
Dynamic Load Balancing with Tokens

Céline Comte

Young European Queueing Theorists XII
December 3, 2018

Introduction
Video on demand

Computer clusters

Heterogeneity + Compatibilities

Supermarket Airport

ic
ho

ke
do

nm
yl
at
te
.w
or
dp

re
ss
.c
om

w
w
w
.c
ne

t.
co

m

w
w
w
.s
el
se
rs
ch

ae
fe
r.c
om

w
w
w
.b
os

to
ng

lo
be

.c
om

2/26 © 2018 Nokia Public

Introduction
Video on demand Computer clusters

Heterogeneity + Compatibilities

Supermarket Airport

ic
ho

ke
do

nm
yl
at
te
.w
or
dp

re
ss
.c
om

w
w
w
.c
ne

t.
co

m

w
w
w
.s
el
se
rs
ch

ae
fe
r.c
om

w
w
w
.b
os

to
ng

lo
be

.c
om

2/26 © 2018 Nokia Public

Introduction
Video on demand Computer clusters

Heterogeneity + Compatibilities

Supermarket

Airport

ic
ho

ke
do

nm
yl
at
te
.w
or
dp

re
ss
.c
om

w
w
w
.c
ne

t.
co

m

w
w
w
.s
el
se
rs
ch

ae
fe
r.c
om

w
w
w
.b
os

to
ng

lo
be

.c
om

2/26 © 2018 Nokia Public

Introduction
Video on demand Computer clusters

Heterogeneity + Compatibilities

Supermarket Airport

ic
ho

ke
do

nm
yl
at
te
.w
or
dp

re
ss
.c
om

w
w
w
.c
ne

t.
co

m

w
w
w
.s
el
se
rs
ch

ae
fe
r.c
om

w
w
w
.b
os

to
ng

lo
be

.c
om

2/26 © 2018 Nokia Public

Introduction
Video on demand Computer clusters

Heterogeneity + Compatibilities

Supermarket Airport

ic
ho

ke
do

nm
yl
at
te
.w
or
dp

re
ss
.c
om

w
w
w
.c
ne

t.
co

m

w
w
w
.s
el
se
rs
ch

ae
fe
r.c
om

w
w
w
.b
os

to
ng

lo
be

.c
om

2/26 © 2018 Nokia Public

Abstraction

Dispatcher

Arrival
or

?

3/26 © 2018 Nokia Public

Abstraction

Dispatcher
Arrival
or

?

3/26 © 2018 Nokia Public

Abstraction

Dispatcher
Arrival
or

?

3/26 © 2018 Nokia Public

Our contributions

Load balancing algorithm
Robust and adaptative, yet simple

Queueing analysis
Under a Poisson arrival process

Relate several existing works
• Join-Idle-Queue (Lu et al., 2011)
• Assign to the longest idle server (ALIS) and FCFS-ALIS
(Adan and Weiss, 2012) based on order-independent
queues (Berezner et al., 1995)

• Insensitive load balancing (Bonald et al., 2004)
based on Whittle networks (Whittle, 1985)

4/26 © 2018 Nokia Public

Our contributions

Load balancing algorithm
Robust and adaptative, yet simple

Queueing analysis
Under a Poisson arrival process

Relate several existing works
• Join-Idle-Queue (Lu et al., 2011)
• Assign to the longest idle server (ALIS) and FCFS-ALIS
(Adan and Weiss, 2012) based on order-independent
queues (Berezner et al., 1995)

• Insensitive load balancing (Bonald et al., 2004)
based on Whittle networks (Whittle, 1985)

4/26 © 2018 Nokia Public

Our contributions

Load balancing algorithm
Robust and adaptative, yet simple

Queueing analysis
Under a Poisson arrival process

Relate several existing works
• Join-Idle-Queue (Lu et al., 2011)
• Assign to the longest idle server (ALIS) and FCFS-ALIS
(Adan and Weiss, 2012) based on order-independent
queues (Berezner et al., 1995)

• Insensitive load balancing (Bonald et al., 2004)
based on Whittle networks (Whittle, 1985)

4/26 © 2018 Nokia Public

Outline

Algorithm

Queueing analysis

Numerical results

Extensions

5/26 © 2018 Nokia Public

Outline

Algorithm

Queueing analysis

Numerical results

Extensions

6/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Algorithm

Dispatcher

Pull message,
signal, token, chip …

Arrival
or

Seize the longest
available compatible chip

Seize the longest
available compatible chip

Arrival
or

Arrival

7/26 © 2018 Nokia Public

Intuition

Release order of the tokens ≃ Relative load of the servers
A token that has been available for a long time is likely to
identify a server that is less loaded than others

