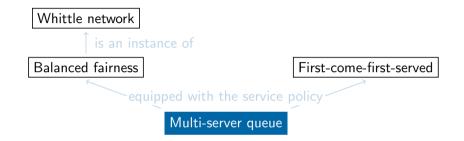
Insensitive algorithms

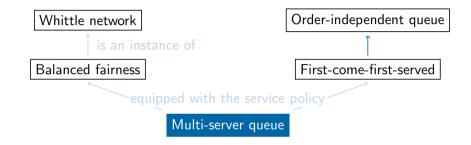
- Static random
- Dynamic random (Bonald et al., 2004)
- Assign-to-the-longest-idle-server (Adan and Weiss, 2012)

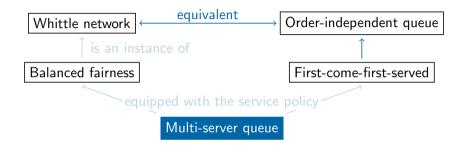
Product-form queueing networks

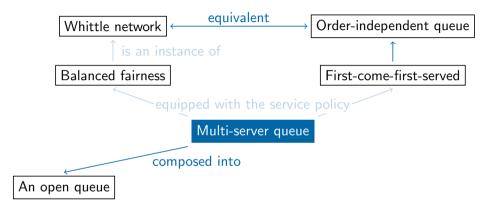
Asymptotic scaling regimes (Jonckheere and Prabhu, 2016) Multi-server queue

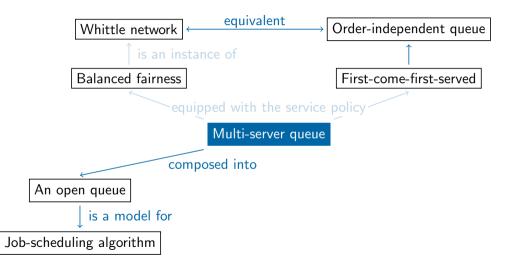


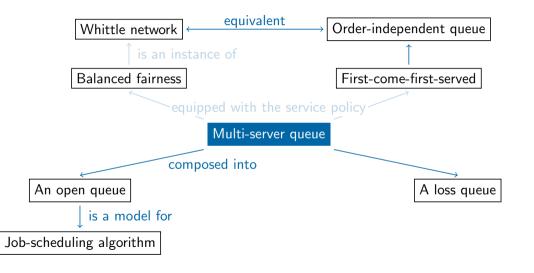




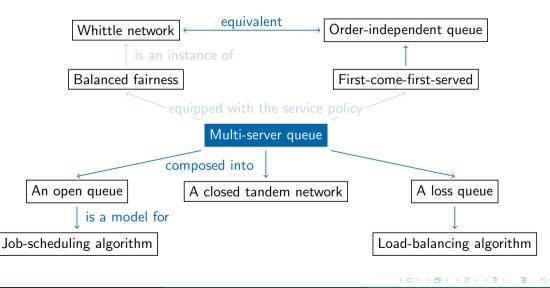


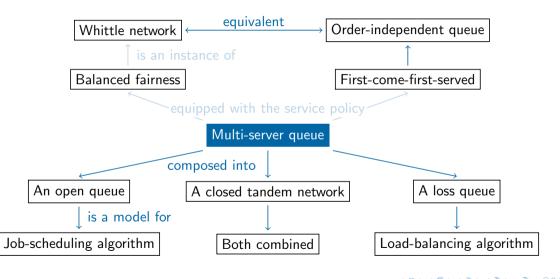












Equivalence of balanced fairness and first-come-first-served

2 Performance analysis of the open queue

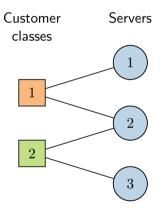
3 Applications in algorithm design

Equivalence of balanced fairness and first-come-first-served

2) Performance analysis of the open queue

3 Applications in algorithm design

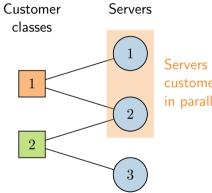
Compatibility graph



э

> < ∃

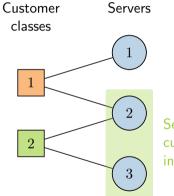
Compatibility graph



Servers on which a class-1 customer can be processed in parallel

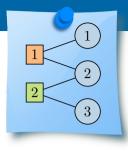
э

▶ < ∃ ▶</p>



Servers on which a class-2 customer can be processed in parallel

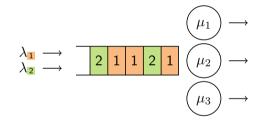
▶ ∢ ⊒

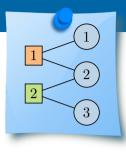


э

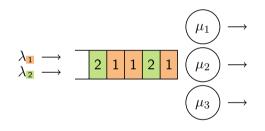
< □ > < 同

The multi-server queue





◆□ → ◆問 → ◆ □ → ◆ □ → □ □

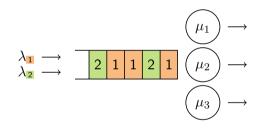


• Markovian assumptions

- ightarrow Class-*i* customers arrive according to a Poisson process with rate λ_i
- ightarrow Server s has capacity μ_s
- $\rightarrow\,$ Service requirements are independent and exponentially distributed with unit mean

2

3



• Markovian assumptions

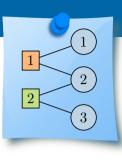
- \rightarrow Class-*i* customers arrive according to a Poisson process with rate λ_i
- \rightarrow Server s has capacity μ_s
- $\rightarrow\,$ Service requirements are independent and exponentially distributed with unit mean

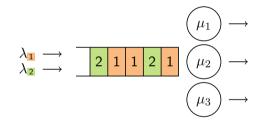
22

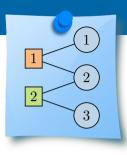
• Queue state

$$\rightarrow \text{ Microstate } c = (1, 2, 1, 1, 2)$$

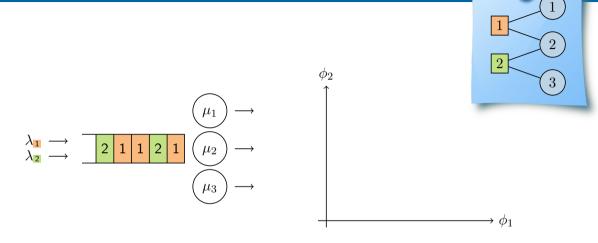
$$ightarrow$$
 Macrostate $x=igg($



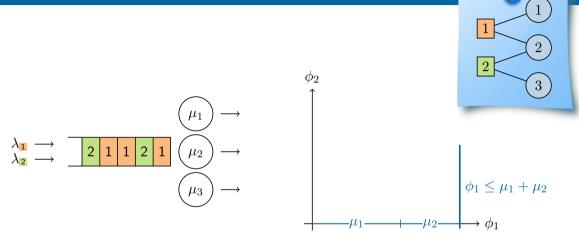




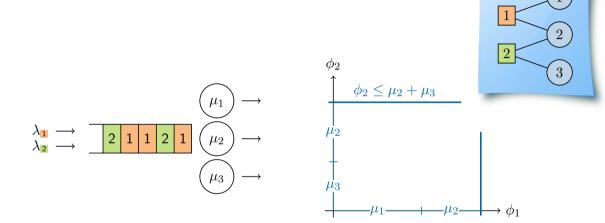
<ロト < 同ト < 回ト < 回ト = 三日



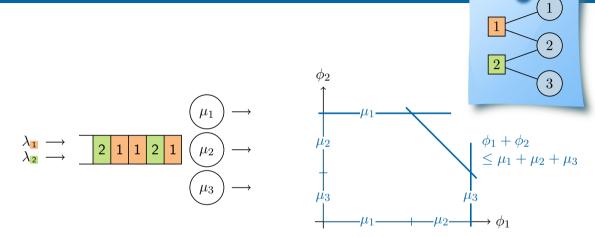
(日本)



