
1

On Output Regulation in Systems with Differential Variational Inequalities
Aneel Tanwani, Bernard Brogliato, Christophe Prieur

Abstract— We consider the problem of designing state feed-
back control laws for output regulation in a class of dynamical
systems which are described by variational inequalities and
ordinary differential equations. In our setup, these variational
inequalities are used to model state trajectories constrained to
evolve within time-varying, closed, and convex sets, and systems
with complementarity relations. We first derive conditions to
study the existence and uniqueness of solutions in such systems.
The derivation of control laws for output regulation is based
on the use of internal model principle, and two cases are
treated: first, a static feedback control law is derived when full
state feedback is available; In the second case, only the error
to be regulated is assumed to be available for measurement
and a dynamic compensator is designed. As applications, we
demonstrate how control input resulting from the solution of
a variational inequality results in regulating the output of the
system while maintaining polytopic state constraints. Another
application is seen in designing switching signals for regulation
in power converters.

I. INTRODUCTION

Differential variational inequalities (DVIs) provide a math-
ematical framework to model evolution of state trajectories
which, in addition to ordinary differential equations, satisfy
some algebraic relations as well. Roughly speaking, DVIs
comprise an ordinary differential equation to describe the
motion of the state variable, and a variational inequality
(VI) that expresses the constraints, and relations that must be
satisfied by the state variable. VIs are most commonly en-
countered in optimization, and DVIs have found applications
in modeling of electrical circuits with nonsmooth devices,
and mechanical systems with impacts.

While most of the work on DVIs in the recent past has
focused on studying the solution theory of such systems [5],
[7], [8], [17], some classical control-theoretic problems such
as stability [9], [13], optimal control [4], observer and
controller design [6], [14], [19] have been investigated in
related system classes. The problem of output regulation for
such systems, which relates to designing control laws for
asymptotically tracking a reference trajectory or rejecting
disturbances while respecting the relations imposed by sys-
tem dynamics, was introduced in our recent work [21] and
in this paper, we extend our results to a broader class of
systems.

In the standard formulation of VIs [11], we consider a
set-valued map, say F , and are interested in solving the
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following inequality:

〈F (v), v′ − v〉 ≥ 0, ∀ v′ ∈ S,

for some closed, convex, and stationary set S . In the dy-
namical systems considered in this paper, we couple such
VIs with ordinary differential equations, and moreover also
let the set S be time-varying.1 Since the solutions of VIs
could be abstractly represented using a set-valued operator,
different tools from the theory of differential inclusions could
be used to study the solutions of DVIs. We refer the reader to
a recent paper [17] for results and literature in this direction.
In this paper, we also propose results on existence and
uniqueness of solutions for a particular system class, which
is based on the theory of evolution equations with maximal
monotone operators [3]. While VIs essentially describe a
maximal monotone operator, in many practical systems, these
operators only appear after certain linear transformations,
and it is not evident that such transformations preserve
maximality, or even monotonicity. Our approach extends
the work of [5] by relaxing certain assumptions (that de-
scribe the transformation) required to show the existence
of solutions. In a recent paper [10], it is shown that if
the transformation matrices satisfy certain LMI (related to
the passivity assumption in control theory), then maximal
monotonicity is preserved. We generalize the results of [10]
by considering nonlinear globally Lipschitz vector fields in
system description, and consider nonstationary sets S. The
proof worked out in this case is also completely different
than the work of [10].

The second main contribution of this paper comes in
applying these results to study the problem of output regula-
tion. Our approach is based on the pioneering work of [12]
who proposed simple algebraic criteria for output regulation
in multivariable linear time-invariant (LTI) systems. In his
work, it is assumed that the plant under consideration is
driven by the output of an LTI exosystem that models the
dynamics of the reference trajectories and/or disturbances.
Intuitively speaking, the proposed control input that achieves
the output regulation comprises a feedback component to
make the closed-loop dynamics stable and an additional
open-loop component that shapes the steady state of the
plant. The derivation of the open-loop component of the
control input requires the exact knowledge of the exosystem
dynamics, and hence the approach is termed as internal
model principle. A large amount of work has followed on the
problem of output regulation using internal model principle

1In the paper [17], the case of time-varying S is termed as quasi-DVI,
but in this paper we do not make this distinction as we only consider the
time-varying case and our results obviously hold when S is stationary.
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in more general contexts and this paper could be seen as
extending this principle for a class of DVIs.

In our results on output regulation, we will restrict our-
selves to linear systems. The sets considered in the descrip-
tion of VIs for the exosystem and the plant are assumed to
be the same but the mappings used to describe the relations
could be different. We derive sufficient conditions under
which there exists a control input that achieves output regu-
lation while maintaining state constraints. In addition to the
classical regulator synthesis equations, additional conditions
are needed in our work to generate a dissipative relation
between the multivalued part and the output regulation error.
These additional conditional conditions also guarantee that
the closed-loop system is well-posed, that is, it admits a
unique solution which is an important consideration for
designing controllers for such class of systems. We study
two cases for control synthesis depending on how much
information is available to the controller. In the first case, it is
assumed that the entire states of the plant and the exosystem
are available and thus, a static controller is designed to
achieve output regulation. In the second case, it is assumed
that only the regulation error (which needs to converge to
zero) is available and in that case a dynamic compensator is
designed.

