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ABSTRACT
This paper presents a characterization of observability and
an observer design method for a class of hybrid systems.
A necessary and sufficient condition is presented for ob-
servability, globally in time, when the system evolves under
predetermined mode transitions. A relatively weaker char-
acterization is given for determinability, the property that
concerns with recovery of the original state at some time
rather than at all times. These conditions are then utilized
in the construction of a hybrid observer that is feasible for
implementation in practice. The observer, without using the
derivatives of the output, generates the state estimate that
converges to the actual state under persistent switching.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Engineering

General Terms
Algorithms, Theory
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1. INTRODUCTION
This paper studies observability conditions and observer

construction for a class of hybrid systems where the con-
tinuous dynamics are modeled as linear differential equa-
tions; the state trajectories exhibit jumps during their evo-
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lution; and discrete dynamics are represented by an exoge-
nous switching signal. Often called switched systems, they
are described mathematically as:

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), t �= {tq}, (1a)

x(tq) = E
σ(t−q )

x(t−q ) + F
σ(t−q )

vq , q ≥ 1, (1b)

y(t) = Cσ(t)x(t) +Dσ(t)u(t), t ≥ t0, (1c)

where x(t) ∈ R
n is the state, y(t) ∈ R

dy is the output,
vq ∈ R

dv and u(t) ∈ R
du are the inputs, and u(·) is a measur-

able function. The switching signal σ : R �→ N (set of natural
numbers) is a piecewise constant and right-continuous func-
tion that changes its value at switching times {tq}, q ∈ N.
It is assumed that there are a finite number of switching
times in any finite time interval, thus we rule out the Zeno
phenomenon in our problem formulation. The switching
mode σ(t) and the switching times {tq} may be governed
by a supervisory logic controller, or determined internally
depending on the system state, or considered as an external
input. In any case, it is assumed in this paper that the sig-
nal σ(·) (and thus, the active mode and the switching time
{tq} as well) is known over the interval of interest. For esti-
mation of the switching signal σ(t), one may be referred to,
e.g., [4, 7,13,14].

In the past decade, the structural properties of hybrid
systems have been investigated by many researchers and ob-
servability along with observer construction has been one of
them. In hybrid systems, the observability can be studied
from various perspectives. If we allow for the use of the dif-
ferential operator in the observer, then it may be desirable
to determine the continuous state of the system instanta-
neously from the measured output. This in turn requires
each subsystem to be observable, however, the problem be-
comes nontrivial when the switching signal is treated as a
discrete state and simultaneous recovery of the discrete and
continuous state is required for observability. Some results
on this problem are published in [2,6,13].

On the other hand, if the mode transitions are represented
by a known switching signal then, even though the individual
subsystems are not observable, it is still possible to recover
the initial state x(t0) when the output is observed over an in-
terval [t0, T ) that involves multiple switching instants. This
phenomenon is of particular interest for switched systems
as the notion of instantaneous observability and observabil-
ity over an interval1 coincide for linear time invariant sys-

1See Definition 1 for precise meaning.



tems. This variant of the observability in switched systems
has been studied most notably by [3, 11, 16]. The authors
in [8, 9] have studied the observability problem for the sys-
tems that allow jumps in the states but they do not consider
the change in the dynamics that is introduced by switching
to different matrices associated with the active mode. The
observer design has also received some attention in the lit-
erature [1,4,10], where the authors have assumed that each
mode in the system is in fact observable admitting a state
observer, and have treated the switching as a source of per-
turbation effect. This approach immediately incurs the need
of a common Lyapunov function for the switched error dy-
namics, or a fixed amount of dwell-time between switching
instants, because it is intrinsically a stability problem of the
error dynamics.

The approach adopted in this paper is similar to [3, 16]
in the sense that we consider observability over an interval.
The authors in [3] have presented a coordinate dependent
sufficient condition that leads to observer construction; the
work of [16] primarily addresses the question whether there
exists a switching signal which makes it possible to recover
x(t0) from the knowledge of the output. Whereas, in this
paper, similar to our recent work in [12], the switching sig-
nal is considered to be known and fixed, so that the trajec-
tory of the system satisfies a time varying linear differential
equation. Then for that particular trajectory, we answer
the question whether it is possible to recover x(t0) from the
knowledge of the measured output. We present a necessary
and sufficient condition for observability over an interval,
which is independent of coordinate transformations. Since
this condition depends upon the switching times and re-
quires computation of the state transition matrices, we also
provide easily verifiable conditions that are either necessary
or sufficient for the main condition. Also, with a similar
tool set, the notion of determinability, which is more in the
spirit of recovering the current state based on the knowledge
of inputs and outputs in the past, is developed. Moreover,
a hybrid observer for system (1) is designed based on the
proposed necessary and sufficient condition which was not
the case in [16]. Since the observers are useful for various
engineering applications, their utility mainly lies in their on-
line operation method. This thought is essentially rooted in
the idea for observer construction adopted in this paper:
the idea of combining the partial information available from
each mode and collecting them at one instance of time to
get the estimate of the state. We show that under mild as-
sumptions, such an estimate converges to the actual state
of the plant. We remark that the main contribution of this
paper is to present a characterization of observability and
an observer design for the systems represented by (1). To
the best of authors’ knowledge, the considered class of lin-
ear systems is the most general for this purpose because it
combines both the state jumps and mode switchings.

More emphasis will be given to the case when the indi-
vidual modes of the system (1) are not observable (in the
classical sense of linear time-invariant systems theory) since
it is obvious that the system becomes immediately observ-
able when the system is switched to the observable mode.
In such cases, switching signal plays a pivotal role as the
observability of the switched system not only depends upon
the mode sequence but also the switching times. In order
to facilitate our understanding of this matter, let us begin
with an example.

Example 1. Consider a switched system characterized
by:

A1 =

[
0 0
0 0

]
, A2 =

[
0 1
−1 0

]
C1 =

[
1 0

]
, C2 =

[
0 0

]
with Ei = I , Fi = 0, Bi = 0, and Di = 0 for i ∈ {1, 2}.
It is noted that neither of the pair (A1, C1) or (A2, C2) is
observable. However, if the switching signal σ(t) changes its
value in the order of 1 → 2 → 1 at times t1 and t2, then we
can recover the state. In fact, it turns out that at least two
switchings are necessary and the switching sequence should
contain the subsequence of modes {1, 2, 1}. For instance,
if the switching happens as 1 → 2 → 1, the output y at
time t−1 (just before the first switching) and t2 (just after
the second switching) are: y(t−1 ) = C1x(t

−
1 ) = x1(t0), and

y(t2) = C1e
A2τx(t0) = cos τ · x1(t0) + sin τ · x2(t0), where

x(t0) = [x1(t0), x2(t0)]
� is the initial condition and τ =

t2 − t1. Then, it is obvious that x(t0) can be recovered from
two measurements y(t−1 ) and y(t2) if τ �= kπ with k ∈ N. On
the other hand, any switching signal whose duration for the
mode 2 is an integer multiple of π is a ‘singular’ switching
signal (see Remark 1 for the meaning of singular switching
signals).