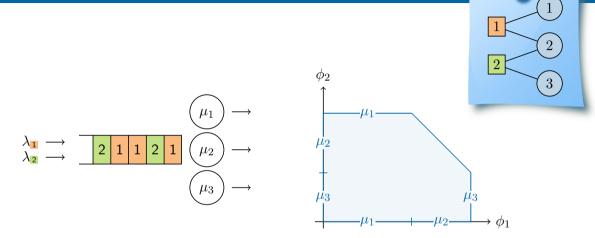
(日) (四) (日) (日) (日)

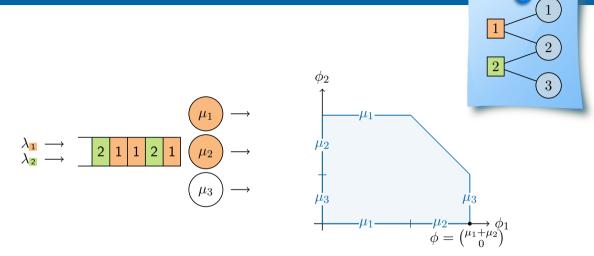


(日本)

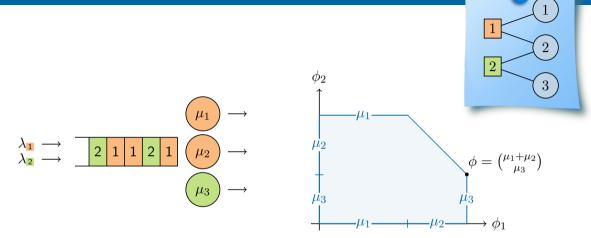


<ロト < 同ト < 回ト < 回ト = 三日 - 三日 -

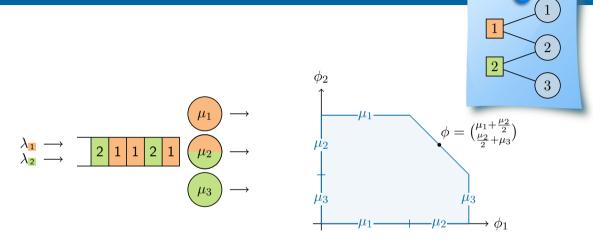




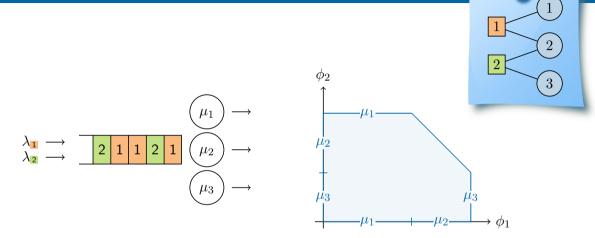
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

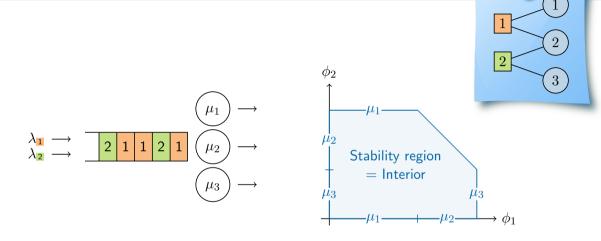


(日) (四) (日) (日) (日)



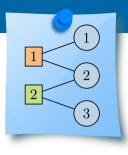
人口 医水黄 医水黄 医水黄素 化甘油



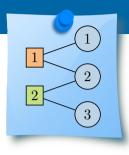


◆□ → ◆問 → ◆ □ → ◆ □ → □ □

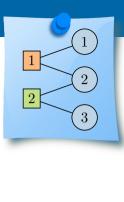
• Time-sharing policy considered in (Gardner et al., 2016)

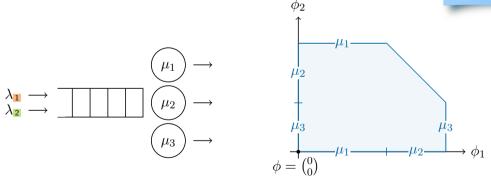


- Time-sharing policy considered in (Gardner et al., 2016)
- Servers are greedily assigned to customers

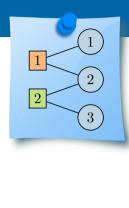


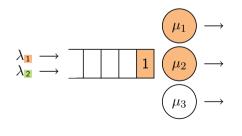
- Time-sharing policy considered in (Gardner et al., 2016)
- Servers are greedily assigned to customers

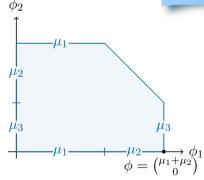




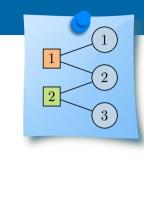
- Time-sharing policy considered in (Gardner et al., 2016)
- Servers are greedily assigned to customers

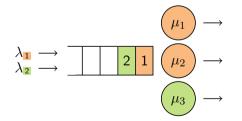


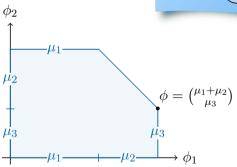




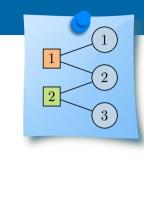
- Time-sharing policy considered in (Gardner et al., 2016)
- Servers are greedily assigned to customers

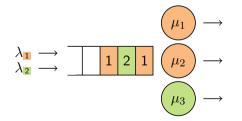


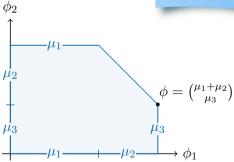




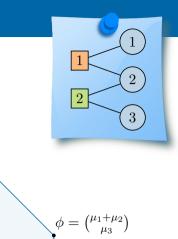
- Time-sharing policy considered in (Gardner et al., 2016)
- Servers are greedily assigned to customers

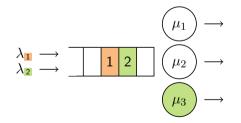






- Time-sharing policy considered in (Gardner et al., 2016)
- Servers are greedily assigned to customers



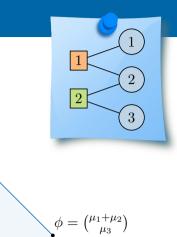


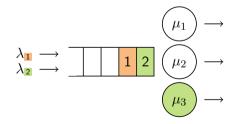
 ϕ_2

 μ_2

 μ_1

- Time-sharing policy considered in (Gardner et al., 2016)
- Servers are greedily assigned to customers





Φı

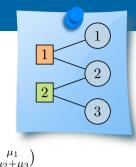
 ϕ_2

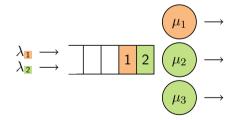
 μ_2

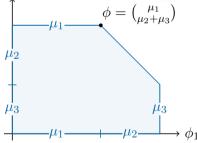
 μ_3

 μ_1

- Time-sharing policy considered in (Gardner et al., 2016)
- Servers are greedily assigned to customers

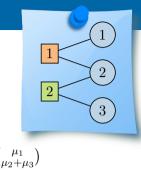


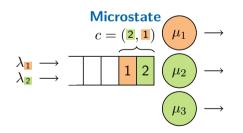


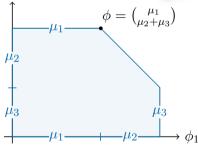


 ϕ_2

- Time-sharing policy considered in (Gardner et al., 2016)
- Servers are greedily assigned to customers

