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SUMMARY

This paper presents a sufficient condition for observabiftcontinuous-time switched nonlinear systems
that also involve state jumps. Without assuming obseritgloif individual modes, the sufficient condition is
based on gathering partial information from each mode ddtiesstate is completely recovered after several
switchings. Based on the sufficient condition, a hybridetgbserver is designed, which comprises a copy
of the actual plant and an error correction scheme at destirae instants. In order to execute the proposed
design, the observable component of the state at each medks t@ be estimated without transients or
“peaking” (caused by high-gain observers), and this mivais to introduce a back-and-forth estimation
technique. Under the assumption of persistent switchinglyais shows that the estimate thus generated
converges asymptotically to the actual state of the sys&mulation results validate the utility of proposed
algorithm. Copyright© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We study observability conditions and observer design @ass of switched systems, that comprise
a family of nonlinear control affine dynamical subsystemshvgtate jumps. These subsystems
are activated by a switching signal: R — N, which is right-continuous and piecewise constant
where the discontinuities occur at discrete time instdf$, ¢ € N, called the switching times.
Mathematically, the systems under consideration are neddss:

#(t) = fo)(@(1) + gon (z()ult), ¢ # {tq}, (1a)
l‘(tq) = pg’(tq)7g(t;)(x(t(;))7 (1b)
y(t) = he@)(x(t)), (1c)

where z : R — R”™ is the state trajectoryy : R — R™ is the output, the measurable function
u: R — R" is the input belonging to some input clagsof interest, and the map, ,  , - (*)
denotes the jumps in state trajectories at tiqevhile switching from moder (¢ ) to o(¢,). Such
jumps may model impulse effects, state resets, or any otbeomtinuity in the state trajectory. For
the development of results in this paper, we assume thabtlog/ing hypotheses hold for systeid) (
throughout the paper.
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2 SHIM AND TANWANI

(H1) The switching signad(-) is assumed to be a function of time only and is considered to be
known for designing observers.

(H2) There are a finite number of switching times in any finiteet interval, that is, the Zeno
phenomenon is not exhibited.

(H3) The solutionx(t) remains in a set’ ¢ R™ on the time interval of interest.

(H4) All the vector fields and functions are smooth &nand there exists a unique solution for
every time interval under consideration.

Under the hypotheses (H1)-(H4), the resulting solutiorbsoéutely continuous between any two
consecutive switching instants and the possible discoitiéas in the state trajectory, appearing at
the switching instants, are represented 1) (

When dealing with observability of nonlinear systems, ¢hare different notions that are
involved. The work in 11, 13] talks about observability in local neighborhoods of thetestspace.
Authors in [L2, 14] describe the notion of ‘large-time’ versus ‘small-timéservability where the
difference lies in the fact whether it is possible to recaber state instantaneously in time or the
system becomes observable after certain time. If the sysdésieription has exogenous inputs acting
on it, then the question arises whether observability hfddsll inputs or not 8, 9]; if it does, the
system is called uniformly observable.

The concept of observability studied in this paper is a refieiet of the ‘large-time observability’
already considered in the literature (e.d.2,[14, 24]) and the ‘uniform observability’ studied in
[8, 9]. Switched systems can be thought of as a family of dynansighsystems, where a switching
signal determines the active subsystem at each time intténéntirely possible that none of these
subsystems is observable in the sense that informationt #ivedull state is not immediate in the
output signal. But the information available from each mode be combined in a certain manner
so that, under some conditions, it is possible to recovestag vector completely after several
switchings have occurred. This explains how the conceplagde-time’ comes into picture when
dealing with switched systems and our aim is to derive caoftthat make the system large-
time observable when the state trajectories are contaimedgiven settY. Moreover, since our
ultimate goal lies in the construction of an observer, theeotability for all inputs (i.e., uniform
observability) is of concern in order for the observer to haependent of particular inputs. For a
formal definition of large-time uniform observability on &ven set, see Sectich