Notation: For a square matrix A and a subspace V, we de-
note by 〈A|V〉 the smallest A-invariant subspace containing
V, and by 〈V|A〉 the largest A-invariant subspace contained
in V. (See Property 7 in the Appendix for their computa-
tion.) With a matrix A, R(A) denotes the column space
(range space) of A. For a possibly non-invertible matrix
A, the pre-image of a subspace V through A is given by
A−1V = {x : Ax ∈ V}. Let kerA := A−1{0}, then it is
seen that A−1 kerC = ker(CA) for a matrix C. For con-
venience of notation, let A−�V := (A�)−1V where A� is
the transpose of A, and it is understood that A−1

2 A−1
1 V =

A−1
2 (A−1

1 V). Also, we denote the products of matrices Ai

as
∏k

i=j
Ai := AjAj+1 · · ·Ak when j < k, and

∏k

i=j
Ai :=

AjAj−1 · · ·Ak when j > k. The notation col(A1, . . . , Ak)
means the vertical stack of matrices A1, · · · , Ak, that is,
[A�1 , . . . , A

�
k ]
�.

2. GEOMETRIC CONDITIONS FOR
OBSERVABILITY

To make precise the notions of observability and deter-
minability considered in this paper, let us introduce the for-
mal definitions.

Definition 1. Let (σi, ui, vi, yi, xi), for i = 1, 2, be the
signals that satisfy (1) over an interval2 [t0, T

+). We say
that the system (1) is [t0, T

+)-observable if the equality
(σ1, u1, v1, y1) = (σ2, u2, v2, y2) implies that x1(t0) = x2(t0).
Similarly, the system (1) is said to be [t0, T

+)-determinable

2The notation [t0, T
+) is used to denote the interval [t0, T +

ε), where ε > 0 is arbitrarily small. In fact, because of
the right continuity of the switching signal, the output y(T )
belongs to the next mode when T is the switching instant.
Then, the point-wise measurement y(T ) is insufficient to
contain the information for the new mode, and thus, it is
imperative to consider the output signal over the interval
[t0, T + ε) with ε > 0. This definition implicitly implies that
the observability property does not change for sufficiently
small ε (which is true, and becomes clear shortly).



if the equality (σ1, u1, v1, y1) = (σ2, u2, v2, y2) implies that
x1(T ) = x2(T ).

Since the initial state x(t0), the switching signal σ, and the
inputs (u, v) uniquely determine x(t) on [t0, T

+) by (1), ob-
servability is achieved if and only if the state trajectory x(t),
for each t ∈ [t0, T

+), is uniquely determined by the inputs,
the output, and the switching signal. Obviously, observabil-
ity implies determinability by forward integration of (1),
but the converse is not true due to the possibility of non-
invertible matrices Eσ. In case there is no jump map (1b),
or each Eσ is invertible, observability and determinability
are equivalent. The notion of determinability has also been
called reconstructability in [11].

Proposition 1. For a switching signal σ, the system (1)
is [t0, T

+)-observable (or, determinable) if, and only if, zero
inputs and zero output on the interval [t0, T

+) imply that
x(t0) = 0 (or, x(T ) = 0).

Proof. Since the zero solution with the zero inputs yields
the zero output, the necessity follows from the fact that x(t0)
(or, x(T )) is uniquely determined from the inputs and the
outputs. For the sufficiency, suppose that the system (1)
is not [t0, T

+)-observable (or determinable); that is, there
exist two different states x1(t0) and x2(t0) (or, x1(T ) and
x2(T )) that yield the same output y under the same inputs
(u, v). Let x̃(t) := x1(t) − x2(t), where xi(t), i = 1, 2, is
the solution of (1) which takes the value xi(t0) at initial
time t0 (or, xi(T ) at terminal time T ). Then, by linearity, it
follows that ˙̃x = Aσx̃, x̃(tq) = Eσx̃(t

−
q ), and Cσx̃ = Cσx

1 −
Cσx

2 = y − y = 0, but x̃(t0) = x1(t0) − x2(t0) �= 0 (or,
x̃(T ) = x1(T ) − x2(T ) �= 0). Hence, zero inputs and zero
output do not imply x(t0) = 0 (or, x(T ) = 0), and the
sufficiency holds.

Because of Proposition 1, we are motivated to introduce
the following homogeneous switched system, which has been
obtained by setting the inputs (u, v) equal to zero in (1):

ẋ(t) = Aσ(t)x(t), y(t) = Cσ(t)x(t), t ∈ [tq−1, tq) (2a)

x(tq) = Eσ(t)x(t
−
q ). (2b)

If this homogeneous system is observable (or, determinable)
with a given σ, then y ≡ 0 implies that x(t0) = 0 (or,
x(T ) = 0), and in terms of description of system (1), this
means that zero inputs and zero output yield x(t0) = 0 (or,
x(T ) = 0); hence, (1) is observable (or, determinable) be-
cause of Proposition 1. On the other hand, if the system (1)
is observable (or, determinable), then it is still observable
(or, determinable) with zero inputs, which is described as
system (2). Thus, the observability (or, determinability) of
systems (1) and (2) are equivalent.

Before going further, let us rename the switching sequence
for convenience. For system (1), when the switching signal
σ(t) takes the mode sequence {q1, q2, q3, · · · }, we rename
them as increasing integers {1, 2, 3, · · · }, which is ever in-
creasing even though the same mode is revisited; for con-
venience, this sequence is indexed by q and not by σ(t).
Moreover, it is often the case that the mode of the system
changes without the state jump (1b), or the state jumps
without switching to another mode. In the former case, we
can simply take Eq = I and Fq = 0, and in the latter case,
we increase the mode index by one and take Aq = Aq+1,
Bq = Bq+1 and so on. In this way various situations fit into

the description of (1) with increasing mode sequence. The
switching time tq is the instant when transition from mode
q to mode q + 1 takes place.

