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Abstract: This paper deals with the problem of output regulation using the state feedback
control laws for a class of nonsmooth dynamical systems where the state is constrained to
evolve within some convex set. The formalism of differential inclusions (DIs) is used to describe
the system dynamics and the derivation of the state feedback law is based on the internal model
principle. We study two types of control laws: firstly, a static control is designed assuming that
the entire states of the plant and the exosystem are available for feedback; In the second case,
only the error to be regulated is available for feedback and a dynamic compensator is designed.
The analyses are based on using the properties of the normal cones associated with convex
sets to study the well-posedness (existence and uniqueness of solutions) and the stability of the
closed-loop system. As an application, we design a discontinuous controller which guarantees
the viability of a predefined polyhedral subset of the state space using the formulation of linear
complementarity systems.

1. INTRODUCTION

Output regulation is one of the classical system theo-
retic problems which relates to designing control laws for
asymptotically tracking a reference trajectory or rejecting
disturbances. This paper addresses the problem of output
regulation for a class of linear systems where the state
trajectory is contained within a time-varying set. Such
motions are modeled by differential inclusions where the
multivalued part is due to the subdifferential of the indi-
cator function (which is equivalent to the normal cone for
convex sets) of the set containing the state trajectory, see
(4) below for exact formulation.

The approach adopted in this paper is based on the
pioneering work of Francis [1977] who proposed simple
algebraic criteria for output regulation in multivariable
linear time-invariant (LTI) systems. In his work, it is as-
sumed that the plant under consideration is driven by the
output of an LTI exosystem that models the dynamics of
the reference trajectories and/or disturbances. Intuitively
speaking, the proposed control input that achieves the out-
put regulation comprises a feedback component to make
the closed-loop dynamics stable and an additional open-
loop component that shapes the steady state of the plant.
The derivation of the open-loop component of the con-
trol input requires the exact knowledge of the exosystem
dynamics, and hence the approach is termed as internal
model principle. A large amount of work has followed on
the problem of output regulation using internal model
principle in more general contexts, see Byrnes and Isidori
[1990, 2000], Serrani et al. [2001] and the references therein
for the results related to nonlinear systems and robustness
with respect to uncertainty in system parameters.

More recently, the problem of output regulation has been
studied in the context of nonsmooth systems (where the
right-hand side of the differential equations describing the
dynamics is either discontinuous or set-valued) as well us-
ing several approaches. In the work of Benjamin Biemond
et al. [2013], Forni et al. [2013], Morarescu and Brogliato
[2010], Lyapunov based methods are proposed for track-
ing reference trajectories in systems subjected to impacts
that result in discontinuous state trajectories. Inversion-
based methods are proposed for generating desired output
trajectories for switched systems by Tanwani and Liberzon
[2010], Vu and Liberzon [2008]. The discontinuous variants
of internal model principle have also been developed to
study the problem of output regulation in switched sys-
tems with parameter uncertainties by Galeani et al. [2012],
and systems with state resets by Marconi and Teel [2013].
One also finds the application of internal model principle
in the formation control and output synchronization prob-
lems in networked systems due to Wieland et al. [2011], De
Persis and Jayawardhana [2012].

The approach adopted in this paper generalizes the in-
ternal model principle for systems that are constrained to
evolve within some predefined time-varying convex set. For
simplicity, we will consider the case where the variation
of the set-valued mapping is absolutely continuous (with
respect to the Hausdorff metric that measures the distance
between sets at different time instants). The states of the
exosystem and the plant are assumed to evolve within the
same sets and we derive sufficient conditions under which
there exists a control input that achieves output regulation
while maintaining state constraints. In addition to the clas-
sical regulator synthesis equations, additional conditions
are needed in our work to generate a dissipative relation



between the multivalued part and the output regulation er-
ror. These additional conditional conditions also guarantee
that the closed-loop system is well-posed, that is, it admits
a unique solution which is an important consideration for
designing controllers for such class of systems. We study
two cases for control synthesis depending on how much
information is available to the controller. In the first case,
it is assumed that the entire states of the plant and the
exosystem are available and thus, a static controller is
designed to achieve output regulation. In the second case,
it is assumed that only the regulation error (which needs
to converge to zero) is available and in that case a dynamic
compensator is designed. The analysis is based on making
the closed-loop system passive and conceptually similar
ideas could be found for state estimation problems in
Brogliato and Heemels [2009], Heemels et al. [2011]. As
an application, we consider reference signals generated by
linear complementarity systems (LCS), and design control
input for an LTI system that not only achieves the output
regulation but also forces the state-trajectory to evolve
within a predefined time-varying polyhedron in the state
space.