For switched systems, the problems of observability anceioies design have been studied
primarily for the linear case. Some initial observer regsuuch asl, 17], have assumed that each
mode in the subsystem is in fact an observable system thatssalstate observer; and then analyzed
the stability problem of the switched error dynamics usitegsical tools, such as dwell time, or
common Lyapunov function. More relaxed approaches do rsotras observability of the individual
modes, and the notion of gaining observability by switcHiag appeared in, e.g5,[26, 27]. The
sufficient conditions proposed iB,[26] imply that the full state information is recovered aftereon
or several switchings. Both papers use outputs and theiradiees to recover the state. The work
of [27] gives geometric conditions under which there exists atleae switching signal that makes
the system observable. However, in spite of being limitethéolinear case, it is not clear how the
conditions in p, 26, 27] can lead to feasible observer design. This gap was bridyedi recent
work [24], where the idea of a hybrid-type observer is proposed idirsetting for estimating the
state trajectories asymptotically.

For observability of switched nonlinear systems, howebere doesn’t exist much literature. The
authors in B] address observer design using observability of individnades. Somewhat related
to our approach is the work ofLff], where the authors propose some preliminary abstracttsesu
for observability. The basic idea is to recover the entiagesby collecting the partial information at
each mode and transporting it unperturbed to some poimie. thAs done in24], this transportation
is easily carried out in linear systems because the systsust) can always be written as tisem
of an observable vectar, (¢) and an unobservable vectoy(t) for the active mode at time and the
transportation over a certain interval is achieved simplyrultiplying the state-transition matrix
corresponding to that interval with(¢)(= z,(t) + x,,(t)). Because of the linearity of the state-
transition matrix, the transported state is still the surtwaf vectors, out of which the unobservable
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 3

component can be easily annihilated, leaving behind thergihrt as a linear combination of the
observable components of individual modes only, and maikipgssible to recover the state. This
strategy cannot be adopted in nonlinear systems, and ¢hefdeansportinge to a future time via
the state-transition matrix, we exploit the system stmgcto construct some nonlinear dynamics,
whose integration plays the role of transporting the knowrtial information. This idea yields
a sufficient (but not a necessary) observability conditiwat renders a particular structure to the
switched system, which is amenable for construction of gegtic observers. A motivating example
and further discussion of this concept appear in Seciohhe proposed sufficient condition for
observability and an overview of observer construction @evided in Sectior8. A geometric
characterization of the proposed condition is given in iBact, along with illustrative examples.

Finally, the design of hybrid-type observer based on the@sed observability condition is
studied in Sectiord. The proposed observer consists of a copy of plant dynarhatsig running
synchronously with the plant, and an error correction imm@ated as a jump in the state of the
observer. Before the jump, an estimation algorithm is etextin which several sub-observers
are run to process the input and the output data that aredextdn the memory. Unlike the
simpler hybrid-type observer ir2f]], the so-called ‘back-and-forth’ operation of the obsenge
newly proposed and specifically required for nonlineareyst as a remedy for transient overshoot
that might be caused by the high-gain observers employegeimstimation algorithm. Since the
estimation algorithm does not run synchronously to thetplae also take into account the time
consumed by the algorithm, which was not considered in thknpinary version 21] of this paper.
Simulation results are also presented in Secfion

For the observer design, our approach shares the samengir{2], and the result of this paper
may be regarded as an extension of the linear resufimthe sense that, a coordinate-independent
condition is derived for observability and nonlinear sysseare treated with a new observer design
strategy. More discussions and concluding remarks aredfouSections.

The notation and terminology used in this paper are sumeduds follows. For a signal(-),
T, +,) Means{z(t) : t; <t < tp}. For a vectorz, |z| denotes the Euclidean norm of R(A)
implies the range space of the columns of matfixand AT is the transpose ofi. We write
[z],29]T simply by col(zy,z2). A composite functiom\(p(-)) is denoted by o p. With given

functions \;, i = 1,--- ,k, we denote\, := col(A,...,Ax). Now let X be a set inR", and
whenever we say a property holds ‘oY we mean that it holds for every € X. Smooth
functionsi; (z), ..., \x(z), defined on¥, are said to bendependent ok’ if their differential one-

