Performance of Balanced Fairness in Resource Pools: A Recursive Approach

Céline Comte Joint work with Thomas Bonald and Fabien Mathieu

NロKIA Bell Labs

LINCS Seminar
January 24, 2018

Our objective

Understanding the impact of complex server interactions in large-scale resource pools with parallel processing

www.rambus.com/data-center/

Processor-sharing

- "Service policy where the customers, clients or jobs are all served simultaneously, each receiving an equal fraction of the service capacity available" (Wikipedia)

Processor-sharing

- "Service policy where the customers, clients or jobs are all served simultaneously, each receiving an equal fraction of the service capacity available" (Wikipedia)

- "Emerged as an idealisation of round-robin scheduling algorithms" (Aalto et al., 2007)

Insensitivity

- Performance only depends on the load $\rho=\frac{\lambda}{\mu}$

Poisson process
with rate λ

i.i.d. job sizes

Insensitivity

- Performance only depends on the load $\rho=\frac{\lambda}{\mu}$

Poisson process
with rate λ

- Probability that the system is empty

$$
\psi=1-\rho
$$

Insensitivity

- Performance only depends on the load $\rho=\frac{\lambda}{\mu}$

Poisson process
with rate λ
with rate λ

- Probability that the system is empty
i.i.d. job sizes

$$
\psi=1-\rho \quad L=\frac{\rho}{1-\rho}
$$

- Mean number of jobs in the system

Outline

Resource allocation

New formula for performance prediction

Applications
Gain of differentiation
Impact of locality

Outline

Resource allocation

New formula for performance prediction

Applications
Gain of differentiation Impact of locality

Resource pool with parallel processing

Arrivals

- Class i has traffic intensity λ_{i}
- Poisson arrival process
- i.i.d. job sizes

Service

- Server k has capacity μ_{k}
- Parallel processing

State $x=\left(x_{i}: i \in \mathscr{I}\right) \in \mathbb{N}^{\mathscr{I}}$

Resource pool with parallel processing

Arrivals

- Class i has traffic intensity λ_{i}
- Poisson arrival process
- i.i.d. job sizes

Service

- Server k has capacity μ_{k}
- Parallel processing

State $x=\binom{x_{1}}{x_{2}} \in \mathbb{N}^{\mathscr{G}}$

Network of processor-sharing queues

Balanced fairness

Balanced fairness

The most efficient insensitive resource allocation

Balanced fairness

The most efficient insensitive resource allocation

- Introduced for dimensioning data networks (Bonald and Proutière, 2003)

Balanced fairness

The most efficient insensitive resource allocation

- Introduced for dimensioning data networks (Bonald and Proutière, 2003)
- Good approximation of proportional fairness

Balanced fairness

The most efficient insensitive resource allocation

- Introduced for dimensioning data networks (Bonald and Proutière, 2003)
- Good approximation of proportional fairness
- Recently applied to server pools

Balanced fairness

The most efficient insensitive resource allocation

- Introduced for dimensioning data networks (Bonald and Proutière, 2003)
- Good approximation of proportional fairness
- Recently applied to server pools
- Content-delivery networks (Shah and de Veciana, 2015)

Balanced fairness

The most efficient insensitive resource allocation

- Introduced for dimensioning data networks (Bonald and Proutière, 2003)
- Good approximation of proportional fairness
- Recently applied to server pools
- Content-delivery networks (Shah and de Veciana, 2015)
- Computer clusters (Bonald and Comte, 2017)

Balanced fairness

Balanced fairness

Balanced fairness

Balanced fairness

Balanced fairness

Balanced fairness

Balanced fairness

- Balance property

Balanced fairness

- Balance property

Balanced fairness

- Balance property
- Maximize the resource utilization

Balanced fairness

- Balance property
- Maximize the resource utilization

Balanced fairness

- Balance property
- Maximize the resource utilization

Balanced fairness

- Stabilizes the maximum set of admissible traffic intensities

Balanced fairness

- Explicit stationary distribution of the system state x

In resource pools

In resource pools

- Pareto-efficiency
(Shah and de Veciana, 2015)

In resource pools

- Pareto-efficiency
(Shah and de Veciana, 2015)

Scheduling

- Idealisation of an extension of roundrobin scheduling algorithm (Bonald and Comte, 2017)