→ Better to seize the longest available compatible token

Number of tokens ≃ Freshness of the information
→ When the number of tokens increases:
☺ Higher tolerance to momentary mistakes
☹ The information at the head of the queue is “less fresh”

8/26 © 2018 Nokia Public

Intuition

Release order of the tokens ≃ Relative load of the servers
A token that has been available for a long time is likely to
identify a server that is less loaded than others
→ Better to seize the longest available compatible token

Number of tokens ≃ Freshness of the information
→ When the number of tokens increases:
☺ Higher tolerance to momentary mistakes
☹ The information at the head of the queue is “less fresh”

8/26 © 2018 Nokia Public

Intuition

Release order of the tokens ≃ Relative load of the servers
A token that has been available for a long time is likely to
identify a server that is less loaded than others
→ Better to seize the longest available compatible token

Number of tokens ≃ Freshness of the information

→ When the number of tokens increases:
☺ Higher tolerance to momentary mistakes
☹ The information at the head of the queue is “less fresh”

8/26 © 2018 Nokia Public

Intuition

Release order of the tokens ≃ Relative load of the servers
A token that has been available for a long time is likely to
identify a server that is less loaded than others
→ Better to seize the longest available compatible token

Number of tokens ≃ Freshness of the information
→ When the number of tokens increases:
☺ Higher tolerance to momentary mistakes
☹ The information at the head of the queue is “less fresh”

8/26 © 2018 Nokia Public

Insensitivity to the job size distribution
Under a Poisson arrival process

A single server:

First-come, first-served Processor-sharing

Sensitive Insensitive

Many servers: Our queueing model shows that the
performance is insensitive if each server applies
processor-sharing policy.

Ro
un

d-
ro
bi
n

9/26 © 2018 Nokia Public

Insensitivity to the job size distribution
Under a Poisson arrival process

A single server:

First-come, first-served Processor-sharing

Sensitive Insensitive

Many servers: Our queueing model shows that the
performance is insensitive if each server applies
processor-sharing policy.

Ro
un

d-
ro
bi
n

9/26 © 2018 Nokia Public

Insensitivity to the job size distribution
Under a Poisson arrival process

A single server:

First-come, first-served Processor-sharing

Sensitive Insensitive

Many servers: Our queueing model shows that the
performance is insensitive if each server applies
processor-sharing policy.

Ro
un

d-
ro
bi
n

9/26 © 2018 Nokia Public

Insensitivity to the job size distribution
Under a Poisson arrival process

A single server:

First-come, first-served Processor-sharing

Sensitive Insensitive

Many servers: Our queueing model shows that the
performance is insensitive if each server applies
processor-sharing policy.

Ro
un

d-
ro
bi
n

9/26 © 2018 Nokia Public

Outline

Algorithm

Queueing analysis

Numerical results

Extensions

10/26 © 2018 Nokia Public

Server pool model

Servers
Job

 types

Remark: We only need
to know the graph to
analyze the algorithm

Arrivals:
• Type-k jobs arrive at rate νk

• Poisson arrival process

Service:
• Server s has capacity µs

• Exponentially distributed
job sizes with unit mean

Admission limit:
• Each server has ℓs tokens

11/26 © 2018 Nokia Public

Server pool model

Servers

ν1

ν2

Job
 types

Remark: We only need
to know the graph to
analyze the algorithm

Arrivals:
• Type-k jobs arrive at rate νk

• Poisson arrival process

Service:
• Server s has capacity µs

• Exponentially distributed
job sizes with unit mean

Admission limit:
• Each server has ℓs tokens

11/26 © 2018 Nokia Public

Server pool model

µ1

µ2

µ3

Servers

ν1

ν2

Job
 types

Remark: We only need
to know the graph to
analyze the algorithm

Arrivals:
• Type-k jobs arrive at rate νk

• Poisson arrival process

Service:
• Server s has capacity µs

• Exponentially distributed
job sizes with unit mean

Admission limit:
• Each server has ℓs tokens

11/26 © 2018 Nokia Public

Server pool model

µ1

µ2

µ3

Servers

ν1

ν2

Job
 types

Remark: We only need
to know the graph to
analyze the algorithm

Arrivals:
• Type-k jobs arrive at rate νk

• Poisson arrival process

Service:
• Server s has capacity µs

• Exponentially distributed
job sizes with unit mean

Admission limit:
• Each server has ℓs tokens

11/26 © 2018 Nokia Public

Server pool model

µ1

µ2

µ3

Servers

ν1

ν2

Job
 types

Remark: We only need
to know the graph to
analyze the algorithm

Arrivals:
• Type-k jobs arrive at rate νk

• Poisson arrival process

Service:
• Server s has capacity µs

• Exponentially distributed
job sizes with unit mean

Admission limit:
• Each server has ℓs tokens

11/26 © 2018 Nokia Public

Queueing model
Describe the token state

µ3

µ2

µ1

1 3 2 2

ν1

ν2

Tokens in serviceAvailable tokens The job types play
the part of the
servers in the queue
of available tokens

