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Observer Design for Unilaterally Constrained Lagrangian
Systems: A Passivity-Based Approach

Aneel Tanwani, Bernard Brogliato, Christophe Prieur

Abstract—This paper addresses the problem of state estimation in non-
linear Lagrangian dynamical systems with perfect unilateral constraints
using the position measurement as output. The discontinuous velocity
variable in such systems is modeled as a function of bounded variation
(so that Zeno phenomenon is not ruled out). Since the derivative of
such functions is represented with the Lebesgue-Stieltjes measure, the
framework of measure differential inclusions (MDI) is used to describe
the dynamics. A class of estimators is proposed, which also uses the
framework of MDIs, and is shown to generate asymptotically converging
state estimates. The existence and uniqueness of solutions for the proposed
estimators is rigorously proven. The global stability of error dynamics
is analyzed using the generalized Lyapunov methods for functions of
bounded variation. As particular cases of our estimators, we provide an
explicit construction of a full-order observer, and a reduced-observer.

I. INTRODUCTION

In this paper, we consider Lagrangian mechanical systems with
unilateral constraints (without friction) on the position of a moving
point. The position and velocity of this point is denoted by q and q̇,
respectively. Assuming the mass matrix M(q) to be symmetric and
positive definite, the unconstrained motion of the system satisfies the
equation

M(q)q̈ + F (t, q, q̇) = 0, (1a)

and the position q is constrained by

hi(q) ≥ 0, i ∈ {1, . . . ,m} (1b)

where F : R×Rn×Rn → Rn denotes a vector field of generalized
forces, and hi : Rn → R represent the unilateral constraints imposed
on the system’s motion. Mechanical systems with impacts, such as
robots and colliding rigid bodies could be seen as systems with
unilateral constraints. In general, the trajectories of such systems are
algebraically constrained and exhibit continuous as well as discrete
dynamics; hence, forming an important class of nonsmooth systems.
When none of the constraints hi(·) are active, that is, hi(q) > 0 for
every 1 ≤ i ≤ m, then q and q̇ are obtained simply by integrating
(1a) and are absolutely continuous. The discontinuity in the velocity q̇
may appear in such systems when any one of the constraint is active,
that is, hi(q) = 0, and the velocity points outside the admissible
domain, that is, ∇h>i (q)q̇ < 0, where we use the notation ∇hi(·) to
denote the gradient of the function hi(·). This is because the velocity
must change its direction instantaneously to keep the moving point
inside the admissible set. In case∇h>i (q)q̇ ≥ 0, and hi(q) = 0, there
are no discontinuities and one only observes continuous motion on
the constraint surface (of reduced dimension) defined by hi(q) = 0.
There are several modeling frameworks for such nonsmooth systems;
one such modeling framework, which is used to model the motion of
state-constrained trajectories is the so-called sweeping process [19],
[22], [24], [25]. The term so-coined because it represents the motion
of a point inside a closed set. As the the set moves, the point is swept
across by the moving set. If for such processes, the constraint set is
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parameterized by time only, then we call it the first-order sweeping
process. However, for system (1), we first define an admissible set
for velocity q̇(·) which is parameterized by the position q(·), and this
formulation leads to a second-order sweeping process.

This paper is concerned with the design of observers for estimating
the velocity q̇(·) using the position q(·) as the output, while using the
sweeping process formulation to describe the dynamics of the system
and the observer. The construction of observers, or state estimators,
is a classical problem in the design of control systems and has found
many useful applications such as output feedback control, and fault
diagnosis. For smooth systems, there are several standard techniques
such as Kalman filter, Luenberger observer, or high-gain approach.
Such techniques have also been applied to design of observers for
certain classes of smooth and unconstrained Lagrangian systems with
application to output feedback control, see for example, [6], [7],
[27], [42]. A common element of these designs is to assume that
the velocity q̇(·) is uniformly bounded (in time) which is primarily
because F (t, q, ·) is quadratic in general for mechanical systems.

Lately, the researchers have started looking at the state-estimation
problem in nonsmooth systems. In this regard, we mention the
recent work on observer design of switched systems with ordinary
differential equations [34], [38], [39], switched differential-algebraic
equations [40], [41], certain classes of differential inclusions [10],
[29], [36], complementarity systems [17], and the references therein
for more details. Classical approaches for observer design are based
on constructing an auxiliary dynamical system driven by the error
between the measured output and the estimated output, where it
is shown that the resulting dynamics of the state estimation error
converge to the origin. However, for nonsmooth systems subjected
to impacts, such schemes are not easily implementable since the
impacts, or discrete dynamics, are not influenced by error injection
and hence destroy the integration effect.

For nonsmooth Lagrangian systems with impacts, the problem of
state estimation has been considered in [21] under certain restrictive
assumptions, and state estimation with tracking control in [16] for
motions restricted within a convex polyhedral domain. The work
of [5] also deals with the problem of tracking control (without
estimation) for similar kind of systems. This article, however, deals
with a more general class of nonsmooth Lagrangian dynamics, that
allow more general admissible domains for position variable q using
the formalism of differential inclusions. Some examples that can be
treated within our setup are given in Figure 1. The interesting aspects
of these examples are
• In Fig. 1a, when the ball q1 collides with q2 and q3 stacked together

at rest, then q2 and q3 may remain glued after the impact, and hence
one of the constraints causes discontinuities in the velocities of q2
and q3, whereas another constraint only allows continuous motion
on its boundary. The same happens when q3 collides with the wall.

• In Fig. 1b, the point mass is subjected to downward gravitational
force only. After multiple impacts initially with the two boundaries
of the constraints, one sees an accumulation of jumps, followed by
a continuous motion on the constraint parabolic surface, which is
a surface of reduced dimension than the state space.

• In Fig. 1c, there are many impacts in short time-intervals, the
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Fig. 1: Examples of systems with unilateral constraints.

domain is nonconvex, and there is possibly a chaotic behavior due
to increased frequency of impacts.1

Our goal is to design estimators for the particles subjected to
unilateral constraints of the form mentioned in Figure 1, which in
general may depict all the above complexities. The approach adopted
is closely related to the observer design presented in [10] that is itself
strongly inspired from the material in [9]. The authors in [10] work
with differential inclusions that represent the first-order sweeping
process and the resulting trajectories are absolutely continuous. Since
the constraint set is a function of time, this information is passed
to the state estimator. The state estimator replicates the system
dynamics, and hence is a sweeping process of the first-order. The
convexity of the constraint set then generates the passivity relation
between the error dynamics and the output estimation error, which is
the key component in proving the error convergence.

In this paper, however, the system under consideration is a second-
order sweeping process. This way, the state-trajectories of the system
are allowed to be of locally bounded variation (BV), and hence
discontinuous, which introduces the major difference. Since locally
BV functions may admit an infinite number of discontinuities in
finite time, the Zeno phenomenon is not excluded in our setup.
The proposed observer only describes the dynamics for the velocity
estimate (and not the position) in the form of a differential inclusion
driven by the measured output (position). It is proved that, for each
measured output, there exists a unique solution to such differential
inclusion, and that this solution converges asymptotically to the actual
velocity of the system.

The article is organized as follows: in Section II some useful
mathematical definitions are recalled. The Moreau’s sweeping process
in which we embed Lagrangian nonsmooth mechanical systems,
and the definition of its solutions are described in Section III.
The proposed class of estimators is described in Section IV, and
rigorous analysis is carried out in Sections V and VI, for existence of
solutions, and convergence of estimation error, respectively. In section
VII, numerical algorithm for implementing the proposed estimators,
and simulation results obtained with the INRIA software package
SICONOS are presented for the three systems shown in Figure 1.
Section VIII is dedicated to one of the main results of this article,
i.e. the proof of the well-posedness (existence and uniqueness of
solutions) of the observer. Conclusions end the paper in Section IX.

1 This example was pointed to the authors by the associate editor respon-
sible for handling this paper, L. Menini.

II. PRELIMINARIES

In this section, we collect some basic definitions and notation that
will be used later on.

Functions of bounded variation: For an interval I ⊆ R, and a
function f : I → Rn, the variation of f(·) over the interval I is
the supremum of

∑k
i=1 |f(si) − f(si−1)| over the set of all finite

sets of points s0 < s1 < · · · < sk (called partitions) of I . When
this supremum is finite, the mapping f(·) is said to be of bounded
variation on I . We say that f(·) is of locally bounded variation if
it is of bounded variation on each compact subinterval of I . The
variation of f(·) over an interval [0, t] is denoted by varf (t). If
f(·) is right-continuous and of (locally) bounded variation, we call
it (locally) rcbv. A function of locally bounded variation on I has
at most a countable number of jump discontinuities in I . Moreover,
it has right and left limits everywhere. The right and left limits of
the function f(·) at t ∈ I are denoted by f(t+) := lims↘t f(s)
and f(t−) := lims↗t f(s), respectively, provided they exist. In this
notation, right continuity of f(·) in t, means that f(t+) = f(t).

Locally integrable functions: We denote by L1(I,Rn; dµ) and
Lloc1 (I,Rn; dµ) the space of integrable and locally integrable func-
tions, respectively, from I to Rn with respect to the measure dµ. If
the measure is not specified then the integration is with respect to the
Lebesgue measure. An absolutely continuous (AC) function f : I →
Rn is a function that can be written as f(t)−f(t0) =

∫ t
t0
ḟ(s)ds for

any t0, t ∈ I , t0 ≤ t, and some ḟ ∈ L1(I,Rn), which is considered
as its derivative. The space of continuously differentiable functions
from Rn to Rm is denoted by C1(Rn,Rm), for m,n ∈ N.

Lebesgue-Stieltjes measure associated with BV functions: If v :
I → Rn is a function of bounded variation, then one can associate
with it a Lebesgue-Stieltjes measure or the so-called differential
measure dv on I . Also, if v(·) is rcbv on [a, b], then we have the
relation that v(t) = v(a) +

∫
]a,b]

dv.
The density of the measure dv with respect to a positive Radon

measure dµ over an interval I is defined as:

dv

dµ
(t) := lim

ε→0

dv(I(t, ε))

dµ(I(t, ε))
, (2)

where I(t, ε) := I∩[t−ε, t+ε]. Similarly, one can define the density
of the Lebesgue measure dt with respect to the Radon measure dµ.
A Radon measure dν is absolutely continuous with respect to dµ if
for every measurable set A, dµ(A) = 0 implies that dν(A) = 0.
Further, the measure dν is absolutely continuous with respect to dµ if
and only if the density function dν

dµ
(·) is well-defined (finite µ-almost

everywhere) and is dµ integrable.
Convex analysis: For a set V ⊂ Rn, we will denote its interior
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Fig. 2: Polyhedral cones for two constraints: h1(q) = −qy + 4 ≥ 0, h2(q) = qy − q2
x ≥ 0.

by int V , and the boundary of this set is denoted by bd(V ). If V is
closed convex, then NV (v) denotes the normal cone to V at v ∈ V
and is defined as:

NV (v) := {w ∈ Rn | 〈w, x− v〉 ≤ 0 ∀x ∈ V }. (3)

where 〈·, ·〉 denotes the usual inner product in Rn. We adopt the
convention that NV (v) = ∅ if v 6∈ V . Obvious from the definition,
the normal cone to a closed convex set is a monotone operator, that
is, if wi ∈ NV (vi), i = 1, 2, then

〈w1 − w2, v1 − v2〉 = 〈w1, v1 − v2〉︸ ︷︷ ︸
(3)⇒≥0

−〈w2, v1 − v2〉︸ ︷︷ ︸
(3)⇒≤0

≥ 0.