The rest of the paper is organized as follows: In Section II,
we define the system class, formulate the problem of output
regulation that we consider, and introduce some basic results
from convex analysis. These results are used to develop a
result on existence and uniqueness of solutions for proposed
system class in Section III. The design of static state feed-
back is considered in Section IV, followed by the design of
a dynamic compensator in Section V. The proofs of some
intermediate results are collected in the Appendix.

II. PRELIMINARIES

A. Differential Variational Inequalities

Consider a set-valued mapping S : [0,∞) ⇒ Rds , and
assume that S(t) is closed, convex, and nonempty, for each
t ≥ 0. The class of differential variational inequalities
considered in this paper are described as follows:

ẋ(t) = f(t, x) +Gλ(t) (1a)
v(t) = Hx(t) + Jλ(t), v(t) ∈ S(t), (1b)
〈v′−v(t), λ(t)〉 ≥ 0, ∀ v′ ∈ S(t). (1c)

In the above equation x(t) ∈ Rn denotes the state,
λ(t), v(t) ∈ Rds , the vector field f : [0,∞) × Rn →
Rn is absolutely continuous in first argument, and globally
(and uniformly with respect to time) Lipschitz in second
argument, G ∈ Rn×ds , H ∈ Rds×n, J ∈ Rds×ds are
constant matrices, and J is positive semidefinite.

In the standard references on variational inequalities, the
multivalued mapping S(·) is assumed to be stationary [11],
[17]. To make connections with the standard formulation of
evolution equations with time-varying domains [2], [16], it
is seen that (1b), (1c) could be compactly written as:

λ(t) ∈ −NS(t)(Hx(t) + Jλ(t)), (2)

where NS(t)(v(t)) denotes the normal cone to a convex set
at v(t) ∈ S(t), and is defined as:

NS(t)(v(t)) := {λ ∈ Rds | 〈λ, v′ − v(t)〉 ≥ 0,∀ v′ ∈ S(t)},

and as convention we let NS(t)(v(t)) := ∅, for v(t) 6∈ S(t).
In what follows, we will use the standard notations, int,

and rint to denote the interior, and the relative interior of a
set respectively. The domain, range, and kernel of an operator
are denoted by dom, rge, and ker respectively.

B. Problem Formulation

As stated in the introduction, we basically consider two
problems related to system class (1).

1) Well-posedness of DVI (1): First, we are interested in
knowing under what conditions on the system dynamics, a
unique solution exists in the following sense:

Definition 1: For each initial condition x(0) satisfying
Hx(0) ∈ S(0) + rge J , there exists a locally absolutely
continuous function x : [0,∞)→ Rn, such that x(·) satisfies
(1a) for (Lebesgue-almost) every t ≥ 0, and Hx(t) ∈
S(t) + rge J .

2) Output Regulation: For this problem, we restrict our-
selves to the case of linear vector fields, and the system class
in particular is defined as follows:

ẋ(t) = Ax(t) +Bu(t) + Fxr(t) +Gλ(t) (3a)
λ(t) ∈ −NS(t)(Hx(t) + Jλ(t)) (3b)

where xr : [0,∞) → Rdr is the reference signal that is
generated from the following equations:

ẋr(t) = Arxr(t) +Grλr(t) (4a)
λr(t) ∈ −NS(t)(Hrxr(t) + Jrλr(t)). (4b)

The output regulation variable w(·) is defined as:

w(t) = Cx(t) +Dxr(t). (5)

It will be assumed throughout the paper that system (4)
admits a solution (not necessarily unique) in the sense of
Definition 1. We say that the output regulation is achieved
if there exists a control input u(·) such that the following
properties are satisfied:
• Well-posedness: For each initial condition x(0) satisfying
Hx(0) ∈ S(0) + rge J , there exists a unique solution in
the sense of Definition 1.

• Regulation: It holds that limt→∞ w(t) = 0.
• Closed-loop stability: The plant and controller dynamics

have a globally asymptotically stable equilibrium at the
origin when xr ≡ 0.

C. Motivation

The solution theory for system (1) could be useful in
many aspects since several electrical and mechanical systems
are modeled using this framework. To motivate the output
regulation, we mention two possible applications of the
proposed problem.
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1) Viability Control: As first application, we consider
the problem of finding a control input which maintains
predefined constraints on the state trajectories of a dynam-
ical system while achieving output regulation. Stated more
precisely, suppose that we are given a plant described as:

ẋ(t) = Ax(t) +Bu(t) + Fxr (6)

and we would like to find a control u(·) which not only tracks
a reference trajectory generated by the exosystem of form
(4), but also results in the state satisfying the constraint that
Hx(t) ∈ S(t), for all t ≥ 0, where S(·) is some predefined
closed and convex set-valued map. This could be achieved
by decomposing u as u := ureg +uλ, where we choose uλ(t)
as the solution of the following variational inequality:

uλ(t)>(v′ −Hx(t)) ≥ 0, ∀ v′ ∈ S(t). (7)

This choice of control input transforms the plant equation
(6) as follows:

ẋ(t) = Ax(t) +Bureg(t) +Buλ(t) + Fxr(t)

with the constraints

v(t) = Hx(t) ∈ S(t)

uλ(t)>(v′ −Hx(t)) ≥ 0, ∀ v′ ∈ S(t). (8)

The case of S(·) being a time-varying polytope was also
considered as a special case in our previous work [21]. In
that case, (8) is formulated as a linear complementarity prob-
lem which could be solved very efficiently using standard
softwares.