Network state:
The sequence of
available tokens
t= (, , ,)

12/26 © 2018 Nokia Public

Queueing model
Describe the token state

µ3

µ2

µ1

1 3 2 2

ν1

ν2

Tokens in service

Available tokens The job types play
the part of the
servers in the queue
of available tokens

Network state:
The sequence of
available tokens
t= (, , ,)

12/26 © 2018 Nokia Public

Queueing model
Describe the token state

µ3

µ2

µ1

1 3 2 2

ν1

ν2

Tokens in service

Available tokens

The job types play
the part of the
servers in the queue
of available tokens

Network state:
The sequence of
available tokens
t= (, , ,)

12/26 © 2018 Nokia Public

Queueing model
Describe the token state

µ3

µ2

µ1

1 3 2 2

ν1

ν2

Tokens in serviceAvailable tokens The job types play
the part of the
servers in the queue
of available tokens

Network state:
The sequence of
available tokens
t= (, , ,)

12/26 © 2018 Nokia Public

Queueing model
Describe the token state

µ3

µ2

µ1

1 3 2 2

ν1

ν2

Tokens in serviceAvailable tokens

The job types play
the part of the
servers in the queue
of available tokens

Network state:
The sequence of
available tokens
t= (, , ,)

12/26 © 2018 Nokia Public

Queueing model
Describe the token state

µ3

µ2

µ1

1 3 2 2

ν1

ν2

Tokens in serviceAvailable tokens

The job types play
the part of the
servers in the queue
of available tokens

Network state:
The sequence of
available tokens
t= (, , ,)

12/26 © 2018 Nokia Public

Order-independent (OI) queues
(Berezner, Kriel, and Krzesinski, 1995)

Definition:
• The total service rate only
depends on the number of
tokens of each server in the queue

• The service rate received by a token
doesn’t depend on the subsequent tokens

All the queues we consider are order-independent!

Quasi-reversibility:
• A network of OI queues has a product-form
• The stationary distribution of the network is unchanged
by the addition of Markov routing

1 3 2 2

ν1

ν2

µ1

13/26 © 2018 Nokia Public

Order-independent (OI) queues
(Berezner, Kriel, and Krzesinski, 1995)

Definition:
• The total service rate only
depends on the number of
tokens of each server in the queue

• The service rate received by a token
doesn’t depend on the subsequent tokens

All the queues we consider are order-independent!

Quasi-reversibility:
• A network of OI queues has a product-form
• The stationary distribution of the network is unchanged
by the addition of Markov routing

1 3 2 2

ν1

ν2

µ1

13/26 © 2018 Nokia Public

Order-independent (OI) queues
(Berezner, Kriel, and Krzesinski, 1995)

Definition:
• The total service rate only
depends on the number of
tokens of each server in the queue

• The service rate received by a token
doesn’t depend on the subsequent tokens

All the queues we consider are order-independent!

Quasi-reversibility:
• A network of OI queues has a product-form
• The stationary distribution of the network is unchanged
by the addition of Markov routing

1 3 2 2

ν1

ν2

µ1

13/26 © 2018 Nokia Public

Order-independent (OI) queues
(Berezner, Kriel, and Krzesinski, 1995)

Definition:
• The total service rate only
depends on the number of
tokens of each server in the queue

• The service rate received by a token
doesn’t depend on the subsequent tokens

All the queues we consider are order-independent!

Quasi-reversibility:
• A network of OI queues has a product-form
• The stationary distribution of the network is unchanged
by the addition of Markov routing

1 3 2 2

ν1

ν2

µ1

13/26 © 2018 Nokia Public

Order-independent (OI) queues
(Berezner, Kriel, and Krzesinski, 1995)

Definition:
• The total service rate only
depends on the number of
tokens of each server in the queue

• The service rate received by a token
doesn’t depend on the subsequent tokens

All the queues we consider are order-independent!

