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Output Regulation in Differential Variational Inequalities using Internal
Model Principle and Passivity-Based Approach
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We consider the problem of designing state feedback control laws for output regulation in a class of dynamical systems where
state trajectories are constrained to evolve within time-varying, closed, and convex sets. The first main result states sufficient
conditions for existence and uniqueness of solutions in such systems. We then design a static state feedback control law
using the internal model principle, which results in a well-posed closed-loop system and solves the regulation problem. As an
application, we demonstrate how control input resulting from the solution of a variational inequality results in regulating the
output of the system while maintaining polyhedral state constraints.
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1 Introduction

Differential variational inequalities (DVIs) provide a mathematical framework to model evolution of state trajectories which,
in addition to ordinary differential equations, satisfy some algebraic relations as well. Roughly speaking, DVIs comprise an
ordinary differential equation to describe the motion of the state variable, and a variational inequality (VI) that expresses the
constraints, and relations that must be satisfied by the state variable.

For the class of DVIs addressed in this paper, a set-valued mapping S : [0,∞) ⇒ Rds is considered, and it is assumed that
S(t) is closed, convex, and nonempty, for each t ≥ 0. The dynamical model of the system is then described as follows:

ẋ(t) = f(t, x) +Gλ(t) (1a)

v(t) = Hx(t) + Jλ(t), v(t) ∈ S(t), (1b)

〈v′−v(t), λ(t)〉 ≥ 0, ∀ v′ ∈ S(t). (1c)

In the above equations x(t) ∈ Rn denotes the state, λ(t), v(t) ∈ Rds , the vector field f : [0,∞) × Rn → Rn is absolutely
continuous in first argument, and globally (and uniformly with respect to time) Lipschitz in second argument, G ∈ Rn×ds ,
H ∈ Rds×n, J ∈ Rds×ds are constant matrices, and J is positive semidefinite.

In the standard references on variational inequalities, the multivalued mapping S(·) is assumed to be stationary [5], and
the case of time-varying set-valued mapping considered here is often called quasi-differential variational inequality; But we
will refrain from this distinction in this paper, and simply use the abbreviation DVI for both cases. To make connections with
the standard formulation of evolution equations with time-varying domains [4], it is seen that (1b), (1c) could be compactly
written as:

λ(t) ∈ −NS(t)(Hx(t) + Jλ(t)), (2)

where NS(t)(v(t)) denotes the normal cone to the convex set S(t) at the point v(t) ∈ S(t), and is defined as:

NS(t)(v(t)) := {λ ∈ Rds | 〈λ, v′ − v(t)〉 ≥ 0,∀ v′ ∈ S(t)},

and as convention we let NS(t)(v(t)) := ∅, for v(t) 6∈ S(t).
One can also interpret the DVI (1) as a mathematical formalism for describing state trajectories where the motion is

constrained within some prespecified set-valued map S. To see this, let J = 0, then as long as Hx(t) is in the interior of the
set, the equation (1a) becomes ẋ(t) = f(t, x(t)) (for at least a small period of time) until Hx(t) hits the boundary of the set
S(t). At this moment, if the vector field f(t, x(t)) is pointed outside of the set S(t), then any component of this vector field
in the direction normal to S(t) at Hx(t) must be annihilated to maintain the motion of Hx within the constraint set.

The variational inequalities expressed in (1c) find utility across many applications [3] and may be used to express optimality
conditions, and certain physical systems [1]. In particular, electrical circuits with nonsmooth devices (such as diodes and
transistors) can be modeled as follows:

ẋ(t) = Ax+Bu(t) +Gλ(t) (3a)

0 ≤ λ(t) ⊥ Hx(t) + Jλ(t) +Du(t) ≥ 0 (3b)
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where the notation 0 ≤ a ⊥ b ≥ 0 is a short-hand for saying that each component of the vectors a and b is nonnegative, and
the inner product 〈a, b〉 = 0. By using the notation Rds+ for the positive orthant of Rds , system (3) can be rewritten in the form
of (1) by letting

S(t) := {z ∈ Rds | z +Du(t) ∈ Rds+ }.

From control perspective, DVIs form an important class of nonsmooth dynamical systems and lately several control-
theoretic problems have been studied for such systems [6–8]. The problem of output regulation relates to designing control
laws for asymptotically tracking a reference trajectory or rejecting disturbances. Studying this problem in the context of DVIs
is useful because it provides a useful framework for

• generating and tracking certain nonsmooth signals, and

• maintaining state constraints while achieving a certain control objective.