The remainder of the paper is organized as follows: In
Section 2, we describe the system class and some fun-
damental results along with the formal definition of the
problem addressed in this paper. Section 3 deals with the
design of static state feedback control when using the full
state measurement. In case of partial measurements, the
dynamic compensator is designed in Section 4. Finally,
these results are applied to derive a discontinuous viability
control to maintain state constraints in Section 5.

2. PRELIMINARIES

Before stating the system class and the problem formula-
tion, let us introduce a few preliminaries that lay the foun-
dation of results in this paper. Consider a set-valued map
S : [0,∞) ⇒ Rn where S(t), ∀ t ≥ 0, is nonempty, closed
and convex. We are interested in modeling the motion
of a state variable x governed by an ordinary differential
equation, say ẋ(t) = f(t, x(t)) under the constraint that
x(t) ∈ S(t), ∀ t ≥ 0. Intuitively speaking, as long as x(t)
is in the interior of the set, we need not do anything to
the equation ẋ(t) = f(t, x(t)) (for at least a small period
of time) to satisfy the constraint, until the state x(t) hits
the boundary of the set S(t). At this moment, if the vector
field f(t, x(t)) is pointed outside of the set S(t), then any
component of this vector field in the direction normal to
S(t) at x(t) must be annihilated to maintain the motion
of x within the constraint set. With this motivation, we
introduce the following differential inclusion and the dy-
namical systems treated in this paper, are basically of this
form.

ẋ(t) ∈ f(t, x(t))−N (S(t);x(t)), Lebesgue a.e. t ≥ 0 (1)

with the initial condition x(0) = S(0). Here we used the
notation N (S;x) := {λ ∈ Rn : 〈λ, z − x〉 ≤ 0,∀ z ∈ S} to
denote the normal cone to a convex set S at a point x ∈ S.
We adopt the conventions that N (S, x) = ∅ when x 6∈ S. It
follows from the definition that N (S, x) = {0} when x is in
the interior of S and that for nonempty, closed and convex

sets S, the operator N (S, ·) is monotone 1 . The differential
inclusion in (1) is termed as a perturbed sweeping process,
and was introduced in Moreau [1977].

Remark 1. It must be noted that equation (1) doesn’t
model the motion of constrained mechanical systems, such
as a moving ball subjected to impacts. The primary dif-
ference between the two cases is that (1) gives a possible
solution that stays in the set S(t) whereas in mechanical
systems, we are looking to model a specific behavior at the
impacts which must be specified through an impact law.
Nonetheless, mechanical systems with impacts have been
modeled using formalisms closely related to (1), where the
set S(·) is actually state-dependent and not necessarily
just time-dependent, see [Brogliato, 1999, Chapter 5].

Let us now address the existence and uniqueness of so-
lutions for the inclusion given in (1). For that, let us
introduce the following hypothesis for the set-valued map
S : [0,∞) ⇒ Rn:

(H1) For each t ∈ [0,∞) , S(t) is a non-empty, closed
and convex set.

(H2) The variation in S(·) is absolutely continuous; that
is, there exists a locally absolutely continuous func-
tion ν(·) such that for any y ∈ Rn, and s, t ≥ 0

|d(y,S(t))− d(y,S(s))| ≤ |ν(t)− ν(s)|
where d(y, S) := infz∈S |y − z|.

These hypotheses are used to guarantee the existence of
solutions in the following result that appeared in Edmond
and Thibault [2005].