Related work

- Recursion on the set of active classes
- Proposed in (Bonald and Virtamo, 2004) and (Shah and de Veciana, 2015)

- Exponential complexity in general
- Polynomial complexity under "poly-symmetry" (Bonald et al., 2017)
- Explicit formulas in specific configurations (Gardner et al., 2017)

Outline

Resource allocation

New formula for performance prediction

Applications
 Gain of differentiation Impact of locality

Resource pool with parallel processing

Arrivals

- Class i has traffic intensity λ_{i}
- Poisson arrival process
- i.i.d. job sizes

Service

- Server k has capacity μ_{k}
- Parallel processing

Resources are allocated according to balanced fairness

Resource pool with parallel processing

Resource pool with parallel processing

Additional notations

Resource pool with parallel processing

Additional notations

- \mathscr{I} set of classes

Resource pool with parallel processing

Additional notations

- \mathscr{I} set of classes
- \mathscr{K} set of servers

Resource pool with parallel processing

Additional notations

- \mathscr{I} set of classes
- \mathbb{K} set of servers
- \mathscr{I}_{k} set of classes that can be processed by server k

Resource pool with parallel processing

Additional notations

- \mathscr{I} set of classes
- \mathbb{K} set of servers
- \mathscr{I}_{k} set of classes that can be processed by server k
- $\rho=\frac{\sum_{i \in \mathscr{I}} \lambda_{\mathrm{i}}}{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}$ load of the system

Resource pool with parallel processing

Additional notations

- \mathscr{I} set of classes
- \mathbb{K} set of servers
- \mathscr{I}_{k} set of classes that can be processed by server k
- $\rho=\frac{\sum_{i \in \mathscr{G}} \lambda_{\mathrm{i}}}{\sum_{\mathrm{k} \in \mathscr{K}} \mu_{\mathrm{k}}}$ load of the system

Stability: for all $\mathscr{L} \subseteq \mathscr{K}$ with $\mathscr{L} \neq \varnothing$,

$$
\sum_{\mathrm{i} \in \mathscr{I} \backslash \cup_{\mathrm{k} \in \mathcal{H} \backslash \mathscr{L}} \mathscr{\mathscr { G }}_{\mathrm{k}}} \lambda_{\mathrm{i}}<\sum_{\mathrm{k} \in \mathscr{L}} \mu_{\mathrm{k}}
$$

Server idling

Server idling

Conditionally on server k being idle, the stationary system behaves like the same system without traffic generated by the classes in \mathscr{I}_{k}

Server idling

Conditionally on server k being idle, the stationary system behaves like the same system without traffic generated by the classes in \mathscr{I}_{k}

Server idling

Conditionally on server k being idle, the stationary system behaves like the same system without traffic generated by the classes in \mathscr{I}_{k}

Server idling

Conditionally on server k being idle, the stationary system behaves like the same system without traffic generated by the classes in \mathscr{I}_{k}

Server idling

Conditionally on server k being idle, the stationary system behaves like the same system without traffic generated by the classes in \mathscr{I}_{k}

Server idling

Conditionally on server k being idle, the stationary system behaves like the same system without traffic generated by the classes in \mathscr{I}_{k}

Server idling

Conditionally on server k being idle, the stationary system behaves like the same system without traffic generated by the classes in \mathscr{I}_{k}

Server idling

Conditionally on server k being idle, the stationary system behaves like the same system without traffic generated by the classes in \mathscr{I}_{k}

Special case where $\mathscr{I}_{\mathrm{k}}=\mathscr{I}$

Server idling

Conditional probabilities

$$
\psi=\psi_{\mathrm{k}} \psi_{\mid-\mathrm{k}}
$$

Server idling

Conditional probabilities

Probability
of an empty system

Server idling

Conditional probabilities

Probability Probability
of an empty that server system
k is idle

Server idling

Conditional probabilities

Probability Probability Conditional
of an empty that server probability system k is idle

Server idling

Conditional probabilities

Probability Probability Conditional of an empty that server probability system k is idle

$$
\psi_{\mid-\mathrm{k}}=\mathbb{P}\left(\begin{array}{c}
\text { the system is empty, } \\
\text { given that server } \\
k \text { is idle }
\end{array}\right)
$$