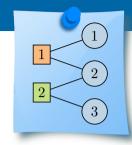


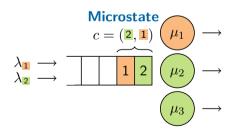


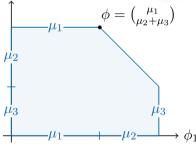


 ϕ_2

- Time-sharing policy considered in (Gardner et al., 2016)
- Servers are greedily assigned to customers
- The queue is order-independent

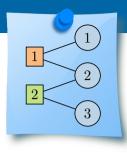




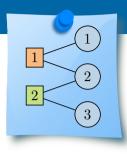


 ϕ_2

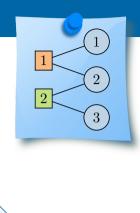
• Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)

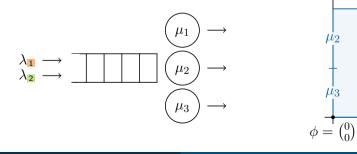


- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order



- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order





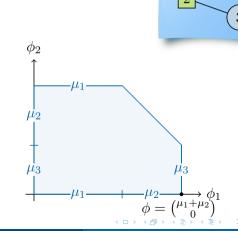
 ϕ_2

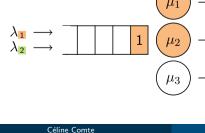
u

 ϕ_1

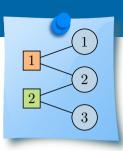
 μ_3

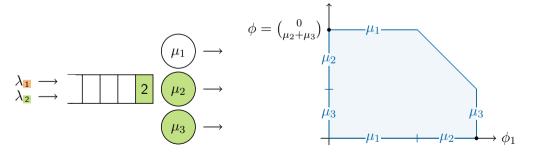
- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order



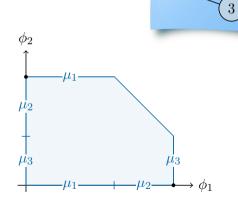


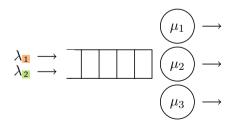
- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order



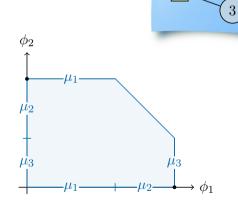


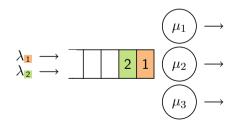
- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order





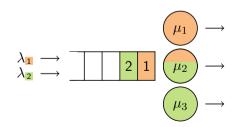
- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order



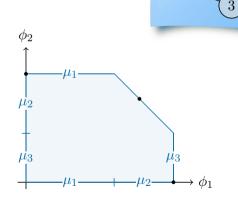


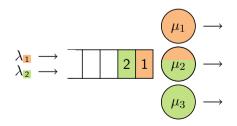
- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order



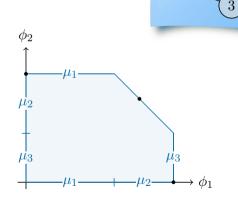


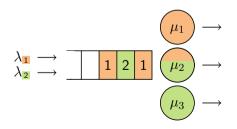
- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order



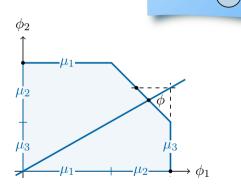


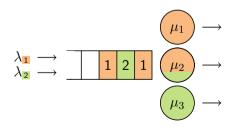
- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order



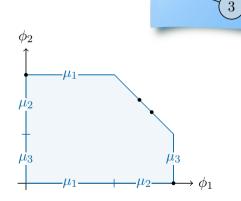


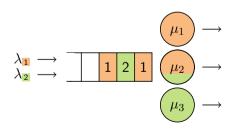
- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order





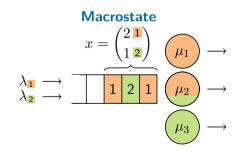
- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order

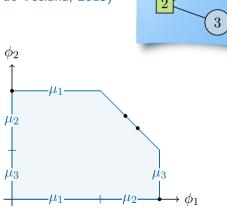




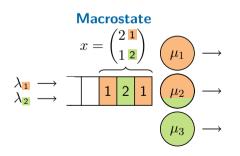
Balanced fairness

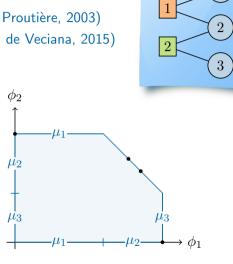
- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order



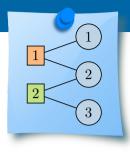


- Resource-sharing policy introduced in (Bonald and Proutière, 2003) and applied to the multi-server queue in (Shah and de Veciana, 2015)
- Independent of the customer arrival order
- Dynamics described by a Whittle network





$$\pi(x) = \sum_{c:|c|=x} \pi(c)$$

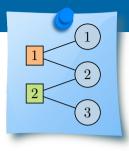


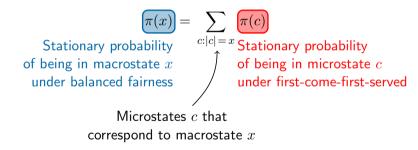
$$\pi(x) = \sum_{c:|c|=x} \pi(c)$$

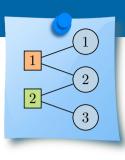
Stationary probability of being in macrostate x under balanced fairness

	2
--	---

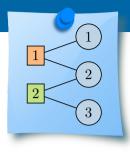
 $\pi(x) = \sum_{c:|c|=x} \pi(c)$ Stationary probability of being in macrostate x under balanced fairness Microstates c that correspond to macrostate x







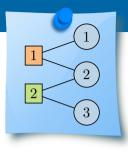
$$\pi(x) = \sum_{c:|c|=x} \pi(c)$$



$$\pi(x) = \sum_{c:|c|=x} \pi(c)$$

• The service rate of class *i* under balanced fairness is equal to the **average service rate** of class *i* under first-come-first-served

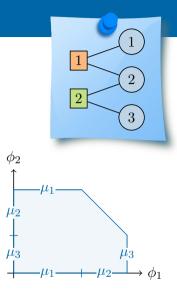
$$\phi_i(x) = \sum_{c:|c|=x} \phi_i(c) \frac{\pi(c)}{\pi(x)}$$



$$\pi(x) = \sum_{c:|c|=x} \pi(c)$$

• The service rate of class *i* under balanced fairness is equal to the **average service rate** of class *i* under first-come-first-served

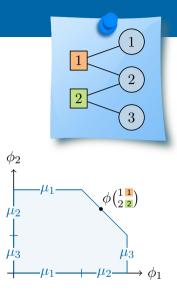
$$\phi_i(x) = \sum_{c:|c|=x} \phi_i(c) \frac{\pi(c)}{\pi(x)}$$



$$\pi(x) = \sum_{c:|c|=x} \pi(c)$$

• The service rate of class *i* under balanced fairness is equal to the **average service rate** of class *i* under first-come-first-served

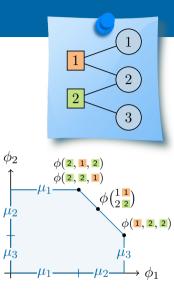
$$\phi_i(x) = \sum_{c:|c|=x} \phi_i(c) \frac{\pi(c)}{\pi(x)}$$



$$\pi(x) = \sum_{c:|c|=x} \pi(c)$$

• The service rate of class *i* under balanced fairness is equal to the **average service rate** of class *i* under first-come-first-served

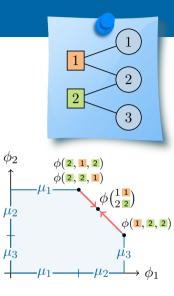
$$\phi_i(x) = \sum_{c:|c|=x} \phi_i(c) \frac{\pi(c)}{\pi(x)}$$



$$\pi(x) = \sum_{c:|c|=x} \pi(c)$$

• The service rate of class *i* under balanced fairness is equal to the **average service rate** of class *i* under first-come-first-served

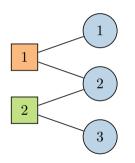
$$\phi_i(x) = \sum_{c:|c|=x} \phi_i(c) \frac{\pi(c)}{\pi(x)}$$



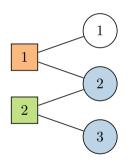
1 Equivalence of balanced fairness and first-come-first-served

2 Performance analysis of the open queue

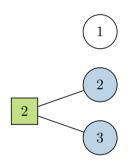
3 Applications in algorithm design



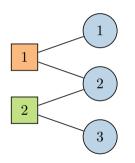
Conditionally on server s being idle, the stationary queue behaves like the restricted queue without traffic generated by the classes compatible with server s.



