Dynamic Load Balancing with Tokens

Céline Comte

Young European Queueing Theorists XII December 3, 2018

chokedonmylatte.wordpress.com

Video on demand

Video on demand

Computer clusters

Video on demand

Computer clusters

ww.selserschaefer.com

Supermarket

Video on demand

Computer clusters

www.cnet.con

Supermarket

www.bostonglobe.com

Airport

2/26 © 2018 Nokia

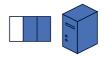
Video on demand

Computer clusters

ww.cnet.com

Heterogeneity + Compatibilities

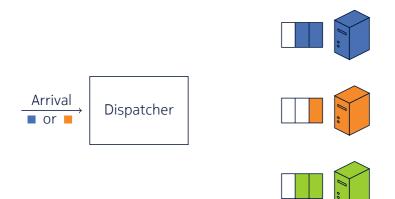
Supermarket

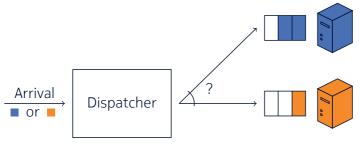

www.bostonglobe.com

Airport

NOKIA Bell Labs

Abstraction


Dispatcher



Abstraction

Abstraction

Our contributions

Load balancing algorithm

Robust and adaptative, yet simple

Our contributions

Load balancing algorithm

Robust and adaptative, yet simple

Queueing analysis

Under a Poisson arrival process

Our contributions

Load balancing algorithm

Robust and adaptative, yet simple

Queueing analysis

Under a Poisson arrival process

Relate several existing works

- Join-Idle-Queue (Lu et al., 2011)
- Assign to the longest idle server (ALIS) and FCFS-ALIS (Adan and Weiss, 2012) based on order-independent queues (Berezner et al., 1995)
- Insensitive load balancing (Bonald et al., 2004) based on Whittle networks (Whittle, 1985)