Server idling

Conditional probabilities

Probability Probability Conditional
of an empty that server probability system
k is idle

$$
\psi_{I-\mathrm{k}}=\mathbb{P}\left(\begin{array}{c}
\text { the subsystem without } \\
\text { traffic generated by the } \\
\text { classes in } \mathscr{I}_{\mathrm{k}} \text { is idle }
\end{array}\right)
$$

Probability of an empty system

$$
\psi=(1-\rho) \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-\mathrm{k}}}}
$$

Probability of an empty system

$$
\psi=(1-\rho)) \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-\mathrm{k}}}}
$$

Probability of an empty system

$$
\begin{aligned}
& \psi=(1-\rho)) \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-k}}} \\
& \quad \text { Complete } \\
& \text { resource } \\
& \text { pooling }
\end{aligned}
$$

Probability of an empty system

$$
\begin{aligned}
& \psi=(1-\rho)) \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-\mathrm{k}}}} \\
& \quad \begin{array}{l}
\text { Complete } \\
\\
\\
\\
\quad \text { posource }
\end{array}
\end{aligned}
$$

Probability of an empty system

$$
\begin{aligned}
& \psi=(1-\rho)) \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-k}}} \\
& \quad \text { Complete } \\
& \text { resource } \\
& \text { pooling }
\end{aligned}
$$

Probability of an empty system

$$
\psi=\begin{aligned}
& (1-\rho) \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-k}}} \\
& \text { Complete } \\
& \text { resource } \\
& \quad \text { pooling }
\end{aligned}
$$

Probability of an empty system

$$
\begin{aligned}
& \psi=\underbrace{(1-\rho)}_{\text {Complete }} \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-\mathrm{k}}}} \\
& \text { resource Overhead due } \\
& \text { pooling to incomplete } \\
& \text { pooling }
\end{aligned}
$$

Proof

Proof

- Conservation equation

$$
\sum_{i \in \mathscr{I}} \lambda_{i}=\sum_{k \in \mathscr{K}} \mu_{\mathrm{k}}\left(1-\psi_{\mathrm{k}}\right)
$$

Proof

- Conservation equation

$$
\begin{aligned}
\sum_{i \in \mathscr{I}} \lambda_{\mathrm{i}} & =\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}\left(1-\psi_{\mathrm{k}}\right), \\
\text { i.e. } \quad \sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \psi_{\mathrm{k}} & =\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{\mathscr { A }}} \lambda_{\mathrm{i}},
\end{aligned}
$$

Proof

- Conservation equation

$$
\begin{aligned}
\sum_{\mathrm{i} \in \mathscr{\mathscr { I }}} \lambda_{\mathrm{i}} & =\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}\left(1-\psi_{\mathrm{k}}\right), \\
\text { i.e. } \sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \psi_{\mathrm{k}} & =\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{\mathscr { G }}} \lambda_{\mathrm{i}},
\end{aligned}
$$

- Conditional probabilities

$$
\psi=\psi_{\mathrm{k}} \psi_{l-\mathrm{k}} \quad \rightarrow \quad \psi_{\mathrm{k}}=\frac{\psi}{\psi_{l-\mathrm{k}}}
$$

Proof

- Conservation equation

$$
\begin{aligned}
\sum_{\mathrm{i} \in \mathscr{\mathscr { I }}} \lambda_{\mathrm{i}} & =\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}\left(1-\psi_{\mathrm{k}}\right), \\
\text { i.e. } \sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \psi_{\mathrm{k}} & =\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{\mathscr { G }}} \lambda_{\mathrm{i}},
\end{aligned}
$$

- Conditional probabilities

$$
\psi=\psi_{\mathrm{k}} \psi_{l-\mathrm{k}} \quad \rightarrow \quad \psi_{\mathrm{k}}=\frac{\psi}{\psi_{l-\mathrm{k}}}
$$

- Substitution

$$
\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \frac{\psi}{\psi_{1-\mathrm{k}}}=\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{\mathscr { G }}} \lambda_{\mathrm{i}}
$$