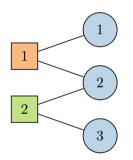
Conditionally on server s being idle, the stationary queue behaves like the restricted queue without traffic generated by the classes compatible with server s.



Conditionally on server s being idle, the stationary queue behaves like the restricted queue without traffic generated by the classes compatible with server s.

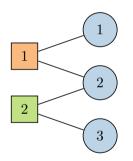


Conditionally on server s being idle, the stationary queue behaves like the restricted queue without traffic generated by the classes compatible with server s.



Conditionally on server s being idle, the stationary queue behaves like the restricted queue without traffic generated by the classes compatible with server s.

$$\psi_{ert - s} \, = \, \mathbb{P} \left(egin{array}{c|c} \mathsf{the queue} & \mathsf{server} \ s \ \mathsf{is empty} & \mathsf{is idle} \end{array}
ight)$$

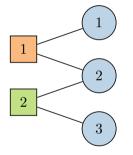


Conditionally on server s being idle, the stationary queue behaves like the restricted queue without traffic generated by the classes compatible with server s.

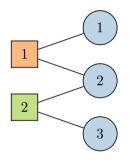
$$\psi_{|-s} = \mathbb{P} \begin{pmatrix} \text{the queue} & \text{server } s \\ \text{is empty} & \text{is idle} \end{pmatrix}$$

 $= \mathbb{P}\left(\begin{array}{c} \text{the restricted queue, without server } s \\ \text{and its compatible classes, is empty} \end{array} \right)$

$$\psi = (1 - \rho) \times \frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{1-s}}} \quad \text{with} \quad \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$

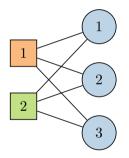


$$\psi = \underbrace{(1-\rho)}_{\text{Complete}} \times \frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{|-s}}} \quad \text{with} \quad \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$
pooling



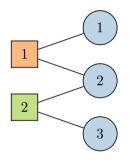
$$\psi = \underbrace{(1-\rho)}_{\text{Complete}} \times \underbrace{\frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{|-s}}}}_{\text{pooling}} \quad \text{with} \quad \rho = \underbrace{\frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}}_{\sum_{s} \mu_{s}}$$

-



— ·

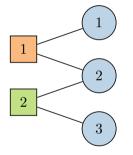
$$\psi = \underbrace{(1-\rho)}_{\text{Complete}} \times \frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{|-s}}} \quad \text{with} \quad \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$
pooling



$$\psi = \underbrace{(1-\rho)}_{\text{Complete}} \times \underbrace{\sum_{s} \frac{\mu_{s}}{\psi_{1-s}}}_{\text{Overhead due to}} \text{ with } \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$

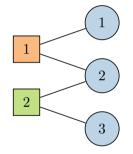


$$\psi = (1 - \rho) \times \frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{1-s}}} \quad \text{with} \quad \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$



$$\psi = (1 - \rho) \times \frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{1-s}}} \quad \text{with} \quad \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$

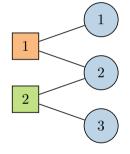
$$L = \frac{\rho}{1-\rho} + \frac{1}{1-\rho} \frac{\sum_{s} \mu_{s} \frac{\psi}{\psi_{|-s}} L_{|-s}}{\sum_{s} \mu_{s}}$$



$$\psi = (1 - \rho) \times \frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{1-s}}} \quad \text{with} \quad \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$

$$L = \underbrace{\frac{\rho}{1-\rho}}_{\text{Complete}} + \frac{1}{1-\rho} \frac{\sum_{s} \mu_{s} \frac{\psi}{\psi_{|-s}} L_{|-s}}{\sum_{s} \mu_{s}}$$

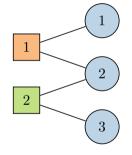
Complete
pooling



$$\psi = (1 - \rho) \times \frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{1-s}}} \quad \text{with} \quad \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$

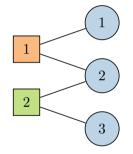
$$L = \frac{\rho}{1-\rho} + \frac{1}{1-\rho} \frac{\sum_{s} \mu_{s} \frac{\psi}{\psi_{l-s}} L_{l-s}}{\sum_{s} \mu_{s}}$$

Complete Overhead due to incomplete pooling



$$\psi = (1 - \rho) \times \frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{1-s}}} \quad \text{with} \quad \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$

$$L = \frac{\rho}{1-\rho} + \frac{1}{1-\rho} \frac{\sum_{s} \mu_{s} \frac{\psi}{\psi_{|-s}} L_{|-s}}{\sum_{s} \mu_{s}}$$

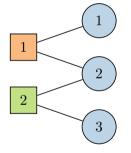


$$\psi = (1 - \rho) \times \frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{1-s}}} \quad \text{with} \quad \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$

• Expected number of customers

$$L = \frac{\rho}{1-\rho} + \frac{1}{1-\rho} \frac{\sum_{s} \mu_{s} \frac{\psi}{\psi_{|-s}} L_{|-s}}{\sum_{s} \mu_{s}}$$

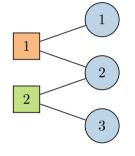
• Time complexity exponential in the number of servers

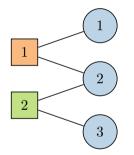


$$\psi = (1 - \rho) \times \frac{\sum_{s} \mu_{s}}{\sum_{s} \frac{\mu_{s}}{\psi_{1-s}}} \quad \text{with} \quad \rho = \frac{\sum_{i} \lambda_{i}}{\sum_{s} \mu_{s}}$$

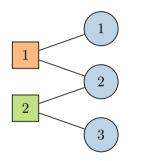
$$L = \frac{\rho}{1-\rho} + \frac{1}{1-\rho} \frac{\sum_{s} \mu_{s} \frac{\psi}{\psi_{|-s}} L_{|-s}}{\sum_{s} \mu_{s}}$$

- Time complexity exponential in the number of servers
- Polynomial in interesting cases





$$\psi = (1 - \rho) \times \frac{\mu_1 + \mu_2 + \mu_3}{\frac{\mu_1}{\psi_{|-1}} + \frac{\mu_2}{\psi_{|-2}} + \frac{\mu_3}{\psi_{|-3}}} \text{ with } \rho = \frac{\lambda_1 + \lambda_2}{\mu_1 + \mu_2 + \mu_3}$$

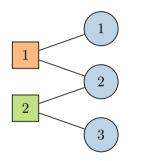


$$\begin{split} \psi &= (1-\rho) \times \frac{\mu_1 + \mu_2 + \mu_3}{\frac{\mu_1}{\psi_{|-1}} + \frac{\mu_2}{\psi_{|-2}} + \frac{\mu_3}{\psi_{|-3}}} \text{ with } \rho = \frac{\lambda_1 + \lambda_2}{\mu_1 + \mu_2 + \mu_3} \\ \begin{cases} \psi_{|-1} &= \\ \psi_{|-2} &= \\ \psi_{|-3} &= \end{cases} \end{split}$$