2) Regulation in Power Converters: A large number of
electrical circuits with nonsmooth devices (diodes, switches,
etc.), such as power converters, are modeled using comple-
mentarity relations which is a special kind of variational
inequality when the set-valued map S(t) = K, where K ⊆
RdK is some closed convex cone (see [1], [22] for examples).
Let K∗ denote the dual cone to K, defined as:

K∗ := {v ∈ RdK | 〈v, w〉 ≥ 0,∀w ∈ K}.

Our framework allows us to consider the models of electrical
systems of the following form:

ẋ(t) = Ax(t) +B1u1(t) + F1xr(t) +Gλ(t) (9a)
v(t) = Hx(t) + Jλ(t) + F2xr(t) +B2u2(t) (9b)

K 3 v(t) ⊥ λ(t) ∈ K∗, (9c)

where u1(·) and u2(·) are control inputs that need to be
designed to solve the regulation problem. Since K is assumed
to be a cone, the cone complementarity problem (9c) is
equivalent to [11, Proposition 1.1.3]:

λ(t) ∈ −NK(v(t)).

If we let K(t) := K−F2xr(t)−B2u2(t), so that v(t) ∈ K(t)
if and only if v̄(t) +F2xr(t) +B2u2(t) ∈ K, then (9b), (9c)
are equivalently written as:

v̄(t) = Hx(t) + Jλ(t)

λ(t) ∈ −NK(t)(v(t))

and hence the system (9) is of the same form as (3).

D. Basic Results: Convex Analysis

In this section, we recall some basic results from convex
analysis which are used in the subsequent sections for
deriving main results of this paper. One can consult standard
references, such as [18], for the results given here.

A set-valued map Φ(·) is called maximal monotone if
for each x1, x2 ∈ dom(Φ), and yi ∈ Φ(xi), i = 1, 2, we
have 〈y2 − y1, x2 − x1〉 ≥ 0, and the graph of Φ cannot be
extended any further while satisfying the monotone property.
We will not use the definition in its entirety. The monotone
property is important and will be used repeatedly in analysis.
Another important thing to know is that there is a vast
literature on the solution theory of differential inclusions
where the multivalued operator on the right-hand side is
maximal monotone [3].

The following result allows us to draw connection between
system (1a), (2) and the theory of maximal monotone oper-
ators.

Proposition 1: Consider a nonempty, closed and convex
set S and let ψS(·) denote its indicator function, that is,
ψS(v) = 0, if v ∈ S and ψS(v) = +∞ otherwise; Then

1) it holds that ∂ψS(v) = NS(v),
2) and NS(·) is a maximal monotone operator.
In our approach, we would like to express (1) as a differ-

ential inclusion by replacing λ with a set-valued operator. In
order to do that, one can see from (2) that we would need to
define the “inverse” of the normal cone operator. The theory
of conjugate functions (or Legendre-Fenchel transforms) [18,
Chapter 11] allows us to make this connection.

Definition 2: For a function g : Rn → R, the function
g∗ : Rn → [−∞,+∞] defined as:

g∗(η) := sup
v
{〈η, v〉 − g(v)}

is called the conjugate of g. For a closed convex set S,
the conjugate of the indicator function ψS(·) is the support
function σS defined as:

σS(η) = max
v∈S
〈v, η〉.

We now recall the following fundamental result:
Proposition 2 ([18, Proposition 11.3]): For any proper,

lower semicontinuous, convex function g, one has ∂g∗ =
(∂g)−1 and ∂g = (∂g∗)−1. That is,

η ∈ ∂g(v)⇐⇒ v ∈ ∂g∗(η). (10)

In particular, for a closed and convex set S:

η ∈ NS(v)⇐⇒ v ∈ ∂σS(η).

III. INCLUSION WITH MAXIMAL MONOTONE OPERATOR

There is a considerable amount of literature on the solution
theory for differential inclusions, depending on the structure
of the set-valued map on the right-hand side. One particular
class of set-valued maps, which are interesting from the
point of analysis and applications, are maximal monotone
operators, and the solution theory for differential inclusions
with such operators has been well-studied since the work of
Brézis [3]. For our setup, such inclusions are of particular
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interest because we will now show that, when the set S(t) is
closed and convex valued, for each t ≥ 0, then equation (1)
can be equivalently written as a differential inclusion with
time-varying maximal monotone operator plus a globally
Lipschitz vector field on the right-hand side.

