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The NIST Definition of Cloud Computing (Mell and Grance, 2011)

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources

(e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction
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Céline Comte Ph.D. defense September 24, 2019 3 / 30



Economies of scale

Without resource pooling With resource pooling

Céline Comte Ph.D. defense September 24, 2019 3 / 30



Economies of scale

Without resource pooling With resource pooling
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Queueing theory: the early days

Erlang formulas

Networks of queues

(Erlang, 1917)

(Kendall, 1951, 1953) (Jackson, 1957)
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Céline Comte Ph.D. defense September 24, 2019 5 / 30



Queueing theory: the early days

Erlang formulas Single-server queue

Networks of queues

(Erlang, 1917) (Kendall, 1951, 1953)

(Jackson, 1957)

µ

µ

µ

λ

µλ

µλ

≈

µ1

µ2

λ

→ Telephone networks

→ Optical networks

→ Process schedulers

→ Network schedulers

→ Hospital planning

→ Manufacturing
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Queueing theory: abstract models

Whittle networks
(Whittle, 1986)

(Berezner et al., 1995)
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→ Data networks
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Join-the-shortest-queue

Power-of-two-choices
(Mitzenmacher, 1996)

Join-idle-queue (Lu et al., 2011)

Exact analyses with two computers
and approximations otherwise
(Gupta et al., 2007)

Asymptotic scaling regimes
(van der Boor et al., 2018)
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Céline Comte Ph.D. defense September 24, 2019 7 / 30



Queueing theory: application to load balancing in computer clusters

??

Classical algorithms

Join-the-shortest-queue

Power-of-two-choices
(Mitzenmacher, 1996)

Join-idle-queue (Lu et al., 2011)

Exact analyses with two computers
and approximations otherwise
(Gupta et al., 2007)

Asymptotic scaling regimes
(van der Boor et al., 2018)
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Outline

1 Equivalence of balanced fairness and first-come-first-served

2 Performance analysis of the open queue

3 Applications in algorithm design
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Céline Comte Ph.D. defense September 24, 2019 12 / 30



The multi-server queue

2 1 1 2 1

µ1

µ2

µ3

λ 1

λ 2

Markovian assumptions
→ Class-i customers arrive

according to a Poisson
process with rate λi

→ Server s has capacity µs

→ Service requirements are independent and
exponentially distributed with unit mean

Queue state
→ Microstate c = (1 , 2 , 1 , 1 , 2)

→ Macrostate x =

(
3 1

2 2

)

1

2

3

1

2
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Céline Comte Ph.D. defense September 24, 2019 13 / 30



Capacity region

2 1 1 2 1

µ1

µ2

µ2

µ3

λ 1

λ 2

φ1

φ2

φ1 ≤ µ1 + µ2

φ2 ≤ µ2 + µ3

φ1 + φ2
≤ µ1 + µ2 + µ3

µ1 µ2

µ3

µ2

µ3

µ1

Stability region
= Interior

φ =
(
µ1+µ2

0

)
φ =

(
µ1+µ2
µ3

)φ =
(µ1+µ2

2
µ2
2
+µ3

)

1

2

3

1

2
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First-come-first-served policy

Time-sharing policy considered in (Gardner et al., 2016)

Servers are greedily assigned to customers

The queue is order-independent
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Balanced fairness

Resource-sharing policy introduced in (Bonald and Proutière, 2003)

and applied to the multi-server queue in (Shah and de Veciana, 2015)

Independent of the customer arrival order

Dynamics described by a Whittle network
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Céline Comte Ph.D. defense September 24, 2019 15 / 30



Balanced fairness

Resource-sharing policy introduced in (Bonald and Proutière, 2003)

and applied to the multi-server queue in (Shah and de Veciana, 2015)

Independent of the customer arrival order

Dynamics described by a Whittle network

µ1

µ2

µ2µ2µ2µ2

µ3

λ 1

λ 2

Macrostate

x =

(
2 1

1 2

)

φ1

φ2

µ1 µ2

µ3µ3

µ2

µ1

φ =
(
0
0

)

φ =
(
µ1+µ2

0

)

φ =
(

0
µ2+µ3

)
φ
φ

1

2

3

1

2
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Equivalence

Balanced fairness and first-come-first-served are equivalent
with respect to the stationary distribution of the macrostate