When V is a closed convex cone, we denote by V ◦(q) the closed
convex polyhedral cone polar to V (q) with respect to usual inner
product on Rn, which is defined as:

V ◦(q) := {w ∈ Rn |w>v ≤ 0, ∀v ∈ V (q)}. (4)

III. DYNAMIC MODEL FOR CONSTRAINED LAGRANGIAN

SYSTEMS

In this section, we will describe the dynamics of nonsmooth
Lagrangian systems using differential inclusions and briefly talk
about their solutions. The observer will then be designed using this
formalism.

A. Mathematical description

We consider mechanical systems with a finite number of degrees
of freedom that are subjected to the unilateral constraints described
in (1b). The position variable q ∈ Rn is thus assumed to evolve in a
set that admits the following form:

Φ := {q ∈ Rn |hi(q) ≥ 0, i = 1, 2, . . . ,m}. (5)

The geometry of the set Φ is determined by the functions hi(·), and
the only condition we will impose on the functions hi(·) is that they
are continuously differentiable so that ∇hi(·) is continuous for each
i. This allows us to model a large number of closed domains which
may even be nonconvex.

The convex polyhedral tangent cone V (q) to the region Φ at a
point q is given by:

V (q) :=
{
v ∈ Rn | v>∇hi(q) ≥ 0, ∀i ∈ J (q)

}
(6)

where the set J (q) denotes the set of active constraints at q, i.e.,

J (q) := {i ∈ {1, . . . ,m} |hi(q) = 0} .

One can think of the set V (q(t)) as the set of admissible velocities
that keep the position variable q(t) inside the set Φ. In what follows,
the notion of normal cone to the set V (q), denoted NV (q), is
instrumental. For v ∈ V (q), we have

NV (q)(v) =

w ∈ Rn
∣∣∣w = −

∑
i∈J (q)

λi∇hi(q), λi ≥ 0

 (7a)

=

{
w ∈ Rn

∣∣∣w = −
m∑
i=1

λi∇hi(q), 0 ≤ λi ⊥ hi(q) ≥ 0

}
(7b)

where the later equation, at once, shows the link with complemen-
tarity framework.

We now formulate the dynamics of system (1) as a measure
differential inclusion:

dq = vdt (8a)

M(q)dv + F (t, q, v)dt ∈ −NV (q)(ve) (8b)

where

ve(t) :=
v(t+) + ev(t−)

1 + e
, (8c)

and e ∈ [0, 1] is the coefficient of restitution. The initial condition
is assumed to satisfy q0 := q(0) ∈ Φ, and v0 := v(0) is such that
ve(0) ∈ V (q0). As a graphical illustration of the normal cone NV (q),
we consider the example given in Figure 1b, where the two constraint
functions are h1(qx, qy) = −qy+4 ≥ 0, and h2(qx, qy) = qy−q2

x ≥
0. Three different scenarios are depicted in Figure 2 for this example
corresponding to J (q) = {1} in Fig. 2a, J (q) = {2} in Fig. 2b,
and J (q) = {1, 2} in Fig. 2c.

B. Interpreting MDI (8)

The motivation for working with the MDI is that we are seeking
a solution to the evolution problem in the space of locally rcbv
functions to deal with possible collisions with the boundary of the
admissible set. Functions which are locally rcbv possess generalized
derivatives that can be identified with Stieltjes measure and equation
(8b) precisely describes the inclusion of the measure dv, associated
with v(·), into a normal cone described by the constraint set Φ.

a) When no constraints are active: It is noted that, if q ∈ int Φ,
that is, hi(q) > 0, for each 1 ≤ i ≤ m, so that J (q) = ∅, then
V (q) = Rn and consequently NV (q)(·) = {0}. This reduces (8) to
ordinary differential equations described by q̇ = v and M(q)v̇ +
F (t, q, v) = 0.
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b) Post-impact velocities: It is also noted that the post-impact
velocity determined according to Moreau’s collision rule (or New-
ton’s impact law) is directly encoded in the MDI (8). To derive
an explicit expression for the post-impact velocity, we proceed as
follows:

M(q(tk))[v(t+k )− v(t−k )] ∈ −NV (q(tk))(ve(tk)) (9a)

⇔ v(t+k )− v(t−k ) ∈ −M(q(tk))−1NV (q(tk))(ve(tk)) (9b)

⇔ 1

1 + e

[
v(t+k )− v(t−k )

]
∈ −M(q(tk))−1NV (q(tk))(ve(tk))

(9c)

⇔ ve(tk)− v(t−k ) ∈ −M(q(tk))−1NV (q(tk))(ve(tk)) (9d)

⇔ ve(tk) = projM(q(tk))(V (q(tk)); v(t−k )) (9e)

⇔ v(t+k ) = −ev(t−k ) + (1 + e) projM(q(tk))(V (q(tk)); v(t−k ))

(9f)

where projM(q)(V (q); v) denotes the projection of v on the set
V (q) according to the kinetic metric at q, which is defined by the
inner product 〈v, w〉M(q) = 〈v,M(q)w〉 = 〈M(q)v, w〉. In the
above expression, it is used that a normal cone is invariant under
multiplication by a nonnegative scalar in (9c). Expression (9e) is
obtained using a well-known result from convex analysis that relates
the projection of a point on a convex set with the normal cone to the
convex set at the projected point.

One can also interpret MDI (8) at impact times in the sense
that, we want to compute v(t+k ) such that ve(tk) belongs to the set
V (q(tk)) while minimizing |ve(tk)− v(t−k )|M(q(tk)). Thus, there is
an optimization problem to be solved in order to compute v(t+k ). One
typically reformulates this optimization problem using the framework
of complementarity program [13] for which there are already some
efficient solvers. More precisely, we let

M(qk)[v(t+k )−v(t−k )] = −
∑

α∈J (qk)

λα∇hα(qk), λα ≥ 0, α ∈ J (qk)

where qk := q(tk), and λα is computed from

0 ≤ λα ⊥
〈
∇hα(qk),M(qk)[v(t+k ) + ev(t−k )]

〉
≥ 0, α ∈ J (qk).

(10)
The above complementarity relation is an equivalent way of writing

ve(tk) ∈ V (qk) and 〈v(t+k )−v(t−k ),M(qk)(v(t+k )+ev(t−k ))〉 = 0.

which are the relations encoded in MDI (8).
c) Continuous motion on constraint surfaces: Contact with the

surface will not always result in the discontinuities of the velocity
variable v. From (9f), it is seen that, if v(t−k ) ∈ V (q(tk)), then we
have v(t+k ) = v(t−k ). The MDI (8) in case of continuous motion
along the boundary of the constraint is written as

M(q)v̇ + F (t, q, v) = −
∑

α∈J (q)

λα∇hα(q), λα ≥ 0, α ∈ J (q)

where λα are again obtained through the relation (10). We see that (8)
encapsulates switches to lower dimensional systems, thanks to the the
existence of suitable multipliers (i.e. contact forces) calculated from
a complementarity problem.

The formulation for constrained mechanical systems, as in (8), was
pioneered by J. J. Moreau [24], and the MDI (8) is called a second
order sweeping process (because the constraint set for velocities
appearing in (8b) depends on the state variable q(·)). Further details
on inclusions of type (8) and comparisons with other modeling
frameworks could be found in [8, Section 5.3]. For our purpose, it is
seen that the observer design given in Section IV is partially aided by
this compact formulation. It is noteworthy that there is a close link
between the sweeping process in (8) and so-called complementarity

Lagrangian systems, see e.g. [2, Section 3.6], and the examples in
Section VII.

C. Assumptions on System Data and Solutions

The solution of MDI (8) is considered in the following sense:

Definition 1. A solution to the Cauchy problem (8) with initial data
(q0, v0) ∈ Φ × V (q0), over an interval I = [0, T ], is a pair (q, v)
such that v(·) is rcbv on I; q(t) = q0 +

∫ τ
0
v(s)ds; q(t) ∈ Φ

and ve(t) ∈ V (q(t)) for all t ≥ 0; and furthermore, there exists
a positive measure (represented by) dµ such that both dt and dv
possess densities with respect to dµ, denoted by dt/dµ, and dv/dµ
respectively, such that

M(q)
dv

dµ
(t) + F (t, q, v)

dt

dµ
(t) ∈ −NV (q(t))(ve), dµ-a.e. on I.

(11)

The choice of the measure dµ is not unique since the right-
hand side of (8) is a cone. However, by Lebesgue-Radon-Nikodym
theorem, the functions dt/dµ(·) ∈ L1(I, R; dµ) and dv/dµ(·) ∈
L1(I,Rn; dµ) are uniquely determined for a given dµ.

The problem of existence of solutions for evolution problems (1)
has been studied for a long time. Earlier results on this problem
dealt with the single constraint case (m = 1) and one may refer
to [22, Chapter 3], [32] for results in this direction. The basic idea
in these works is to introduce a time discretization scheme, either
at position level [32] or velocity level [22] to construct a sequence
of approximate solutions which is shown to converge as the step
size converges to zero. For several unilateral constraints (m ≥ 2),
the existence and uniqueness has been proved in [3] under analytic
assumptions on the data using the solution theory for differential
equations and variational inequalities. Building on the results derived
in [20], the most relaxed conditions, under which the existence of
solutions has been proved using discretization at velocity level, have
appeared recently in [14] for the inelastic case (e = 0), and in [15],
[31] for general values of e ∈ [0, 1]. Based on the work of [31], the
following regularity assumptions are required on the system data for
the existence of solution, and are also needed for the observer design:
(H1) The function F (·, ·, ·) is continuous and is continuously differ-

entiable (C1) with respect to its second and third arguments.
(H2) The mapping M(·), from Rn to the set of symmetric positive

definite matrices, belongs to class C1 and there exists 0 ≤ λM ≤
λM such that

λM |v|
2 ≤ v>M(q)v ≤ λM |v|2 ∀ (q, v) ∈ Φ× Rn. (12)

(H3) For each i ∈ {1, . . . ,m}, the function hi ∈ C1(Rn,R), its
Euclidean gradient ∇hi(q) is locally Lipschitz continuous and
does not vanish in a neighborhood of {q ∈ Rn |hi(q) = 0}.