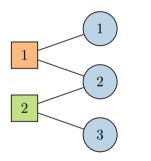
$$\psi = (1 - \rho) \times \frac{\mu_1 + \mu_2 + \mu_3}{\frac{\mu_1}{\psi_{|-1}} + \frac{\mu_2}{\psi_{|-2}} + \frac{\mu_3}{\psi_{|-3}}} \text{ with } \rho = \frac{\lambda_1 + \lambda_2}{\mu_1 + \mu_2 + \mu_3}$$

$$\begin{pmatrix} 2 \\ \psi_{|-1} = \\ \psi_{|-2} = \\ \psi_{|-3} = \end{pmatrix}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @



$$\begin{split} \psi &= (1-\rho) \times \frac{\mu_1 + \mu_2 + \mu_3}{\frac{\mu_1}{\psi_{|-1}} + \frac{\mu_2}{\psi_{|-2}} + \frac{\mu_3}{\psi_{|-3}}} \text{ with } \rho = \frac{\lambda_1 + \lambda_2}{\mu_1 + \mu_2 + \mu_3} \\ \begin{cases} \psi_{|-1} &= \\ \psi_{|-2} &= \\ \psi_{|-3} &= \end{cases} \end{split}$$

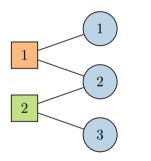


$$\begin{split} \psi &= (1-\rho) \times \frac{\mu_1 + \mu_2 + \mu_3}{\frac{\mu_1}{\psi_{|-1}} + \frac{\mu_2}{\psi_{|-2}} + \frac{\mu_3}{\psi_{|-3}}} \text{ with } \rho = \frac{\lambda_1 + \lambda_2}{\mu_1 + \mu_2 + \mu_3} \\ \begin{cases} \psi_{|-1} &= \\ \psi_{|-2} &= 1 \\ \psi_{|-3} &= \end{cases} \end{split}$$

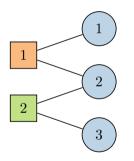
$$\psi = (1 - \rho) \times \frac{\mu_1 + \mu_2 + \mu_3}{\frac{\mu_1}{\psi_{|-1}} + \frac{\mu_2}{\psi_{|-2}} + \frac{\mu_3}{\psi_{|-3}}} \text{ with } \rho = \frac{\lambda_1 + \lambda_2}{\mu_1 + \mu_2 + \mu_3}$$

$$\begin{pmatrix} \psi_{|-1} = \\ \psi_{|-2} = 1 \\ \psi_{|-3} = \end{pmatrix}$$

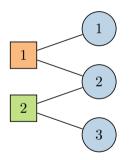
◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで



$$\begin{split} \psi &= (1-\rho) \times \frac{\mu_1 + \mu_2 + \mu_3}{\frac{\mu_1}{\psi_{|-1}} + \frac{\mu_2}{\psi_{|-2}} + \frac{\mu_3}{\psi_{|-3}}} \text{ with } \rho = \frac{\lambda_1 + \lambda_2}{\mu_1 + \mu_2 + \mu_3} \\ \begin{cases} \psi_{|-1} &= \\ \psi_{|-2} &= 1 \\ \psi_{|-3} &= \end{cases} \end{split}$$



$$\begin{split} \psi &= (1-\rho) \times \frac{\mu_1 + \mu_2 + \mu_3}{\frac{\mu_1}{\psi_{|-1}} + \frac{\mu_2}{\psi_{|-2}} + \frac{\mu_3}{\psi_{|-3}}} \text{ with } \rho = \frac{\lambda_1 + \lambda_2}{\mu_1 + \mu_2 + \mu_3} \\ \begin{cases} \psi_{|-1} &= 1 - \frac{\lambda_2}{\mu_2 + \mu_3} \\ \psi_{|-2} &= 1 \\ \psi_{|-3} &= \end{cases} \end{split}$$



$$\begin{split} \psi &= (1-\rho) \times \frac{\mu_1 + \mu_2 + \mu_3}{\frac{\mu_1}{\psi_{|-1}} + \frac{\mu_2}{\psi_{|-2}} + \frac{\mu_3}{\psi_{|-3}}} \text{ with } \rho = \frac{\lambda_1 + \lambda_2}{\mu_1 + \mu_2 + \mu_3} \\ \begin{cases} \psi_{|-1} &= 1 - \frac{\lambda_2}{\mu_2 + \mu_3} \\ \psi_{|-2} &= 1 \\ \psi_{|-3} &= 1 - \frac{\lambda_1}{\mu_1 + \mu_2} \end{cases} \end{split}$$

$$\mathbb{P}\begin{pmatrix} \text{the queue} \\ \text{is empty} \end{pmatrix} = \mathbb{P}\begin{pmatrix} \text{server } s \\ \text{is idle} \end{pmatrix} \times \mathbb{P}\begin{pmatrix} \text{the queue} & \text{server } s \\ \text{is idle} \end{pmatrix} \\ + \mathbb{P}\begin{pmatrix} \text{server } s \\ \text{is active} \end{pmatrix} \times \mathbb{P}\begin{pmatrix} \text{the queue} & \text{server } s \\ \text{is empty} & \text{is active} \end{pmatrix}$$

3

メロト メぼト メヨト

$$\mathbb{P}\left(\begin{array}{c} \text{the queue} \\ \text{is empty} \end{array}\right) = \mathbb{P}\left(\begin{array}{c} \text{server } s \\ \text{is idle} \end{array}\right) \times \mathbb{P}\left(\begin{array}{c} \text{the queue} \\ \text{is empty} \end{array} \middle| \begin{array}{c} \text{server } s \\ \text{is idle} \end{array}\right)$$

<ロト < 同ト < 回ト < 回ト = 三日

$$\underbrace{\mathbb{P}\left(\underset{\text{is empty}}{\text{the queue}}\right)}_{\psi} = \mathbb{P}\left(\underset{\text{is idle}}{\text{server }s}\right) \times \mathbb{P}\left(\underset{\text{is empty}}{\text{the queue}} \middle| \begin{array}{c} \text{server }s \\ \text{is idle} \end{array}\right)$$

3

イロト 不得 トイヨト イヨト

$$\underbrace{\mathbb{P}\left(\underset{\text{is empty}}{\text{the queue}}\right)}_{\psi} = \underbrace{\mathbb{P}\left(\underset{\text{is idle}}{\text{server }s}\right)}_{\psi_s} \times \mathbb{P}\left(\underset{\text{is empty}}{\text{the queue}} \middle| \underset{\text{is idle}}{\text{server }s}\right)$$

3

イロト 不得 トイヨト イヨト

$$\underbrace{\mathbb{P}\left(\begin{matrix} \text{the queue} \\ \text{is empty} \end{matrix} \right)}_{\psi} = \underbrace{\mathbb{P}\left(\begin{matrix} \text{server } s \\ \text{is idle} \end{matrix} \right)}_{\psi_s} \times \underbrace{\mathbb{P}\left(\begin{matrix} \text{the queue} \\ \text{is empty} \end{matrix} \middle| \begin{matrix} \text{server } s \\ \text{is idle} \end{matrix} \right)}_{\psi_{|-s}}$$

3

イロト 不得 トイヨト イヨト

$$\underbrace{\mathbb{P}\left(\begin{smallmatrix} \mathsf{the queue} \\ \mathsf{is empty} \end{smallmatrix}\right)}_{\psi} = \underbrace{\mathbb{P}\left(\begin{smallmatrix} \mathsf{server} \ s \\ \mathsf{is idle} \end{smallmatrix}\right)}_{\psi_s} \times \underbrace{\mathbb{P}\left(\begin{smallmatrix} \mathsf{the queue} \\ \mathsf{is empty} \end{smallmatrix}\right| \stackrel{\mathsf{server} \ s }{\mathsf{is idle}} \right)}_{\psi_{|-s}}$$