2.1 Necessary and Sufficient Conditions for
Observability

In this section, we present a characterization of the unob-
servable subspace for the system (2) with a given switching
signal. Towards this end, let Nm

q (m ≥ q) denote the set
of states at t = tq−1 for system (2) that generate identically
zero output over [tq−1, t

+
m−1). Then, it is easily seen that

Nm
q is actually a subspace due to linearity of (2), and we

callNm
q the unobservable subspace for [tq−1, t

+
m−1). It can be

seen that the system (2) is an LTI system between two con-
secutive switching times, so that its unobservable subspace
on the interval [tq−1, tq) is simply given by the largest Aq-
invariant subspace contained in kerCq, i.e., 〈kerCq|Aq〉 =
kerGq where Gq := col(Cq, CqAq, · · · , CqA

n−1
q ). So it is

clear that N q
q = kerGq . Now, when the measured output is

available over the interval [tq−1, t
+
m−1) that includes switch-

ings at tq, tq+1, . . . , tm−1, more information about the state
is obtained in general so that Nm

q gets smaller as the differ-
ence m− q gets larger, and we claim that the subspace Nm

q

can be computed recursively as follows:

Nm
m = kerGm,

Nm
q = kerGq ∩ e−AqτqE−1

q Nm
q+1, 1 ≤ q ≤ m− 1,

(3)

where τq = tq − tq−1. The following theorem presents a
necessary and sufficient condition for observability of the
system (1) while proving the claim in the process.

Theorem 1. For the system (2) with a switching sig-
nal σ

[t0,t
+

m−1
)
, the unobservable subspace for [t0, t

+
m−1)

at t0 is given byNm
1 from (3). Therefore, the system (1)

is [t0, t
+
m−1)-observable if, and only if,

Nm
1 = {0}. (4)

From (3), it is not difficult to arrive at the following formula
for Nm

q :

Nm
q = kerGq ∩

(
m⋂

i=q+1

i−1∏
j=q

e−AjτjE−1
j kerGi

)
(5a)

= kerGq ∩

(
m⋂

i=q+1

ker

(
Gi

q∏
l=i−1

Ele
Alτl

))
. (5b)

From this expression, it is easily seen that Nm1

1 ⊇ Nm2

1 if
m1 ≤ m2. Therefore, in case the interval under considera-
tion is not finite and the switching is persistent, observabil-
ity of system (1) is determined by whether there exists an
m ∈ N such that (4) holds.

Proof of Theorem 1. Sufficiency. Using the result of
Proposition 1, it suffices to show that the identically zero
output of (2) implies x(t0) = 0. Assume that y ≡ 0 on
[t0, t

+
m−1). Then, it is immediate that x(tm−1) ∈ Nm

m =
kerGm. We next apply the inductive argument to show
that x(tq−1) ∈ Nm

q for 1 ≤ q ≤ m − 1. Suppose that

x(tq) ∈ Nm
q+1, then x(tq−1) ∈ e−AqτqE−1

q Nm
q+1 since x(t)



is the solution of (2). Zero output on the interval [tq−1, tq)
also implies that x(tq−1) ∈ kerGq. Therefore,

x(tq−1) ∈ kerGq ∩ e−AqτqE−1
q Nm

q+1.

From (3), it follows that x(tq−1) ∈ Nm
q . This induction

proves the claim that Nm
q is given by (3). With q = 1, it is

seen that x(t0) ∈ Nm
1 = {0}, which proves the sufficiency.

Necessity. Assuming that Nm
1 �= {0}, we show that a

non-zero initial state x(t0) ∈ Nm
1 yields the solution of (2)

such that y ≡ 0 on [t0, t
+
m−1), which implies unobservability.

First, we show the following implication;

x(tq−1) ∈ Nm
q ⇒ x(tq) ∈ Nm

q+1, q < m. (6)

Indeed, assuming that x(tq−1) ∈ Nm
q with q < m, it follows

that, x(tq) = Eqe
Aqτqx(tq−1), which further gives,

x(tq) ∈ Eqe
AqτqNm

q

= Eqe
Aqτq

(
kerGq ∩ e−AqτqE−1

q Nm
q+1

)
⊆ Eq kerGq ∩EqE

−1
q Nm

q+1

= Eq kerGq ∩Nm
q+1 ∩R(Eq) ⊆ Nm

q+1

by using (3) and Properties 2, 3, and 11 in the Appendix.
Therefore, for 0 ≤ q ≤ m − 1, x(tq) ∈ Nm

q+1 ⊆ kerGq+1,

and the solution x(t) = eAq+1(t−tq)x(tq) for t ∈ [tq , tq+1)
satisfies that y(t) = Cq+1x(t) = 0 for t ∈ [tq, tq+1) due to
Aq+1-invariance of kerGq+1.

Remark 1. The observability condition (4) given in The-
orem 1 is dependent upon a particular switching signal under
consideration, and it is entirely possible that the system is
observable for certain switching signals and unobservable for
others (cf. Example 1). Note that a switching signal is com-
posed of a mode sequence and switching times. We call a
switching signal σ singular when the observability condition
(4) does not hold with σ, but the condition happens to hold
by changing the switching times of σ while preserving the
mode sequence.

In order to inspect the observability of the system (2), one
can compute Nm

1 by (5) (the formula (5b) may be prefer-
able because the computation of pre-image due to E−1

j is
avoided). However, the computation of matrix exponent
may be heavy in practice (especially for large dimensional
systems) and one may want to resort to the following suf-
ficient, or necessary conditions, which are independent of
switching times and only take mode sequence into consid-
eration. Hence, once the sufficient condition in Corollary 1
holds (respectively, the necessary condition in Corollary 2
is violated), then the system is observable (resp. unobserv-
able) for any switching signal that has the same switching
mode sequence regardless of the switching times.

Corollary 1. Let N
m

1 be an over-approximation of Nm
1

that is defined as follows:

N
m

m := kerGm,

N
m

q :=
〈
Aq| kerGq ∩E−1

q N
m

q+1

〉
, 1 ≤ q ≤ m− 1.

The system (1) is [t0, t
+
m−1)-observable if N

m

1 = {0}.

Proof. The proof is completed by showing that Nm
q ⊆

N
m

q for 1 ≤ q ≤ m. First, note that Nm
m = N

m

m. Assum-

ing that Nm
q+1 ⊆ N

m

q+1 for 1 ≤ q ≤ m − 1, we now claim

that Nm
q ⊆ N

m

q . Indeed, by Properties 3, 9, and 11 in the
Appendix, and the recursion equation (3), we obtain

Nm
q = kerGq ∩ e−AqτqE−1

q Nm
q+1

= e−Aqτq
(
kerGq ∩E−1

q Nm
q+1

)
⊆
〈
Aq| kerGq ∩ E−1

q Nm
q+1

〉
⊆
〈
Aq| kerGq ∩ E−1

q N
m

q+1

〉
= N

m

q , 1 ≤ q ≤ m− 1.

Therefore, the condition N
m

1 = {0} implies (4).

Corollary 2. Let Nm
1 be an under-approximation of

Nm
1 that is defined as follows:

Nm
m := kerGm,

Nm
q :=

〈
kerGq ∩E−1

q Nm
q+1|Aq

〉
, 1 ≤ q ≤ m− 1.

If system (1) is [t0, t
+
m−1)-observable, then Nm

1 = {0}.