(H4) The active constraints are functionally independent, i.e.,
{∇hi(q)}i∈J (q) is linearly independent for all q ∈ Φ.

Without recalling the formal result on existence and assuming that
a solution exists in the sense of Definition 1 under hypotheses (H1)
– (H4), we only collect the properties of the solutions to system (8)
which provide more insight.

D. Solution Characteristics

1) Regularity of state trajectories: The function q is absolutely
continuous, but not necessarily everywhere differentiable. The ve-
locity v(·) is a locally rcbv function, for which the left and right
limits are defined everywhere. The acceleration is represented by the
measure dv and can be decomposed as a sum of three measures:
an atomic measure dµa, Lebesgue measure dt, and a measure
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associated with singularly continuous function dµsc i.e., we may
write dv = dµa + v̇dt+ dµsc.

2) Countably many impacts: The set of impact times, at which
v(·) is discontinuous, is at most countable. One may simply take
dµa =

∑
k≥0[v(t+k )− v(t−k )]δtk , where δtk is the Dirac impulse at

time tk and {tk}k≥0 is an ordered sequence of impact times. Thus,
the formulation (8) does not exclude the Zeno phenomenon (with a
finite or infinite number of left accumulation points). However, if e =
1, then it is shown in [4] that there exists a constant ρT (q(0), v(0)) >
0 such that tk+1− tk > ρT (q(0), v(0)), for each tk, tk+1 belonging
to a compact interval [0, T ].

3) Non-uniqueness and Continuity of solutions: The solution
of system (8) is unique if the system data is analytic [3], but
in general, it may not be the case. Even under the analyticity
assumption, the solutions may not vary continuously with respect
to initial conditions under the hypotheses (H1) - (H4). For this to
hold, there is an additional condition on the set {∇hi(q)}i∈J (q)

given in [30], which states that for e = 0, the active constraints
must satisfy

〈
∇hi(q),M−1(q)∇hj(q)

〉
≤ 0, and for e ∈ (0, 1],〈

∇hi(q),M−1(q)∇hj(q)
〉

= 0. The work of [16] assumes this
condition because their design is based on closeness of solutions
(in graphical sense) with respect to initial conditions. However, our
observer design doesn’t require this property and hence no such
condition is imposed in our results.

IV. OBSERVER DESIGN

We now address the problem of designing observers for the systems
considered in Section III. It will be assumed that the position q(·) is
the measured variable, and the objective is then to design an estimator
which either estimates the full state (q, v), or only the unknown
velocity v of the moving particle. The class of state estimators that
we propose for this purpose comprises a differential inclusion with
state z := (z>1 , z

>
2 )> ∈ Rdz satisfying

ż1 = F1(t, q, z) (13a)

M(q)dz2 + F2(t, q, z)dt ∈ −NV (q)(v̂e) (13b)

where v̂e(t) ∈ Rn is given by

v̂e(t) =
v̂(t+) + ev̂(t−)

1 + e
. (14)

The state estimate (q̂(t), v̂(t)) ∈ R2n is defined as:

q̂ = f1(z1, q) (15a)

v̂ = z2 + f2(z1, q) (15b)

and the function
(
z1

z2

)
7→ f(q, z) :=

(
f1(z1, q)

z2 + f2(z1, q)

)
is assumed

to be a diffeomorphism for each q ∈ Rn, so that the function
f−1(q, ·) is well-defined and continuously differentiable. Choosing
the functions F1, F2 and f1, f2 is a part of the design procedure and
we will give two possible ways of choosing these functions so that
the estimate (q̂, v̂) converges asymptotically to the actual state (q, v).
Moreover, it will be shown that, under certain regularity assumptions
on the functions F1, F2 and f1, f2, there exists a unique solution to
the proposed observer (13).

Before proceeding towards these main results, we choose to rewrite
the observer dynamics in (q̂, v̂) coordinates

˙̂q(t) = F̂1(t, x, x̂) (16a)

M(q)dv̂ + F̂2(t, x, x̂) ∈ −NV (q)(v̂e), (16b)

where, for brevity, we let

F̂1(t, x, x̂) :=
∂f1

∂z1
F1(t, q, f−1(q, x)) +

∂f1

∂q
v (16c)

F̂2(t, x, x̂) := F2(t, q, f−1(q, x)) +M(q)
∂f2

∂z1
F1(t, q, f−1(q, x))

−M(q)
∂f2

∂q
v. (16d)

This new description of the observer dynamics also provides an
insight about its mechanism. Equation (16b) basically tells us that
the estimate v̂ is constrained in the same way as the actual velocity
v. The nonsmooth behavior in the velocity variable is due to the
forces that belong to the set NV (q)(v). By measuring the position
variable, the set V (q) can be computed at each time. One then uses
the monotonicity property of the normal cone operator NV (q)(·) in
analyzing the error dynamics to show convergence.

In Sections V and VI, we will show that the proposed observer (16)
has the following two properties, respectively:
• Well-posedness: For each absolutely continuous function q(·),

there exists a unique locally rcbv function v̂(·) obtained from
(13)–(15).

• Error convergence: The estimates q̂(·), v̂(·) converge to
q(·), v(·) asymptotically.

Before proceeding with these technical results, note that the original
system may not have unique solutions, but the observer has the
property that it generates a unique trajectory corresponding to the
each function q(·) observed as an output of system (8); see [10,
Remark 3.3] for further explanation along these lines.

V. OBSERVER WELL-POSEDNESS

The estimator (13) is actually an evolution inclusion in which the
multi-valued function NV (q)(·) is closed and convex valued. It is
noted that the function q(·) is seen as an external “input” by the
observer and hence V (q(·)) is seen as a time-parameterized multi-
valued function that does not depend on any of the internal states of
the estimator. This makes the observer (13) a sweeping process of
first order. We will basically prove the well-posedness result for the
differential inclusion

M(q(t))dv̂ + g(t, v̂)dt ∈ −NV (q(t))(v̂e) (17)

under certain regularity assumption on the function g(t, v̂). Using this
result, it will be shown that the observer (13) can be transformed into
a system of form (17). The solution to system (13) is interpreted in
a sense similar to Definition 1.

Let us now state the following result on existence and uniqueness
of solution to (17). This is a fundamental step since existence of
solutions secures that the error stability analysis is meaningful, while
uniqueness property secures that the observer output is unique for a
given plant trajectory, as stated earlier.

Theorem 1. Consider the differential inclusion (17) under the
hypotheses (H2)–(H4), and V (q) defined in (6). Assume that the
function q : [0, T ] → Rn is absolutely continuous, and that the
function g : [0, T ]× Rn → Rn satisfies

|g(t, v̂1)− g(t, v̂2)| ≤ Cg,l|v̂1 − v̂2|, ∀ v̂1, v̂2 ∈ Rn, ∀ t ∈ [0, T ]
(18)

|g(t, v̂)| ≤ Cg,b(1 + |v̂|), ∀ t ∈ [0, T ] (19)

for some constants Cg,l, Cg,b > 0. Then the system (17) is well-
posed, that is, there exists a unique solution v̂ ∈ BV ([0, T ];Rn) for
any initial condition v̂(0) ∈ V (q(0)). Moreover, it holds that

v̂e(t) ∈ V (q(t)), ∀ t ∈ [0, T ]. (20)
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The result on existence and uniqueness of solutions for MDI (17),
stated in Theorem 1, is important in several respects:
(a) The multivalued operator on the right-hand side is non-compact,

time-varying and the variation of this set-valued map (measured
using Hausdorff-distance) is not of bounded variation.

(b) Even though the interior of V (q) for each q is nonempty, in
general, there does not exist any common open ball of which is
contained in V (q), for each q ∈ Φ.

(c) The argument of NV (q)(·) is not simply the state v̂ but rather a
weighted sum of pre- and post-impact values of v̂(·).

(d) The mapping t 7→ V (q(t)) is lower semicontinuous (because
t 7→ q(t) is absolutely continuous and q 7→ V (q) is lower
semicontinuous).

Because of these reasons, we cannot use the existing results on solu-
tions of first-order sweeping processes, for example [22, Chapter 2],
in a straightforward manner. Moreover, the numerical implementation
of the examples considered in this paper (see Section VII) is based
on a time-discretization procedure and the proof of Theorem 1 shows
that the proposed sequence of discretized solutions indeed converges
to a unique solution of system (17). With this motivation, we work
out a formal proof of Theorem 1 in this paper. In this section, we
will only develop an outline which shows all the steps involved in
the proof and for some of these steps, detailed calculations are given
in Section VIII.

A. Applying Theorem 1 to Observer (13)

Our goal is to show that the proposed observer (13) can be written
in the form of (17), and that the hypotheses of Theorem 1 hold in
this case. To see this, one can rewrite the description of the observer
in (16) as follows:[
I 0
0 M(q(t))

](
dq̂
dv̂

)
+

(
F̂1(t, q(t), v(t), q̂, v̂)

F̂2(t, q(t), v(t), q̂, v̂)

)
∈−NRn×V (q)

(
q̂
v̂e

)
.

(21)
The underlying reasoning between this transformation is that
NS1×S2(q̂, v̂) = NS1(q̂) × NS2(v̂), for q̂ ∈ S1, v̂ ∈ S2,
and S1,S2 being closed, convex subsets of Rn. Let F̂ (t, x̂) :=(
F̂1(t, q(t), v(t), q̂, v̂)

−F̂2(t, q(t), v(t), q̂, v̂)

)
, where we see q, v as functions of time,

and use the notation x̂ := (q̂>, v̂>)>. We now have the following
corollary:

Corollary 1. Consider the differential inclusion (21) under the
hypotheses (H2)–(H4), and V (q) defined in (6). Assume that the
function q : [0, T ] → Rn is absolutely continuous, v : [0, T ] → Rn
is a function of bounded variation, and that the function F̂ :
[0, T ]× R2n → R2n satisfies

|F̂ (t, x̂1)− F̂ (t, x̂2)| ≤ CF̂ ,l|x̂1 − x̂2| ∀ x̂1, x̂2 ∈ R2n, ∀ t ∈ [0, T ]

|F̂ (t, x̂)| ≤ CF̂ ,b(1 + |x̂|), ∀ x̂ ∈ R2n, ∀ t ∈ [0, T ].

for some constants CF̂ ,l, CF̂ ,b > 0. Then the system (21) is well-
posed, that is, there exists a unique solution q̂ ∈ AC([0, T ],Rn),
v̂ ∈ BV ([0, T ];Rn) for any initial condition (q̂(0), v̂(0)) ∈ Rn ×
V (q(0)). Moreover, it holds that

v̂e(t) ∈ V (q(t)) ∀ t ∈ [0, T ]. (22)

The proof of this corollary is a direct application of Theorem 1
where we work with the augmented variable (q̂>, v̂>)>. The hy-
potheses stated in Theorem 1 for (17) also hold for (21). However,
Corollary 1 claims that q̂ is absolutely continuous, whereas Theo-
rem 1 only guarantees that q̂ is of bounded variation. This extra
regularity on q̂ follows due to the fact that q̂ dynamics are basically
unconstrained and are obtained by integrating F̂1(t, q(t), v(t), q̂, v̂).

