
A Round-Robin Scheduling for Computer
Clusters with Compatibility Constraints

Thomas Bonald∗
∗Télécom ParisTech

Université Paris-Saclay, France

Céline Comte†∗
†Nokia Bell Labs, France

Abstract—We consider a computer cluster with some
arbitrary bipartite graph of compatibilities between jobs
and computers. Assuming jobs can be processed in parallel
on several machines, we design a scheduling algorithm
achieving balanced fair sharing of the computing resources,
similar to round-robin scheduling in the presence of a single
computer. We analyze the performance of this algorithm by
introducing a new class of queueing system. In this model,
the service interruptions and resumptions of the algorithm
are reinterpreted in terms of random routing.

A full version of this paper was submitted to Performance
Evaluation Journal. It is available on arXiv [1].

Index Terms—Scheduling, parallel processing, order-
independent queues, balanced fairness, insensitivity.

I. COMPUTER CLUSTER

We consider a cluster of computers which can process
jobs in parallel. Each computer has a fixed capacity
expressed in floating-point operations per second. Each
job consists of some random number of floating-point
operations called the job size.

Compatibility constraints. When a job enters the clus-
ter, it is assigned to a set of computers. This set may be
chosen by the service provider (e.g. to randomly balance
the load between machines) or imposed by technical
constraints like data availability. We assume that the
assignment is independent of the current state of the
cluster, and in particular of the number of jobs at each
computer.

The set of machines to which a job is assigned defines
its class. The possible assignments are then represented
by a bipartite graph of compatibilites between classes
and computers, where there is an edge between a class
and a computer if this computer can process the jobs of
this class. A toy example is given in Fig. 1.

Parallel processing. Each computer processes its jobs
sequentially in first-come first-served (FCFS) order.
When a job is in service on several computers, these
are pooled so that the service rate of the job is the sum

1

2

3

1

2

Fig. 1. Bipartite graph of compatibilities. The cluster contains two
computers. There are three job classes, one for each possible assign-
ment: class-1 and 3 jobs can only be served by computers 1 and 2,
respectively, while class-2 jobs can be served by both computers.

of the capacities of the computers. The validity of this
last assumption will be discussed in the next section.

II. SCHEDULING ALGORITHM

A single computer. Round-robin scheduling consists in
allocating equal-size time slices to the jobs in circular
order. Equivalently, each job is interrupted once some
fixed quantity of floating-point operations was processed.

The system state can be described as an ordered
sequence of jobs. The computer processes the job which
is at the head. When the service of a job is interrupted,
this job is moved to the end of the queue while the
computer starts processing the next job. An incoming
job is appended to the end of the queue.

Multi-computer extension. Our extension consists in
allocating the same quantity of work (expressed in
floating-point operations for instance) to each job before
service interruption, independently of the number and
capacity of the computers that are processing this job.

We propose a distributed implementation where each
computer is equipped with an exponentially distributed
random timer. The expiration rate of the timer is pro-
portional to the service capacity of the computer. When
a job is in service on several machines, its service is
interrupted whenever the timer of one of its machine



Computer 1

Computer 2

1 2 12 12 12

Fig. 2. Example of execution of the scheduling algorithm. The first transition is triggered by the expiration of the timer of computer 1. The
first orange job, which was in service on this computer, is moved to the end of the queue. The second transition corresponds to the expiration
of one of the two timers, after which the service of the green job is interrupted. Then a blue job arrives and is appended to the end of the
queue. Finally, the timer of computer 1 expires and the first orange job is moved to the end of the queue.

expires. The time before interruption is thus exponen-
tially distributed, with a rate which is proportional to
the service rate of the job. Hence, the quantity of work
given to a job before interruption is on average the same
for all jobs. This mean quantity is denoted by θ. Fig. 2
gives an example for the configuration of Fig. 1.

The key parameter is the mean number m = σ
θ of

interruptions per job, where σ is the mean job size.
From the single-computer case, one can expect that the
resource allocation is all the more insensitive when m
increases, in the sense that the performance only depends
on the traffic intensity of each class; however, taking m
too large may induce a too high parallelization overhead.

III. QUEUEING MODEL

Order-independent queue. The system is modeled by
an order-independent queue [2] containing as many
servers as there are computers in the cluster. Jobs of
each class enter as an independent Poisson process. Each
server processes its jobs sequentially in FCFS order
and each job can be processed in parallel by several
servers. Jobs have independent exponentially distributed
unit sizes, which corresponds to the exponential timer in
our algorithm. Upon service completion, a job may leave
the queue or re-enter it with some fixed probability which
depends on its class. This is the queueing interpretation
of the interruptions and resumptions of the algorithm.

The queue state is naturally described by the ordered
sequence of job classes. We show that its stationary
distribution does not depend on the detailed traffic
characteristics beyond the traffic intensity of each class.

Network of processor-sharing queues. Looking at the
detailed queue state is not relevant if we only want to
observe the performance of the system in the long run.
We consider instead an aggregate state, only retaining the
number of jobs of each class in the queue. The stationary

φ3(x)φ2(x)φ1(x)

ρ1 ρ2 ρ3

Fig. 3. Equivalent network of processor-sharing queues. Each queue
corresponds to one class of jobs. The performance of this system only
depends on the traffic intensity ρi of class i, for each i = 1, 2, 3.

distribution of this state proves to be that of a network
of processor-sharing queues (with one queue for each
class in the cluster), as illustrated in Fig. 3 for the system
depicted in Fig. 1. We also show that the average service
rates in this aggregate state are allocated according to
balanced fairness [3], a resource allocation which is
known for its insensitivity property. These results are
supported by simulations.

IV. CONCLUSION

We have introduced a new algorithm, similar to round-
robin scheduling, for computer clusters with compatibil-
ity constraints. We have assessed its performance with
a new queueing model and showed that it achieves a
balanced fair sharing of the computing resources. For
the future works, we aim at gaining more insight on the
impact of the mean number of interruptions per job on
the sensitivity of the resource allocation.

REFERENCES

[1] T. Bonald and C. Comte, “Balanced fair resource sharing in
computer clusters,” CoRR, vol. abs/1604.06763, 2017. [Online].
Available: https://arxiv.org/abs/1604.06763v2

[2] A. E. Krzesinski, “Order independent queues,” in Queueing Net-
works: A Fundamental Approach, R. J. Boucherie and N. M. van
Dijk, Eds. Boston, MA: Springer US, 2011, pp. 85–120.

[3] T. Bonald and A. Proutière, “Insensitive bandwidth sharing in data
networks,” Queueing Syst., vol. 44, no. 1, pp. 69–100, 2003.

2

https://arxiv.org/abs/1604.06763v2

	Computer cluster
	Scheduling algorithm
	Queueing model
	Conclusion
	References