Outline

Algorithm

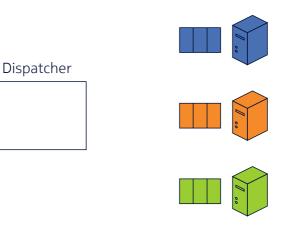
Queueing analysis

Numerical results

Extensions

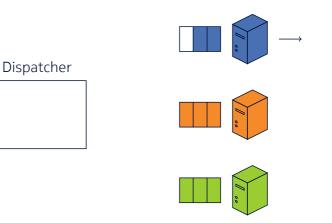
Outline

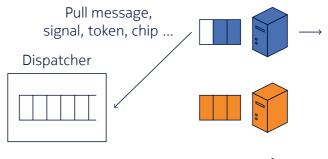
Algorithm

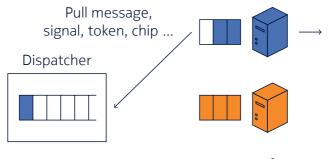

Queueing analysis

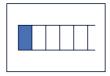
Numerical results

Extensions

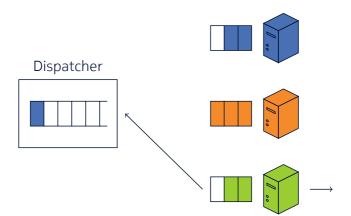


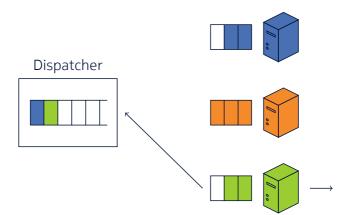




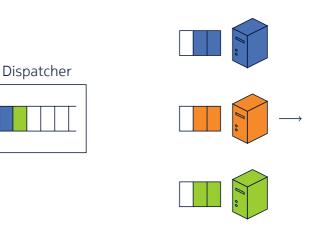


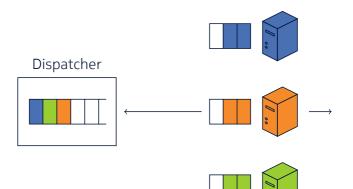
Dispatcher

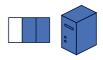




Dispatcher

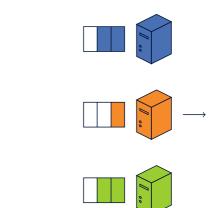


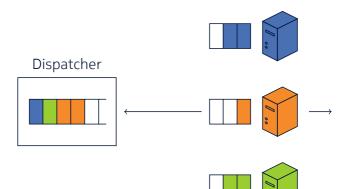




00

Dispatcher



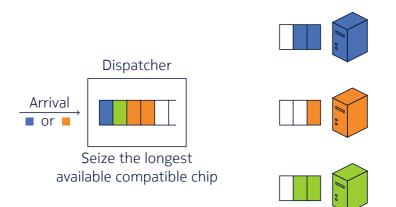


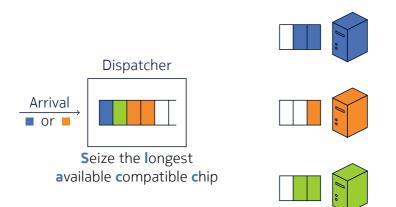
Dispatcher

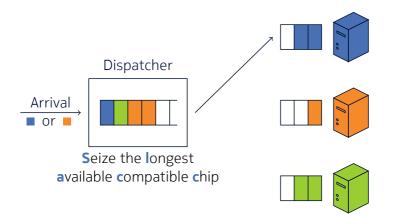
7/26 © 2018 Nokia

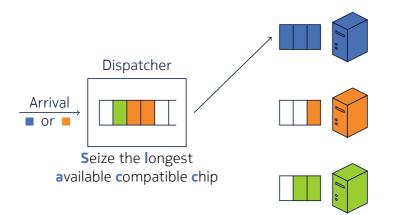
00

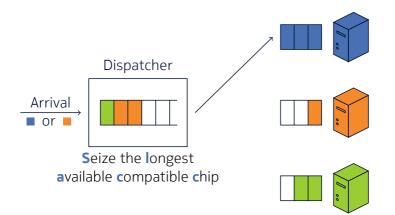
Dispatcher



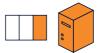

00



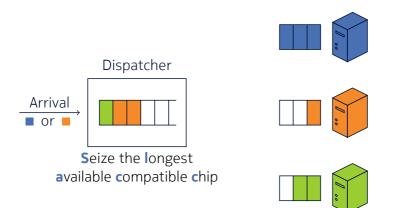


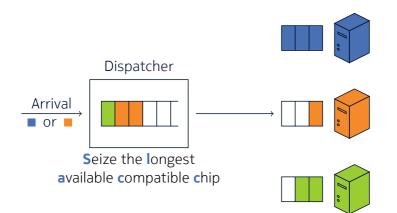


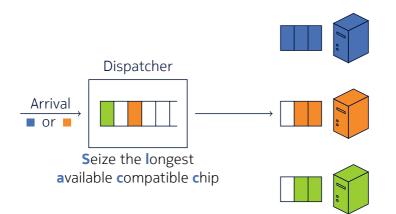




Dispatcher

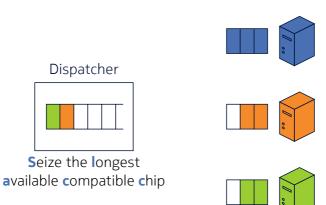

Seize the longest available compatible chip



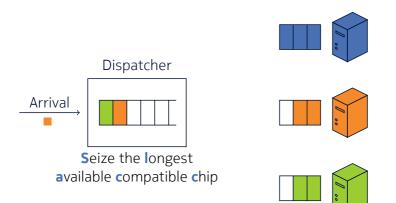


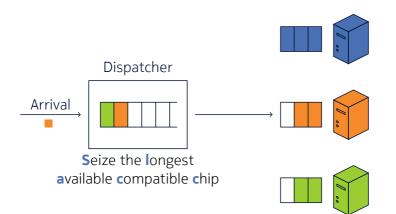
Algorithm

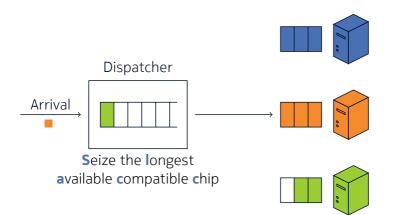
Algorithm

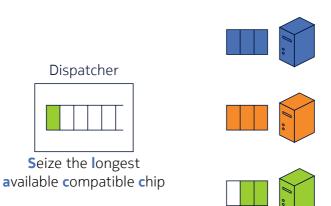


Algorithm









Release order of the tokens ~ Relative load of the servers

A token that has been available for a long time is likely to identify a server that is less loaded than others