The problem of output regulation for a simpler class of DVIs was introduced in our work [7, 8] and in this paper, we
present a summary of results for a more generalized system class based on the recent research work. While VIs can also be
written using the notion of (set-valued) normal cone operators so that the differential inclusion resulting from (1) has maximal
monotone operators, the introduction of matrices G,H, J and the vector field f(·, ·) may not preserve monotonicity which
makes it difficult to study the solution of such systems. From control point of view, the discontinuities in the description of
such systems are state-dependent which introduces several complexities in designing feedback control laws.

To address these issues, we first derive conditions to study the existence and uniqueness of solutions in such systems. It
is shown that under certain conditions on the system data, the given system could be equivalently written as a differential
inclusion where the right-hand side is the sum of a multivalued maximal monotone operator and a Lipschitz-continuous
function. Such inclusions are then shown to possess unique solutions. For the output regulation problem, we let f(t, x) :=
Ax + Bu(t) + Fxr(t), where xr is an exogenous signal generated by an exosystem, and our objective is to design feedback
control u such that the resulting closed-loop system is well-posed and the state x asymptotically tracks xr. The derivation of
control laws is based on the use of internal model principle, and for the sake of simplicity, only the design of a static feedback
control law is presented when full state measurements are available. Under the condition that the closed-loop system can be
rendered passive, we show that the overall system is indeed well-posed and the desired error variable indeed converges to the
origin. As applications, we demonstrate how control input resulting from the solution of a variational inequality results in
regulating the output of the system while maintaining polyhedral state constraints.

2 Problem Formulation

As stated in the introduction, we basically consider two problems related to system class (1).

1. Well-posedness of DVI (1): First, we are interested in knowing under what conditions on the system dynamics, a unique
solution exists in the following sense:
Definition 2.1 For each initial condition x(0) satisfying Hx(0) ∈ S(0) + rangeJ , there exists a locally absolutely
continuous function x : [0,∞) → Rn, such that x(·) satisfies (1a) for (Lebesgue-almost) every t ≥ 0, and Hx(t) ∈
S(t) + range J .

2. Output Regulation: For this problem, we restrict ourselves to the case of linear vector fields, and the system class in
particular is defined as follows:

ẋ(t) = Ax(t) +Bu(t) + Fxr(t) +Gλ(t); λ(t) ∈ −NS(t)(Hx(t) + Jλ(t)) (4)

where xr : [0,∞)→ Rdr is the reference signal that is generated from the following equations:

ẋr(t) = Arxr(t) +Grλr(t); λr(t) ∈ −NS(t)(Hrxr(t) + Jrλr(t)). (5)

The output regulation variable w(·) is defined as:

w(t) = Cx(t)− Crxr(t). (6)

It will be assumed throughout the paper that system (5) admits a solution (not necessarily unique) in the sense of Defini-
tion 2.1. We say that the output regulation is achieved if there exists a control input u(·) such that the following properties
are satisfied:

• Well-posedness: For each initial condition x(0) satisfying Hx(0) ∈ S(0) + range J , there exists a unique solution in
the sense of Definition 2.1.

• Regulation: It holds that limt→∞ w(t) = 0.
• Closed-loop stability: The plant and controller dynamics have a globally asymptotically stable equilibrium at the

origin when xr ≡ 0.
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3 Existence of Solutions

The main result concerning the existence and uniqueness of solutions to system class (1) now follows.
Theorem 3.1 There exists a unique solution to (1), in the sense of Definition 2.1, if the following conditions hold:

(C1) The matrix J is positive semidefinite and there exists a symmetric positive definite matrix P such that

ker(J + J>) ⊆ ker(PG−H>).

(C2) For each t ≥ 0, rangeH ∩ (S(t) + range J) 6= ∅.

(C3) The mapping S : [0,∞) ⇒ Rds is closed and convex valued with nonempty relative interior for each t ≥ 0, and varies in
an absolutely continuous manner with time, that is, ∃ an absolutely continuous function ν(·) : [0,∞)→ R+, such that,

|d(v,S(t1))− d(v,S(t2))| ≤ |ν(t1)− ν(t2)|, ∀ t1, t2 ≥ 0.

(C4) The function f(t, ·) is globally Lipschitz (uniformly in time), that is, there exists a constant µ > 0 such that ∀ t ≥ 0:

|f(t, x1)− f(t, x2)| ≤ µ|x1 − x2|, ∀x1, x2 ∈ Rn,

and f(·, x) is absolutely continuous for each x ∈ Rn.