forms,d\; (z),...,d\(x), are linearly independent oki. In addition, if there exist — k£ smooth
functionsAi41, ..., A, such thatol(A;(x),. .., A, (x)) becomes a diffeomorphism frosii to R,
then we say thadi, ..., \, arepotential coordinate functions o&’. We also recall that the Lie
derivative of a functiom\ along the vector fieldf is LyA\(x) := %(;)f(m) and L (d\) = dLyA.
The differential of a map acting on the vector fiel@ is denoted byp,v. For a distributiony,
pV = {p.v|v € V}. We call a codistributionV at x° nonsingularwhendim W is constant in
a neighborhood of°. A codistribution)V is invariant with respect to (w.r.t.) a vector field if
LW CW. If W=span{d\,...,d\;} and L,(d)\;) = dL,\; € Wfor j =1,... k, thenW is
invariant w.r.t.v. Involutivity of a codistribution is determined by the involutivity of kernel which
is a distribution [L3]. A codistribution generated by the exact one-forms is giiavolutive. The
operatormod denotes modulus after division (over the set of integers).

2. OBSERVABILITY NOTION AND MOTIVATING EXAMPLE

Let us formalize the notion of observability consideredhis {paper.

Definition 1(Large-time observability)

System () with a switching signaé (-) is large-time uniformly observable on a s&€tc R"™ if there
exists a finite timel’ > ¢, so thatz(7") is determined uniquely fromy, 71, uf,, 7, andoy, 7 for
any measurable input,, 1, when the state(t) remains inX for ¢ € [to, T'. If the timeT" > t, is
arbitrary, then systenij is calledsmall-time uniformly observable on a sét <
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4 SHIM AND TANWANI

In case of no jump mapl@), the knowledge of:(T"), oy, 7, andup, r) determinesey, 1
uniquely by (8). This is not the case in general because the jump rmigpnfay not be reversible.
In this sense, the notion of observability studied in thisgyds also referred to as ‘determinability’
in [27, 24] and ‘reconstructability’ in 22] (where the systems considered are linear). From the
definition, if a certain mode of system)(is small-time uniformly observable and the switching
signal activates that mode at a certain timethen the system is automatically large-time uniformly
observable witll" > ¢;. Note thatz(7") may be reconstructed using the derivativeg©f andu(-)
(although differentiation should not be used in the obgerwestruction). It is noted that, although
the observability in Definitiord is uniform’ w.r.t. the inputu, uniformity w.r.t. the switching signal
o is not required.

The following example motivates the forth-coming discaasin the large-time observability.

Example 1(Large-time observable switched system)
Let X :={z €R®:2; > 0,23 >0} and suppose that the statét), with z(0) € X, evolves
according to systeni]j that consists of three modes given by

0.11‘3
)@= fle) = [t - a5+ 2
mode 1: 01(z, + 1)
y=hi(z) ==z
€3
mode2: ¢ ¥ = fo(z) == | —(af — 25 + 221)72
. 1+ 1
y = ha(z) := 2% — 2% + 22
3
mode 3 { &= f3(®):= | 27
' 0
y = ha(z) := 21 + 23
and the jump maps
Z1
P2 (x) = m% - mg 4+ 2x1 4+ 0.129
€3

with all other jump maps being identity (e.@s 2(x) = p1,3(z) = x). It is easily seen that, for any
switching signal, the system has no finite escape time andet® is forward invariant. None of
the three modes are observable in the classical sense, edndte verified by inspecting the rank of
the observability codistributio®; := span {dh;, dLy,h;, decl_ h;,---} for each mode. While the
dimension of the state i$, we obtain, for mode 1Ly, hy(z) = «7 — 23 + 22, and L hy(z) =0
for all £ > 2, which ensures tha?, = span {[0, 1, 0], [2z1 + 2,0, —2x3]} has rank for all z € X.
Similarly, it is seen tha®; = span {[221 + 2,0, —2z3]} andOs = span {[1, 2z, 0]}, both of which
indicate that their rank is on X’.

Nevertheless, we claim that the switching among these thoeles1 — 2 — 3, makes it possible
to recover complete information about the state. Assume ahparticular execution has been
observed on some time intervg, 7] including two switching times; (for 1 — 2) andt, (for
2 — 3) such thaO < ¢; < t2 < T'. Then, with the outpug(¢) and its derivatives at hand, it is seen
that the state:(¢) is recovered immediately aftey. Indeed, it follows from the system equations at

T For nonlinear systems, observability depends on partiéofats in general. Therefore, uniform observability, ahi
means ‘observability for any input,’ is a stronger notioaritobservability. See3[ 9, 10].
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 5

mode 1 and mode 2 that

wa(ty) = wa(ty) = e~ i V(1)

= e I VOB @) — B () + 201 (1) + 0daa(t) = e S VOB (G ) + 0-1y<tf>>'( )
2

Then, the state,(t) is determined from known quantities. Also, from mode 3, weedwrine
1 (t2) = y(ta) — x5 (t2).