- Substitution

$$
\sum_{\mathrm{k} \in \mathscr{K}} \mu_{\mathrm{k}} \frac{\psi}{\psi_{\mathrm{l}-\mathrm{k}}}=\sum_{\mathrm{k} \in \mathscr{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{I}} \lambda_{\mathrm{i}},
$$

Proof

- Substitution

$$
\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \frac{\psi}{\psi_{l-\mathrm{k}}}=\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{I}} \lambda_{\mathrm{i}},
$$

that is,

$$
\psi=\frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{I}} \lambda_{\mathrm{i}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{l-\mathrm{k}}}} .
$$

Proof

- Substitution

$$
\sum_{\mathrm{k} \in \mathscr{K}} \mu_{\mathrm{k}} \frac{\psi}{\psi_{\mathrm{l}-\mathrm{k}}}=\sum_{\mathrm{k} \in \mathscr{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{I}} \lambda_{\mathrm{i}},
$$

that is,

$$
\psi=\frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{I}} \lambda_{\mathrm{i}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-\mathrm{k}}}} \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}} .
$$

- Substitution

$$
\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \frac{\psi}{\psi_{l-\mathrm{k}}}=\sum_{\mathrm{k} \in \mathscr{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{I}} \lambda_{\mathrm{i}},
$$

that is,

$$
\psi=\frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{I}} \lambda_{\mathrm{i}}}{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}} \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-\mathrm{k}}}} .
$$

- Substitution

$$
\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \frac{\psi}{\psi_{l-\mathrm{k}}}=\sum_{\mathrm{k} \in \mathscr{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{I}} \lambda_{\mathrm{i}},
$$

that is,

$$
\psi=\frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}-\sum_{\mathrm{i} \in \mathscr{I}} \lambda_{\mathrm{i}}}{\sum_{\mathrm{k} \in \mathscr{K}} \mu_{\mathrm{k}}} \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-\mathrm{k}}}} .
$$

Probability of an empty system

$$
\begin{aligned}
& \psi=\underbrace{(1-\rho)}_{\text {Complete }} \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-\mathrm{k}}}} \\
& \text { resource Overhead due } \\
& \text { pooling to incomplete } \\
& \text { pooling }
\end{aligned}
$$

Toy example

Toy example

Toy example

Toy example

$$
\begin{aligned}
& \psi=(1-\rho) \times \frac{\mu_{1}+\mu_{2}+\mu_{3}}{\frac{\mu_{1}}{\psi_{1-1}}+\frac{\mu_{2}}{\psi_{1-2}}+\frac{\mu_{3}}{\psi_{1-3}}}, \\
& \text { with } \rho=\frac{\lambda_{1}+\lambda_{2}}{\mu_{1}+\mu_{2}+\mu_{3}} \\
& \psi_{\mid-1}= \\
& \psi_{\mid-3}=
\end{aligned}
$$

Toy example

Toy example

Toy example

$$
\begin{aligned}
& \psi=(1-\rho) \times \frac{\mu_{1}+\mu_{2}+\mu_{3}}{\frac{\mu_{1}}{\psi_{l-1}}+\frac{\mu_{2}}{\psi_{l-2}}+\frac{\mu_{3}}{\psi_{l-3}}} \text { with } \rho=\frac{\lambda_{1}+\lambda_{2}}{\mu_{1}+\mu_{2}+\mu_{3}} \\
& \psi_{\mid-1}= \\
& \psi_{\mid-3}= \\
& \text { w }
\end{aligned}
$$

Toy example

$$
\text { with } \rho=\frac{\lambda_{1}+\lambda_{2}}{\mu_{1}+\mu_{2}+\mu_{3}}
$$

Toy example

$$
\begin{aligned}
& \psi=(1-\rho) \times \frac{\mu_{1}+\mu_{2}+\mu_{3}}{\frac{\mu_{1}}{\psi_{1-1}+\frac{\mu_{2}}{\psi_{l-2}}+\frac{\mu_{3}}{\psi_{l-3}}},} \\
& \text { with } \rho=\frac{\lambda_{1}+\lambda_{2}}{\mu_{1}+\mu_{2}+\mu_{3}} \\
& \psi_{\mid-1}= \\
& \psi_{\mid-3}=1 \\
& \psi_{\mid-2}=
\end{aligned}
$$