Proof. The proof proceeds similar to Corollary 1. With
Nm

m = Nm
m, we assume thatNm

q+1 ⊇ Nm
q+1 for 1 ≤ q ≤ m−1,

and claim that Nm
q ⊇ Nm

q . Again by Properties 3, 9, and
11 in the Appendix, and employing equation (3), we obtain

Nm
q = e−Aqτq

(
kerGq ∩E−1

q Nm
q+1

)
⊇
〈
kerGq ∩E−1

q Nm
q+1|Aq

〉
⊇
〈
kerGq ∩E−1

q Nm
q+1|Aq

〉
= Nm

q , 1 ≤ q ≤ m− 1.

The condition Nm
1 = {0} is implied by (4).

Remark 2. By taking orthogonal complements of Nm
q ,

N
m

q and Nm
q , respectively, we get dual conditions, using

Properties 5, 6, 8, and 10 in the Appendix, as follows. The
system (1) is [t0, t

+
m−1)-observable if and only if Pm

1 = R
n

where

Pm
1 := (Nm

1 )⊥ = R(G�1 ) +
m∑
i=2

i−1∏
j=1

eA
�

j τjE�j R(G�j ).

Based on the above definition, one can state Corollary 1
and Corollary 2 in alternate forms. System (1) is [t0, t

+
m−1)-

observable if Pm
1 = R

n, where Pm
1 is computed as:

Pm
m = (N

m

m)⊥ = R(G�m)

Pm
q = (N

m

q )⊥ =
〈
R(G�q ) + E�q Pm

q+1|A
�
q

〉
, 1 ≤ q ≤ m− 1.

Also, if system (1) is [t0, t
+
m−1)-observable then P

m

1 = R
n,

where P
m

1 is defined sequentially as:

P
m

m = (Nm
m)⊥ = R(G�m)

P
m

q = (Nm
q )⊥ =

〈
A�q |R(G�q ) + E�q P

m

q+1

〉
, 1 ≤ q ≤ m− 1.

2.2 Necessary and Sufficient Conditions for
Determinability

In order to study determinability of the system (1) and
arrive at a result parallel to Theorem 1, our first goal is to
develop an object similar to Nm

q . So, for system (2) with a
given switching signal, let Qm

q be the set of states that can
be reached at time t = tm−1 while producing the zero output
on the interval [tq−1, t

+
m−1). We call Qm

q the undeterminable

subspace for [tq−1, t
+
m−1). Then, it can be shown, similarly



to the proof of Theorem 1, that Qm
q is computed recursively

as follows:

Qq
q = kerGq

Qk
q = kerGk ∩ Ek−1e

Ak−1τk−1Qk−1
q , q + 1 ≤ k ≤ m.

(7)

These sequential definitions lead to following expression for
Qm

q :

Qm
q = kerGm ∩ Em−1 ker(Gm−1) ∩(

m−2⋂
i=q

i+1∏
l=m−1

Ele
AlτlEi kerGi

)
,

(8)

with Qq
q = kerGq . In the above equation, the subspace

(Πi+1
l=m−1Ele

AlτlEi kerGi) indicates the set of states at time
t = tm−1 obtained by propagating the unobservable state of
the mode i, that is active during the interval [ti−1, ti), under
the dynamics of system (2). Intersection of these subspaces
with kerGm shows that Qm

q is the set of states that cannot
be determined from the zero output at time t = tm−1. Then,
the determinability can be characterized as in the following
theorem (which is given without proof).

Theorem 2. For the system (2) and a given switch-
ing signal σ

[t0,t
+

m−1
)
, the undeterminable subspace for

[t0, t
+
m−1) at tm−1 is given by Qm

1 of (8). Therefore, the

system (1) is [t0, t
+
m−1)-determinable if and only if

Qm
1 = {0}. (9)

The condition (9) is equivalent to (4) when all Eq matrices,
q = 1, . . . ,m− 1, are invertible because of the relation

Qm
1 =

1∏
l=m−1

Ele
AlτlNm

1 .

On the other hand, if any of the jump maps Eq is a zero
matrix, then (9) holds regardless of (4) (which makes sense
because we can immediately determine that x(tm−1) = 0 in
this case).

The recursive expression (7) shows that the sequence {Q1
1,

Q2
1, Q

3
1, · · · } is moving forward in the sense that Qk+1

1 is
computed from Qk

1 and from the information about the run-
ning mode k such as Gk+1, Ek, Ak, and τk. This fact il-
lustrates that the computation of Qm

1 is more suitable for
online implementation (since m increases as time sets for-
ward), compared to the computation of Nm

1 , which requires
a backward computation from Nm

m (see (3)).

Corollary 3. The system (1) is [t0, t
+
m−1)-determinable

if Q
m

1 = {0}, where Q
m

1 is computed by

Q
1
1 := kerG1

Q
q

1 := Eq−1

〈
Aq−1|Q

q−1
1

〉
∩ kerGq, 2 ≤ q ≤ m.

Corollary 4. If system (1) is [t0, t
+
m−1)-determinable,

then Qm

1
= {0}, where Qm

1
is computed by

Q1

1
:= kerG1

Qq

1
:= Eq−1

〈
Qq−1

1
|Aq−1

〉
∩ kerGq , 2 ≤ q ≤ m.

The above corollaries are proved by showing thatQq

1
⊆ Qq

1 ⊆

Q
q

1. It is noted again that the computation of sequential
subspaces in Corollary 3 and Corollary 4 proceeds forward
in time.

Remark 3. An alternative dual characterization of de-
terminability is possible by inspecting whether the complete
state information is available while going forward in time.
This is achieved in terms of the subspace Mm

q , obtained
by taking the orthogonal complement of Qm

q . Using Proper-
ties 5, 6, 8, and 10 in the Appendix, the following expression
follows from (8):

Mm
q := (Qm

q )⊥ =

m−2∑
i=q

i+1∏
l=m−1

E−�l e−A�l τlE−�i R(G�i )

+ E−�m−1R(G�m−1) +R(G�m).

(10)

In other words, Mm
q is the set of states at time instant

t = tm−1 that can be identified, modulo the unobservable
subspace at tm−1, from the information of y over the inter-
val [tq−1, t

+
m−1). Therefore, the dual statement for deter-

minability is that the system (1) is [t0, t
+
m−1)-determinable

if and only if

Mm
1 = R

n. (11)

It is noted that a recursive expression for Mm
1 is given by

M1
1 = R(G�1 )

Mq
1 = E−�q−1e

−A�q−1τq−1Mq−1
1 +R(G�q ), 2 ≤ q ≤ m,

and the dual statements of Corollaries 3 and 4, that are inde-
pendent of switching times, are given as follows: system (1)
is [t0, t

+
m−1)-determinable if Mm

1 = R
n, where

M1
1 := (Q

m

1 )⊥ = R(G�1 ),

Mq
1 := (Q

q

1)
⊥ = E−�q−1

〈
Mq−1

1 |A�q−1

〉
+R(G�q ), 2 ≤ q ≤ m.