Finally, from mode 2 and the fact that > 0 on X,

w3(ta) = w3ty ) = +4/ 23 (ty) + 221 (ty ) — y(ty ) = +4/ 23 (t2) + 221 (t2) — y(ty).

In this way, we can recovet(t2) (or z(T') for anyT > t5). Thus, the switched system with switching
sequencé — 2 — 3 is large-time (uniform) observable o <

Let us highlight some interesting aspects of this exampbeder to motivate the technical details
that follow:

1. The main idea of the example was to illustrate that evenghdhe individual modes of the
system are not observable, it is possible to extract partfatmation about the state from
each mode. Under certain constraints on the dynamics ofyisters, it is then possible to
accumulate all the information at some time instant in feitso that it becomes possible to
determine complete knowledge of the state of the systenmisrekample, we have seen that
the information from mode 1 and mode 2 is combined with thatofle 3 at time-, to recover
the state at that time instant.

2. In equation %), even thoughe, is unobservable under mode 2 and mode 3, we are able to
expresse, at timet, as a function of the output measured during mode 2 and modkid. T
could be done becausg(t;), obtained from the jump map, (z), depends only on the
observable quantities & given byzs (= y) andz? — 22 + 2z (= 7). Also, the evolution of
x2 under the dynamics of mode 2 over the interjal t) depends only on the measurable
signaly(-) and not the unobservable quantities. Singg- ) is obtained by transporting, (1)
under the dynamics of mode 2, it is now possible to calcutate;). This enables collecting
all the information at time, to determine the whole staie

The above mentioned arguments underline the basic ideas dfemtments about observability
and observer design. This approach of combining the availalfiormation from various modes
and preserving parts of it, leads to a sufficient conditiarldoge-time observability, which will be
formalized in the next section. Since the condition reliesh® system structure, we also provide, in
Sectiord, the geometric conditions to verify such structural prdigsr The sufficient condition for
large-time observability is in fact closely related to tHeserver construction and, to put the entire
development into perspective, the next section discusgfythow this condition leads to observer
design.

3. OBSERVER SYNOPSIS: IN THE PERSPECTIVE OF OBSERVABILITY

In this section, we present the underlying idea for the alesedesign, which will be detailed in
Section5. The key aspect of our approach is the transformation of yimaughics at each mode to
particular canonical structures, on which the observgtigiclearly seen assuming that the outputs
and its derivatives are available. After presenting thecstire in this section, existence of such a
structure will be formulated under a geometric conditiorSiection4. The design of asymptotic
observer (to generate state estimates without using theatlees of the output) based on this
particular structure is given in Sectién
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6 SHIM AND TANWANI

Before proceeding, let us rename the switching sequencediorenience. That is, when the
switching signab(t) takes the mode sequenfg , ¢-, - - - }, we rename them as increasing integers
{1,2,3,---} which is ever increasing even though the same mode is redisihis way jump maps
take the formps 1,ps.2, ..., SO that the jump map af, is given byp,11 4(-), and for brevity we
denote it simply ag,, that is,z(t,) = p,(z(t; )). When the mode is switched without the state
jump (1b) from the mode numbey, we takep,(z) = x, and when the state jump occurs at mgde
without mode switching we takg, 1 (z) = f4(2), gg+1(z) = gq(z), andhgyi(z) = he(x).