To see this, we use Propositions 1 and 2, and describe the
relations in (1a), (1b), using a set-valued map for λ(t) as
follows:

〈v′ − v(t), λ(t)〉 ≥ 0, ∀ v′ ∈ S(t) (11a)
⇐⇒ λ(t) ∈ −∂ψS(t)(Hx(t) + Jλ(t)) (11b)
⇐⇒ Hx(t) + Jλ(t) ∈ ∂σS(t)(−λ(t)) (11c)

⇐⇒ Hx(t) ∈
(
∂σS(t) + J

)
(−λ(t)) (11d)

⇐⇒ λ(t) ∈ −
(
∂σS(t) + J

)−1
(Hx(t)) (11e)

Letting Φ(t,Hx(t)) :=
(
∂σS(t) + J

)−1
(Hx(t)), sys-

tem (1) can be equivalently written as the following differ-
ential inclusion:

ẋ(t) ∈ f(t, x)−GΦ(t,Hx(t)). (12)

It is an easy exercise to show that the operator Φ(t, ·)
is maximal monotone for each t ≥ 0 (see also proof of
Lemma 1 in the Appendix) but it is not true in general
that GΦ(t,H·) is also maximal monotone. If it is assumed
that f(t, x) = Ax + u(t), and that the LTI system defined
using the matrices (A,G, J,H) is passive and Φ is time-
independent, then the maximal monotonicity of the multi-
valued operator on the right-hand side of (12) was proven
in [10]. Our goal in this section is to generalize this result
for the class of systems (12), and the contribution of what
follows could be seen in following two regards:
• A direct approach (different than [10]) to transform the

right-hand side of (12) into a maximal monotone operator
(with a minus sign) and a Lipschitz vector field, the
solutions for which can be derived using existing results.

• Generalize the system class by addressing time-dependent
sets and nonlinear vector fields.

A. Solution of Differential Inclusion (12)
Compared to the standard formulations of evolution equa-

tions with maximal monotone operators, the primary dif-
ficulty in studying the well-posedness of (12) is that the
operator GΦ(t,H·) may not necessarily be monotone for
some arbitrary matrices G and H because multiplication with
matrices does not preserve monotonicity. Secondly, the right-
hand side depends on time and we need to impose some
constraints on the evolution of the set-valued map S(·) along
with some regularity assumptions on f(·, x). The main result
overcoming these difficulties is stated as follows:

Theorem 1: Assume that the following holds:
(A1) The matrix J is positive semidefinite and there exists a

symmetric positive definite matrix P such that ker(J +
J>) ⊆ ker(PG−H>).

(A2) For each t ≥ 0, the range space of H , denoted as rgeH ,
cannot be separated from S(t) + rge J .

(A3) The mapping S : [0,∞) ⇒ Rds is closed and convex
valued with nonempty relative interior for each t ≥ 0,

and varies in an absolutely continuous manner with
time, that is, there exists an absolutely continuous
function ν(·) : [0,∞)→ R+, such that,

|d(v,S(t1))−d(v,S(t2))| ≤ |ν(t1)−ν(t2)|, ∀ t1, t2 ≥ 0.

(A4) The function f(t, ·) is globally Lipschitz (uniformly in
time), that is, there exists a constant µ > 0 such that
for each t ≥ 0:

|f(t, x1)− f(t, x2)| ≤ µ|x1 − x2|, ∀x1, x2 ∈ Rn,

and f(·, x) is absolutely continuous for each x ∈ Rn.
Then there exists a unique solution to (12), and hence (1),
in the sense of Definition 1.

Discussions:
1) If J = 0, then (A1) basically implies that PJ = H>,

which was the assumption used to deduce the maximal
monotonicity of the multivalued operator in [5]. Also, if
the quadruple (A,B, J,H) is passive, then the assumption
(A1) automatically holds and this fact was also used in
[10].

2) The constraint qualification (A2) is somewhat a standard
assumption when dealing with problems on variational
inequalities, and is introduced to preserve maximality
under the composition function.

3) The bound on the variation of S(·) is introduced to obtain
absolutely continuous trajectories. It basically imposes the
constraint that the Hausdorff distance between the sets
S(t1) and S(t2) is relatively small for |t1−t2| sufficiently
small. One could also relax the function ν(·) to be
continuous, or a function with locally bounded variation,
in which case the resulting state trajectory will also be
in the class of functions with locally bounded variation.
However, this will only complicate the development as one
has to interpret (12) as a measure differential inclusion.
Nonetheless, we conjecture that most of the development
carried out in the sequel will also carry over to that case.

4) The Lipschitz condition on the function f(t, ·) is imposed
because the inclusions with maximal monotone operators
and Lipschitz perturbations are well-posed [3].

Proof of Theorem 1: The proof of Theorem 1 is
based on several intermediate results which we will state
as lemmas. The proofs of these lemmas are given in the
Appendix.2

Lemma 1: For each t ≥ 0, the operator Φ(t, ·) =
(∂σS(t) + J)−1(·) is maximal monotone and dom Φ(t, ·) =
S(t) + rge J .

Lemma 2: Consider η1, η2 ∈ Φ(t,Hx), then η1 − η2 ∈
ker(J + J>).