Theorem 2. (Existence and uniqueness). Consider system
(1) over some interval I ⊆ [t0,∞) where the set-valued
map S(·) satisfies the hypotheses (H1) and (H2). Assume
that f(t, x) satisfies the following assumptions:

• for each x ∈ Rn, f(·, x) is a Lebesgue-measurable
function,

• for each t ∈ I, f(t, ·) is Lipschitz continuous, and
• there exists a locally integrable function α : I → R such

that |f(t, x)| ≤ α(t)(1 + |x|) for all x ∈ ∪s∈IS(s).

Then, for each x0 ∈ S(0), there exists a unique locally
absolutely continuous solution x(·) that satisfies (1), and
that x(t) ∈ S(t) for all t ∈ I.

Before proceeding towards the problem formulation, let
us recall the following basic result from convex analysis
which will be used later in the well-posedness analysis of
the closed-loop system.

Lemma 3. (Chain Rule). Consider a nonempty, closed,
convex set S ⊆ Rds , and a linear map H : Rn → Rds . Let
S′ := H−1(S), and assume that H satisfies the following
constraint qualification:

∀ z ∈ S′ and λ ∈ N (S;Hz), H>λ = 0⇒ λ = 0. (2)

Then, for each z ∈ Rn, and v̄ = Hz, it holds that

N (S′; z) := {H>λ |λ ∈ N (S; v̄)} = H>N (S;Hz). (3)

Remark 4. If H has full row rank, that is rankH = ds,
then the constraint qualification (2) holds automatically.

1 A multivalued map φ : Rn ⇒ Rm is called monotone, if for each
x1, x2 in the domain of φ, it holds that 〈y2 − y1, x2 − x1〉 ≥ 0 for
each yi ∈ φ(xi), i = 1, 2.



However, (2) does not imply that H has full row rank. An
equivalent way of expressing (2) is

ker(H>) ∩N (S;Hz) = {0}, ∀ z ∈ H−1(S),

where ker(·) denotes the kernel/ null space. For convex
sets, (2) also holds if the set S cannot be separated from
the range of matrix H, see [Rockafellar and Wets, 1998,
Theorem 10.6].

2.1 Problem Formulation

Consider a set-valued mapping S : [0,∞) ⇒ Rds which
satisfies (H1) and (H2). The class of systems we consider
in this paper is defined as follows:

ẋ(t) = Ax(t) +Bu(t) + Fxr(t) +Gλ (4a)

λ ∈ −N (S(t);Hx(t)) (4b)

where xr : [0,∞) → Rdr is the reference signal that is
generated from the following equations:

ẋr(t) = Arxr(t) +Grλr (5a)

λr ∈ −N (S(t);Hrxr(t)). (5b)

The output regulation variable w is defined as:

w(t) = Cx(t) +Dxr(t). (6)

We say that the output regulation is achieved if there exists
a control input u such that the following properties are
satisfied:

• Well-posedness: For each initial condition x(0) satis-
fying Hx(0) ∈ S(0), there exists a unique locally abso-
lutely continuous solution x(·) such that Hx(t) ∈ S(t),
∀ t ≥ 0.

• Regulation: It holds that limt→∞ w(t) = 0.
• Closed-loop stability: The plant and controller dy-

namics have a globally asymptotically stable equilibrium
at the origin when xr ≡ 0.

In addition to the hypotheses (H1) and (H2) introduced
earlier, the following statements are always assumed to
hold, and are considered a part of problem statement for
the results in this paper:

(H3) The matrix H introduced in (4b) satisfies the
constraint qualification (2) for each S(t), t ≥ 0.

(H4) System (5) is initialized with Hrxr(0) ∈ S(0),
and there exists at least one locally absolutely
continuous solution xr(·) such that Hrxr(t) ∈ S(t),
for each t ≥ 0.

We consider two cases: first, it is assumed that the states
x and xr are available to the controller and hence a static
state feedback law is designed; secondly, it is assumed that
only the regulation error w is available for feedback and in
that case a dynamic compensator is designed.