Similarly, if system (1) is [t0, t
+
m−1)-determinable thenM

m

1 =

R
n, where M

m

1 is computed as follows:

M
1
1 := (Qm

1
)⊥ = R(G�1 ),

M
q

1 := (Qq

1
)⊥ = E−�q−1

〈
A�q−1|M

q−1
1

〉
+R(G�q ), 2 ≤ q ≤ m.

3. OBSERVER DESIGN
In engineering practice, an observer is designed to pro-

vide an estimate of the actual state value at current time.
In this regard, determinability (weaker than observability
according to Definition 1) is a suitable notion. Based on the
conditions obtained for determinability in the previous sec-
tion, an asymptotic observer is designed for the system (1)
in this section. By asymptotic observer, we mean that the
estimate x̂(t) converges to the plant state x(t) as t → ∞,
and in order to achieve this convergence, we introduce the
following assumptions.

Assumption 1. 1. The switching is persistent in the
sense that there exists a D > 0 such that a switch
occurs at least once in every time interval of length D;
that is,

tq − tq−1 < D, ∀ q ∈ N. (12)



2. The system is persistently determinable in the sense
that there exists an N ∈ N such that

dimMq
q−N = n, ∀ q ≥ N + 1. (13)

(The integer N is interpreted as the minimal number
of switches required to gain determinability.)

3. ‖Aq‖ is uniformly bounded for all q ∈ N (which is
always the case when Aq belongs to a finite set).

We disregard the time consumed for computation by as-
suming that the data processor is fairly fast compared to the
plant process. The computation time, however, needs to be
considered in real-time application if the plant itself is fast.

The observer we propose is a hybrid dynamical system of
the form

˙̂x(t) = Aqx̂(t) +Bqu(t), t ∈ [tq−1, tq), (14a)

x̂(tq) = Eq(x̂(t
−
q )− ξq(t

−
q )) + Fqvq, q ≥ 1, (14b)

ξq(t
−
q ) =

{
Lq(y[tq−N−1,tq), u[tq−N−1,tq), v[q−N,q−1]), q > N,
0, 1 ≤ q ≤ N,

(14c)

with an arbitrary initial state x̂(t0) ∈ R
n, where v[q−N,q−1]

denotes the vector [vq−N , vq−N+1, . . . , vq−1]
�. It is seen that

the observer consists of a system copy and an estimate up-
date law by some operator Lq. So the goal is to design the
operator Lq such that x̂(t) → x(t). It will turn out that
the proposed operator Lq consists of dynamic observers for
partial states at each mode, a procedure for accumulating
the partial state information, and an inversion formula for
recovering full state information. In the sequel, we develop
the structure of the operator Lq and based on that, a pro-
cedure for implementation of hybrid observer is outlined in
Algorithm 1. It is then shown in Theorem 3 that the state
estimates computed according to the parameter bounds in
Algorithm 1 indeed converge to the actual state of the sys-
tem.

With x̃ := x̂− x, the error dynamics are described by,

˙̃x(t) = Aqx̃(t), t �= tq, (15a)

x̃(tq) = Eq(x̃(t
−
q )− ξq(t

−
q )). (15b)

The output error can now be defined as ỹ(t) := Cqx̂(t) +
Dqu(t)− y(t) = Cqx̃(t).

Based on the description of error dynamics, we design
partial observers for each mode q using the idea similar to
Kalman observability decomposition [5]. Choose a matrix
Zq such that its columns are an orthonormal basis ofR(G�q ),

so that R(Zq) = R(G�q ). Further, choose a matrix W q such
that its columns are an orthonormal basis of kerGq. From
the construction, there are matrices Sq ∈ R

rq×rq and Rq ∈
R

dy×rq , where rq = rankGq , such that Zq�Aq = SqZ
q� and

Cq = RqZ
q�, and that the pair (Sq, Rq) is observable. Let

zq := Zq�x̃ and wq := W q�x̃, so that zq (resp. wq) denotes
the observable (resp. unobservable) states of mode q. Thus,
for the interval [tq−1, tq), we obtain,

żq = Zq�Aqx̃ = Sqz
q, ỹ = Cqx̃ = Rqz

q, (16a)

zq(tq−1) = Zq�x̃(tq−1). (16b)

Since zq is observable over the interval [tq−1, tq), a standard
Luenberger observer, whose role is to estimate zq(t−q ) at the

end of the interval, is designed as:

˙̂zq = Sq ẑ
q + Lq(ỹ −Rq ẑ

q), t ∈ [tq−1, tq), (17a)

ẑq(tq−1) = 0, (17b)

where Lq is a matrix such that (Sq−LqRq) is Hurwitz. Note
that we have fixed the initial condition of the estimator to
be zero for each interval.

Let us denote the vector [τi+1, · · · , τj ] simply by τ{i+1,j}

(where j > i), which will be often dropped when used as an
argument for succinct presentation. With j > i, define the
state-transport matrix

Ψj
i (τ{i+1,j}) := eAjτjEj−1e

Aj−1τj−1Ej−2 · · · e
Ai+1τi+1Ei,

(18)
and for convenience Ψi

i := I . We now define a matrix
Θq

i (τ{i+1,q}) whose columns form a basis of the subspace

R(Ψq
i (τ{i+1,q})W

i)⊥; that is,

R(Θq
i (τ{i+1,q})) = R(Ψq

i (τ{i+1,q})W
i)⊥, i = q−N, · · · , q.

By construction, each column of Θq
i is orthogonal to the

subspace kerGi that has been transported from t−i to t−q
along the error dynamics (15). This matrix Θq

i will be used
for filtering out the unobservable component in the state
estimate obtained from the mode i after being transported
to the time t−q . As a convention, we take Θq

i to be a null

matrix whenever R(Ψq
i (τ{i+1,q})W

i)⊥ = {0}.
Using the determinability of the system (Assumption 1.2),

it will be shown later in the proof of Theorem 3 that the
matrix

Θq := [Θq
q

... · · ·
... Θq

q−N ] (19)

has rank n. Equivalently, Θ�q has n independent columns

and is left-invertible, so that (Θ�q )
† = (ΘqΘ

�
q )
−1Θq, where

† denotes the left-pseudo-inverse. Introduce the notation

ξ−{q−N,q−1} := col(ξq−N (t−q−N), . . . , ξq−1(t
−
q−1)),

ẑ−{q−N,q} := col(ẑq−N (t−q−N), . . . , ẑq(t−q )),
(20)

and define the vector Ξq as follows:

Ξq(ẑ
−
{q−N,q}, ξ

−
{q−N,q−1}) :=⎡

⎢⎢⎢⎢⎢⎣

Θq�

q Ψq
qZ

q ẑq(t−q )

Θq�

q−1

(
Ψq

q−1Z
q−1 ẑq−1(t−q−1)−Ψq

q−1ξq−1(t
−
q−1)

)
...