We first note that the individual system at each mode may natliservable, calling for the
classical observability decompositiotd: Changing the coordinates so that the system is explicitly
splitinto the observable part and the unobservable pats,Tor a fixed mode that comprisesi(@
and (Lc) (the jump map Ib) will be treated shortly), we assume the following:

Assumption IUniform observability decomposition)
For each mode € N, there exists a diffeomorphisnt defined ont” such that, witheol(&y, &) :=
A(xz) € R™, the dynamical equationdd) and (Lc) are transformed into

y = Hy(&), (3a)
éq = Fq(fq) + Gq(gq)uv fq e Ruqa (3b)
& =FJ(&.&) + GL(&,.&u, & R, (3c)

where the;,-subsystem with the outpytis small-time uniformly observable ¢f, := A?m (X). <

In equation 8), the state¢, is small-time uniformly observable at modeso that it can be
determined from the input and the output of madmnly. In fact, as long as we restrict our attention
to (38 and @h), small-time uniform observability becomes the standanifoum observability that
has often been studied in the literature (s&€ pnd references therein), which can be checked in
various ways. For instance, if the class of inputsonsists of smooth functions, then one may try
to find a functiong such that

gq :E(y’y7"'7y(d371)7u’i”""7u(d371)> (4)

whered? € Nandd? € N, and that the functiosi( - ,u, %, ..., u(*~1) is surjective ont, for all
u(-) € U. The existence of such a functighis used as the definition of uniform observability in
[25, 13]. Other ways to check uniform observability can be foundlig,[but we will also present a
geometric condition in Sectiofh

The stateg; denotes unobservable parts at medeowever, if the information obtained from the
previous mode is taken into account, then some componeg}swedy be determined. For example,
suppose that some partgjf(t,1) depends only on the know§y1 (¢,_, ), and the evolution of that
part of¢; () over[t,—1,t,) is governed by a differential equation that depends onljherkhown or
observable quantities. Then, such component§@f are recovered completely during the interval
[tq—1,1tq). This idea is formalized by the following structural assuiop.

Assumption ZSwitched canonical structure)
For each mode € N, there exists a diﬁeomorphisml(ﬁ‘{kq>,w?m,wé{rl_kq_lw) on X such that,

with 0, := ﬁ?kq>(x) € RFa, w, := w‘{lq> (z) € Rla, andg, = w?n_kq_lq>(x) € R Fa—la system ()
takes the following form:
Og = F2(0q,wq) + G20, wq)u (5)
g = F (04, wq) + G (0, wq)u (5b)
Sq = F;(gqvoqawq)+GZ(§q79qawq)u (5¢)
fort e [ty,—1,tq) with
Og+1(tq) Rg(eq(ﬁc;)a wq(tq_)v gq(tq_))
qurl(tq) = R; (wq (t;)vgq(t(;)vgq-&-l(tq)) ) (5d)
qurl(tq) Ré (961 (tq_)7 Wq (tq_)7 Sq (tq_))
Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2012)
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 7

where each component &f = v}, ,(x) € R*s is a smooth function of, = AL,y (@) € R of

Assumptionl (andk, < v,); i.e., there exists a smooth mgp : Z, — 97, , () such that

9(1 = Xq(gq)- (6)
Letl; = 0 andw; be a null vector. <

By the assumption, the statéscan be thought of as small-time uniformly observable siheg t
depend only on the small-time uniformly observable sgatdMeanwhile, the states,(¢) may not
be observable. However, assuming that ; (¢) is known for the intervalt,_», t,—1), we note that
the initial conditionw,(t;—1) = Rj_q(wq—1(t,_),§-1(t,_1),&q(tg—1)) is known because both
&1 and &, are known. Moreover, the,-subsystem ingb) shows that the evolution ab, at
modeg is not affected by the unknown componept It can also be interpreted that, through the
evolution ofw,, the accumulated information around the tirge; (i.e., wq—1(t, 1), {-1(t,_1),
and¢,(t,-1)) is delivered up to the timg,, and at the next mode, more information is accumulated
through the observable componént ;. This idea leads to the following outcome.

Theorem XLarge-time uniform observability)
Under Assumptiond and 2, if there is a mode numbet. € N such thatk,, +[,, = n, then
system {) is large-time uniformly observable oti. N

This is because at any timg after the timet,,_;, enough information about the state is
accumulated, and therefore, by inverting the diffeomasphi

I3y @] [0,(T) = X (€ (T))
[wz?m>(:c(T>>] ‘{ w(T) : (7)

the statec(T) is recovered.
A consequence of Theorer is that system 1) with any switching signal containing the
consecutive subsequengk 2, ..., m} is large-time uniformly observable as well.