3. STATIC STATE FEEDBACK CONTROL

In this section, we assume that all the states of the
plant (4) and (5) are available for feedback and thus a con-
trol input with static state feedback can be designed which
achieves the stability and regulation. In the formulation of
our results, the following terminology is used: A triplet of
matrices (A,G,H) is called strictly passive if there exist
symmetric positive definite matrices P,Q such that

A>P + PA = −Q (7a)

PG = H> (7b)

Theorem 5. Suppose that a matrix K renders the triplet
(A + BK,G,H) strictly passive, and that there exist
matrices Π ∈ Rn×dr and M ∈ Rdu×dr such that

ΠAr = AΠ +BM + F and CΠ +D = 0 (8a)

ΠGr = G and HΠ = Hr. (8b)

Then the output regulation problem is solvable with the
following static feedback control law:

u(t) = Kx(t) + (M −KΠ)xr(t). (9)

Remark 6. In the work of Francis [1977], the control law
(9) was proposed to solve the output regulation problem
in LTI systems, where Π and M were obtained as solution
of (8a) only, and K is any matrix that makes (A + BK)
Hurwitz. The strict passivity requirement, and additional
conditions on the matrix Π in (8b) are required in the well-
posedness and stability analyses for the class of systems
considered in this paper.

Proof. a) Well-posedness: With control input (9), the
closed-loop system is written as

ẋ(t) = (A+BK)x(t) + (F +BM −BKΠ)xr(t) +Gλ

λ ∈ −N (S(t);Hx(t)).

Let P be the matrix such that PG = H> (which follows
due to passivity of (A+BK,G,H)) and R be the symmet-
ric positive definite matrix such that R2 = P . Introduce
the coordinate transformation z = Rx, then

ż(t) = R(A+BK)R−1z(t)

+R(F +BM −BKΠ)xr(t) +RGλ (10a)

λ ∈ −N (S(t);HR−1z(t)) (10b)

By assumption, RG = R−1H>, and from Lemma 3,
RGλ = R−1H>λ ∈ −N (S ′(t); z(t)) where S ′(t) := {z ∈
Rn |HR−1z ∈ S(t)}. Thus, system (10) is in the standard
form (1), and the existence and uniqueness of solutions
now follows from Theorem 2.

b) Regulation: Let Π be the matrix that satisfies (8) and
introduce the variable e = x−Πxr. The output regulation
is achieved if we can show that limt→∞ e(t) = 0, since

w(t) = Cx(t) +Dxr(t)

= Cx(t)− CΠxr(t) = Ce(t).

To show that e→ 0, we observe that

ė(t) = (A+BK)x(t) + (F +BM −BKΠ)xr(t)

+Gλ−ΠArxr(t)−ΠGrλr
= (A+BK)x(t)− (ΠAr − F −BM︸ ︷︷ ︸

=AΠ

+BKΠ)xr(t)

+Gλ−ΠGrλr
= (A+BK)x(t)− (A+BK)Πxr(t) +Gλ−ΠGrλr
= (A+BK)e(t) +G(λ− λr).

Now introduce the Lyapunov function V (e) = e>Pe, so
that the following holds for almost all t ≥ 0 :

V̇ (e(t)) = e(t)>
(
(A+BK)>P + P (A+BK)

)
e(t)

+ 2e(t)>PG(λ− λr)
= −e(t)>Qe(t) + 2e(t)>H>(λ− λr)
= −e(t)>Qe(t) + 〈λ− λr, Hx(t)−HΠxr(t)〉
= −e(t)>Qe(t) + 〈λ− λr, Hx(t)−Hrxr(t)〉.

For every feasible solution of (4) and (5), it holds that
〈λ,Hx(t) −Hrxr(t)〉 ≤ 0 and 〈λr, Hx(t) −Hrxr(t)〉 ≥ 0.



It thus follows that V̇ (e(t)) < 0 for all e(t) 6= 0, and thus
e(t)→ 0.

Closed-loop stabilization: Following the same calculations
as above, it is seen that the derivative of V along the
dynamics of (4) with u in (9) satisfies

V̇ (x(t)) ≤ −x(t)>Qx(t) + x(t)>P (F +B(M −KΠ))xr(t)

from where it follows that x(t)→ 0 when xr ≡ 0. 2

Remark 7. The reference system may not have a unique
solution under (H4), but the closed-loop system always
has a unique solution for each initial condition satisfying
Hx(0) ∈ S(0) and a given xr obtained from (5).