B. Proof Outline for Theorem 1

Consider a partition P of the interval [0, T ] given by:

P := {tP,i, 0 ≤ i ≤ NP},
0 = tP,0 < tP,1 < tP,2 < . . . < tP,NP = T

and let

v̂P,0 = v̂0 (23a)

v̂P,i = −ev̂P,i−1 + (1 + e) projMP,i

[
v̂P,i−1 −

1

1 + e
M−1
P,iGP,i, VP,i

]
(23b)

where GP,i :=
∫ tP,i
tP,i−1

g(s, v̂P,i−1)ds and MP,i := M(q(tP,i)).
One can then define a piecewise constant solution v̂P(·) for each
partition P as follows:

v̂P(t) :=

{
v̂P,i t ∈ [tP,i, tP,i+1)

v̂P,NP t = tNP .
(24)

The motivation behind defining the successive elements of a
piecewise constant solution using (23b) is that2 :

v̂P,i + ev̂P,i−1

1 + e
= projMP,i

[
v̂P,i−1 −

1

1 + e
M−1
P,iGP,i, VP,i

]
⇐⇒ MP,i(v̂P,i − v̂P,i−1) +GP,i ∈ −NVP,i

(
v̂P,i + ev̂P,i−1

1 + e

)
which is a quite natural discretization of (17).

In the sequel,
• a uniform bound (with respect to P) is derived on |v̂P | in

Section VIII-A, and
• an estimate of the total variation of v̂P over a compact interval

is computed in Section VIII-B.
Using these bounds to invoke a generalized version of Helly’s first
theorem (see Theorem A.2 in Appendix A), there exists a filter F
finer than the filter of sections of P , and a function of bounded
variation v̂ : [0, T ]→ Rn which is the weak pointwise limit of v̂P(·)
with respect to F . Since we are working in the finite-dimensional
setup, v̂(·) is a strong pointwise generalized sublimit of v̂P :

lim
F
|v̂(t)− v̂P(t)| = 0 ∀ t ∈ [0, T ]. (25)

The next step is to show that v̂(·) obtained above is indeed a
solution to system (17). We demonstrate it by showing that
• the differential inclusion (17) holds at continuity points of v̂

(Section VIII-C), and
• the inclusion (17) is satisfied at discontinuity points of v̂

(Section VIII-D).
The fact that v̂e(t) ∈ V (q(t)) follows due to closedness of V (q(t)).
To complete the proof, it remains to show that the solution to (17)
is unique, which basically follows due to convexity of V (q(t)) and
Lipschitz continuity of g(t, ·). To see that, let v̂1(·), v̂2(·) be two
solutions to (17) with v̂1(0) = v̂2(0), then there exists a measure dµ̂
such that

M(q(t))
dv̂i

dµ̂
(t) + g(t, v̂i)

dt

dµ̂
(t) ∈ −NV (q(t))(v̂

i), i = 1, 2.

Using the monotonicity property of the normal cone, we get〈
M(q(t))

(
dv̂1

dµ̂
(t)− dv̂2

dµ̂
(t)

)
, v̂1(t)− v̂2(t)

〉
≤ |g(t, v̂2(t))− g(t, v̂1(t))| · |v̂1(t)− v̂2(t)|.

2 We use the fact that for a convex set V , it holds that x =
argminy∈V |z − y|M , that is, x is the projection of z onto V with respect
to the norm induced by a symmetric positive definite matrix M , if and only
if 〈M(z − x), y − x〉 ≤ 0, ∀ y ∈ V ⇔M(z − x) ∈ NV (x).
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Since g(t, ·) is Lipschitz, and v̂1(0) = v̂2(0), the above inequality
becomes

|v̂1 − v̂2|2 ≤
2Cg,l
λM

∫
]0,t]

|v̂1(s)− v̂2(s)|2dµ̂(s).

One can now invoke the Gronwall-Bellman like lemma for functions
of bounded variation [18, Lemma 4], to get

|v̂1 − v̂2|2 ≤ 0,

whence it follows that v̂1(t) = v̂2(t), for t ∈ [0, T ].

VI. ERROR STABILITY ANALYSIS

In this section, we address the convergence of the estimation error
to zero. In what follows, let x := (q>, v>)>, x̂ := (q̂>, v̂>)>, and
let the state estimation error be denoted by x̃ := (q̃>, ṽ>)> := x−x̂.
The main result on convergence of error now follows:

Theorem 2. Assume that there exists a symmetric positive definite
matrix-valued function R : Rn → R2n×2n, q 7→ R(q),

R(q) =

[
R11 0
0 M(q)

]
and a constant β > 0 such that

x̃>R(q)

(
v − F̂1(t, x, x̂)

−F (t, x) + F̂2(t, x, x̂)

)
+ x̃>Ṙ(q, v)x̃︸ ︷︷ ︸

= ṽ>Ṁ(q,v)ṽ

≤ −β x̃>R(q)x̃

(26)
then the state estimation error decays exponentially, that is,

|x̃(t)| ≤ e−β t|x̃(0)|.

The statement of Theorem 2 basically requires us to choose a state
estimator where the unconstrained ODEs result in error dynamics
which are dissipative with respect to a quadratic Lyapunov function.
The matrix that determines this quadratic form has some structure
described by R(q). We will show in Sections VI-A and VI-B that two
possible observer design techniques for unconstrained Lagrangian
systems could be tailored into the framework of (13), and satisfy the
conditions for well-posedness listed in Theorem 1 and the stability
requirements given in Theorem 2.

Proof of Theorem 2: The error dynamics are defined as

˙̃q = v − F̂1(t, x, x̂) (27a)

M(q)dṽ + F (t, x)− F̂2(t, x, x̂) ∈ −(η − η̂) (27b)

where
η ∈ NV (q)(ve) and η̂ ∈ NV (q)(v̂e)

and ve, v̂e are defined as in (8c) and (14), respectively.
In what follows, we fix dµ = dµc+dµa+dµ̂a, where µc denotes

the continuous part of the measure µ, and we chose µc to be the sum
of the Lebesgue measure dt, and the singularly continuous component
µsc, that is, dµc = dt+dµsc. The atomic measure dµa (respectively
dµ̂a) is supported by the time instants at which v(·) (respectively
v̂(·)) is discontinuous. It is seen that dµc + dµa, and dµc + dµ̂a
are absolutely continuous with respect to dµ and hence the densities
dv
dµ

(·) and dv̂
dµ

(·) are well-defined on the complement of a dµ-null
set.

Pick W (q, x̃) = x̃>R(q)x̃, then W (·) is locally rcbv using the
chain rule [26, Theorem 3], and its differential is computed as
follows:

dW

dµ
(t) = (x̃(t+) + x̃(t−))>R(q)

dx̃

dµ
(t)

+
∂

∂q
(x̃(t+)>R(q(t))x̃(t+))

dq

dµ
(t).

At time tk, if there is a jump in v(·) or v̂(·), then
dt

dµ
(tk) = 0, which

also implies that
dq

dµ
(tk) =

dq

dt
(tk) · dt

dµ
(tk) = 0, and

dq̃

dµ
(tk) = 0

from (27a). We thus obtain:
dW

dµ
(tk) = (ṽ+

k + ṽ−k )>Mk
dṽ

dµ
(tk) = (ṽ+

k + ṽ−k )>Mk(ṽ+
k − ṽ

−
k ),

where we used the notation ṽ+
k := ṽ(t+k ), ṽ−k := ṽ(t−k ), and Mk :=

M(q(tk)). We can rewrite the above expression as:

dW

dµ
(tk) = ṽ+>

k Mkṽ
+
k − ṽ

−>
k Mkṽ

−
k +

(1− e)
(1 + e)

(ṽ+
k − ṽ

−
k )>Mk(ṽ+

k − ṽ
−
k )

− (1− e)
(1 + e)

(ṽ+
k − ṽ

−
k )>Mk(ṽ+

k − ṽ
−
k )

=
1

(1 + e)

[
(1 + e)

(
ṽ+>
k Mkṽ

+
k − ṽ

−>
k Mkṽ

−
k

)
+(1− e)(ṽ+

k − ṽ
−
k )>Mk(ṽ+

k − ṽ
−
k )
]

− (1− e)
(1 + e)

(ṽ+
k − ṽ

−
k )>Mk(ṽ+

k − ṽ
−
k )

=
2

(1 + e)

[
ṽ+>
k Mkṽ

+
k − eṽ

−>
k Mkṽ

−
k − (1− e)ṽ+>

k Mkṽ
−
k

]
− (1− e)

(1 + e)
(ṽ+
k − ṽ

−
k )>Mk(ṽ+

k − ṽ
−
k )

=
2

(1 + e)

〈
Mk(ṽ+

k − ṽ
−
k ), ṽ+

k + eṽ−k
〉

− (1− e)
(1 + e)

(ṽ+
k − ṽ

−
k )>Mk(ṽ+

k − ṽ
−
k ).

Substituting M(q(tk))(ṽ+− ṽ−) = −(ηk− η̂k), the above equation
becomes

dW

dµ
(tk) = −2

〈
ηk − η̂k,

ṽ+
k + eṽ−k
1 + e

〉
− (1− e)

(1 + e)
(ṽ+
k − ṽ

−
k )>Mk(ṽ+

k − ṽ
−
k ).

(28)

By definition (see (3)), it follows that

ηk ∈ NV (q(tk))(ve(tk))⇐⇒ 〈η, ve − v̂e〉 ≥ 0 (29)

η̂k ∈ NV (q(tk))(v̂e(tk))⇐⇒ 〈η̂, ve − v̂e〉 ≤ 0 (30)

which in turn implies that

〈ηk − η̂k, ve(tk)− v̂e(tk)〉 ≥ 0

or equivalently, 〈
ηk − η̂k,

ṽ+
k + eṽ−k
1 + e

〉
≥ 0. (31)

Using the inequality (31) in equation (28), we get

dW

dµ
(tk) ≤ − (1− e)

(1 + e)
(ṽ+
k − ṽ

−
k )>Mk(ṽ+

k − ṽ
−
k ) ≤ 0. (32)

Thus, when 0 ≤ e < 1, we have a strict decrease in the value of
Lyapunov function W (·) at jump instants, and W (·) at most remains
constant for the case e = 1.