Remark 1
In equation §d), the arguments of:; could be justw,(t;) and{,(t; ). However, by allowing

§4+1(tg) In Ry, the restriction is relaxed because it is basically askhrag cb?ltiﬂ(pq(x)) is a

function of (w?lq>(a:), A?Vq>(:c), A?:11+1>(a:)) rather than jus(w?lq>(:c), )\?uq>(x)). On the other hand,

since(f,, wq,s4) gives a complete coordinate systeniin, the format ofR}I and R in (5d) is not
a restriction. <

The large-time uniform observability discussed so far iirespa way of constructing an observer.
Here we discuss a synopsis of the observer constructionthardktails are given in SectiGnFirst,
we observe that, bysf and from @a), (3b), (5b), and £d), there are maps; andG; such that the
evolution of¢, andw, at each mode is governed by

Y= Hq(gq) (8a)
éq = Fy(&g) + Gq(&g)u (8b)
Wy = Fj(wg, &) + Gy(wg, §g)u (8c)

fort e [t,—1,ty), and

wq(tg-1) = Ry_1(wg—1(t 1) &1t 1), &g (tg-1))- (8d)

We then design two separate observers for the compgpemidw, to generate the corresponding
estimatesfq andw,, respectively. While it is possible to obtain a good estenaitthe observable
component,, the variablew, is not a directly observable quantity at mag& herefore, the role of
the observer foty, is not to reduce the errab, (t) — w,(t), but to deliver the estimatef§_1(tq‘_1)
andw,—1(t,_,), that are obtained from the previously active mode and aceded in the initial

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2012)
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8 SHIM AND TANWANI

condition equationgd) along withéq (t4—1), to the next mode through, (¢). Suppose that the input
v and the outpug are stored during the intervi, ¢,,), and at time = ¢, , an observer operates and
computes the estimafg(t) of ,(t) for each intervalt,_1,t,), ¢ = 1, ..., m. Owing to small-time
uniform observability, identifying, for each switching interval should be theoretically pokesib
and let us suppose thég(t) ~ &y (t) on[ty—1,te) for now. With the estimaté, (t7) ~ & (t7) and
g}(tl) ~ &o(t1) for example, we obtain the estimaig (1) ~ w2 (t1) by using 8d) (with all the
states replaced by their estimates). Then, integratioB®ffér ¢ = 2 results in an approximation
wa(t) ~ wa(t) on [t1,t2). (The error betweer, andws, may tend to increase during the interval,
though.) This process repeats until we ggt(t,) ~ &n(t,) and i, (t,) ~ wy(t;). Assuming
that k,, + L, = n, the estimate:*(t;,) of z(t;,) is now determined uniquely fror,,(,,) and
o (), by the map 7) (with (T, &, (T), andw,,, (T') replaced bye*(t;,,), &m(t5,), andi,, (t;,)
respectively). The details of the implementation of thsidas well as error analysis, will be givenin
Sectiorb. In particular, for obtaining the estima@(t) we employ the high-gain observers presented
in, e.g., [7, 8, 25]. However, in order to integrate,(t) by (8c), we need rather good estimate
£,(t) = &,(t) on the whole intervalt, 1,t,) while the (high-gain) observer usually experiences
transients (or, peaking in the estimates) before it pravalgood estimate. So if we run the observer
from the timet,_, as usual, we may not get a good estimate for the transiertcpafiert,_,. We
overcome this difficulty by proposing a novel back-andfiabservation technique in Sectibn

4. GEOMETRIC CONDITIONS FOR CANONICAL STRUCTURE AND OBSERBILITY

In this section, we discuss a geometric condition that giglte switched canonical structure of
Assumptior2 as well as the uniform observability decomposition of Asption 1, and thus, leads
to a sufficient condition for large-time uniform observitlgilFor simplicity, we study the case of
single input and single outputf{ = n, = 1).