• Conservation equation

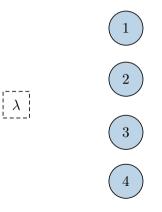
$$\sum_{i} \lambda_i = \sum_{s} \mu_s (1 - \psi_s)$$

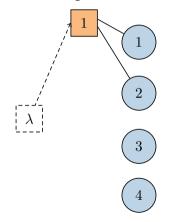
$$\underbrace{\mathbb{P}\left(\begin{smallmatrix} \mathsf{the queue} \\ \mathsf{is empty} \end{smallmatrix}\right)}_{\psi} = \underbrace{\mathbb{P}\left(\begin{smallmatrix} \mathsf{server} \ s \\ \mathsf{is idle} \end{smallmatrix}\right)}_{\psi_s} \times \underbrace{\mathbb{P}\left(\begin{smallmatrix} \mathsf{the queue} \\ \mathsf{is empty} \end{smallmatrix}\right| \stackrel{\mathsf{server} \ s }{\mathsf{is idle}} \right)}_{\psi_{|-s}}$$

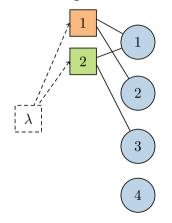
• Conservation equation

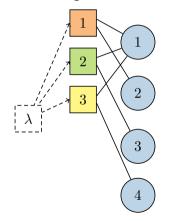
$$\sum_{i} \lambda_i = \sum_{s} \mu_s (1 - \psi_s)$$

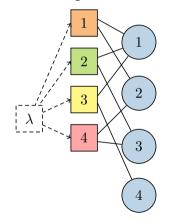
 \square

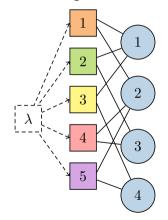


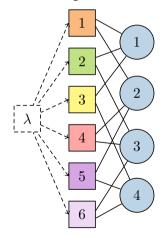










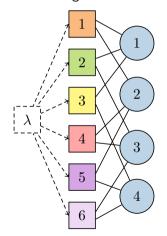


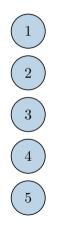
Line structure

Global static random assignment

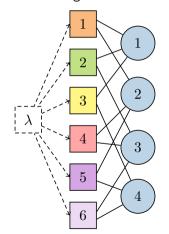
Céline Comte

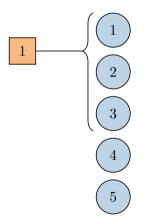
Global static random assignment



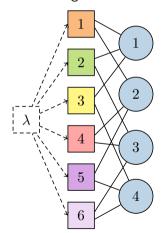


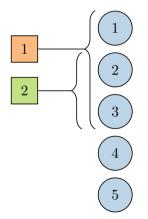
Global static random assignment



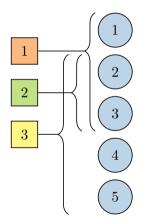


Global static random assignment

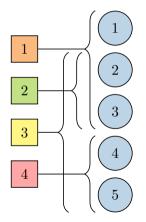




Global static random assignment



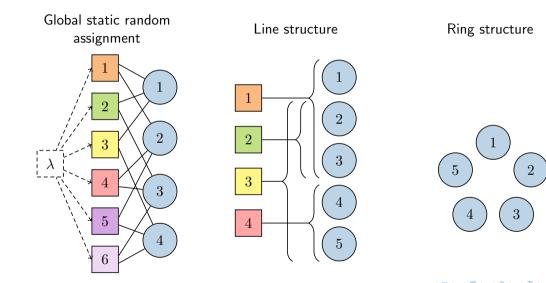
Global static random assignment

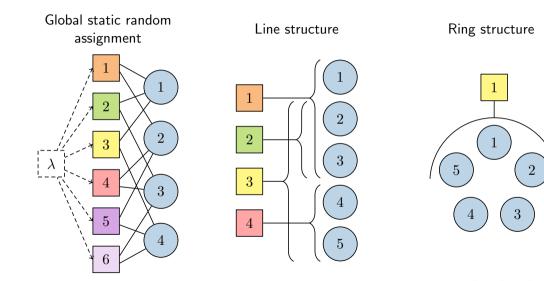


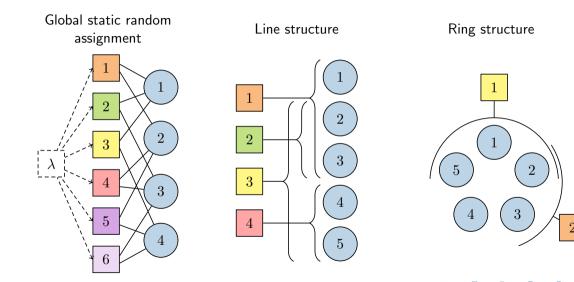
Global static random assignment

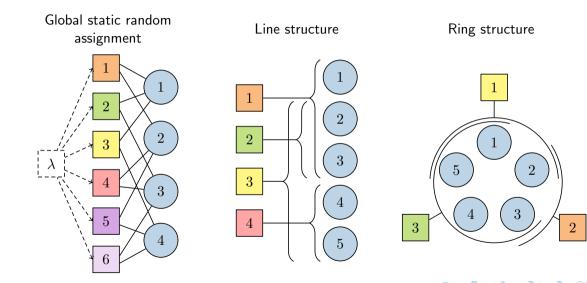
Line structure

Ring structure

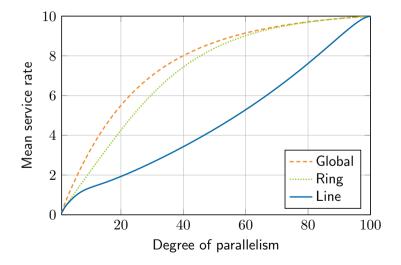








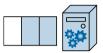
Static random assignment (100 servers, load $\rho = 0.9$)



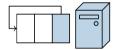
1 Equivalence of balanced fairness and first-come-first-served

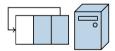
2) Performance analysis of the open queue