Intuition

Release order of the tokens ~ Relative load of the servers

A token that has been available for a long time is likely to identify a server that is less loaded than others

 \rightarrow Better to seize the longest available compatible token

Intuition

Release order of the tokens ~ Relative load of the servers

A token that has been available for a long time is likely to identify a server that is less loaded than others

 \rightarrow Better to seize the longest available compatible token

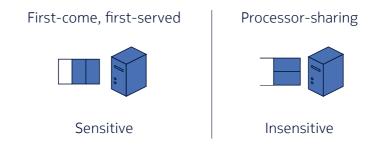
Number of tokens ~ Freshness of the information

Intuition

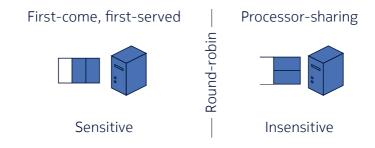
Release order of the tokens ~ Relative load of the servers

A token that has been available for a long time is likely to identify a server that is less loaded than others

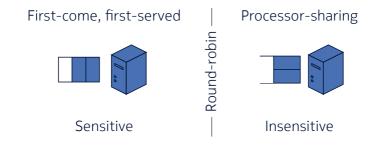
 \rightarrow Better to seize the longest available compatible token


Number of tokens ~ Freshness of the information

- \rightarrow When the number of tokens increases:
 - © Higher tolerance to momentary mistakes
 - B The information at the head of the queue is "less fresh"



A single server:

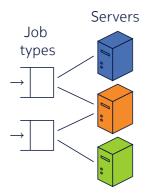


A single server:

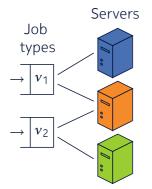
A single server:

Many servers: Our queueing model shows that the performance is insensitive if each server applies processor-sharing policy.

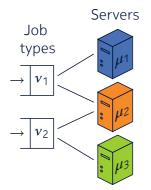
Outline


Algorithm

Queueing analysis

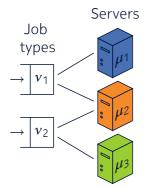

Numerical results

Extensions



Arrivals:

- Type-k jobs arrive at rate v_k
- Poisson arrival process


Arrivals:

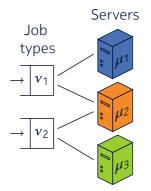
- Type-k jobs arrive at rate v_k
- Poisson arrival process

Service:

- Server s has capacity $\mu_{\rm S}$
- Exponentially distributed job sizes with unit mean

Arrivals:

- Type-k jobs arrive at rate v_k
- Poisson arrival process


Service:

- Server s has capacity μ_{s}
- Exponentially distributed job sizes with unit mean

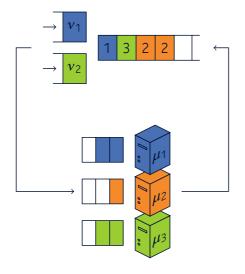
Admission limit:

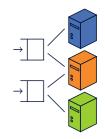
• Each server has ℓ_s tokens

Remark: We only need to know the graph to analyze the algorithm

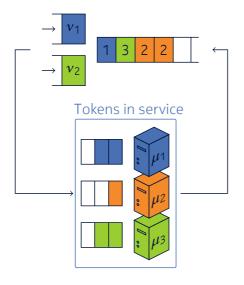
Arrivals:

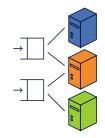
- Type-k jobs arrive at rate v_k
- Poisson arrival process

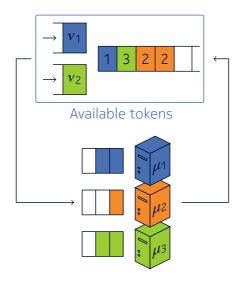

Service:

