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The NIST Definition of Cloud Computing (Mell and Grance, 2011)

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources
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The NIST Definition of Cloud Computing (Mell and Grance, 2011)

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services)
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Erlang formulas Single-server queue
(Erlang, 1917) (Kendall, 1951, 1953)
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© Equivalence of balanced fairness and first-come-first-served
@ Performance analysis of the open queue

© Applications in algorithm design
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@ Markovian assumptions
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@ Queue state
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First-come-first-served policy

e Time-sharing policy considered in (Gardner et al., 2016)
@ Servers are greedily assigned to customers

@ The queue is order-independent
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Balanced fairness

@ Resource-sharing policy introduced in (Bonald and Proutiére, 2003)
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Balanced fairness

@ Resource-sharing policy introduced in (Bonald and Proutiére, 2003)
and applied to the multi-server queue in (Shah and de Veciana, 2015)
@ Independent of the customer arrival order

@ Dynamics described by a Whittle network 5
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Equivalence

o Balanced fairness and first-come-first-served are equivalent
with respect to the stationary distribution of the macrostate

clel=z
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Equivalence

o Balanced fairness and first-come-first-served are equivalent
with respect to the stationary distribution of the macrostate

clel=z

@ The service rate of class i under balanced fairness is equal to
the average service rate of class ¢ under first-come-first-served
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Outline

@ Performance analysis of the open queue
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Server elimination

Conditionally on server s being idle, the stationary
queue behaves like the restricted queue without traffic
generated by the classes compatible with server s.

server s

is idle
the restricted queue, without server s
and its compatible classes, is empty

the queue
is empty

w\—s =P

s6e
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Performance metrics

@ Probability that the queue is empty
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Performance metrics

@ Probability that the queue is empty
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Performance metrics

s6e
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@ Probability that the queue is empty

Zs s H
= with p=
Zs qj;lILjs Zs MS

Y = (1-p) x

@ Expected number of customers

p 1 Yty L
l—p  1—=p > ps

@ Time complexity exponential in the number of servers

@ Polynomial in interesting cases
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Toy example
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o Conservation equation
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Static random assignment (100 servers, load p = 0.9)
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© Applications in algorithm design
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Load-balancing algorithm
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Load-balancing algorithm
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types — e Markovian assumptions
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/ 1 process with rate v;
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\ — — Job sizes are independent and exponentially
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