4.1. Geometric Condition for Large-time Uniform Obsenligsi Local Version

According to [L1, 16, 13], a geometric condition to decompose systendt a modey into the
form of (3) is as follows. Let the observability codistribution big = span{dLy, Ly, - -+ Ly, hq :

v; € {f4,94},7 > 0}. Then, the condition that the codistributi@ly is nonsingular at some’ ¢ X
(i.e.,dim O, () is constant around®) guarantees, by Frobenius theorem, that there exist a local
neighborhoodt’ c X of z° and a diffeomorphism defined dtY such that systendj is represented

as @). Note that the codistributio®, is invariant w.r.t.f, andg, by construction. However, since
we are interested in the ‘uniform observability’ of the ohvsdble part in 8), the condition needs to

be strengthened. For this, let us assume that the inputZ¢lassudes the zero input(t) = 0), and
define0) := span {dhy, dLy, hq, . .., dL " hy}.

Assumption 3Uniform observability of the observable part)
For each mode, there is an integer, (< n) such that

1. 04" is nonsingular at® € X anddim O, = v,,
2. 0% is invariant w.r.t.f,,
3. O/isinvariantw.rtg, forj =1,...,v,. <

By Assumption3, there exists a neighborhood’ of z° where Assumptiori holds [L6, 13].
In fact, by Assumptior8.1, there is a set” on which¢, ; = L}q’lhq, j=1,...,y,, are potential
coordinate functions. With this choice of coordinates, W&o

Yy = gq,la
€ =Caim+ Lo, L hy u, =1, 05— 1, 9)
oy = LfThg + quL;Z*Ihq .
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 9

By Assumptions3.2 and3.3, Lemmal.1 in the Appendix can be employed repeatedly to show that
L;th depends only og, € R"s, andquLgcq’lhq depends only 041, - - - , &, ;. Gauthieret al.[8]
have shown that this triangular structure is sufficient (aadessary as well in the case of single
output) for (small-time) uniform observability f,. (Or, by taking successive derivatives of the
output iné,-coordinates, one can simply compute the mgp (

Now let us denote?,* simply by O,. For ¢ > 2, define®), := span {d(hy o p,—1),d(Lys,hy o
Dg—1)s" " ,d(L;Z_lhq opge—1)}. We then define a sequence of codistributid¥gfor ¢ € N, with
Wy := {0}. In particular,

let W, bethe largest nonsingular and involutive codistributionvamiant with respect
to f, andg,, contained iNO, + W, 1) such that(p,)..(ker W, Nker O, ;) C ker W.

Following observations are immediate: (a) By Assumptignthe codistributionO, itself is
invariant w.r.t. f, and g,. (b) If p,(z) = =, so that there is no state jump, then the condition
(Pg)«(ker W, Nker Oy, 1) C ker W, automatically holds. (c) The “largest” codistribution iy
defined because involutivity and invariance of a codistitbugenerated by exact one-forms is
preserved under the addition, and if two smooth nonsingtddistributions)V, and W, satisfy
p«(ker W; N D) C ker W;, wherei € {a, b}, for any differentiable map and any distributiorD,
thenp..(ker (W, + W,) N D) C ker(W, + W),).}

Theorem ZLarge-time uniform observability: Local version)

If Assumption 3 holds; and the codistributiongV,, O, + W,—1, and W, + O, ., ¢ €N, are
nonsingular at:° € X, then there exist diffeomorphisms on a neighborhadd- X of =° which
induce the structures3Y and 6) proposed in Assumptionk and 2, respectively. Furthermore, if
there is an integet € N such that

dim(Op, + Win—1)(z°) =n (10)
(or simply dim W,,,(z°) = n becausew,, = O,, + W,,—1 by construction), then systeni)(is
large-time uniformly observable ok’. <

The proof of the theorem appears after the statement of €hedm the next subsection.

4.2. Geometric Condition for Large-time Uniform Obsenlipi Global Version

Compared to the local observability in the previous sulisecthe condition in this subsection may
be thought of as a “global” version in the sense that the obbdity holds over the set’ given

a priori. In this case, the condition explicitly assumes the existasf coordinate functions, which
makes its statements no more compact.