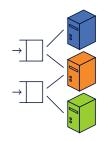

- Server s has capacity $\mu_{\rm S}$
- Exponentially distributed job sizes with unit mean

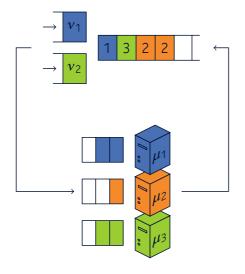
Admission limit:

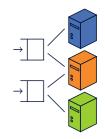

• Each server has ℓ_s tokens

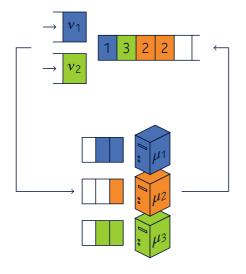


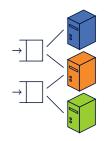


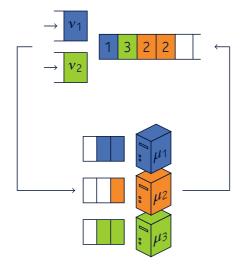


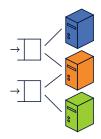




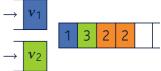








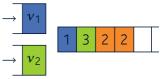
The job types play the part of the servers in the queue of available tokens


The job types play the part of the servers in the queue of available tokens

Network state: The sequence of available tokens t = (-, -, -)

NOKIA Bell Labs

Order-independent (OI) queues (Berezner, Kriel, and Krzesinski, 1995)



(Berezner, Kriel, and Krzesinski, 1995)

Definition:

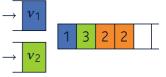
- The total service rate only depends on the **number** of tokens of each server in the queue
- The service rate received by a token doesn't depend on the subsequent tokens

(Berezner, Kriel, and Krzesinski, 1995)

Definition:

- The total service rate only depends on the **number** of tokens of each server in the queue
- The service rate received by a token doesn't depend on the subsequent tokens

All the queues we consider are order-independent!



(Berezner, Kriel, and Krzesinski, 1995)

Definition:

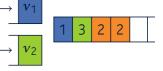
- The total service rate only depends on the **number** of tokens of each server in the queue
- The service rate received by a token doesn't depend on the subsequent tokens

All the queues we consider are order-independent!

(Berezner, Kriel, and Krzesinski, 1995)

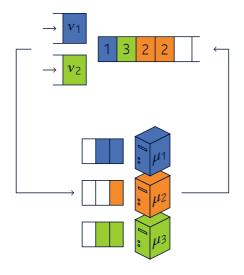
Definition:

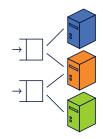
- The total service rate only depends on the **number** of tokens of each server in the queue
- The service rate received by a token doesn't depend on the subsequent tokens

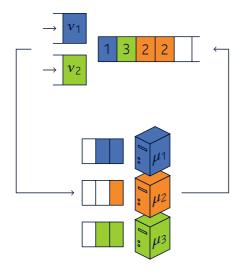

All the queues we consider are order-independent!

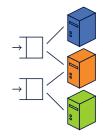
Quasi-reversibility:

- A network of OI queues has a product-form
- The stationary distribution of the network is unchanged by the addition of Markov routing




13/26 © 2018 Nokia


State aggregation



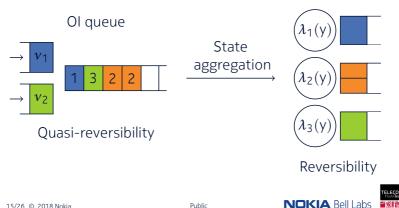
Detailed state: $t = (\blacksquare, \blacksquare, \blacksquare, \blacksquare)$

Detailed state: $t = (\blacksquare, \blacksquare, \blacksquare, \blacksquare)$

Aggregate state: The number of available tokens $y = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$

NOKIA Bell Labs

Equivalent Whittle network:


The stationary distribution of the aggregate state is that of a Whittle network (Whittle, 1985)

Equivalent Whittle network:

The stationary distribution of the aggregate state is that of a Whittle network (Whittle, 1985)

Whittle network

Equivalent Whittle network:

The stationary distribution of the aggregate state is that of a Whittle network (Whittle, 1985)

Equivalent Whittle network:

The stationary distribution of the aggregate state is that of a Whittle network (Whittle, 1985)

Average load balancing:

The average arrival rates to the servers, ignoring the order of tokens at the dispatcher, are as defined by the insensitive load balancing of (Bonald et al., 2004)

Equivalent Whittle network:

The stationary distribution of the aggregate state is that of a Whittle network (Whittle, 1985)

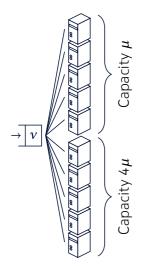
Average load balancing:

The average arrival rates to the servers, ignoring the order of tokens at the dispatcher, are as defined by the insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas $O(\ell_1 \times \ell_2 \times ... \times \ell_S)$ terms to compute

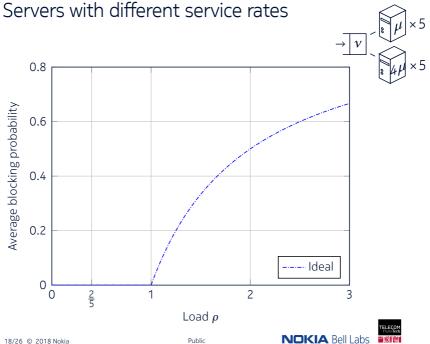
Outline

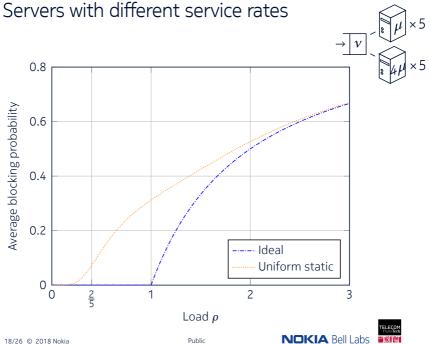
Algorithm

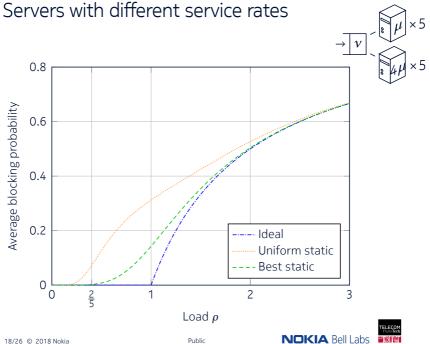

Queueing analysis

Numerical results

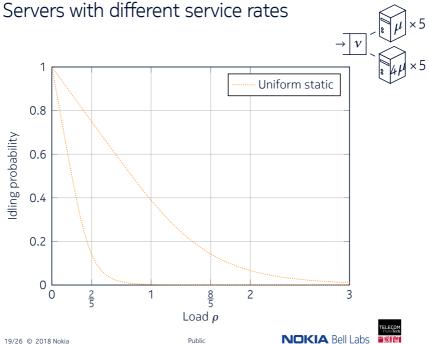
Extensions

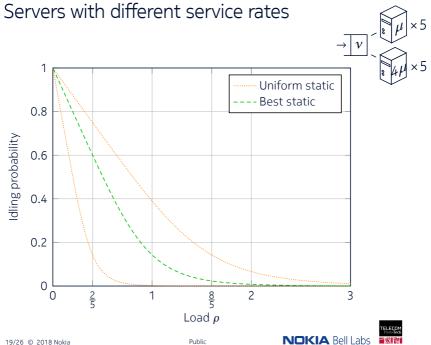

Servers with different service rates

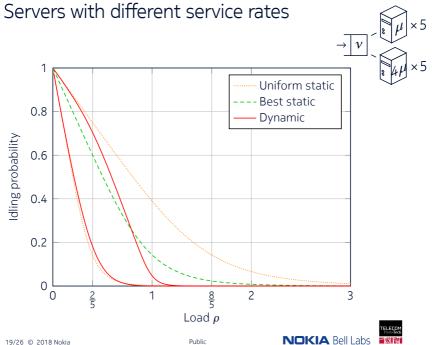


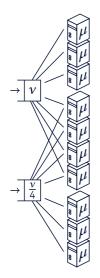

- No compatibility constraints: All jobs can be assigned to all servers
- Poisson arrival process with rate \boldsymbol{v}
- Half of the servers have capacity μ , the other have capacity 4μ
- Each server has 6 tokens