π(x) =
∑

c:|c|=x

π(c)

The service rate of class i under balanced fairness is equal to
the average service rate of class i under first-come-first-served

φi(x) =
∑
c:|c|=x

φi(c)
π(c)
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Outline

1 Equivalence of balanced fairness and first-come-first-served

2 Performance analysis of the open queue

3 Applications in algorithm design
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Performance metrics

1

2

3

1

2

Probability that the queue is empty

ψ = (1− ρ) ×
∑

s µs∑
s

µs
ψ|−s

with ρ =

∑
i λi∑
s µs

Expected number of customers

L =
ρ

1− ρ
+

1

1− ρ

∑
s µs

ψ
ψ|−s

L|−s∑
s µs

Time complexity exponential in the number of servers

Polynomial in interesting cases
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with ρ =
λ1 + λ2

µ1 + µ2 + µ3
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µ1 + µ2
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Proof

Law of total probability

P
(

the queue

is empty

)
= P

(
server s

is idle

)
× P

(
the queue

is empty

∣∣∣∣ server s

is idle

)
+P

(
server s

is active

)
× P

(
the queue

is empty

∣∣∣∣ server s

is active

)

Conservation equation∑
i

λi =
∑
s

µs(1− ψs)

�

ψ ψs= ψ|−s×
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Céline Comte Ph.D. defense September 24, 2019 21 / 30



Proof

Law of total probability

P
(

the queue

is empty

)
= P

(
server s

is idle

)
× P

(
the queue

is empty

∣∣∣∣ server s

is idle

)

+P
(

server s

is active

)
× P

(
the queue

is empty

∣∣∣∣ server s

is active

)
Conservation equation∑

i

λi =
∑
s

µs(1− ψs)

�

ψ ψs=

ψ|−s×
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Queues where complexity is polynomial in the number of servers

Global static random
assignment

Line structure Ring structure
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Static random assignment (100 servers, load ρ = 0.9)
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Céline Comte Ph.D. defense September 24, 2019 23 / 30



Outline

1 Equivalence of balanced fairness and first-come-first-served

2 Performance analysis of the open queue

3 Applications in algorithm design
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Céline Comte Ph.D. defense September 24, 2019 25 / 30



Load-balancing algorithm

1

2

3

Load balancing

Job
scheduling

Round-robin

Seize the oldest token
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Céline Comte Ph.D. defense September 24, 2019 25 / 30



Load-balancing algorithm

1

1

2

3

Load balancing

Job
scheduling

Round-robin

Seize the oldest token

Céline Comte Ph.D. defense September 24, 2019 25 / 30



Load-balancing algorithm

1

1

2

3

Load balancing

Job
scheduling

Round-robin

Seize the oldest token
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Céline Comte Ph.D. defense September 24, 2019 25 / 30



Cluster model

1

2

3

Computers

1

2

Job
types

Markovian assumptions
→ Type-i jobs arrive according to a Poisson

process with rate νi
→ Computer s has capacity µs

→ Job sizes are independent and exponentially
distributed with unit mean

Admission limit
→ Computer s has `s tokens
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Céline Comte Ph.D. defense September 24, 2019 27 / 30



Queueing model

3 2 1 2

ν1

ν2 Multi-server
queue

Dispatcher
1

1
1 µ1

2

2 µ2

3

3
3 µ3

Tokens
1

Tokens 2

Tokens
3

Closed network of
multi-server queues

Closed-form expression for
the stationary distribution

Insensitivity to the job
size distribution

1

2

3

1

2
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Céline Comte Ph.D. defense September 24, 2019 29 / 30



Conclusion

Takeaways

Equivalence of balanced fairness and first-come-first-served with respect to the stationary
distribution of the macrostate (extension to Whittle networks and order-independent queues)

Closed-form expressions to compute performance metrics valid under both policies

Applications in design and analysis of resource-management algorithms in computer clusters

Excursions during my Ph.D. thesis

Analytic combinatorics and queueing theory

Simulating Kleinberg’s grid

Perspectives

Sensitive vs. insensitive algorithms

Multi-resource sharing

Integrate learning into the process
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