Quasi-reversibility:
• A network of OI queues has a product-form
• The stationary distribution of the network is unchanged
by the addition of Markov routing

1 3 2 2

ν1

ν2

µ1

13/26 © 2018 Nokia Public

State aggregation

µ3

µ2

µ1

1 3 2 2

ν1

ν2

Detailed state:
t= (, , ,)

Aggregate state:
The number of
available tokens

y=
12
1



14/26 © 2018 Nokia Public

State aggregation

µ3

µ2

µ1

1 3 2 2

ν1

ν2

Detailed state:
t= (, , ,)

Aggregate state:
The number of
available tokens

y=
12
1



14/26 © 2018 Nokia Public

State aggregation

Equivalent Whittle network:
The stationary distribution of the aggregate state
is that of a Whittle network (Whittle, 1985)

Average load balancing:
The average arrival rates to the servers, ignoring the
order of tokens at the dispatcher, are as defined by the
insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas
O(ℓ1×ℓ2× . . .×ℓS) terms to compute

15/26 © 2018 Nokia Public

State aggregation

Equivalent Whittle network:
The stationary distribution of the aggregate state
is that of a Whittle network (Whittle, 1985)

1 3 2 2

ν1

ν2

State
 aggregation

λ1(y)

λ2(y)

λ3(y)

OI queue

Quasi-reversibility

Whittle network

Reversibility

Average load balancing:
The average arrival rates to the servers, ignoring the
order of tokens at the dispatcher, are as defined by the
insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas
O(ℓ1×ℓ2× . . .×ℓS) terms to compute

15/26 © 2018 Nokia Public

State aggregation

Equivalent Whittle network:
The stationary distribution of the aggregate state
is that of a Whittle network (Whittle, 1985)

Average load balancing:
The average arrival rates to the servers, ignoring the
order of tokens at the dispatcher, are as defined by the
insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas
O(ℓ1×ℓ2× . . .×ℓS) terms to compute

15/26 © 2018 Nokia Public

State aggregation

Equivalent Whittle network:
The stationary distribution of the aggregate state
is that of a Whittle network (Whittle, 1985)

Average load balancing:
The average arrival rates to the servers, ignoring the
order of tokens at the dispatcher, are as defined by the
insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas
O(ℓ1×ℓ2× . . .×ℓS) terms to compute

15/26 © 2018 Nokia Public

State aggregation

Equivalent Whittle network:
The stationary distribution of the aggregate state
is that of a Whittle network (Whittle, 1985)

Average load balancing:
The average arrival rates to the servers, ignoring the
order of tokens at the dispatcher, are as defined by the
insensitive load balancing of (Bonald et al., 2004)

