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Our contributions

Load balancing algorithm
Robust and adaptative, yet simple

Queueing analysis
Under a Poisson arrival process

Relate several existing works
• Join-Idle-Queue (Lu et al., 2011)
• Assign to the longest idle server (ALIS) and FCFS-ALIS
(Adan and Weiss, 2012) based on order-independent
queues (Berezner et al., 1995)

• Insensitive load balancing (Bonald et al., 2004)
based on Whittle networks (Whittle, 1985)
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Intuition

Release order of the tokens ≃ Relative load of the servers
A token that has been available for a long time is likely to
identify a server that is less loaded than others

→ Better to seize the longest available compatible token

Number of tokens ≃ Freshness of the information
→ When the number of tokens increases:
☺ Higher tolerance to momentary mistakes
☹ The information at the head of the queue is “less fresh”
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Insensitivity to the job size distribution
Under a Poisson arrival process

A single server:

First-come, first-served Processor-sharing

Sensitive Insensitive

Many servers: Our queueing model shows that the
performance is insensitive if each server applies
processor-sharing policy.
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Server pool model

Servers
Job

 types

Remark: We only need
to know the graph to
analyze the algorithm

Arrivals:
• Type-k jobs arrive at rate νk

• Poisson arrival process

Service:
• Server s has capacity µs

• Exponentially distributed
job sizes with unit mean

Admission limit:
• Each server has ℓs tokens
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Queueing model
Describe the token state
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1 3 2 2

ν1

ν2

Tokens in serviceAvailable tokens The job types play
the part of the
servers in the queue
of available tokens

Network state:
The sequence of
available tokens
t= ( , , , )
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Order-independent (OI) queues
(Berezner, Kriel, and Krzesinski, 1995)

Definition:
• The total service rate only
depends on the number of
tokens of each server in the queue

• The service rate received by a token
doesn’t depend on the subsequent tokens

All the queues we consider are order-independent!

Quasi-reversibility:
• A network of OI queues has a product-form
• The stationary distribution of the network is unchanged
by the addition of Markov routing

1 3 2 2

ν1

ν2

µ1
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State aggregation

µ3

µ2

µ1

1 3 2 2

ν1

ν2

Detailed state:
t= ( , , , )

Aggregate state:
The number of
available tokens

y=
12
1


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State aggregation

Equivalent Whittle network:
The stationary distribution of the aggregate state
is that of a Whittle network (Whittle, 1985)

Average load balancing:
The average arrival rates to the servers, ignoring the
order of tokens at the dispatcher, are as defined by the
insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas
O(ℓ1×ℓ2× . . .×ℓS) terms to compute

15/26 © 2018 Nokia Public



State aggregation

Equivalent Whittle network:
The stationary distribution of the aggregate state
is that of a Whittle network (Whittle, 1985)

1 3 2 2

ν1

ν2

State
 aggregation

λ1(y)

λ2(y)

λ3(y)

OI queue

Quasi-reversibility

Whittle network

Reversibility

Average load balancing:
The average arrival rates to the servers, ignoring the
order of tokens at the dispatcher, are as defined by the
insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas
O(ℓ1×ℓ2× . . .×ℓS) terms to compute

15/26 © 2018 Nokia Public



State aggregation

Equivalent Whittle network:
The stationary distribution of the aggregate state
is that of a Whittle network (Whittle, 1985)

Average load balancing:
The average arrival rates to the servers, ignoring the
order of tokens at the dispatcher, are as defined by the
insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas
O(ℓ1×ℓ2× . . .×ℓS) terms to compute

15/26 © 2018 Nokia Public



State aggregation

Equivalent Whittle network:
The stationary distribution of the aggregate state
is that of a Whittle network (Whittle, 1985)

Average load balancing:
The average arrival rates to the servers, ignoring the
order of tokens at the dispatcher, are as defined by the
insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas
O(ℓ1×ℓ2× . . .×ℓS) terms to compute

15/26 © 2018 Nokia Public



State aggregation

Equivalent Whittle network:
The stationary distribution of the aggregate state
is that of a Whittle network (Whittle, 1985)

Average load balancing:
The average arrival rates to the servers, ignoring the
order of tokens at the dispatcher, are as defined by the
insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas
O(ℓ1×ℓ2× . . .×ℓS) terms to compute

15/26 © 2018 Nokia Public



Outline

Algorithm

Queueing analysis

Numerical results

Extensions

16/26 © 2018 Nokia Public



Servers with different service rates

ν

Ca
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µ
Ca
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4µ

• No compatibility constraints:
All jobs can be assigned to all servers

• Poisson arrival process with rate ν

• Half of the servers have capacity µ,
the other have capacity 4µ

• Each server has 6 tokens
• Load ρ = ν

25µ
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Job compatibilities
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4

• Two job types
• Poisson arrival processes with
rates ν and ν

4
• All servers have capacity µ

• Each server has 6 tokens
• Load ρ = ν

8µ
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Distributed processing
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Non-blocking extensions
Future works

Instead of rejecting an incoming job when there is no
available compatible token, we could …

Choose a compatible server uniformly at random
→ Join-Idle-Queue (Lu et al., 2011)

Wait for the release of a compatible token
→ FCFS and assign to the longest idle server (ALIS)

(Adan and Weiss, 2012)
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Conclusion

Our contributions
• Insensitive and adaptative load balancing algorithm
• Queueing analysis based on order-independent queues
under a Poisson arrival process

• Relate several existing works

Future works
• Derive simpler formulas for the performance prediction
• Evaluate the non-blocking versions of the algorithm
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