Toy example

Toy example

$$
\begin{aligned}
& \psi=(1-\rho) \times \frac{\mu_{1}+\mu_{2}+\mu_{3}}{\frac{\mu_{1}}{\psi_{1-1}+\frac{\mu_{2}}{\psi_{l-2}}+\frac{\mu_{3}}{\psi_{\mid-3}}},} \\
& \text { with } \rho=\frac{\lambda_{1}+\lambda_{2}}{\mu_{1}+\mu_{2}+\mu_{3}} \\
& \psi_{\mid-1}= \\
& \psi_{\mid-3}=1 \\
& \psi_{\mid-2}=
\end{aligned}
$$

Toy example

Toy example

Toy example

Mean number of jobs

Mean number of jobs

Mean number of jobs

$$
\begin{aligned}
& \mathrm{L}=\frac{\rho}{1-\rho}+\frac{1}{1-\rho} \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \psi_{\mathrm{k}} \mathrm{~L}_{\mid-\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}} \\
& \text { Complete } \\
& \text { resource } \\
& \text { pooling }
\end{aligned}
$$

Mean number of jobs

Mean number of jobs

$$
\begin{aligned}
& \mathrm{L}=\frac{\rho}{1-\rho}+\frac{1}{1-\rho} \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \psi_{\mathrm{k}} \mathrm{~L}_{\mid-\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}} \\
& \text { Complete } \\
& \text { resource } \\
& \text { pooling }
\end{aligned}
$$

Mean number of jobs

$$
\begin{aligned}
& \mathrm{L}=\frac{\rho}{1-\rho}+\underbrace{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}_{\begin{array}{l}
\text { Overhead due to } \\
\text { Complete } \\
\text { resource } \\
\text { incomplete pooling }
\end{array}} \\
& \text { pooling }
\end{aligned}
$$

Mean number of jobs

$$
\begin{aligned}
& \mathrm{L}=\frac{\rho}{1-\rho}+\underbrace{\frac{1}{1-\rho} \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \psi_{\mathrm{k}} \mathrm{~L}_{\mathrm{l}-\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}}_{\text {Complete }} \\
& \text { Overhead due to } \\
& \text { resource } \\
& \text { incomplete pooling }
\end{aligned}
$$

- Exponential complexity in the number of servers in general

Mean number of jobs

$$
\begin{aligned}
& \mathrm{L}=\frac{\rho}{1-\rho}+\underbrace{\frac{1}{1-\rho} \frac{\sum_{\mathrm{k} \in \mathscr{K}} \mu_{\mathrm{k}} \psi_{\mathrm{k}} \mathrm{~L}_{\mathrm{l}-\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}}_{\text {Overhead due to }} \\
& \text { Complete } \\
& \text { resource } \\
& \text { incomplete pooling }
\end{aligned}
$$

- Exponential complexity in the number of servers in general
- Polynomial in "nice" systems

Outline

Resource allocation

New formula for performance prediction

Applications
Gain of differentiation Impact of locality

Outline

Resource allocation

New formula for performance prediction

Applications
Gain of differentiation
Impact of locality

Randomized assignment

Randomized assignment

\rightarrow

Randomized assignment

Homogeneous pool

Homogeneous pool

- All servers are exchangeable

Homogeneous pool

- All servers are exchangeable

Homogeneous pool

Homogeneous pool

- All servers are exchangeable

Homogeneous pool

- All servers are exchangeable

Homogeneous pool

Homogeneous pool

- All servers are exchangeable

Homogeneous pool

- All servers are exchangeable The subsystem is again a homogeneous pool

Homogeneous pool

- All servers are exchangeable The subsystem is again a homogeneous pool
- $\psi=(1-\rho) \times \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-k}}}$

Homogeneous pool

- All servers are exchangeable The subsystem is again a homogeneous pool
- $\psi=(1-\rho) \times \frac{K \mu}{\sum_{\mathrm{k} \in \mathcal{K}} \frac{\mu_{\mathrm{k}}}{\psi_{1-\mathrm{k}}}}$

Homogeneous pool

- All servers are exchangeable The subsystem is again a homogeneous pool
- $\psi=(1-\rho) \times \frac{\mathrm{K} \mu}{\mathrm{K} \times \frac{\mu}{\psi_{1-K}}}$