If t 6= tk, then we are interested in computing dW
dµc

(t). By

definition,
dµc
dµ

(t) = 1 when t 6= tk, and

dW

dµ
(t) =

〈
R(q)x̃,

dx

dµ
(t)− dx̂

dµ
(t)

〉
+

∂

∂q
(x̃(t)R(q(t))x̃(t))

dq

dµ
(t)

= 2x̃>(t)R(q)

(
v − F̂1(t, x)

−F (t, x) + F̂2(t, x, x̂)

)
dt

dµ
(t)

− ṽ>(t)(η − η̂) + x̃(t)Ṙ(q(t), v(t))x̃(t)
dt

dµ
(t).
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In the above expression, ṽ>(η − η̂) ≥ 0 because v(t), v̂(t) ∈
V (q(t)) for all t at which v, v̂ are continuous, due to which
〈η, v − v̂〉 ≥ 0, and 〈η̂, v − v̂〉 ≤ 0. It now follows under condi-
tion (26) that

dW

dµ
(t) ≤ −βW (t)

dt

dµ
(t), t 6= tk. (33)

Since we fixed dµ = dµc+dµa+dµ̂a, and W is non-increasing at the
atoms of dµa and dµ̂a because of (32), and decreasing exponentially
with respect to continuous measure due to (33). One can now invoke
the chain rule for differential of bounded variation functions [26] to
arrive at the following inequality (the formal arguments can also be
found in our recent work [37, Proof of Theorem 1]):

W (t) ≤ e−βtW (0)⇒ |ṽ(t)| ≤

√
λM
λM

e−βt|ṽ(0)|.

for all t ≥ 0.

It is worth mentioning that, in order to deal with discontinuities
of ve, we don’t just consider the classical derivative of the storage
function, but instead compute the density of dW with respect to dµ.
We also remark that the condition (26) was introduced explicitly to
obtain dissipation of smooth part of the error dynamics with respect
to kinetic metric. It basically highlights the fact that if there is any
observer available in the literature for smooth Lagrangian systems
for which the continuous error dynamics admit x̃>R(q)x̃ as the
Lyapunov function, then those designs could be embedded into the
formalism of (13) to arrive at a different criteria for error convergence.
We now show two particular instances of how observers in the
literature for unconstrained Lagrangian systems can be modified to
fit in the framework of (13), and satisfy the conditions required for
well-posedness and convergence of state estimation error.

A. Full-Order Observer

In order to arrive at a result on convergence of velocity estima-
tion error, we introduce additional structure on the nonlinear term
F (t, q, v) which is natural for Lagrangian dynamical systems. We
suppose that the following assumption holds:

Assumption 1. The velocity v(·) obtained as a solution to (8) stays
bounded, that is:

v(t) ∈ Bv := {v ∈ Rn | |v| ≤ Cv} ∀t ≥ 0. (34)

The following properties are satisfied by such systems [28]:

(P1) If Ṁ(q, v) denotes the derivative of the mass matrix, then
Ṁ(q, v) − 2C(q, v) is a skew-symmetric operator, that is,
ṽ>(Ṁ(q, v) − 2C(q, v))ṽ = 0, ∀ ṽ ∈ Rn. Here, C(q, v)v is
defined using Christofel symbols and denotes the Coriolis and
centrifugal torques.

(P2) There exists a constant CM (q) > 0 s.t.

‖C(q, v)‖ ≤ CM (q)|v|, ∀ v ∈ Bv. (35)

Before describing the observer dynamics, we let F (t, q, ·) denote
the Lipschitz extension3 of F (t, q, ·) from Bv such that there exists
CF (t, q) satisfying

|F (t, q, v1)− F (t, q, v2)| ≤ CF (t, q) · |v1 − v2|, ∀ v1, v2 ∈ Rn

3 For a locally Lipschitz function F (t, q, ·) : B → Rn, the function
F (t, q, ·) : Rn → Rn is called the Lipschitz extension of F (t, q, ·) from B ⊂
Rn if F (t, q, ·) is globally Lipschitz over Rn and F (t, q, v) = F (t, q, v)
for all (t, q) ∈ R× Rn and v ∈ B.

and it is understood by definition that F (t, q, v) = F (t, q, v) for
v ∈ Bv . The idea of using Lipschitz extension of the system vector
fields for state estimators appeared in [33].

The following full-state observer is an adaptation of the design
presented in [6] for unconstrained Lagrangian systems:

ż1 = z2 + Ld(q − z1) (36a)

M(q) dz2 + F (t, q, v̂) dt

− (Lρ1 +M(q)Lρ2)(q − z1) dt ∈ −NV (q)(v̂e) (36b)

where we let the estimates to be4

q̂ = z1 (36c)

v̂ = z2 + ldq̃. (36d)

It is seen that the observer (36) indeed fits within the general
framework proposed in (13) and satisfies the assumptions required
for well-posedness.

The matrices Lρ1 and Λ are symmetric, positive definite, and the
matrices Ld and Lρ2 are defined as follows:

Ld := ldI + Λ, Lρ2 := ldΛ

for some scalar ld > 0. One can equally write

˙̂q = v̂ − Λ(q − q̂)

M(q)dv̂ + F (t, q, v̂)dt− Lρ1(q − q̂)dt
− ldM(q)(v − v̂)dt ∈ −(η − η̂)

Corollary 2. Consider system (8) under hypotheses (H1) - (H4) and
assume that the properties (P1) , (P2) , and Assumption 1 hold. For
the estimator (36), if ld > 0 is chosen such that the condition

λM ld > CF (t, q) + CM (q)Cv + β

is satisfied for all (t, q) ∈ R+×Φ, and some constant β > 0, then the
estimates q̂(·), v̂(·) given by (36c) and (36d) respectively, converge
to q(·), v(·) exponentially, that is, for some c > 0,

|v(t)− v̂(t)| ≤ c e−βt|v(0)− v̂(0)|. (37)

Proof. To show that (26) holds, we let R11 := Lρ1, F̂1(t, x, x̂) = v̂−
Λ(q− q̂), and F̂2(t, x, x̂) = F (t, q, v̂)−Lρ1(q− q̂)−ldM(q)(v− v̂),
and observe that

q̃>Lρ1(v − Λq̃) + ṽ>(−F (t, q, v) + F (t, q, v̂)− Lρ1q̃ − ldM(q)ṽ)

+ ṽ>Ṁ(q, v)ṽ

≤ −q̃>Lρ1Λq̃ − ld ṽ>M(q)ṽ + ṽ>(F (t, q, v̂)− F (t, q, v) + C(q, v)ṽ)

≤ −q̃>Lρ1Λq̃ − ldλM |ṽ|
2 + |ṽ|(CF (t,q)(q)|ṽ|+ CM (q)Cv|ṽ|)

≤ −q̃>Lρ1Λq̃ − β|ṽ|2

and the exponential decay of the state estimation error now follows
from Theorem 2.

4 The definition of v̂ considered in [6] is different than the definition of
v̂ considered here. In [6], the authors take v̂ = z2 + Ldq̃, whereas in our
definition v̂ = z2 + ldq̃. Due to this difference, the error variable (q̃>, ṽ>)>

in our calculations is a linear transformation of the error variable considered
in [6]. The reason for introducing this linear transformation is that it allows
us to work with a quadratic Lyapunov function x̃>R(q)x̃ where R(q) is
block-diagonal as required in the statement of Theorem 2.
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B. Partial-Order Observer

One can also design a reduced order observer to show that the
conditions of Theorem 2 hold in such case. Consider the following
state estimator

M(q) dz + F (t, q, v̂) dt− ldM(q)v̂ dt ∈−NV (q)(v̂e) (38a)

where we let

q̂(t) = q(t) (38b)

v̂(t) := z(t)− ldq(t), (38c)

v̂e(t) :=
v̂(t+) + ev̂(t−)

1 + e
(38d)

and q(·) in (38a) and (38c) is an absolutely continuous function
of time which is obtained from (8) as the measured output. The
initial condition v̂(0) ∈ V (q(0)). Once again, it is seen that the
observer (38) falls under the class of estimators proposed in (13),
and satisfies the regularity conditions stated in Theorem 1 for well-
posedness. For error convergence, we have the following result
similar to Corollary 2.

Corollary 3. Consider system (8) under hypotheses (H1) - (H4) and
assume that the properties (P1) , (P2) , and Assumption 1 hold. For
the estimator (38), if the constant ld > 0 is chosen such that the
condition

ldλM ≥ 2CvCM (q) + 2CF (t, q) + β, (39)

for all (t, q) ∈ R+ ×Φ, and some constant β > 0, then the velocity
estimate v̂(·) given by (38c) converges to v(·) exponentially, that is,
for some c > 0,

|v(t)− v̂(t)| ≤ c e−βt|v(0)− v̂(0)|. (40)

Since we have chosen q̂(t) = q(t), we have q̃(t) ≡ 0. We let
F̂1(t) = v(t), and observe that

ṽ>(−F (t, q, v) + F (t, q, v̂)− ldM(q)ṽ) + ṽ>Ṁ(q, v)ṽ

≤ −ld ṽ>M(q)ṽ + ṽ>(F (t, q, v̂)− F (t, q, v) + C(q, v)ṽ)

≤ −ldλM |ṽ|
2 + |ṽ|(CF (t,q)(q)|ṽ|+ CM (q)Cv|ṽ|)

≤ −β|ṽ|2

from where (26) follows and Theorem 2 can now be invoked to show
the asymptotic convergence of the state estimate.

C. Passivity Interpretation

Lagrangian systems are basically modeled such that the total
energy, that is, the sum of kinetic and potential energy, of the
system decreases with the passage of time. The kinetic energy is
obtained by the quadratic form of v induced by the symmetric positive

Error variable
dx̃

Error dynamics with
output injection

Monotone operator{
η ∈ NV (q)(ve)

η̂ ∈ NV (q)(v̂e)

〈ṽe, η − η̂〉 ≥ 0

x̃ = (q̃, ṽ)χ+ ν

−χ

−(η − η̂)

Fig. 3: Interpretation of error dynamics (27) in terms of passivity.

definite mass matrix M(q). When dealing with impacts, the kinetic
energy actually dissipates at each impact. This allows one to state the
dissipativity of Lagrangian systems subjected to unilateral constraints
and impacts, see [8, Sections 6.8.2 and 7.2.4].

Inspired by these preliminary results, the basic idea behind the
observer design is to realize an interconnection of three passive blocks
as shown in Fig. 3. To analyze the passivity of each one of these
blocks, we introduce the variables

χ := R(q) ˙̃x+ Ṙ(q, v)x̃, ν :=

(
01×n

(η − η̂)

)
.

It is then seen that
• We have a passive interconnection from χ+ ν to x̃:

〈x̃, χ+ ν〉L2 ≥
∫ T

0

x̃>(s)χ(s)ds

=

∫ T

0

dW

dµ
dµ ≥ −W (q̃(0), ṽ(0)).