For each ηα ∈ Φ(t,Hx) (with t and x fixed), let ηim

denote the projection of ηα on the orthogonal complement of
ker(J+J>), denoted as ηim = PJ(ηα), then using Lemma 2,
ηim is uniquely defined and we can write

ηα := ηim + ηker
α

2In the proof of Theorem 1 and the Appendix, we will use the notation
η(t) to denote an element of the set Φ(t,Hx). From (11e), it is seen that
the variable η and λ only differ by a sign change.
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for some ηker
α ∈ ker(J + J>). Since we have assumed that

ker(J + J>) ⊆ ker(PG − H>), we must have Gηkerα =
P−1H>ηker

α . This allows us to rewrite (12) as follows:

ẋ(t) =f(t, x)−Gηim(t)− P−1H>ηker
α (t)

=f(t, x)+(P−1H>−G)PJ(ηα(t))− P−1H>ηα(t)

ηα(t) ∈ Φ(t,Hx(t)).
(13)

Let R denote the square root of the matrix P in (A1), so
that R is also positive definite and symmetric. Introduce
the coordinate transformation z = Rx, then in the new
coordinates, (13) is written as:

ż(t) = Rf(t, R−1z) + (R−1H>−RG)PJ(ηα(t))

−R−1H>ηα(t)

ηα(t) ∈ Φ(t,HR−1z(t)).

(14)

We will next use the following two results:
Lemma 3: The operator PJ(Φ(t,H·)) is single-valued

and Lipschitz continuous.
Lemma 4 ([18, Theorem 12.43]): The multivalued oper-

ator R−1H>Φ(t,HR−1·) is maximal monotone, for each
t ≥ 0, if rge(HR−1)∩ rint(dom(Φ(t, ·))) 6= ∅, which holds
in particular under the constraint qualification (A2).
As a result of these two lemmas, one can now write (14) as:

ż(t) ∈ g(t, z)−Ψ(t, z) (15)

where g(t, z) = Rf(t, R−1z)− (R−1H> − RG)PJ(ηα(t))
is globally Lipschitz (in second argument) and Ψ(t, z) =
R−1H>Φ(t,HR−1z(t)) is maximal monotone for each t ≥
0. Finally, let

Ψ(t, z) := Ψ(t, z) + g(t, z)− µx,

where µ > 0 denotes the Lipschitz constant of g(t, ·). It
is easy to check that Ψ(t, z) is also maximal monotone.
Inclusion (15) is now equivalent to:

ż(t) ∈ µx−Ψ(t, z). (16)

One can now deduce the solution to (16) in the sense of
Definition 1 by combining the results from [3, Chapter 3]
and [15]. The precise arguments are worked out in the proof
of following lemma given in the Appendix.

Lemma 5: For each t ≥ 0, and there exists a unique
locally absolutely continuous solution z(·), that satisfies (16)
for almost every t ≥ 0.
Since we have only introduced bijective operations in arriv-
ing from system (1) to (16), the conclusion also holds for
system (1).

IV. FULL STATE FEEDBACK AND STATIC CONTROL

We will now use the results on the well-posedness of
system (1) to solve the output regulation problem. In this
section, it is assumed that all the states of the plant (1) and
(4) are available for feedback and thus a control input with
static state feedback can be designed which achieves the
stability and regulation. In the formulation of our results,
the following terminology is used: A quadruple of matrices

(A,B,C,D) is called strictly passive if there exist a scalar
γ > 0 and a symmetric positive definite matrix P such that[

A>P + PA+ γP PB − C>
B>P − C −(D +D>)

]
≤ 0. (17)

Theorem 2: Consider systems (3), (4) under assumptions
(A2) and (A3). Suppose that a matrix K renders the triplet
(A + BK,G,H, J) strictly passive, and that there exist
matrices Π ∈ Rn×dr and M ∈ Rdu×dr such that

ΠAr = AΠ +BM + F and CΠ +D = 0 (18a)

ΠGr = G, HΠ = Hr and Jr = J. (18b)

Then the output regulation problem is solvable with the
following static feedback control law:

u(t) = Kx(t) + (M −KΠ)xr(t). (19)
Remark 1: In the work of [12], the control law (19) was

proposed to solve the output regulation problem in LTI
systems, where Π and M were obtained as solution of (18a)
only, and K is any matrix that makes (A + BK) Hurwitz.
The strict passivity requirement, and additional conditions
on the matrix Π in (18b) are required in the well-posedness
and stability analyses for the class of systems considered in
this paper.

Proof: a) Well-posedness: With control input (19), the
closed-loop system is written as

ẋ(t) = (A+BK)x(t) + (F +BM −BKΠ)xr(t) +Gλ(t)

λ ∈ −NS(t)(Hx(t) + Jλ(t)).

Since (A+ BK,G,H, J) is assumed to be strictly passive,
the matrix J is positive semidefinite and ker(PG−H>) ⊆
ker(J+J>). All the remaining hypothesis of Theorem 1 hold
by construction, and hence the closed-loop system exhibits
a unique solution.

b) Regulation: Let Π be the matrix that satisfies (18) and
introduce the variable e = x − Πxr. The output regulation
is achieved if we can show that limt→∞ e(t) = 0, since

w(t) = Cx(t) +Dxr(t)

= Cx(t)− CΠxr(t) = Ce(t).