Homogeneous pool

- All servers are exchangeable The subsystem is again a homogeneous pool
- $\psi=(1-\rho) \times \psi_{\mid-K}$

Homogeneous pool

- All servers are exchangeable The subsystem is again a homogeneous pool
- $\psi=(1-\rho) \times \psi_{\mid-K}$
- $\mathrm{L}=\frac{\rho}{1-\rho}+\frac{1}{1-\rho} \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \frac{\psi}{\psi_{1-\mathrm{k}}} \mathrm{L}_{\mathrm{l}-\mathrm{k}}}{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}}}$

Homogeneous pool

- All servers are exchangeable The subsystem is again a homogeneous pool
- $\psi=(1-\rho) \times \psi_{\mid-K}$
- $\mathrm{L}=\frac{\rho}{1-\rho}+\frac{1}{1-\rho} \frac{\sum_{\mathrm{k} \in \mathcal{K}} \mu_{\mathrm{k}} \frac{\psi}{\psi_{1-\mathrm{k}}} \mathrm{L}_{\mathrm{l}-\mathrm{k}}}{\mathrm{K} \mu}$

Homogeneous pool

- All servers are exchangeable The subsystem is again a homogeneous pool
- $\psi=(1-\rho) \times \psi_{\mid-K}$
- $\mathrm{L}=\frac{\rho}{1-\rho}+\frac{1}{1-\rho} \frac{\mathrm{K} \mu \frac{\psi}{\psi_{1-K}} \mathrm{~L}_{\mathrm{I}-\mathrm{K}}}{\mathrm{K} \mu}$

Homogeneous pool

- All servers are exchangeable The subsystem is again a homogeneous pool
- $\psi=(1-\rho) \times \psi_{\mid-K}$
- $L=\frac{\rho}{1-\rho}+L_{l-K}$

Homogeneous pool

- All servers are exchangeable The subsystem is again a homogeneous pool
- $\psi=(1-\rho) \times \psi_{I-K}$
- $L=\frac{\rho}{1-\rho}+L_{l-K}$
- New proof for the result of (Gardner et al., 2017a)

Randomized assignment

Time complexity O(K)

Randomized assignment

Time complexity O(NK)
$N=$ number of job types

Randomized assignment

Time complexity $\mathrm{O}\left(\mathrm{NSK}_{1} \cdots \mathrm{~K}_{\mathrm{S}}\right)$
$N=$ number of job types $S=$ number of server pools

Gain of differentiation

Gain of differentiation

Gain of differentiation

Gain of differentiation

Gain of differentiation

Study the impact of the job distribution on performance

(1) Premium only
(2) Regular only
(3) Mixed

Gain of differentiation

Gain of differentiation

Gain of differentiation

Outline

Resource allocation

New formula for performance prediction

Applications
Gain of differentiation
Impact of locality

Line structure

Line structure

Line structure

Line structure

Line structure

Line structure

Time complexity $\mathrm{O}\left(\mathrm{K}^{3}\right)$ in general, $O\left(K^{2}\right)$ in homogeneous pools

Impact of locality

Impact of locality

Impact of locality

Impact of locality

Impact of locality

$$
\text { Load } \rho=\frac{\lambda}{\mu}=0.9
$$

Study the impact of locality on performance under randomized assignment
(1) Global (2) Line

Impact of locality

Conclusion

- New recursive formula to predict the performance of balanced fairness in an arbitrary compatibility graph

Conclusion

- New recursive formula to predict the performance of balanced fairness in an arbitrary compatibility graph
- Exponential time complexity in the number of servers in general

Conclusion

- New recursive formula to predict the performance of balanced fairness in an arbitrary compatibility graph
- Exponential time complexity in the number of servers in general
- Practically interesting configurations where the complexity is polynomial

Conclusion

- New recursive formula to predict the performance of balanced fairness in an arbitrary compatibility graph
- Exponential time complexity in the number of servers in general
- Practically interesting configurations where the complexity is polynomial
- Randomized assignment

Conclusion

- New recursive formula to predict the performance of balanced fairness in an arbitrary compatibility graph
- Exponential time complexity in the number of servers in general
- Practically interesting configurations where the complexity is polynomial
- Randomized assignment
- Line, nested, ring pools