Performance metrics: Explicit formulas
O(ℓ1×ℓ2× . . .×ℓS) terms to compute

15/26 © 2018 Nokia Public

Outline

Algorithm

Queueing analysis

Numerical results

Extensions

16/26 © 2018 Nokia Public

Servers with different service rates

ν

Ca
pa

ci
ty

µ
Ca

pa
ci
ty

4µ

• No compatibility constraints:
All jobs can be assigned to all servers

• Poisson arrival process with rate ν

• Half of the servers have capacity µ,
the other have capacity 4µ

• Each server has 6 tokens
• Load ρ = ν

25µ

17/26 © 2018 Nokia Public

Servers with different service rates

0 2
5

1 2 3
0

0.2

0.4

0.6

0.8

Load ρ

Av
er
ag

e
bl
oc

ki
ng

pr
ob

ab
ili
ty

Ideal

4µ×5

µ ×5
ν

18/26 © 2018 Nokia Public

Servers with different service rates

0 2
5

1 2 3
0

0.2

0.4

0.6

0.8

Load ρ

Av
er
ag

e
bl
oc

ki
ng

pr
ob

ab
ili
ty

Ideal
Uniform static

4µ×5

µ ×5
ν

18/26 © 2018 Nokia Public

Servers with different service rates

0 2
5

1 2 3
0

0.2

0.4

0.6

0.8

Load ρ

Av
er
ag

e
bl
oc

ki
ng

pr
ob

ab
ili
ty

Ideal
Uniform static
Best static

4µ×5

µ ×5
ν

18/26 © 2018 Nokia Public

Servers with different service rates

0 2
5

1 2 3
0

0.2

0.4

0.6

0.8

Load ρ

Av
er
ag

e
bl
oc

ki
ng

pr
ob

ab
ili
ty

Ideal
Uniform static
Best static
Dynamic

4µ×5

µ ×5
ν

18/26 © 2018 Nokia Public

Servers with different service rates

0 2
5

1 8
5

2 3
0

0.2

0.4

0.6

0.8

1

Load ρ

Id
lin

g
pr
ob

ab
ili
ty

Uniform static
4µ×5

µ ×5
ν

19/26 © 2018 Nokia Public

Servers with different service rates

0 2
5

1 8
5

2 3
0

0.2

0.4

0.6

0.8

1

Load ρ

Id
lin

g
pr
ob

ab
ili
ty

Uniform static
Best static

4µ×5

µ ×5
ν

19/26 © 2018 Nokia Public

Servers with different service rates

0 2
5

1 8
5

2 3
0

0.2

0.4

0.6

0.8

1

Load ρ

Id
lin

g
pr
ob

ab
ili
ty

Uniform static
Best static
Dynamic

4µ×5

µ ×5
ν

19/26 © 2018 Nokia Public

Job compatibilities

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

ν

ν
4

• Two job types
• Poisson arrival processes with
rates ν and ν

4
• All servers have capacity µ

• Each server has 6 tokens
• Load ρ = ν

8µ

20/26 © 2018 Nokia Public

Job compatibilities

0 7
10

7
8
1 3

2
2 3

0

0.2

0.4

0.6

0.8

Load ρ

Av
er
ag

e
bl
oc

ki
ng

pr
ob

ab
ili
ty

Ideal
Uniform static
Best static
Dynamic

µ ×3

µ ×4

µ ×3

µ ×3

µ ×4

µ ×3
ν

ν
4

21/26 © 2018 Nokia Public

Job compatibilities

0 7
10

7
8

1 3
2

2 3
0

0.2

0.4

0.6

0.8

1

Load ρ

Id
lin

g
pr
ob

ab
ili
ty

Uniform static

µ ×3

µ ×4

µ ×3

µ ×3

µ ×4

µ ×3
ν

ν
4

22/26 © 2018 Nokia Public

Job compatibilities

0 7
10

7
8

1 3
2

2 3
0

0.2

0.4

0.6

0.8

1

Load ρ

Id
lin

g
pr
ob

ab
ili
ty

Uniform static
Best static

µ ×3

µ ×4

µ ×3

µ ×3

µ ×4

µ ×3
ν

ν
4

22/26 © 2018 Nokia Public

Job compatibilities

0 7
10

7
8
1 3

2
2 3

0

0.2

0.4

0.6

0.8

1

Load ρ

Id
lin

g
pr
ob

ab
ili
ty

Uniform static
Best static
Dynamic

µ ×3

µ ×4

µ ×3

µ ×3

µ ×4

µ ×3
ν

ν
4

22/26 © 2018 Nokia Public

Outline

Algorithm

Queueing analysis

Numerical results

Extensions

23/26 © 2018 Nokia Public

Distributed processing

µ1

µ2

µ3

Servers

1

2

Token
 classes

ν1

ν2

Job
types

Each token identifies a set of servers

24/26 © 2018 Nokia Public

Non-blocking extensions
Future works

Instead of rejecting an incoming job when there is no
available compatible token, we could …

Choose a compatible server uniformly at random
→ Join-Idle-Queue (Lu et al., 2011)

Wait for the release of a compatible token
→ FCFS and assign to the longest idle server (ALIS)

(Adan and Weiss, 2012)

25/26 © 2018 Nokia Public

Non-blocking extensions
Future works

Instead of rejecting an incoming job when there is no
available compatible token, we could …

Choose a compatible server uniformly at random
→ Join-Idle-Queue (Lu et al., 2011)

Wait for the release of a compatible token
→ FCFS and assign to the longest idle server (ALIS)

(Adan and Weiss, 2012)

25/26 © 2018 Nokia Public

Non-blocking extensions
Future works

Instead of rejecting an incoming job when there is no
available compatible token, we could …

Choose a compatible server uniformly at random
→ Join-Idle-Queue (Lu et al., 2011)

Wait for the release of a compatible token
→ FCFS and assign to the longest idle server (ALIS)

(Adan and Weiss, 2012)

25/26 © 2018 Nokia Public

Conclusion

Our contributions
• Insensitive and adaptative load balancing algorithm
• Queueing analysis based on order-independent queues
under a Poisson arrival process

• Relate several existing works

Future works
• Derive simpler formulas for the performance prediction
• Evaluate the non-blocking versions of the algorithm

26/26 © 2018 Nokia Public

Conclusion

Our contributions
• Insensitive and adaptative load balancing algorithm
• Queueing analysis based on order-independent queues
under a Poisson arrival process

• Relate several existing works

Future works
• Derive simpler formulas for the performance prediction
• Evaluate the non-blocking versions of the algorithm

26/26 © 2018 Nokia Public

	Algorithm
	Queueing analysis
	Numerical results
	Extensions