To show that e(t)→ 0 as t→∞, we observe that

ė(t) = (A+BK)x(t) + (F +BM −BKΠ)xr(t)

+Gλ(t)−ΠArxr(t)−ΠGrλr(t)

= (A+BK)x(t)− (ΠAr − F −BM︸ ︷︷ ︸
=AΠ

+BKΠ)xr(t)

+Gλ(t)−ΠGrλr(t)

= (A+BK)x(t)− (A+BK)Πxr(t)

+Gλ(t)−ΠGrλr(t)

= (A+BK)e(t) +G(λ(t)− λr(t)).
Now introduce the Lyapunov function V (e) = e>Pe, so that
the following holds for almost all t ≥ 0 :

V̇ (e(t)) = e(t)>
(
(A+BK)>P + P (A+BK)

)
e(t)

+ 2e(t)>PG(λ(t)− λr(t))
≤ −γe(t)>Pe(t)

+ 2〈λ(t)− λr(t), He(t) + J(λ(t)− λr(t))〉



6

where we used the passivity of (A+BK,G,H, J) to arrive
at the last inequality. Recalling that He(t) = Hx(t) −
HΠxr(t) = H(x(t)−xr(t)), and Jr = J , the monotonicity
of the normal cone operator leads to

〈λ(t)− λr(t), H(x(t)− xr(t)) + J(λ(t)− λr(t))〉 ≤ 0.

It thus follows that V̇ (e(t)) < 0 for all e(t) 6= 0, and thus
e(t)→ 0 as t→∞.

Closed-loop stabilization: Following the same calculations
as above, it is seen that the derivative of V (·) along the
dynamics of (3) with u in (19) satisfies

V̇ (x(t)) ≤ −γV (x(t)) + x(t)>P (F +B(M −KΠ))xr(t)

and it follows that x(t)→ 0 as t→∞, when xr ≡ 0.

V. ERROR FEEDBACK AND DYNAMIC COMPENSATOR

In this section, it will no longer be assumed that the
states x(·) and xr(·) are available for feedback, but only
the regulation error w(·) is available to the controller. Our
approach is based on the certainty equivalence principle
where we first design an estimator for the state variables
x(·) and xr(·) and then define the control law as a function
of these estimates.

Towards this end, the estimator we propose is defined as
follows:(

˙̂x
˙̂xr

)
=

[(
A F
0 Ar

)
−
(
L0

L1

)(
C D

)]( x̂
x̂r

)
+

(
L0

L1

)
w

+

(
B
0

)
u+

(
G 0
0 Gr

)(
λ̂

λ̂r

)
(20a)

(
λ̂

λ̂r

)
∈ −NS(t)×S(t)

(
H

(
x̂
x̂r

)
+ J

(
λ̂

λ̂r

))
, (20b)

where the gain matrix L :=

(
L0

L1

)
will be designed in the

sequel, and the matrices H , J are defined as follows:

H :=

(
H 0
0 Hr

)
, J :=

(
J 0
0 Jr

)
.

For brevity, we have suppressed the time argument in (20),
and will do so in the remainder of this section unless
required. Let us also introduce the following notation:

A :=

(
A F
0 Ar

)
, C :=

(
C D

)
, G :=

(
G 0
0 Gr

)
.

Theorem 3: Consider systems (3), (4) under assumptions
(A2) and (A3). Suppose that there exist a feedback ma-
trix K and an injection matrix L that render the triplets
(A+BK,G,H, J) and (A−LC,G,H, J) strictly passive,
respectively. If there exist matrices Π ∈ Rn×dr and M ∈
Rdu×dr that satisfy (18), then the output regulation problem
is solved by letting

u(t) = Kx̂(t) + (M −KΠ)x̂r(t). (21)

Proof: Introduce the variable x̃ := x − x̂, then the
closed-loop dynamics are similar to ẋ

˙̃x
˙̂xr

 =

A+BK −BK B(M −KΠ)
0 A− L0C −F + L0D
0 L1C Ar − L1D


︸ ︷︷ ︸

:=Acl

 x
x̃
x̂r



+

 F
F − L0D
L1D


︸ ︷︷ ︸

:=Fcl

xr +

G 0 0
G −G 0
0 0 Gr


︸ ︷︷ ︸

:=Gcl

 λ

λ̂

λ̂r


(22a) λ

λ̂

λ̂r

 ∈ −NS(t)×S(t)×S(t)

Hcl

 x
x̃
x̂r

+ Jcl

 x
x̃
x̂r

 ,

(22b)
where we used the notation Hcl :=

(
H 0 0
H −H 0
0 0 Hr

)
, and Jcl :=(

J 0 0
0 J 0
0 0 Jr

)
.