• Also, χ = R(q)

(
v − F̂1(t, x, x̂)

−F (t, x) + F̂2(t, x, x̂)

)
+ x̃>Ṙ(q, v)x̃ and the

output injection gain is chosen such that the condition (26) holds,
so that

〈−χ, x̃〉L2 = −
∫ T

0

χ(s)>x̃(s) ds

≥
∫ T

0

x̃>(s)R(q(s))x̃(s) ds ≥ c‖x̃‖22

where c > 0 is some constant, and ‖x̃‖2 denotes the L2 norm.
• Having chosen W (q, x̃) = x̃>R(q)x̃, the above two items guar-

antee that the error is actually decreasing during the continuous
motion of the error dynamics, so that

dW

dµ
(t) ≤ −〈η − η̂, ṽe(t)〉 .

In equation (28), it is shown that at any instant tk where ṽ jumps,
we have

dW

dµ
(tk) ≤ − 2

(1 + e)
〈η − η̂, ṽe(tk)〉 .

Next, we invoke the monotone property of the normal cone to
convex sets which results in 〈η − η̂, ṽe(t)〉 ≥ 0. This last argument
could also be interpreted as saying that we have passivity from ṽe
to −(η − η̂) with respect to the storage function W (·).

D. Sensitivity to the Coefficient of Restitution

The coefficient of restitution e depends on various physical factors,
and in general it is hard to get an accurate value of this coefficient.
For designing estimators, it was assumed that this coefficient e is
known exactly and is taken to be the same as the one that governs
the real plant dynamics. A natural question to ask now is to what
extent the results presented in this manuscript are robust with respect
to variations in the parameter e. In order to analyze this situation, we
work with some value of coefficient of restitution ê for our estimator,
and it is assumed that ê = e+ δe where δe is sufficiently small. The
observer we will simulate in this case is exactly the same, however,
v̂e is now defined as

v̂e(t) =
v̂(t+) + êv(t−)

1 + ê
.

It can be assumed without loss of generality that ê ∈ [0, 1]. The
results on well-posedness of the observer dynamics hold in exactly
the same manner. In the analysis of stability of error dynamics at
jump instants, however, we see that the error after the jump may
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not decrease due to this uncertainty in the value of e. The exact
expression comes out to be

dW

dµ
(tk) ≤ − (1− eê)

(1 + eê+ 2e)
(ṽ+
k − ṽ

−
k )>Mk(ṽ+

k − ṽ
−
k )

− 2δe
〈
Mk(ṽ+

k − ṽ
−
k ), v+

k − v
−
k

〉
,

where the last term can be bounded by a term which is linear in
|ṽ+
k − ṽ

−
k | because |v| ≤ Cv by assumption. Thus, the error at jump

instants may increase due to uncertainty in the value of e, but due
to the strictly negative first term, the discrete dynamics are input-
to-state stable with δe as the input. Through standard calculations
one can find a ball around the origin, parameterized by δe, where
the state estimation error converges as k tends to infinity. Since, we
allow for Zeno phenomenon, this may happen in finite time. However,
between two discrete events, if one can guarantee a certain bound on
flow time, then the effect of δe will diminish during that time. Note
that the time between two Zeno phenomena is actually controlled by
the external forces. Thus, if certain restrictions are imposed on the
external forces which do not allow accumulations of jumps to occur
too often, then error dynamics will still be convergent despite the
small uncertainties in the knowledge of e.

VII. NUMERICAL IMPLEMENTATION

We now give some remarks on how to execute the measure
differential inclusion of type (13). Since the solutions are allowed
to accumulate in finite time, the classical event-driven schemes are
not suitable for simulating such systems. We therefore propose a
time-stepping scheme to simulate (13), inspired by the Moreau-Jean
algorithm [2]. It works as follows: Consider the time interval [0, T ]
and a sampling time τs small enough. With z(0) arbitrarily chosen,
we want to solve for z(tk+1), tk = kτs, k ∈ N, and on the interval
[tk, tk+1), z is obtained through some interpolation techniques. In
the sequel, we discuss how to compute z(tk+1) by addressing two
cases.

Sampling interval without impact: The easier case is when it is
known that the measured position q does not have any contact with
the boundary of the set Φ over the entire interval (tk, tk+1]. In that
case, V (q(t)) = Rn, for each t ∈ (tk, tk+1] and the multivalued part
on the right-hand side of (13b) is reduced to {0}. We then obtain
z(tk+1) by classical numerical integration algorithms. For example,
using a semi-explicit Euler’s method, we obtain:

z1(tk+1) = z1(tk) + τsF1(tk+1, q(tk+1), z(tk))

z2(tk+1) = z2(tk)− τs
(
M(q(tk+1))−1F2(tk+1, q(tk+1), z(tk))

)
and the discretized state estimates are defined as:

q̂(tk+1) = f1(z1(tk+1), q(tk+1))

v̂(tk+1) = z2(tk+1)− f2(qk+1, z1(tk+1)).

Sampling intervals with impact: If, however, the contact between
q and Φ is detected during the interval (tk, tk+1] then we basically
reformulate the inclusion (13b) as a complementarity relation to
determine the post impact value of v̂. In order to state the desired
complementarity relation, suppose that the contact happens at some
time t̄ ∈ (tk, tk+1], that is, hα(q̄) ≤ 0, for some α = 1, . . . ,m,
where q̄ := q(t̄). It follows from the inclusion (13) that:

z(t̄+)− z(t̄−) ∈ −M(q̄)−1NV (q̄)(v̂e(t̄))

and from the definition of V (q̄), it follows that

z(t̄+)− z(t̄−) =
∑

α∈J (q̄)

λα
M−1(q̄)∇hα(q̄)

|M−1/2(q̄)∇hα(q̄)|
,

where λα ≥ 0, and α ∈ J (q̄). We are thus interested in finding the
value of λα, α ∈ J (q̄). Also, it follows by definition that

v̂e(t̄) ∈ V (q̄) and 〈v̂(t̄+)− v̂(t̄−), v̂(t̄+) + ev̂(t̄−)〉M(q̄) = 0.

The preceding relations are in turn equivalent to solving the following
complementarity problem:

0 ≤ λα ⊥
〈

M−1(q̄)∇hα(q̄)

|M−1/2(q̄)∇hα(q̄)|
,M(q̄)(v̂(t̄+) + ev̂(t̄−))

〉
≥ 0,

(41)
for α ∈ J (q̄).

In theory, solving for λα allows us to compute v̂(t̄+) whenever
hα(q(t̄)) = 0. Knowing that there might be infinitely many such
instances in finite interval, running such an algorithm in practice is
not feasible on machines with finite precisions. However, note that
the second term in (41) is continuous with respect to the variable q
and since q is an absolutely continuous function of time, the value
of λα will not vary a lot with respect to small variations in the value
of q(t̄). Hence, when implementing this algorithm on the computer,
we replace q(t̄) with q(tk+1) and compute v̂(tk+1). With small
enough sampling time, the resulting values of v̂ are still accurate
enough (see [2, Chapter 14] for numerical tests with various step
sizes, in particular [2, Table 14.2], see also [23]). The important thing
is to know which constraints were active during a certain sampling
interval. Thus, we don’t count the number of times q makes contact
with the boundary of Φ during a particular sampling interval, we just
count the number of constraints that are active during a particular
sampling interval. Since, there are at most m constraints, the above
algorithm is feasible for implementation as shown in the following
examples.

A. Simulation Results

We have applied our results to the three systems described in
Figure 1 given in the introduction. Since the velocity variable is the
only quantity of interest that needs to be estimated, we will only
implement the observer (38) for these systems. This observer has
been implemented in the software platform SICONOS [1]. Due to
space constraints, we only present the simulation of one example in
this manuscript, given in Fig. 1b. For the other two examples given
in Figure 1, and the related animations with several different initial
conditions, please refer to the links provided in [35].

Example 1. We consider a particle of unit mass bouncing in two-
dimensional plane with a parabolic and linear constraint, see Fig. 1b.
We denote the position variable by

( qx
qy

)
and the corresponding

velocity vector by
( vx
vy

)
. The constraint relations are defined as:

h1(q) = qy − q2
x ≥ 0

h2(q) = c− qy ≥ 0,

where we choose c = 8 for the sake of simulations. Using the
notation of (8), we choose F (t, q, v) = 9.81, that is, the point mass is
subjected to the gravitational force, and the coefficient of restitution
at impacts is e = 0.9. This choice eventually leads to accumulation
of impacts in finite time, as one sees from the plots in Fig. 4. Initially,
when either of the constraints h1 or h2 becomes zero, a jump in at
least one of the velocity components is observed. The accumulation
of impacts is observed around t = 4.5s, because the mass is being
pulled downward continuously by gravity, and the dissipative reaction
force ( that acts on the particle to maintain the constraint h1(q) ≥ 0)
reduces the norm of the velocity at each impact. Eventually, after the
accumulation point, we see that h1(q) remains identically zero and
sliding of the particle on the reduced-order surface {q |h(q) = 0}
is observed. Our velocity estimator replicates this phenomenon, and
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Fig. 4: Velocity estimation for a 2-degree of freedom mechanical system: A ball bouncing inside a parabola with ceiling. The top plot shows
the evolution of two gap functions h1(q) and h2(q) with time. The middle and bottom plot show the velocity components vx and vy , along
with their estimates, respectively. The boxes in the center of these plots provides a magnified image of the quantity of interest around the
accumulation point t = 4.5s.

after the initial transients, the estimates converge to the actual velocity
of the particle.

VIII. CALCULATIONS FOR THEOREM 1

In this section, we show calculations for the claims made in the
proof of Theorem 1.

A. Estimate of a uniform bound on v̂P

It is assumed that |v(t)| ≤ Cv for all t ∈ [0, T ], so that q(t) ∈
B(q0, CvT ). Let CM1/2 be the Lipschitz constant associated with the
mapping q 7→M1/2(q) on B(q0, CvT ). The projection, with respect
to the norm induced by MP,i := M(q(tP,i)), on the set V (q(tP,i))
is denoted by PP,i and on the set M−1(q(tP,i))V

◦(q(tP,i)) by
QP,i. We denote by λM , λM the constants introduced in (12) for
the compact set B(q0, CvT ). Let uP,i be defined as:

uP,i := v̂P,i−1 −
1

1 + e
M−1
P,iGP,i. (42)

These notations are now used in deriving a bound on v̂P . Using
Moreau’s two-cone lemma (see Lemma A.1 in Appendix A), we first

get:

|v̂P,i|MP,i = |PP,i(uP,i)− eQP,i(uP,i)−
e

1 + e
M−1
P,iGP,i|MP,i

≤ |uP,i|MP,i +
e

1 + e
‖M−1/2
P,i ‖ · |GP,i|

≤ |v̂P,i−1|MP,i +
1√
λM
|GP,i|

≤ |v̂P,i−1|MP,i−1 + ‖M1/2
P,i −M

1/2
P,i−1‖ · |v̂P,i−1|

+
1√
λM
|GP,i|

≤ |v̂P,i−1|MP,i−1 + CM1/2

∫ tP,i

tP,i−1

|v(s)| ds · |v̂P,i−1|

+
1√
λM
|GP,i|.