Θq�

q−N

(
Ψq

q−NZq−N ẑq−N (t−q−N)−
∑q−1

l=q−N
Ψq

l ξl(t
−
l )
)

⎤
⎥⎥⎥⎥⎥⎦ .

We then compute ξq(t
−
q ) in (14c) as:

ξq(t
−
q ) = (Θ�q )

†Ξq(ẑ
−
{q−N,q}, ξ

−
{q−N,q−1}) (21)

which corresponds to the operator Lq. Finally, as the last
piece of notation, we define the matrices Mq

j , j = q −
N, · · · , q, as follows:

[Mq
q ,M

q
q−1, · · · ,M

q
q−N ] := Eq(Θ

�
q )
†×

blockdiag
(
Θq�

q Ψq
q,Θ

q�

q−1Ψ
q
q−1, · · · ,Θ

q�

q−NΨq
q−N

)
.

(22)

Each Mq
j (j = q − N, · · · , q) is an n by n matrix whose

argument is τ{q−N+1,q} in general (due to the inversion of

Θ�q ), while the argument of both Θq
j and Ψq

j is τ{j+1,q}.



With all the quantities defined so far, the proposed ob-
server (14) is implemented using the following algorithm:

Algorithm 1 Implementation of hybrid observer

Input: σ, u, v, y
Initialization: Run (14) for t ∈ [t0, tN+1) with some x̂(t0)
1: for all q ≥ N + 1 do

2: for j = q −N to q do

3: Compute the injection gain Lj such that

‖Mq
j (τ{q−N+1,q})Z

je(Sj−LjRj)τjZj�‖ ≤ c (23)

where the constant c is chosen so that

0 < c <
1

N + 1
. (24)

4: Obtain ẑj(t−j ) by running the individual ob-
server (17) for the j-th mode.

5: end for

6: Compute ξq(t
−
q ) from (21), as an implementation

of (14c).
7: Compute x̂(tq) using (14b) and run (14a) over the

interval [tq, tq+1).
8: end for

The following theorem shows that the above implementa-
tion guarantees the convergence of the estimation error to
zero.

Theorem 3. Under Assumption 1, if the hybrid ob-
server (14) is implemented as in Algorithm 1, with
Lq computed through the observers (17) and the map
(Θ�q )

†Ξq in (21), then the estimated state x̂(t) has the
property that:

lim
t→∞

|x̂(t)− x(t)| = 0. (25)

Remark 4. Note that the computation of the gains Lj ’s
requires the knowledge of switching times in order to gener-
ate converging estimates. Thus, post-processing of the data
is required since Lj ’s cannot be computed a priori. Also, in
the operation of the observer, we ignored the time required
for computation at time instant tq. In fact, the outcome
ξq(t

−
q ) becomes available not at tq but at tq + Tcomp where

Tcomp is the time elapsed during computation. It is con-
jectured that the error caused by this time-delayed update
in (14) can be suppressed by taking smaller value of c in
(24) while the update is actually performed at tq + Tcomp

using another state-transport matrix. Detailed analysis on
improving the quality of the observer is an ongoing work.

Proof of Theorem 3. Using (15), it follows from As-
sumptions 1.1 and 1.3 that the estimation error x̃(t) for the
interval [tq, tq+1) is bounded by

|x̃(t)| = |eAq+1(t−tq)x̃(tq)| ≤ ea(t−tq)|x̃(tq)|

with a constant a such that ‖Aq‖ ≤ a for all q ∈ N, and
thus,

|x̃(t)| ≤ eaD|x̃(tq)|.

Therefore, if |x̃(tq)| → 0 as q → ∞, then we achieve that

lim
t→∞

|x̃(t)| = 0. (26)

The remainder of the proof shows that |x̃(tq)| → 0 as q → ∞
under the conditions stated in the theorem statement.

Note that, x̃(t−q ) can be written as,

x̃(t−q ) =

[
Zq�

W q�

]−1 [
zq(t−q )
wq(t−q )

]
= Zqzq(t−q )+W qwq(t−q ). (27)

The matrix Ψj
i (τ{i+1,j}), defined in (18), transports x̃(t−i )

to x̃(t−j ) along (15) by

x̃(t−j ) = Ψj
i (τ{i+1,j})x̃(t

−
i )−

j−1∑
l=i

Ψj
l (τ{l+1,j})ξl(t

−
l ). (28)

We now have the following series of equivalent expressions
for x̃(t−q ):

x̃(t−q ) = Zqzq(t−q ) +W qwq(t−q )

= Ψq
q−1Z

q−1zq−1(t−q−1) + Ψq
q−1W

q−1wq−1(t−q−1)

−Ψq
q−1ξq−1(t

−
q−1)

= Ψq
q−2Z

q−2zq−2(t−q−2) + Ψq
q−2W

q−2wq−2(t−q−2)

−Ψq
q−2ξq−2(t

−
q−2)−Ψq

q−1ξq−1(t
−
q−1)

...

= Ψq
q−NZq−N zq−N(t−q−N )

+ Ψq
q−NW q−Nwq−N (t−q−N )−

q−1∑
l=q−N

Ψq
l ξl(t

−
l ).

(29)

To appreciate the implication of this equivalence, we first
note that for each q − N ≤ i ≤ q, the term Ψq

iZ
izi(t−i )

transports the observable information of the i-th mode from
the interval [ti−1, ti) to the time instant t−q . This observ-

able information is corrupted by the unknown term wi(t−i ),
but since the information is being accumulated at t−q from
modes i = q − N, · · · , q, the idea is to combine the par-
tial information from each mode to recover x̃(t−q ). This is
where we use the notion of determinability. By Properties
1, 5, and 6 in the Appendix, and the fact that R(W i)⊥ =

(kerGi)
⊥ = R(G�i ) and e−A�q τqR(G�q ) = R(G�q ), it follows

under Assumption 1.2 that

R(W q)⊥ +R(Ψq
q−1W

q−1)⊥ + · · ·+R(Ψq
q−NW q−N)⊥

= e−A�q τq
(
R(G�q ) + E−�q−1R(G�q−1)+

q−2∑
i=q−N

Πi+1
l=q−1E

−�
l e−A�l τlE−�i R(G�i )

)

= e−A�q τqMq
q−N = R

n.