4. DYNAMIC COMPENSATOR

In this section, it will no longer be assumed that the states
x and xr are available for feedback, but only the regulation
error w is available to the controller. Our approach is based
on the certainty equivalence principle where we first design
an estimator for the state variables x and xr and then
define the control law as a function of these estimates.

Towards this end, the estimator we propose is defined as
follows:(

˙̂x
˙̂xr

)
=

[(
A F
0 Ar

)
−
(
L0

L1

)
(C D)

](
x̂
x̂r

)
+

(
L0

L1

)
w

+

(
B
0

)
u+

(
G 0
0 Gr

)(
λ̂

λ̂r

)
(11a)

(
λ̂

λ̂r

)
∈ −N

(
S(t)× S(t);

(
H 0
0 Hr

)(
x̂
x̂r

))
, (11b)

where the gain matrix L :=

(
L0

L1

)
will be designed in the

sequel. For brevity, let us introduce the following notation:

A :=

(
A F
0 Ar

)
, C := (C D) ,

G :=

(
G 0
0 Gr

)
, H :=

(
H 0
0 Hr

)
.

Theorem 8. Suppose that there exist a feedback matrix
K and an injection matrix L that render the triplets
(A + BK,G,H) and (A − LC,G,H) strictly passive,
respectively. If there exist matrices Π ∈ Rn×dr and
M ∈ Rdu×dr that satisfy (8), then the output regulation
problem is solved by letting

u(t) = Kx̂(t) + (M −KΠ)x̂r(t). (12)

Proof. Introduce the variable x̃ := x− x̂, then the closed-
loop dynamics are similar to ẋ

˙̃x
˙̂xr

 =

(
A+BK −BK B(M −KΠ)

0 A− L0C −F + L0D
0 L1C Ar − L1D

)
︸ ︷︷ ︸

:=Acl

(
x
x̃
x̂r

)

+

(
F

F − L0D
L1D

)
︸ ︷︷ ︸

:=Fcl

xr +

(
G 0 0
G −G 0
0 0 Gr

)
︸ ︷︷ ︸

:=Gcl

 λ

λ̂

λ̂r

 (13a)

 λ

λ̂

λ̂r

 ∈ −N
S(t)× S(t)× S(t),

(
H 0 0
H −H 0
0 0 Hr

)
︸ ︷︷ ︸

:=Hcl

(
x
x̃
x̂r

) .

(13b)

Well-posedness: To show that the closed-loop system ad-
mits a unique solution, we follow the same procedure as
in the proof of Theorem 5. That is, we find a symmetric
positive definite matrix Pcl such that PclGcl = H>cl . We
can then take the positive square root of this matrix,
denoted by Rcl, and define a coordinate transformation
that brings the system in the form of (1).

To find the matrix Pcl, it is noted that, by assumption, the
triplets (A+BK,G,H) and (A−LC,G,H) are passive, so
there exist symmetric positive definite matrices P,Q, P ,Q
such that

(A+BK)>P + P (A+BK) = −Q, PG = H>,

(A− LC)>P + P (A− LC) = −Q, PG = H
>
.

Now, partition P as P :=

(
P 11 P 12

P 12 P 22

)
, then P 22 is a

symmetric positive definite matrix, and P 22Gr = H>r .
Thus, by letting

Pcl :=

2P −P 0
−P P 0
0 0 P 22


it is easily checked that Pcl is symmetric, positive definite,
and PclGcl = H>cl .

Regulation: By letting W := (−K (M −KΠ)), it is seen
that

Acl =

(
A+BK BW

0 A− LC

)
Define the regulation error as follows:

e :=

(
x−Πxr

x̃
x̂r − xr

)
=:

(
ex
x̃
er

)
=:

(
ex
eξ

)
, (14)

then it can be shown using the equations in (8) that

ė(t) =

(
A+BK BW

0 A− LC

)
e(t) +

(
G 0 0
0 G 0
0 0 Gr

) λ− λr
λ− λ̂
λr − λ̂r


(15)

where λ, λr and (λ̂, λ̂r) are defined in (4b), (5b) and (11b),
respectively.