3 Applications in algorithm design

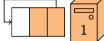


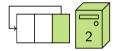
Round-robin

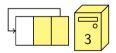


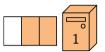


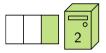
Round-robin

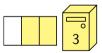


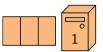


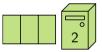


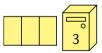


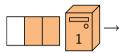


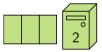


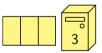


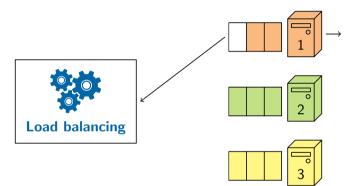


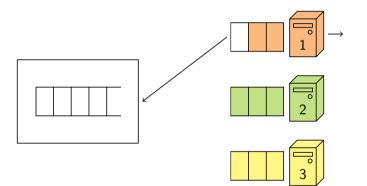


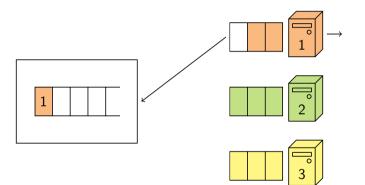


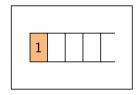


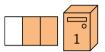


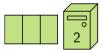


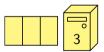


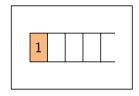


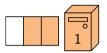


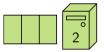


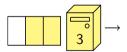


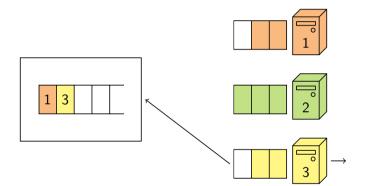


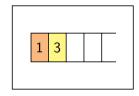


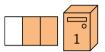


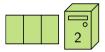


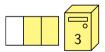


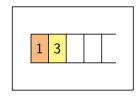


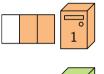


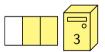


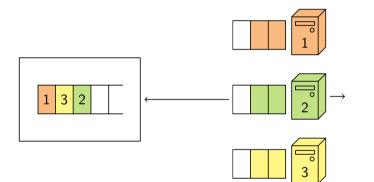


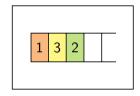


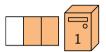


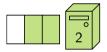


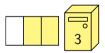


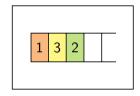


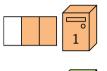


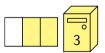


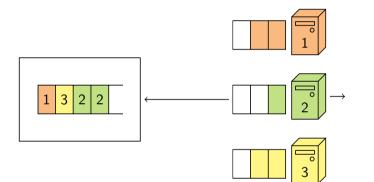


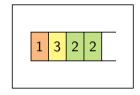


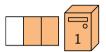


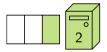


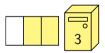


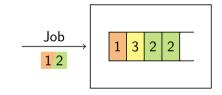


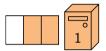


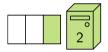


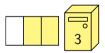


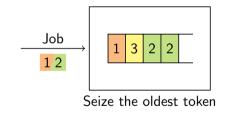


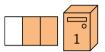


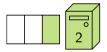


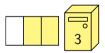


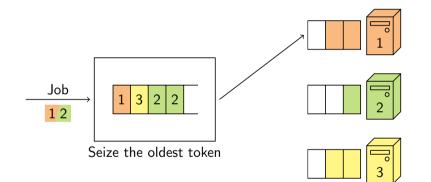


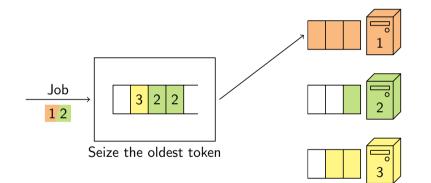


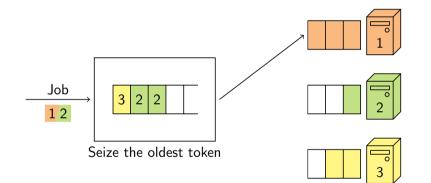


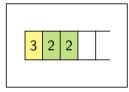




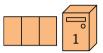


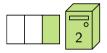


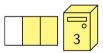


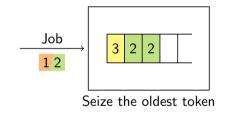


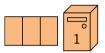
Seize the oldest token

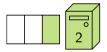


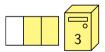


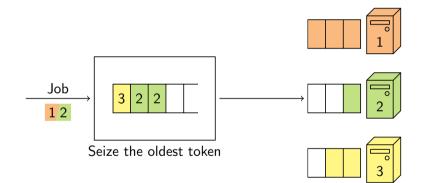


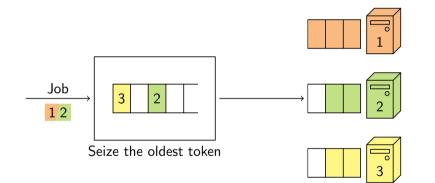


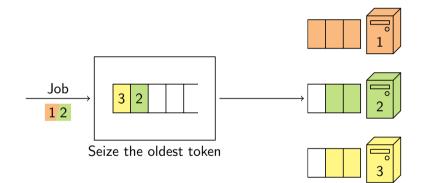


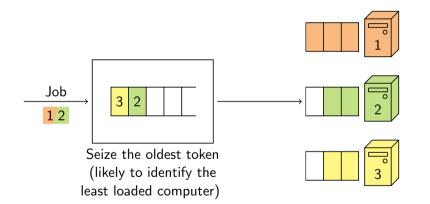








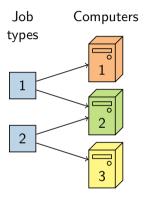




(日)

• Markovian assumptions

- $\rightarrow\,$ Type-i jobs arrive according to a Poisson process with rate ν_i
- ightarrow Computer s has capacity μ_s
- $\rightarrow\,$ Job sizes are independent and exponentially distributed with unit mean



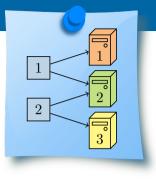
• Markovian assumptions

- $\rightarrow\,$ Type-i jobs arrive according to a Poisson process with rate ν_i
- ightarrow Computer s has capacity μ_s
- $\rightarrow\,$ Job sizes are independent and exponentially distributed with unit mean

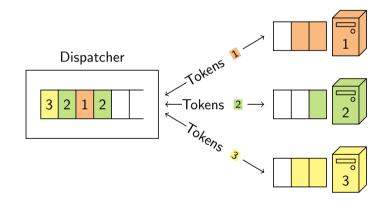
• Admission limit

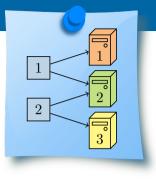
 $\rightarrow~{\rm Computer}~s$ has ℓ_s tokens

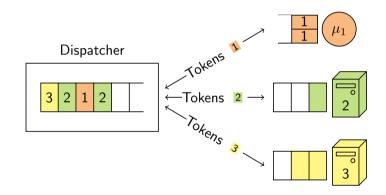
Queueing model

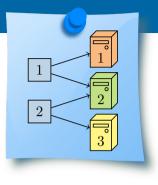


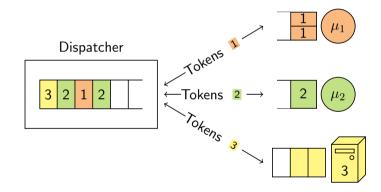
(日)