Well-posedness: To show that the closed-loop system ad-
mits a unique solution, we follow the same procedure as in
the proof of Theorem 2. That is, we find a symmetric positive
definite matrix Pcl such that ker(PclGcl−H>cl ) ⊆ ker(Jcl +
J>cl ). The matrix Jcl is positive semidefinite by construction.
To find the matrix Pcl, it is noted that, by assumption, the
quadruples (A + BK,G,H, J) and (A − LC,G,H, J) are
strictly passive, so there exist symmetric positive definite
matrices P, P with dissipation constants γ, γ, such that (17)

holds. Now, partition P as P :=

(
P 11 P 12

P 12 P 22

)
, then P 22

is a symmetric positive definite matrix, and P 22Gr = H>r .
Thus, by letting

Pcl :=

2P −P 0
−P P 0
0 0 P 22


it is easily checked that Pcl is symmetric, positive definite,
and ker(PclGcl −H>cl ) ⊆ ker(J + J>cl ).

Regulation: By letting W :=
(
−K (M −KΠ)

)
, it is

seen that

Acl =

(
A+BK BW

0 A− LC

)
Define the regulation error as follows:

e :=

x−Πxr
x̃

x̂r − xr

 =:

exx̃
er

 =:

(
ex
eξ

)
, (23)

then it can be shown using the equations in (18) that

ė =

(
A+BK BW

0 A− LC

)
e

+

G 0 0
0 G 0
0 0 Gr

 λ− λr
λ− λ̂
λr − λ̂r

 (24)

where λ, λr and (λ̂, λ̂r) are defined in (3b), (4b) and (20b),
respectively.
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Consider the Lyapunov function V (e) = e>
[
αP 0
0 βP

]
e

for some α, β > 0 to be specified later. The derivative of V (·)
along the trajectories of the closed-loop system satisfies the
following relations:

V̇ (e) = αe>x (P (A+BK) + (A+BK)>P )ex

+ 2αe>x PBWeξ

+ e>ξ (βP (A− LC) + (A− LC)>βP )eξ

+ 2αe>x PG(λ− λr) + 2βe>ξ P G

(
λ− λ̂
λr − λ̂r

)
≤ −αγe>x Pex − βγe>ξ Peξ + 2αe>x PBWeξ

+ 2α(λ− λr)>(Hex + J(λ− λr))
+ 2β(λ− λ̂)>(Hx̃+ J(λ− λ̂))

+ 2β(λr − λ̂r)>(Hrer + Jr(λr − λ̂r))

where the last inequality is obtained using the passivity
assumption on (A+BK,G,H, J) and (A− LC,G,H, J).
Using the assumptions that HΠ = Hr, and J = Jr, it now
follows from the definition of the normal cone that

(λ− λr)>(Hex + J(λ− λr))
= 〈λ− λr, Hx−HΠxr + Jλ− Jrλr〉
= 〈λ− λr, Hx+ Jλ−Hrxr − Jrλr〉 ≤ 0

and using similar arguments,

(λ− λ̂)>(Hx̃+ J(λ− λ̂)) ≤ 0

(λr − λ̂r)>(Hrer + Jr(λr − λ̂r)) ≤ 0.

Plugging these relations in the expression for V̇ (·), and using
the notation σmin to denote the smallest eigenvalue of a
matrix and χ to denote the induced Euclidean matrix norm
of PBW , we get

V̇ (e) ≤ −αγ σmin(P ) |ex|2 − βγσmin (P ) |eξ|2

+ 2αχ |ex| |eξ|
≤ −αγ σmin(P ) |ex|2− βγσmin (P ) |eξ|2+ |ex|2

+ α2χ2|eξ|2

= −(αγ σmin(P )− 1)|ex|2

− (βγ σmin(P )− α2χ2)|eξ|2.

Thus, choosing α, β in the definition of the Lyapunov
function V (·) such that αγσmin(P ) > 1 and βγ σmin(P ) >
α2χ2), makes V̇ (·) negative definite. In particular ex con-
verges to zero, from which it follows that w = Cx+Dxr =
C(x−Πxr) = Cex converges to zero.

Closed-loop stabilization: The closed-loop stabilization
could be shown in exactly the same manner as above. The
difference being, the derivative of the Lyapunov function
V (·) is calculated along the trajectories of the dynamics of
(x, x̃, x̂r) given in (22).

VI. CONCLUSIONS

This paper studied the problem of output regulation in a
certain class of nonsmooth dynamical systems that are mod-
eled as differential variational inequalities. These systems

in particular model systems where states are constrained to
evolve within some closed, convex and time-varying set. We
first studied the conditions under which there exists a unique
solution for such systems. The classical internal model
principle was then used to derive conditions to synthesize a
control law that achieves the desired objective. The analysis
were based on using the Lyapunov methods in combination
with monotonicity property of the normal cone operator to
prove stability.

Several extensions are possible. The most interesting of
which is to consider cases where the set-valued mapping S(·)
is not just time-dependent, but also state-dependent. This
would allow us to model mechanical systems with impacts
within our framework but deeper investigation is required for
the synthesis of control in such cases.