Consider the Lyapunov function V (e) = e>
[
αP 0
0 βP

]
e for

some α, β > 0 to be specified later. The derivative of V
along the trajectories of the closed-loop system satisfies
the following relations:



V̇ (e) = αe>x (P (A+BK) + (A+BK)>P )ex

+ 2αe>x PBWeξ

+ e>ξ (βP (A− LC) + (A− LC)>βP )eξ

+ 2αe>x PG(λ− λr) + 2βe>ξ P G

(
λ− λ̂
λr − λ̂r

)
= −αe>xQex − βe>ξ Qeξ + 2αe>x PBWeξ

+ 2αe>xH
>(λ− λr) + 2βx̃>H>(λ− λ̂)

+ 2βe>r H
>
r (λr − λ̂r).

Using the assumption that HΠ = Hr, it now follows from
the definition of the normal cone that

e>xH
>(λ− λr) = 〈Hx−HΠxr, λ− λr〉

= 〈Hx−Hrxr, λ− λr〉 ≤ 0

x̃>H>(λ− λ̂) = 〈Hx−Hx̂, λ− λ̂〉 ≤ 0

e>r H
>
r (λr − λ̂r) = 〈Hrx−Hrx̂r, λr − λ̂r〉 ≤ 0.

Plugging these relations in the expression for V̇ , and using
the notation σmin to denote the smallest eigenvalue of a
matrix and γ to denote the induced Euclidean matrix norm
of PBW , we get

V̇ (e) ≤ −ασmin(Q) |ex|2 − βσmin (Q) |eξ|2 + 2αγ |ex| |eξ|
≤−ασmin(Q) |ex|2− βσmin (Q) |eξ|2+ |ex|2+ α2γ2|eξ|2

= −(ασmin(Q)− 1)|ex|2 − (β σmin(Q)− α2γ2)|eξ|2.
Thus, choosing α, β in the definition of the Lyapunov func-
tion V such that ασmin(Q) > 1 and β σmin(Q) > α2γ2,

renders V̇ negative definite. In particular ex converges to
zero, from which it follows that w = Cx + Dxr = C(x −
Πxr) = Cex converges to zero.

Closed-loop stabilization: The closed-loop stabilization
could be shown in exactly the same manner as above. The
difference being, the derivative of the Lyapunov function
V is calculated along the trajectories of the dynamics of
(x, x̃, x̂r) given in (13). 2

5. APPLICATION: POLYHEDRAL CONSTRAINTS

In this section, we apply our theoretical results to formu-
late an output regulation problem with polyhedral con-
straints. In order to do so, the exosystem generating the
reference trajectories is expressed in the form of a linear
complementarity system (LCS), that is, we consider:

ẋr(t) = Arxr(t) +Grλr (16a)

0 ≤ λr ⊥ Hrxr(t) + g(t) ≥ 0 (16b)

where g(·) : [0,∞)→ Rds is a locally absolutely continuous
function. It will be assumed that the initial condition of
(16) are regular and no discontinuities or impulses are
introduced in the state trajectory xr, so (H4) holds (see
Camlibel et al. [2002] for solution notions adopted for such
systems). The plant to be controlled is:

ẋ(t) = Ax(t) +Bu(t) + Fxr(t). (17)

Our aim is to find a control input u such that the following
two objectives are met:

(O1) the output regulation is achieved with respect to
the variable w defined in (6), and

(O2) the state x satisfies the constraint that y(t) :=
Hx(t) + g(t) ≥ 0, for all t ≥ 0, where the matrix H
satisfies 2

range(H)− Rds+ = Rds . (18)

Thus, in addition to the output regulation, we have a
viability problem in Aubin’s sense since the state of
the plant is constrained to evolve within a predefined
polyhedron at all times.