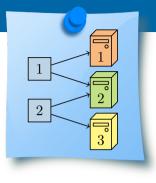


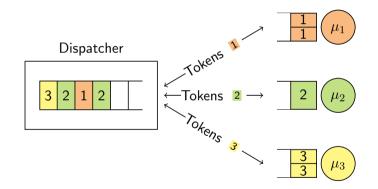


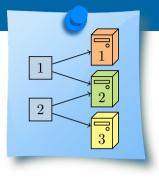


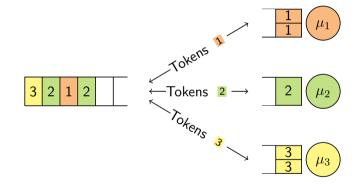


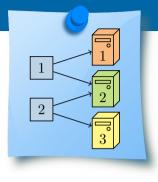


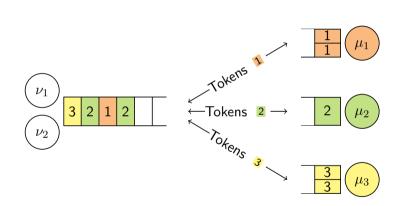


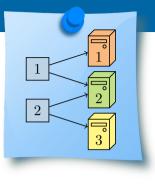


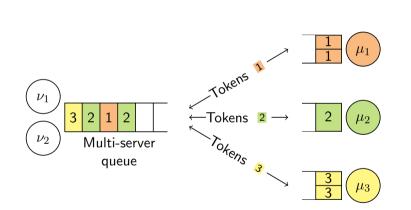


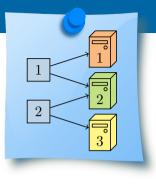






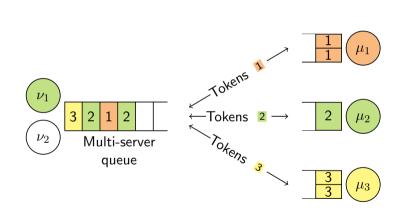


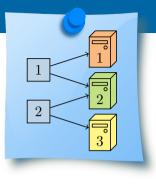




3

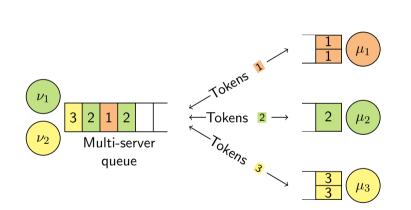
イロト 不得 トイヨト イヨト

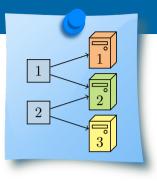




3

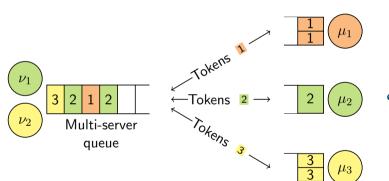
イロト 不得 トイヨト イヨト

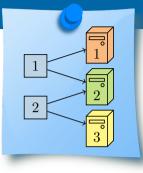




3

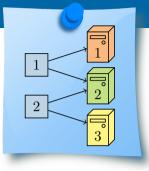
イロト 不得 トイヨト イヨト



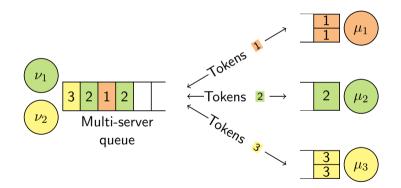


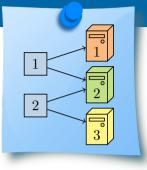
• Closed network of multi-server queues



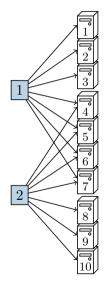


- Closed network of multi-server queues
- Closed-form expression for the stationary distribution

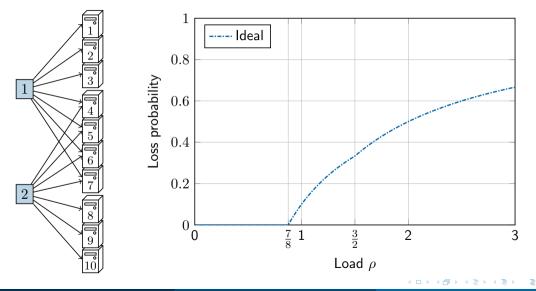




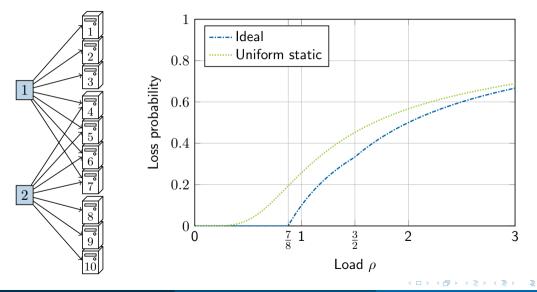
- Closed network of multi-server queues
- Closed-form expression for the stationary distribution
- Insensitivity to the job size distribution



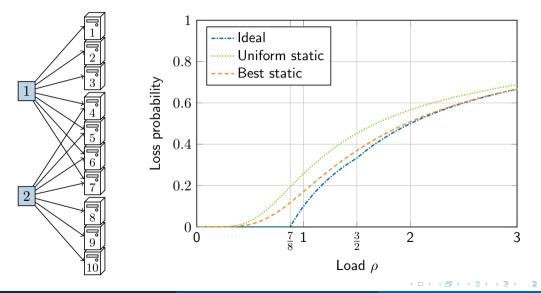
◆□ → ◆問 → ◆ □ → ◆ □ → □ □



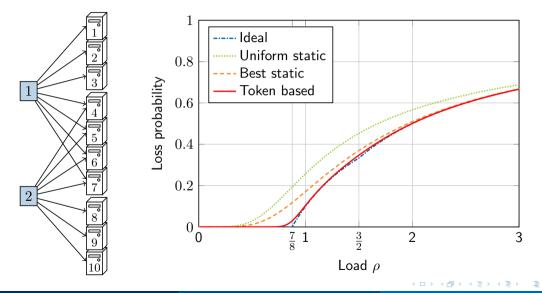
Ph.D. defense



Ph.D. defense



Ph.D. defense



Ph.D. defense

(日)

• Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate

• Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate (extension to Whittle networks and order-independent queues)

- Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate (extension to Whittle networks and order-independent queues)
- Closed-form expressions to compute performance metrics valid under both policies

- Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate (extension to Whittle networks and order-independent queues)
- Closed-form expressions to compute performance metrics valid under both policies
- Applications in design and analysis of resource-management algorithms in computer clusters

- Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate (extension to Whittle networks and order-independent queues)
- Closed-form expressions to compute performance metrics valid under both policies
- Applications in design and analysis of resource-management algorithms in computer clusters

Excursions during my Ph.D. thesis

- Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate (extension to Whittle networks and order-independent queues)
- Closed-form expressions to compute performance metrics valid under both policies
- Applications in design and analysis of resource-management algorithms in computer clusters

Excursions during my Ph.D. thesis

• Analytic combinatorics and queueing theory

- Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate (extension to Whittle networks and order-independent queues)
- Closed-form expressions to compute performance metrics valid under both policies
- Applications in design and analysis of resource-management algorithms in computer clusters

Excursions during my Ph.D. thesis

- Analytic combinatorics and queueing theory
- Simulating Kleinberg's grid

- Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate (extension to Whittle networks and order-independent queues)
- Closed-form expressions to compute performance metrics valid under both policies
- Applications in design and analysis of resource-management algorithms in computer clusters

Excursions during my Ph.D. thesis

Perspectives

- Analytic combinatorics and queueing theory
- Simulating Kleinberg's grid

- Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate (extension to Whittle networks and order-independent queues)
- Closed-form expressions to compute performance metrics valid under both policies
- Applications in design and analysis of resource-management algorithms in computer clusters

Excursions during my Ph.D. thesis

- Analytic combinatorics and queueing theory
- Simulating Kleinberg's grid

Perspectives

• Sensitive vs. insensitive algorithms

- Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate (extension to Whittle networks and order-independent queues)
- Closed-form expressions to compute performance metrics valid under both policies
- Applications in design and analysis of resource-management algorithms in computer clusters

Excursions during my Ph.D. thesis

- Analytic combinatorics and queueing theory
- Simulating Kleinberg's grid

Perspectives

- Sensitive vs. insensitive algorithms
- Multi-resource sharing

- Equivalence of balanced fairness and first-come-first-served with respect to the stationary distribution of the macrostate (extension to Whittle networks and order-independent queues)
- Closed-form expressions to compute performance metrics valid under both policies
- Applications in design and analysis of resource-management algorithms in computer clusters

Excursions during my Ph.D. thesis

- Analytic combinatorics and queueing theory
- Simulating Kleinberg's grid

Perspectives

- Sensitive vs. insensitive algorithms
- Multi-resource sharing
- Integrate learning into the process

3

1 E N

International publications

- Balanced fair resource sharing in computer clusters.
 T. Bonald and C. Comte. Performance Evaluation (2017).
- Poly-symmetry in processor-sharing systems.
 T. Bonald, C. Comte, V. Shah, and G. de Veciana. Queueing Systems (2017).
- Performance of Balanced Fairness in Resource Pools: A Recursive Approach.
 T. Bonald, C. Comte, and F. Mathieu. SIGMETRICS (2018).
- Of Kernels and Queues: When Network Calculus Meets Analytic Combinatorics. A. Bouillard, C. Comte, E. de Panafieu, and F. Mathieu. NetCal (2018).
- Kleinberg's grid unchained.

C. Comte and F. Mathieu. Theoretical Computer Science (2018).

- Dynamic Load Balancing with Tokens. C. Comte. IFIP Networking (2018).
- Dynamic Load Balancing with Tokens. C. Comte. Computer Communications (2019).