APPENDIX

Proof of Lemma 1: First, it is noted that σS(t) is
sublinear [18, Theorem 8.24], and hence a convex functional,
so that ∂σS(t) is maximal monotone for each t ≥ 0,
and rint(dom ∂σS(t)) 6= ∅ because S(t) is convex-valued
and rint(S(t)) 6= ∅. The matrix J define a monotone
mapping, and being continuous, is also maximal mono-
tone [18, Example 12.7]. Also, dom J is Rds . It now
holds that (∂σS(t) + J) is maximal monotone because
rint(dom ∂σS(t)) ∩ rint(dom J) 6= ∅ [18, Corollary 12.44].
Hence, (∂σS(t) + J)−1 is also maximal monotone, because
the inverse operation preserves maximal monotonicity [18,
Exercise 12.8(a)]. Also, using the fact that rge(S(t))+J) =
rge(S(t))+rge(J), and that dom Φ(t, ·) = rge(∂σS(t) +J),
the desired result follows.

Proof of Lemma 2: For i = 1, 2, consider ηi ∈
(∂σS(t) + J)−1(Hx), then Hx − Jηi ∈ ∂σS(t)(ηi). Since
∂σS(t) is monotone, we have

〈Hx− Jη1 −Hx+ Jη2, η1 − η2〉 ≥ 0

or
〈J(η1 − η2), η1 − η2〉 ≤ 0.

It follows that η1− η2 ∈ ker(J +J>), because J is positive
semidefinite.

Proof of Lemma 3: From Lemma 2, it directly follows
that the operator PJ(Φ(t,H·)) is single-valued. Let ηj :=
PJ(Φ(t,Hxj)), for j = a, b, so that Hxj −Jzj ∈ ∂σS(ηj).
Monotonicity of ∂σS gives

〈Hxa − Jηa −Hxb + Jηb, ηa − ηb〉 ≥ 0

or equivalently,

〈J(ηa − ηb), ηa − ηb〉 ≤ 〈H(xa − xb), ηa − ηb〉. (25)

Since J is positive semidefinite, there exists c > 0, such that

|PJ(ηa)− PJ(ηb)| ≤ c〈J(ηa − ηb), ηa − ηb〉.

Assume now that, PJ(Φ(t,H·)) is not Lipschitz, so for
every i ∈ N, there exist pairs (xai , x

b
i ), xai 6= xbi , and
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ηai ∈ Φ(t,Hxai ), and ηbi ∈ Φ(t,Hxbi ), such that

i|xai − xbi | < |PJ(ηi)− PJ(ηbi )|
≤ c〈J(ηai − ηbi ), ηai − ηbi 〉
≤ c〈H(xai − xbi ), ηai − ηbi 〉
≤ c|xai − xbi | · |H>(ηai − ηbi )|.

Thus, we must have |ηai − ηbi | ≥ |H>(ηai − ηbi )|i. Now
dividing (25) by |ηai − ηbi |2, we get〈
J

(ηai − ηbi )
|ηai − ηbi |

,
ηai − ηbi
|ηai − ηbi |

〉
≤
〈
xai − xbi
|ηai − ηbi |

,
H>(ηai − ηbi )
|ηai − ηbi |

〉
.

Since the right-hand side converges to zero as i gets large,
it follows that 〈J(ηai − ηbi ), ηai − ηbi 〉 converges to zero as
well because J is positive semidefinite. But then |PJ(ηi)−
PJ(ηbi )| converges to zero, which is a contradiction, and the
desired claim follows.

Proof of Lemma 5: If µ = 0 in (16), then the result
follows directly from [15, Theorem 3]. Next, for i = 1, 2,
consider the differential inclusion

żi(t) ∈ −Ψ(t, zi) + gi(t)

for some locally absolutely continuous functions gi(·). It
again follows from [15, Theorem 3] that there exists a unique
solution zi(·), which is locally absolutely continuous. It holds
due to monotonicity of Ψ(t, ·) that

1

2

d

dt
|z1(t)− z2(t)|2 = 〈ż1(t)− ż2(t), z1(t)− z2(t)〉

≤ 〈g1(t)− g2(t), z1(t)− z2(t)〉
≤ |g1(t)− g2(t)| · |z1(t)− z2(t)|.

Letting Z(t) := |z1(t) − z2(t)|, the above inequality is
rewritten as: Ż(t) ≤ 2|g1(t) − g2(t)|

√
Z(t). Applying the

comparison lemma for solution of ODEs, we get

|z1(t)−z2(t)| ≤ |z1(0)−z2(0)|+
∫ t

0

|g1(s)−g2(s)| ds. (26)

To study the solutions of (16), consider a sequence of
solutions with z1(t) = z(0), t ≥ 0, and zi+1(·), for i ≥ 1
is obtained as a solution to following inclusion with initial
condition zi(0) = z(0), i ∈ N:

żi+1(t) ∈ −Ψ(t, zi+1) + µzi(t).

Then, from (26), we have, for each t ≥ 0:

|zi+1(t)− zi(t)| ≤
∫ t

0

µ|zi(s)− zi−1(s)| ds

which through induction leads to:

|zi+1(t)− zi(t)| ≤
(µt)i

i!
‖z2 − z1‖L∞ .

Thus, the sequence {zi}∞i=1 converges uniformly on every
compact interval, and hence limi→∞ zi is the unique solution
to system (16).
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