• Load
$$\rho = \frac{v}{25\mu}$$

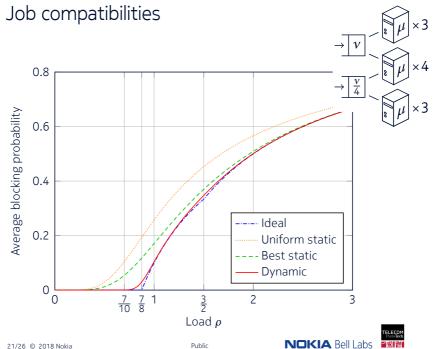


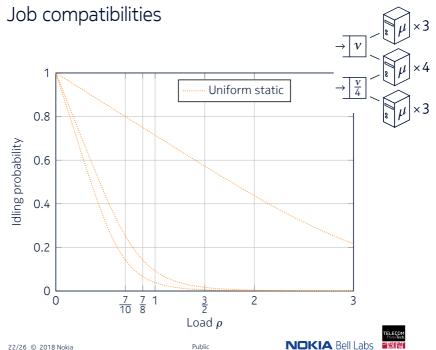


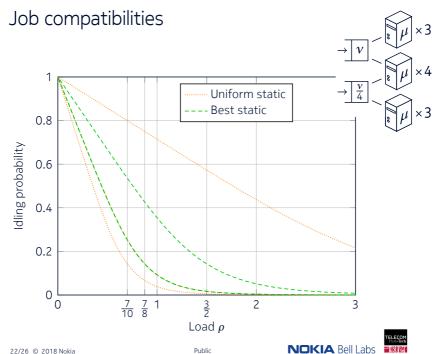

18/26 © 2018 Nokia

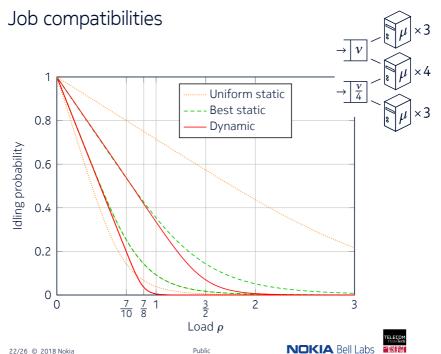


19/26 © 2018 Nokia


Job compatibilities

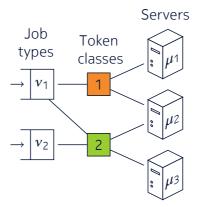



- Two job types
- Poisson arrival processes with rates v and $\frac{v}{4}$
- All servers have capacity μ
- Each server has 6 tokens


• Load
$$\rho = \frac{v}{8\mu}$$

Outline

Algorithm


Queueing analysis

Numerical results

Extensions

Distributed processing

Each token identifies a set of servers

Non-blocking extensions Future works

Instead of rejecting an incoming job when there is no available compatible token, we could ...

Non-blocking extensions Future works

Instead of rejecting an incoming job when there is no available compatible token, we could ...

Choose a compatible server uniformly at random

 \rightarrow Join-Idle-Queue (Lu et al., 2011)

Non-blocking extensions Future works

Instead of rejecting an incoming job when there is no available compatible token, we could ...

Choose a compatible server uniformly at random

 \rightarrow Join-Idle-Queue (Lu et al., 2011)

Wait for the release of a compatible token

→ FCFS and assign to the longest idle server (ALIS) (Adan and Weiss, 2012)

Conclusion

Our contributions

- Insensitive and adaptative load balancing algorithm
- Queueing analysis based on order-independent queues under a Poisson arrival process
- Relate several existing works

Conclusion

Our contributions

- Insensitive and adaptative load balancing algorithm
- Queueing analysis based on order-independent queues under a Poisson arrival process
- Relate several existing works

Future works

- Derive simpler formulas for the performance prediction
- Evaluate the non-blocking versions of the algorithm