Since v̂P(·) has the constant value v̂P,i on the interval [tP,i, tP,i+1),
the above inequality results in:

√
λM |v̂P(tP,i)| −

√
λM |v̂P(0)| ≤

i∑
j=1

|v̂P,i|MP,i − |v̂P,i−1|MP,i−1

≤ CM1/2Cv

∫ tP,i

0

|v̂P(s)| ds+
Cg,b√
λM

∫ tP,i

0

(1 + |v̂P(s)| ds)

that is, for each t ∈ [0, T ],

|v̂P(t)| ≤

√
λM
λM
|v̂0|+

Cg,b
λM

t+

(
CM1/2Cv√

λM
+
Cg,b
λM

)∫ t

0

|v̂P(s)| ds.

Applying the Gronwall-Bellman inequality for discontinuous func-
tions [18, Lemma 1] to (24), the following bound on |v̂P(t)| is
obtained for each t ∈ [0, T ], which does not depend on the partition
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P:

|v̂P(t)| ≤

√
λM
λM
|v̂0|+

Cg,b
λM

t+A1 exp(A2 t) ≤ Csup (43)

where

A1 :=

√λM
λM
|v̂0|+

Cg,b

CM1/2Cv
√
λM + Cg,b


A2 :=

((
CM1/2Cv√

λM
+
Cg,b
λM

)
t

)
and Csup is obtained by evaluating the right-hand side of the first
inequality in (43) at t = T .

B. Estimates on the variation

For a fixed partition P of the interval [0, T ], we now compute the
total variation of v̂P(·). For conciseness, we drop the subscript P in
the quantities appearing in (23) and (24). By definition, we have

v̂i = −ev̂i−1 + (1 + e)Pi(ui).

Using Moreau’s two-cone lemma, we can write ui := Pi(ui) +
Qi(ui), so that

v̂i − v̂i−1 = −(1 + e)ui + (1 + e)Pi(ui)−M−1
i Gi

= −(1 + e)Qi(ui)−M−1
i Gi. (44)

Since Qi(·) denotes the projection on V ∗i := M−1
i V ◦(qi) with

respect to the kinetic metric, we take Qi(u) = 0 if J (qi) = ∅,
in which case

|v̂i − v̂i−1| = |M−1
i Gi| ≤

|Gi|
λM

.

Otherwise, if J (qi) 6= ∅, we have

Qi(u) :=
∑

α∈J (qi)

〈u,∇hα(qi)〉−M−1
i Hα(qi)

where
Hα(qi) :=

∇hα(qi)

∇h>α (qi)M
−1
i ∇hα(qi)

and 〈u,∇hα(q)〉− := min{〈u,∇hα(q)〉 , 0}. One may rewrite (44)
as

v̂i − v̂i−1 = −(1 + e) (Qi(ui)−Qi(v̂i−1))

− (1 + e)
(
Qi(v̂i−1)− Q̃i−1(v̂i−1)

)
− (1 + e)Q̃i−1(v̂i−1)−M−1

i Gi

(45)

where

Q̃i−1(u) :=
∑

α∈J (qi)

〈u,∇hα(qi−1)〉−M−1
i−1Hα(qi−1).

We now compute an upper bound on the norm of the right-hand side
of (45).

First term: It is noted using the contraction property of the
projection map and the bound derived in (43) that

|Qi(ui)−Qi(v̂i−1)| ≤ 1√
λM
|ui − v̂i−1|i

≤ 1

(1 + e)
√
λM
|M−1

i Gi|i ≤
1

1 + e

|Gi|
λM

(46)
where | · |i is used as a short-hand for | · |MP,i when the partition P
is considered to be fixed.

Second term: Under the hypothesis that ∇hα(·) is locally Lip-
schitz continuous, for each α = 1, · · · ,m, and that q(·) evolves

within a compact set over the interval [0, T ], there exists a constant
Ch such that

|∇hα(qi)−∇hα(qi−1)| ≤ Ch|qi− qi−1| ≤ ChCv|ti− ti−1|, (47)

for all ti, ti−1 ∈ [0, T ]. Similarly, since M−1/2(·) is locally Lipschitz
continuous, there exists CH > 0 such that

|Hα(qi)−Hα(qi−1)| ≤ CH |qi − qi−1| ≤ CHCv(ti − ti−1), (48)

for all ti, ti−1 ∈ [0, T ]. Thus, we get

Qi(v̂i−1)− Q̃i−1(v̂i−1)

=
∑

α∈J (qi)

〈v̂i−1,∇hα(qi)〉−M−1
i Hα(qi)

−
∑

α∈J (qi)

〈v̂i−1,∇hα(qi−1)〉−M−1
i−1Hα(qi−1)

=
∑

α∈J (qi)

(
〈v̂i−1,∇hα(qi)〉− − 〈v̂i−1,∇hα(qi−1)〉−

)
M−1
i Hα(qi)

+
∑

α∈J (qi)

〈v̂i−1,∇hα(qi−1)〉−
[
(M−1

i −M−1
i−1)Hα(qi)

+M−1
i−1(Hα(qi)−Hα(qi−1))

]
.

This further leads to

|Qi(v̂i−1)− Q̃i−1(v̂i−1)|

≤
∑

α∈J (qi)

| 〈v̂i−1,∇hα(qi)〉− − 〈v̂i−1,∇hα(qi−1)〉− | · |M−1
i Hα(qi)|

+
∑

α∈J (qi)

| 〈v̂i−1,∇hα(qi−1)〉 | ·
[
‖M−1

i −M−1
i−1‖ · |Hα(qi)|

+ ‖M−1
i−1‖ · |Hα(qi)−Hα(qi−1)|

]
≤ m

λM
CsupChCvC̃Hα(ti − ti−1)

+mCsupC̃hα(CM−1 C̃Hα + CH)Cv(ti − ti−1)

=: Cproj(ti − ti−1) (49)

where C̃hα = supq∈B(q0,CvT ) |∇hα(q)| and C̃Hα :=
√

λM
λM

Chα ≥
supq∈B(q0,CvT ) |Hα|. The constants Cv, Csup, Ch, and CH were
introduced in (34), (43), (47), and (48), respectively. The constant
CM−1 is chosen such that ‖Mi −Mi−1‖ ≤ CM−1 , for each i ∈ N.

Third term: We have

v̂i = −ev̂i−1 + (1 + e)Pi(ui) = Pi(ui)− eQi(ui)−
e

1 + e
M−1
i Gi

which gives

v̂i +
e

1 + e
M−1
i Gi = Pi(ui)− eQi(ui) ∈ V (qi). (50)

This further leads to

|Q̃i−1(v̂i−1)| ≤
∑

α∈J (qi)

|M−1
i−1Hα(qi−1)| ·∣∣∣∣∣

〈
v̂i−1 +

e

1 + e
M−1
i−1Gi−1 −

e

1 + e
M−1
i−1Gi−1,∇hα(qi−1)

〉−∣∣∣∣∣ .
From (50), we have〈
v̂i−1 +

e

1 + e
M−1
i−1Gi−1,∇hα(qi−1)

〉
≥ 0, ∀ j = 1, . . . ,m,
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and hence5

|Q̃i−1(v̂i−1)| ≤
∑

α∈J (qi)

e

1 + e
|
〈
M−1
i−1Gi−1,∇hα(qi−1)

〉
|·

|M−1
i−1∇hα(qi−1)|i−1√

λM∇h>α (qi−1)M−1
i−1∇hα(qi−1)

≤ e

1 + e

∑
α∈J (qi)

|M−1
i−1Gi−1|i−1 ·

|M−1
i−1∇hα(qi−1)|i−1√

λM |M
−1
i−1∇hα(qi−1)|i−1

≤ me

1 + e

|Gi−1|
λM

. (51)

Plugging the bounds from (46), (49), and (51) into (45), we obtain

|v̂i− v̂i−1| ≤
1

λM
|Gi|+2Cproj(ti− ti−1)+

1

λM
|Gi|+

m

λM
|Gi−1|.

Using the norm estimate on v̂P(·), we have |Gi| ≤ (1 +Csup)(ti−
ti−1) and thus for 0 ≤ s < t ≤ T , it follows that

Var(v̂P ; [s, t]) ≤ Cvar(t− s) (52)

where Cvar := 1
λM

((m+ 2)(1 + Csup) + 2Cproj).

C. Continuity points of the limit function

Assume that y ∈ V (q(τ)) for all τ ∈ [s, t] ⊆ [0, T ], then it is
claimed that∫ t

s

〈g(σ, v̂), (y − v̂)〉+

〈
Ṁ(σ)v̂,

(
y − v̂

2

)〉
dσ

≤ 〈M(q(t))v̂(t)−M(q(s))v̂(s), y〉

− 1

2

(
|v̂(t)|2M(q(t)) − |v̂(s)|2M(q(s))

)
. (53)

In the sequel, we proceed to prove this claim:
Consider a partition P of the interval [0, T ] that contains the nodes

tP,j = s and tP,k = t for some j, k ∈ N. From the discretization
scheme (23), for j + 1 ≤ i ≤ k, we have

v̂P,i + ev̂P,i−1

1 + e
= PP,i

(
v̂P,i−1 −

1

1 + e
M−1
P,iGP,i

)
.

Using the definition of the projection operator, we get, ∀ y ∈ VP,i,〈
v̂P,i−1 − v̂P,i −M−1

P,iGP,i, (1 + e)y − (v̂P,i + ev̂P,i−1)
〉
MP,i
≤ 0.

The above inequality is equivalently written as:〈
−M−1

P,iGP,i, (1 + e)y
〉
MP,i

+
〈
M−1
P,iGP,i, v̂P,i + ev̂P,i−1

〉
MP,i

≤ (1 + e) 〈v̂P,i − v̂P,i−1, y〉MP,i
− 〈v̂P,i − v̂P,i−1, v̂P,i + ev̂P,i−1〉MP,i (54a)

≤ (1 + e) 〈MP,iv̂P,i −MP,i−1v̂P,i−1, y〉 (54b)

− 1 + e

2
(|v̂P,i|2MP,i − |v̂P,i−1|2MP,i−1

)

− (1 + e)

〈
(MP,i −MP,i−1)v̂P,i−1, y −

v̂P,i−1

2

〉
. (54c)

To arrive at (54c), the last term in (54a) is rewritten as:

〈v̂P,i − v̂P,i−1, v̂P,i〉MP,i
=

1

2

[
|v̂P,i − v̂P,i−1|2MP,i + |v̂P,i|2MP,i − |v̂P,i−1|2MP,i−1

− v̂>P,i−1(MP,i −MP,i−1)v̂P,i−1

]
(55)

5 We use the fact that for a, b, c ∈ Rn, satisfying 〈a, c〉 ≥ 0, we have |〈a+
b, c〉−| = |min{0, 〈a + b, c〉}| ≤ |min{0, 〈a, c〉}| + |min{0, 〈b, c〉}| =
|〈b, c〉|.

and

〈v̂P,i − v̂P,i−1, ev̂P,i−1〉MP,i
=
e

2

[
−|v̂P,i − v̂P,i−1|2MP,i + |v̂P,i|2MP,i − |v̂P,i−1|2MP,i−1

− v̂>P,i−1(MP,i −MP,i−1)v̂P,i−1

]
.