To solve the problem at hand, we reformulate the dynamics
of (16) in the form of (5). Towards this end, we recall the
following fundamental relation from convex analysis:

0 ≤ λ ⊥ Hx(t) + g(t) ≥ 0⇔ −λ ∈ ∂ψRds
+

(Hx(t) + g(t)),

(19)
where ψS denotes the indicator function of the set S, that
is, ψS(x) := 0 if x ∈ S and ψS(x) = +∞ if x 6∈ S.
For convex sets, the subdifferential (denoted by ∂) of the
indicator function satisfies ∂ψS(x) = NS(x). Now, by
letting

S(t) := {z ∈ Rds | z + g(t) ≥ 0}, (20)

it follows that

∂ψRds
+

(Hx(t) + g(t)) = ∂ψS(t)(Hx(t)) = N (S(t);Hx(t)).

Thus (16) is equivalently written as:

ẋr(t) = Arxr(t) +Grλr
λr ∈ −N (S(t);Hrxr(t))

where S(t) is defined in (20).

It is easily seen that S(t) satisfies (H1) and for each
z ∈ Rn,

|d(z,S(t))− d(z,S(s))| ≤ |g(t)− g(s)|,
that is, (H2) holds. Moreover, each S(t) intersects non-
trivially with the range of H under the condition (18) and
thus (H3) holds (see Remark 4).

For the plant under consideration, we split the control
input u as u := uim+uλ with the motivation that uim refers
to the classical internal model control input of the form (9)
and uλ would play the role of normal vector required to
maintain the constraint (a viability controller). Thus, the
following control system is realized:

ẋ(t) = Ax(t) +Buim(t) +Buλ(t) + Fxr(t), (21a)

uλ(t) ∈ −N (S(t);Hx(t)) (21b)

uim(t) = Kx+ (M −KΠ)xr(t) (21c)

where M and Π are obtained as solutions to (8) with
G replaced by the matrix B, and K is chosen such that
(A+BK,B,H) is strictly passive.

Corollary 9. The system (21) possess a unique solution
and the resulting state trajectory x(·) satisfies the proper-
ties (O1) and (O2).

It may be the case that equation (21b) is not easily
computable, and thus we replace it with an alternate
expression in the form of complementarity relation for
which there exist efficient solvers. It may be verified that

2 Equation (18) means that for each y ∈ Rds , there exists x ∈ Rn

and z ∈ Rds
+ such that Hx − z = y. Clearly, (18) holds if H is

surjective but may also hold in other cases.



uλ(t) ∈ −N (S(t);Hx(t))

⇔ 0 ≤ uλ(t) ⊥ y(t) = Hx(t) + g(t) ≥ 0

⇔
{
uλ(t) = 0 if Hx(t) ∈ int S(t)

0 ≤ uλ(t) ⊥ ẏ(t) ≥ 0 if Hx(t) ∈ bd S(t)

where ẏ = HAx+HBuim+HBuλ+HFxr+ġ is considered
to be known.

6. CONCLUSIONS

This paper studied the problem of output regulation in a
certain class of nonsmooth dynamical systems that model
state trajectories constrained within some closed, convex,
and time-varying set. The classical internal model princi-
ple was used to derive conditions to synthesize a control
law that achieves the desired objective. The analysis were
based on using the Lyapunov methods in combination
with monotonicity property of the normal cone operator
to prove stability.

Several directions of research could stem from this work.
One can easily generalize this approach to consider cases
where the variation of the set-valued mapping S(·) is of
locally bounded variation which allows for discontinuities
in the states as well, although one has to use certain tools
from measure theory to formalize results in this direction
as done in Tanwani et al. [2013a,b]. A more interesting
problem would be to consider cases where the set-valued
mapping S(·) is not just time-dependent, but also state-
dependent. This would allow us to model mechanical
systems with impacts within our framework but deeper
investigation is required for the synthesis of control in
such cases. One can also consider more general classes of
LCS which allow for modeling of power converters with
switching devices (see Vasca et al. [2009]) and the approach
adopted in this paper could provide useful methodology
for designing switching laws to regulate the output of such
systems.
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