This equation shows that the matrix Θq defined in (19) has
rank n, and is left-invertible. Keeping in mind that the range
space of each Θq

i is orthogonal to R(Ψq
iW

i), each equality
in (29) leads to the following relation:

Θq�
i x̃(t−q ) = Θq�

i

(
Ψq

iZ
izi(t−i )−

q−1∑
l=i

Ψq
l ξl(t

−
l )

)
, (30)

for i = q−N, · · · , q. Stacking (30) from i = q to i = q−N ,
and employing the left-inverse of Θ�q , we obtain that

x̃(t−q ) = (Θ�q )
†Ξq(z

−
{q−N,q}, ξ

−
{q−N,q−1}) (31)



where z−
{q−N,q}

is defined similarly as in (20). It is seen

from (31) that, if we are able to estimate z−{q−N,q} without

error, then the plant state x(t−q ) is exactly recovered by (31)
because x(t−q ) = x̂(t−q )− x̃(t−q ) and both entities on the right
side of the equation are known. However, since this is not the
case, z−{q−N,q} has been replaced with its estimate ẑ−{q−N,q}

in (21), and ξq(t
−
q ) is set as an estimate of x̃(t−q ) there.

Thanks to the linearity of Ξq in its arguments, it is noted
that,

x̃(tq) = Eq(x̃(t
−
q )− ξq(t

−
q ))

= Eq(Θ
�
q )
†
(
Ξq(z

−
{q−N,q}, ξ

−
{q−N,q−1})

− Ξq(ẑ
−
{q−N,q}, ξ

−
{q−N,q−1})

)
= −Eq(Θ

�
q )
†Ξq(z̃

−
{q−N,q}, 0)

(32)

where z̃−{q−N,q} := ẑ−{q−N,q} − z−{q−N,q} = col(z̃q−N(t−q−N ),

. . . , z̃q(t−q )). It follows from (16) and (17) that

z̃i(ti−1) = ẑi(ti−1)− zi(ti−1) = 0− Zi�x̃(ti−1)

and

z̃i(t−i ) = e(Si−LiRi)τi z̃i(ti−1) = −e(Si−LiRi)τiZi�x̃(ti−1).

Plugging this expression in (32), and using the definition of
Mq

j (j = q −N, . . . , q) from (22), we get

x̃(tq) =

q∑
j=q−N

Mq
j (τ{q−N+1,q})Z

je(Sj−LjRj)τjZj�x̃(tj−1).

Then, from the selection of gains Lj ’s satisfying (23), we
have that

|x̃(tq)| ≤

q∑
j=q−N

c|x̃(tj−1)|. (33)

Finally, the statement of the following lemma, proof of which
appears in the Appendix, aids us in the completion of the
proof of Theorem 3

Lemma 1. A sequence {ai} satisfying

|ai| ≤ c(|ai−1|+ |ai−2|+ · · ·+ |ai−N−1|), i > N,

with 0 ≤ c < 1/(N + 1) converges to zero: lim
i→∞

ai = 0.

Applying Lemma 1 to (33), we see that |x̃(tq)| → 0 as
q → ∞, whence the desired result follows.

Example 2. We demonstrate the operation of the pro-
posed observer for the switched system considered in Exam-
ple 1. We assume that each mode is activated for τ seconds,
so that the persistent switching signal is:

σ(t) =

{
1 if t ∈ [2kτ, (2k + 1)τ ),

2 if t ∈ [(2k + 1)τ, (2k + 2)τ ),
(34)

where k = 0, 1, 2, · · · , and the underlying assumption is that
τ �= κπ for any κ ∈ N. As mentioned earlier, the system
is observable (and thus, determinable) with this switching
signal if the mode sequence 1 → 2 → 1 is contained in a time
interval. Hence, we pick N = 3 for Assumption 1.2 to hold.
For brevity, we call [2kτ, (2k + 1)τ ), the odd interval, and

[(2k + 1)τ, (2k + 2)τ ), the even interval. With an arbitrary
initial condition x̂(0), the observer to be implemented is:

˙̂x(t) = A1x̂(t)

ŷ(t) = C1x̂(t)

}
, t ∈ [2kτ, (2k + 1)τ ), (35a)

˙̂x(t) = A2x̂(t)

ŷ(t) = C2x̂(t)

}
, t ∈ [(2k + 1)τ, (2k + 2)τ ), (35b)

x̂(qτ ) = x̂(qτ−)− ξq(qτ
−), q > 3. (35c)

In order to determine the value of ξq(qτ
−), we start off

with the estimators for the observable modes of each sub-
system, denoted by zq in (16). Note that mode 1 has a
one-dimensional observable subspace whereas for mode 2,
the unobservable subspace is R

2. Since mode 1 is active on
every odd interval and mode 2 on every even interval, zq for
every odd q represents the partial information obtained from
mode 1, and zq for every even q is a null vector as no infor-
mation is extracted from mode 2. So the one-dimensional
z-observer in (17) is implemented only for odd intervals. For
odd q, we compute

Gq =

[
1 0
0 0

]
,R(G�q ) = span

{[
1
0

]}
,W q =

[
0
1

]
, Zq =

[
1
0

]
,

so that one may choose Sq = 0 and Rq = 1, which yields
the observer (17) as

˙̂zq = −lq ẑ
q + lqỹ, t ∈ [(q − 1)τ, qτ ), q: odd,

with the initial condition ẑq((q − 1)τ ) = 0, and ỹ being the
difference between the measured output and the estimated
output of (35). The gain lq will be chosen later by (36).
For q even, we take W q = I2×2, and Gq = 02×2, so that
Zq , Sq , Rq are null-matrices.

The next step is to use the value of ẑq(qτ−) to compute
ξq(qτ

−), q > 3. We use the notation ξq to denote ξq(qτ
−),

and let ξq1 be the first component of the vector ξq. Since
N = 3, it follows from (14c) that ξ1 = ξ2 = ξ3 = col(0, 0).
The matrices appearing in the computation of ξq are given
as follows: for every odd q > 3:

Ψq
q−3 =

[
cos τ sin τ
− sin τ cos τ

]
⇒
(
Ψq

q−3I2×2

)⊥
= {0},

Ψq
q−2 =

[
cos τ sin τ
− sin τ cos τ

]
⇒

(
Ψq

q−2

[
0
1

])⊥
=

{[
cos τ
− sin τ

]}
,

Ψq
q−1 = I2×2 ⇒

(
Ψq

q−1I2×2

)⊥
= {0},

Ψq
q = I2×2 ⇒

(
Ψq

q

[
0
1

])⊥
=

{[
1
0

]}
,

where the braces {·} denote the linear combination of the
elements it contains. These subspaces directly lead to the
expressions for Θq

j , j = q − 3, . . . , q, so that

Θq =

[
1 cos τ
0 − sin τ

]
, q = 5, 7, . . . ,

where we have used the convention that Θq
i is a null ma-

trix whenever R(Ψq
i (τ{i+1,q})W

i)⊥ = {0}. Hence, the error
correction term can be computed recursively for every odd
q > 3 by the formula:

ξq = Θ−�q

[
ẑq(t−q )

ẑq−2(t−q−2)− ξq−2
1 − [cos τ − sin τ ]ξq−1

]
.



|x̃(t)|

σ(t)

Figure 1: Size of state estimation error and the

switching signal

Also, for odd q, we obtain that Mq
q−1 = 0, Mq

q−3 = 0,

Mq
q =

[
1 0

cos τ
sin τ

0

]
, and Mq

q−2 =

[
0 0

− 1
sin τ

0

]
.