4 Output Regulation with Full State Feedback

The most classical reference on regulation of output in linear time-invariant systems is [2]. In this section, it is assumed that
all the states of the plant (1) and (5) are available for feedback and a control law with static state feedback is sought which
achieves stability and regulation. In the formulation of our results, the following terminology is used: A quadruple of matrices
(A,B,C,D) is called strictly passive if there exist a scalar γ > 0 and a symmetric positive definite matrix P such that[

A>P + PA+ γP PB − C>
B>P − C −(D +D>)

]
≤ 0. (7)

Theorem 4.1 Consider systems (4), (5) under assumptions (C2) and (C3). Suppose that a matrix K renders the triplet
(A+BK,G,H, J) strictly passive, and that there exist matrices Π ∈ Rn×dr and M ∈ Rdu×dr such that

ΠAr = AΠ +BM + F and CΠ− Cr = 0 (8a)

ΠGr = G, HΠ = Hr and Jr = J. (8b)

Then the output regulation problem is solvable with the following static feedback control law:

u(t) = Kx(t) + (M −KΠ)xr(t). (9)

When it is assumed that the full states x(·) and xr(·) are not available for feedback, and only the regulation error w(·) is
available to the controller, then one can design a dynamic compensator which only takes w(·) as the input. Using the certainty
equivalence principle, the compensator first estimates the state variables x(·) and xr(·) and then defines the control law as a
function of these estimates. For details, see [8].

5 Case Study: Viability Control and Regulation

As an application, we consider the problem of finding a control input which maintains predefined constraints on the state
trajectories of a dynamical system while achieving output regulation. Stated more precisely, suppose that we are given a plant

ẋ(t) = Ax(t) +Bu(t) + Fxr(t) (10)

and we would like to find a control u(·) which not only tracks a reference trajectory generated by the exosystem of form (5),
but also results in the state satisfying the constraint thatHx(t) ∈ S(t), for all t ≥ 0, where S(·) is some predefined closed and
convex set-valued map. This could be achieved by decomposing u as u := ureg + uλ, where we choose uλ(t) as the solution
of the following variational inequality:

uλ(t)>(v′ −Hx(t)) ≥ 0, ∀ v′ ∈ S(t). (11)

This choice of control input transforms the plant equation (10) as follows:

ẋ(t) = Ax(t) +Bureg(t) +Buλ(t) + Fxr(t). (12)

For any uλ(·) that satisfies (11), it now holds for the trajectories of the closed-loop system (12) that v(t) := Hx(t) ∈ S(t).
When S(·) is a time-varying polytope, (11) is formulated as a linear complementarity problem which could be solved very
efficiently using standard softwares [7].

Copyright line will be provided by the publisher



4 PAMM header will be provided by the publisher

Fig. 1: The top plot shows the phase portrait of the trajectories of the plant and the exosystem. The middle plot confirms that x2 converges
to xr2 while staying within the set S. The bottom plot shows the values of discontinuous component of the control input which only become
nonzero when x2 is on the boundary of the set S.

Example 5.1 As an illustration of foregoing discussion and Theorem 4.1, let us consider an example. The plant to be
controlled is a second order linear system described by the equations:

ẋ1 = −0.1x1 + x2 ; ẋ2 = u.

The exosystem is defined by the following linear complementarity system:

ẋr :=

(
ẋr1
ẋr2

)
=

[
−0.1 1
−2 1

]
xr +

[
0 0
−1 1

]
λr ; 0 ≤ λr⊥

(
−xr2
xr2

)
+

(
1
1

)
≥ 0. (13)

Consider the set S := {z ∈ R : z + 1 ≥ 0} and the matrix H := [00
−1
1 ], then the relation (13) is equivalently expressed as

λr ∈ −NS×S(Hxr), see also [7, §5]. We are interested in designing a control input u, such that limt→∞ |x2(t)−xr2(t)| = 0,
and ∀ t ≥ 0, |x2(t)| ≤ 1, or equivalently Hx(t) ∈ S × S . Verbally speaking, the exosystem has been chosen so that the plot
of xr2 (versus time) resembles a sine wave clipped at the value 1, see Fig. 1. The control objective is to guarantee |x2(t)| ≤ 1
and that x2 converges asymptotically to xr2. Decomposing the input as u := ureg + uλ results in the closed-loop system of
the form (12). In the notation of Theorem 4.1, we let Π = I2×2, P = [ 20

0
1 ], K = [−2 − 2], and M = [−2 1], so that

ureg(t) := −2x1(t) − 2x2(t) + 3xr2(t) follows from (9). The discontinuous component of the input1 uλ := −uλ1 + uλ2 is
obtained as a solution of the following complementarity problem:

0 ≤
(
uλ1
uλ2

)
⊥
(
−x2
x2

)
+

(
1
1

)
≥ 0. (14)

The results of the simulation are shown in Fig. 1.
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1 We are implicitly using the fact that the two constraints imposed in this problem, x2 ≤ 1 and x2 ≥ −1, are not active simultaneously. Thus, the
complementarity formulation (14) ensures that uλ = −uλ1 if x2 = 1, and uλ = uλ2 if x2 = −1, otherwise uλ = 0.
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