Inequality (54c) now leads to:〈
−GP,i, y −

v̂P,i + ev̂P,i−1

1 + e

〉
+

〈
(MP,i −MP,i−1)v̂P,i−1, y −

v̂P,i−1

2

〉
≤

〈MP,iv̂P,i −MP,i−1v̂P,i−1, y〉−
1

2
(|v̂P,i|2MP,i−|v̂P,i−1|2MP,i−1

)

which further yields

k∑
i=j+1

〈
−GP,i, y −

v̂P,i + ev̂P,i−1

1 + e

〉
+

〈
(MP,i −MP,i−1)v̂P,i−1, y −

v̂P,i−1

2

〉
≤

〈MP,kv̂P,k −MP,j v̂P,j , y〉 −
1

2
(|v̂P,k|2MP,k − |v̂P,j |

2
MP,j ). (56)

Using the fact that v̂P (τ)+ev̂P (τ)
1+e

converges to v̂(τ) for Lebesgue
almost all τ ∈ [0, T ], it follows that

k∑
i=j+1

〈
GP,i, y −

v̂P,i + ev̂P,i−1

1 + e

〉
→
∫ t

s

〈g(τ, v̂(τ)), y − v̂(τ)〉 dτ.

(57)
Since t 7→ M(q(t)) is an absolutely continuous function, Ṁ(τ) :=
d
dt
M(q(t))

∣∣
t=τ

exists for Lebesgue almost-all τ , and we have〈
(MP,i −MP,i−1)v̂P,i−1, y −

v̂P,i−1

2

〉
=∫ tP,i

tP,i−1

〈
Ṁ(τ)v̂P(τ), y − v̂P(τ)

2

〉
dτ,

and

k∑
i=j+1

〈
(MP,i −MP,i−1)v̂P,i−1, y −

v̂P,i−1

2

〉
=∫ tP,k

tP,j

〈
Ṁ(τ)v̂P(τ), y − v̂P(τ)

2

〉
dτ. (58)

For the terms on the right-hand side, we have the following conver-
gence:

〈MP,kv̂P,k −MP,j v̂P,j , y〉 −
1

2
(|v̂P,k|2MP,k − |v̂P,j |

2
MP,j )

→ 〈M(q(t))v̂(t)−M(q(s))v̂(s), y〉

− 1

2
(|v̂(t)|2M(q(t)) − |v̂(s)|2M(q(s))). (59)

The desired inequality (53) now follows by taking the limit in (56)
along all partitions finer than P and using (57), (58) and (59).

Let µ be the measure defined by dµ = |dv̂| + dt. Since dv̂ and
dt are absolutely continuous with respect to dµ there exists a dµ
negligible set A such that, for all t ∈ [0, T ] \A:

dt

dµ
(t) = lim

ε→0+

dt([t, t+ ε])

dµ([t, t+ ε])
and

dv̂

dµ
(t) = lim

ε→0+

dv̂([t, t+ ε])

dµ([t, t+ ε])
.

Assume that v̂ is continuous at t and let y ∈ intV (q(t)). Then due
to lower semicontinuity of q 7→ V (q) and absolute continuity of
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t 7→ q(t), y ∈ V (q(τ)) for all τ ∈ Iε := [t, t + ε]. Due to the
variational inequality (53), we get∫ t+ε

t

〈−g(σ, v̂), (y − v̂)〉+

〈
Ṁ(σ)v̂(σ),

(
y − v̂

2

)〉
dσ ≤

〈M(q(t+ ε))v̂(t+ ε)−M(q(t))v̂(t), y〉

− 1

2

(
|v̂(t+ ε)|2M(q(t+ε)) − |v̂(t)|2M(q(t))

)
. (60)

Divide both sides by dµ([t, t+ ε]). When ε→ 0, the left-hand side
of (60) converges to

dt

dµ

[
〈−g(t, v̂(t)), y − v̂(t)〉+

〈
Ṁ(t)v̂(t), y − 1

2
v̂(t)

〉]
.

The first term on the right-hand side of (60) becomes

1

dµ(Iε)
〈M(q(t+ ε))v̂(t+ ε)−M(q(t))v̂(t), y〉

=
〈M(q(t))dv̂(Iε), y〉

dµ(Iε)
+

1

dµ(Iε)

〈∫ t+ε

t

Ṁ(s) ds v̂(t+ ε), y

〉
−→
ε→0

〈
M(q(t))

dv̂

dµ
(t), y

〉
+
〈
Ṁ(t)v̂(t), y

〉 dt

dµ
,

and the second term on the right-hand side of (60) becomes

1

2dµ(Iε)

[
〈M(q(t+ ε))v̂(t+ ε), dv̂(Iε)〉+ 〈M(q(t))dv̂(Iε), v̂(t)〉

+

〈∫ t+ε

t

Ṁ(s) ds v̂(t+ ε), v̂(t)

〉]
−→
ε→0

〈
M(q(t))

dv̂

dµ
(t), v̂(t)

〉
+

〈
Ṁ(t)v̂(t),

v̂(t)

2

〉
dt

dµ
.

Thus, in the limit, (60) leads to, ∀ y ∈ intV (q(t)),〈
M(q(t))

dv̂

dµ
(t) + g(t, v̂(t))

dt

dµ
(t), y − v̂(t)

〉
≤ 0.

From the definition of NV (q(t))(·), and using the density argument,
it follows that v̂(·) satisfies the differential inclusion (17) at the
continuity points of v̂(·).

D. Impact characterization of the limit solution

Let tk ∈ [0, T ] be the time instant at which V (q(tk)) 6= Rn.
If v̂(t−k ) ∈ V (q(tk)), then v̂(t+k ) = v̂(t−k ). This is a straight-
forward consequence of the variational inequality (53). Indeed, let
y ∈ intV (q(tk)) then y ∈ V (q(t)) for all t ∈ [tk − δ, tk + δ] and
some δ > 0. Applying the inequality (53) with s = tk−δ, t = tk+δ,
and letting δ → 0, we get〈

M(q(tk))(v̂(t+k )− v̂(t−k )), y
〉

− 1

2

(
|v̂(t+k )|M(q(tk)) − |v̂(t−k )|M(q(tk))

)
≥ 0.

By density, the same inequality holds for all y ∈ intV (q(tk)).
Picking y = v̂(t−k ) gives

|v̂(t+k )− v̂(t−k )|2 ≤ 0 ⇒ v̂(t+k ) = v̂(t−k ).

Next, consider the case where v̂(t−k ) 6∈ V (q(tk)). We use the
shorthand notation v̂+ := v̂(t+k ) and v̂− := v̂(t−k ), and show that
the following impact law holds:

v̂+ = −ev̂− + (1 + e) projM(q(tk))(v̂
−, V (q(tk))).

Define ũk := −ev̂(t−k ) + (1 + e) projM(q(tk))(v̂(t−k ), V (q(tk))).
Consider the partition P that contains the node tP,kd = tk for some

kd ∈ R. By definition,

|v̂P(tk)− ũ|
= e|v̂P,kd−1 − v−|

+ (1 + e)

∣∣∣∣projMP,kd

[
v̂P,kd−1 −

1

1 + e
M−1
P,kdGP,kd ;V (q(tk))

]
− projMP,kd

[
v̂−;V (q(tk))

]∣∣∣∣
≤ e|v̂P,kd−1 − v−|

+ (1 + e)

√
λM

∣∣∣∣v̂P,kd−1 −
1

1 + e
M−1
P,kdGP,kd − v

−
∣∣∣∣

≤ (

√
λM + e)|v̂P,kd−1 − v̂−|+

√
λM
λM

|GP,kd |. (61)

The pointwise convergence (25) implies the existence of some filter
F such that, for all P ∈ F , we have t′, tk ∈ P where t′ is such that
|v̂(t′)− v̂(t−k )| < ε

3
, |v̂P(t′)− v̂(t′)| < ε

3
and tk− t′ < ε

3Cvar
; then∣∣v̂P,kd−1 − v̂(t−k )

∣∣ ≤ |v̂P,kd−1 − v̂P(t′)|+ |v̂P(t′)− v̂(t′)|
+ |v̂(t′)− v̂(t−k )|

≤ Var(v̂P ; [t′, tk)) +
2

3
ε ≤ Cvar(tk − t′) +

2

3
ε

< ε. (62)

Substituting (62) in (61), and taking the limit, we obtain

|v̂(tk)− ũk| < ε

for every ε > 0, whence the desired result follows.

IX. CONCLUSIONS

The problem of designing asymptotically convergent state estima-
tors for nonsmooth mechanical systems with frictionless unilateral
constraints and impacts is considered in this paper. As a solution,
we propose a class of estimators described by differential inclusions.
The existence and uniqueness of solutions for these estimators is
rigorously established. The error analysis (for the convergence of
velocity estimate) is based on generalizing the Lyapunov techniques
to functions of locally bounded variation, which also allow for accu-
mulations of impacts (Zeno phenomenon). Also, under the umbrella
of these general estimators, we design a full-order observer that
constructs estimates of position and velocity variables, and a reduced-
order observer for estimation of the velocity variable only.

Several directions of research could stem from the current work.
As a first extension, we would like to generalize our result for more
complex domains which are not necessarily characterized by the
sublevel sets of continuously differentiable functions. Afterwards,
we would also like to study the performance of the proposed state
estimate in designing controllers that only use the information of the
output and not the full state.
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APPENDIX

Lemma A.1 (Moreau’s Two-Cone Lemma). If V and V ◦ denote
a pair of mutually polar closed convex cones of a Euclidean linear
space Rn, then the following statements are equivalent for x, y, z ∈
Rn,
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• x = proj(z;V ) and y = proj(z, V ◦)

• z = x+ y, x ∈ V , y ∈ V ◦, and 〈x, y〉 = 0.

Theorem A.2 (Generalization of Helly’s first theorem [22, Theo-
rem 0.2.2]). Let (uα) be a generalized sequence or net of functions
of bounded variation from the interval [0, T ] to a Hilbert space H .
Assume that the norm and the variation of uα are uniformly bounded,
that is, there exist Cmax and Cvar such that

‖uα‖ ≤ Cmax and Var(uα; [0, T ]) ≤ Cvar

then there is a filter F finer than the filter of the sections of the index
set (that is, there exists a subnet extracted from the given net) and
there exists a function of bounded variation u : [0, T ] → H that
satisfies

weak-lim
F

uα = u andVar(u; [0, T ]) ≤ Cvar.

In the foregoing result if the Hilbert space H into consideration is
finite dimensional then the convergence is uniform, that is,

lim ‖uα − u‖ = 0.
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