Next, for every even q > 3, we repeat the same calculations
to get:

Ψq
q−3 =

[
cos 2τ sin 2τ
− sin 2τ cos 2τ

]
⇒

(
Ψq

q−3

[
0
1

])⊥
=

{[
cos 2τ
− sin 2τ

]}
,

Ψq
q−2 =

[
cos τ sin τ
− sin τ cos τ

]
⇒
(
Ψq

q−2I2×2

)⊥
= {0},

Ψq
q−1 =

[
cos τ sin τ
− sin τ cos τ

]
⇒

(
Ψq

q−1

[
0
1

])⊥
=

{[
cos τ
− sin τ

]}
,

Ψq
q = I2×2 ⇒

(
Ψq

qI2×2

)⊥
= {0}.

Once again, using the expressions for Θq
j , j = q − 3, . . . , q,

based on these subspaces, one gets,

Θq =

[
cos τ cos 2τ
− sin τ − sin 2τ

]
, q = 4, 6, 8, · · · ,

so that

ξq = Θ−�q

[
ẑq−1(t−q−1)− ξq−1

1

ẑq−3(t−q−3)− ξq−3
1 − [cos τ − sin τ ](ξq−2 + ξq−1)

]
.

Again, we obtain for even q that Mq
q = Mq

q−2 = 0,

Mq
q−1 =

[
sin 2τ
sin τ

0
cos 2τ
sin τ

0

]
and Mq

q−3 =

[
−1 0

− cos τ
sin τ

0

]
.

By computing the induced 2-norm of a matrix, it is seen
that, for any q > 3 and q − 3 ≤ j ≤ q,

‖Mq
j Z

je(Sj−ljRj)τjZj�‖ =

{
0 if j is even
e
−ljτ

| sin τ |
if j is odd.

Therefore, for the relation (24) and (23), it is enough to
choose lq (for odd q) such that

1

| sin τ |
e−lqτ <

1

N + 1
=

1

4

or,

lq >
1

τ
ln

4

|sin τ |
. (36)

x1(t)

x̂1(t)

x2(t)

x̂2(t)

Figure 2: Converging state estimates

Once again it can be seen that the singularity occurs when
τ is an integer multiple of π. Moreover, if τ approaches
this singularity, then the gain required for convergence gets
arbitrarily large. This also explains why the knowledge of
the switching signal is required in general to compute the
observer gains.

Some results of simulations with τ = 1 and lq = 2 for odd
q, are illustrated in Fig. 1 and Fig. 2. The figures clearly
show the hybrid nature of the proposed observer, which is
caused by the jump discontinuity in error correction. For
this particular example, the error does not grow between the
switching times because the subsystem 2 is just a rotating
dynamics.

4. CONCLUSION
This paper has presented conditions for observability and

determinability of switched linear systems with state jumps.
Based on these conditions, an asymptotic observer is con-
structed that combines the partial information obtained from
each mode to get an estimate of the state vector. Under
the assumption of persistent switching, the error analysis
shows that the estimate converges to the actual state. The
proposed method relies on the homogeneity that a linear
switched system and linear jump maps provide with. In fact,
it is seen in (29) that the transportation of the partially ob-
servable state information (represented by z), obtained at
each mode, can be computed even with some unobservable
information (by w). Since homogeneity guarantees that the
observable information is not altered by this transportation
process, the unobservable components are simply filtered out
after the transportation. We emphasize that this idea may
not be transparently applied to nonlinear systems.
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Appendix: Proof of Lemma 1
Let c = α/(N + 1) with 0 < α < 1. Then it is obvious that,
for i > N ,

|ai| ≤
α

N + 1

i−1∑
k=i−N−1

|ak| ≤ α max
i−N−1≤k≤i−1

|ak|. (37)



Similarly, it follows that

|ai+1| ≤ α max
i−N≤k≤i

|ak|

≤ αmax

{
|ai−N−1|, max

i−N≤k≤i−1
|ak|, |ai|

}
≤ α max

i−N−1≤k≤i−1
|ak|,

where the last inequality follows from (37). By induction,
this leads to

max
i≤k≤i+N

|ak| ≤ α max
i−N−1≤k≤i−1

|ak|.

that is, the maximum value of the sequence {ai} over the
length of window N+1 is strictly decreasing and converging
to zero, which proves the desired result.

Appendix: Some Useful Facts
Let V1, V2, and V be any linear subspaces, A be a (not
necessarily invertible) n × n matrix, and B, C be matrices
of suitable dimension. The following properties can be found
in the literature such as [15], or developed with little effort.

1. AR(B) = R(AB) and A−1 kerB = ker(BA).

2. A−1AV = V + kerA, and AA−1V = V ∩R(A).

3. A−1(V1 ∩ V2) = A−1V1 ∩ A−1V2, and A(V1 ∩ V2) ⊆
AV1 ∩ AV2 (with equality if and only if (V1 + V2) ∩
kerA = V1 ∩ kerA + V2 ∩ kerA, which holds, in par-
ticular, for any invertible A).

4. AV1 + AV2 = A(V1 + V2), and A−1V1 + A−1V2 ⊆
A−1(V1 + V2) (with equality if and only if (V1 + V2)∩
R(A) = V1 ∩ R(A) + V2 ∩ R(A), which holds, in par-
ticular, for any invertible A).

5. (kerA)⊥ = R(A�).

6. (A�V)⊥ = A−1V⊥ and (A−1V)⊥ = A�V⊥.

7. 〈A|V〉 = V + AV + A2V + · · · + An−1V and 〈V|A〉 =

V ∩A−1V ∩ A−2V ∩ · · · ∩ A−(n−1)V.
8. 〈V1 ∩ V2|A〉 = 〈V1|A〉∩〈V2|A〉 and 〈A|V1 ∩ V2〉 ⊂ 〈A|V1〉∩

〈A|V2〉.

9. eAtV ⊆ 〈A|V〉 and 〈V|A〉 ⊆ eAtV for any t.

10. 〈A|V〉⊥ =
〈
V⊥|A�

〉
.

Now, with G := col(C,CA, . . . , CAn−1),

11. eAt kerG = kerG and eA
�tR(G�) = R(G�) for all t.

12. 〈kerG|A〉 = kerG and
〈
A�|R(G�)

〉
= R(G�).
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