Assumption 4
For each mode,

(a) there is an integer, (< n) such that

(1) {hg,Lys,hg,--., L;Z_lhq} are potential coordinate functions én
(2) O, = 04" is invariant w.r.t.f,,
(3) O} isinvariantw.rtg, for j =1,...,v,,

(b) there are potential coordinate functio, ,wj , : kg + lg = dim W, } on X’ such that
W, = span {dv¥], - - ,dﬁzq,dw‘f, e ,dwqu}, AV € Oy, dwj & Oy, (11)
¥ For eachi € {a, b}, ker(W, + W) C ker W;, s0 that(ker(W, + W};,) N'D) C ker W; N'D, which in turn implies

that p. (ker(Wa + W,) N D) C p«(ker W; N D) C ker W; by the assumption. Therefore, we have thatker(W, +
Ws) N D) C ker Wa Nker Wy, = ker(Wa + Wh).

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2012)
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10 SHIM AND TANWANI

(c) there are potential coordinate functio{rp%q> i 17q = dim(Oy + Wy—1)} on X such that

Oy + Wy—1 = span{dhq,dLy hg, - ,dL;:_lhq,

d9ih A0 dwl T el (12)
=span{dui,..., dpd }

where eachu! is a function of{fy, - - - ,L;;‘_lhq,ﬁ?’l, RIS RPN g ¥

(d) there are potential coordinate functio{ys’{j,;) sy = dim(WV, + Op ) —dimW,} on X
such that
Wy + O;H = span {dd{,- - ,dﬂiq,dw?, e ,dwqu,du/lq, o du’rz} (13)
where each? is a function of{ ;1 0 py, - - ,L;Zﬁ’lhqﬂ o pgl- 4
Remark 2

Reason that;, may be less tham, is because of the conditiofy,).(ker W, Nker Oy ;) C
kerW,. For example, sinc&), is involutive (because it is generated by exact one-forms),
nonsingular, and invariant w.r.f; andg; on X (by Assumptiond.(a)), the largest involutive and
invariant codistributionV; contained in0; + W, = O, is O, itself (i.e.,k; = 1v4) if the condition
(p1)«(ker Wi Nker Of) C ker W, is not taken into account. <

Theorem 3Large-time uniform observability: Global version) 1. Ifsumption4 holds, then
the canonical structure§)(and 6) from Assumptionsl and 2, respectively, exist globally
on the sett.

2. If Assumptiond holds and there is an integer € N such that

dim(Op, + Win—1) =n onk,

then system1) is large-time uniformly observable oti. <

Proof of Theorens is found in the Appendix while the proof of Theoréehis given here.

Proof of Theoren2

When the codistribution®,, W,, O, + W,_1, andW, + O, ,, are nonsingular at a point’,
then Assumptiong.(a).(1), (b), (c), and (d) hold in a neighborhodd of x°. Indeed, since the
smooth codistributionV, is nonsingular and involutive, then by Frobenius theordrere exist
potential coordinate functlorﬁ? ) and w< L) whose differential one-forms spaw, in a local
neighborhood of° (see the proof of]3, Theorem 1.4. 1)), thus satisfying Assumptia(b). By the
same argument, involutivity and nonsingularity®@f + W, andW, + O, ., yield independent
smooth functions that satisfy Assumptioh&) and4.(d), respectively, in a neighborhood:of. Let
X’ be the intersection of such neighborhoods. From the stateafierheorem3.1, with X = A",
the existence of diffeomorphisms yielding) @nd 6) is now guaranteed. Now, ifL0) holds, then
dim (O, + Wi—1)(z") = n for eachz’ € A7, and the statement of Theore®i2 proves the large-
time uniform observability of systeni) on a local neighborhood” of z°. O

Another interpretation of Theorer2sand3 in terms of “distribution” is also possible. In order to
recover the system stai€t), the partial information from each mode is quantified in tehthe
maximal integral submanifold of the distributi(tifnqL which has the property that the states on the
slices (or “leaves”) of this submanifold are not distindnaible by the output of modg If there are
certain states on this submanifold which were observabieutine previous mode— 1, and are
also decoupled from the remaining indistinguishable stat¢he current mode, then we can carry
this additional information forward, thereby reducing thecertainty about the unknown state. This
is exactly the intuition formalized in constructing, and later developed in Assumptian This
process is continued at each magdand if at some point in time, the uncertainty is reduced to a
point, we term the system observable as the entire stateavab& reconstructed.
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 11

Remark 3Multiple-input multiple-output (MIMO) case)

The geometric conditions given in AssumptioBsand 4.(a) enable the transformation of the
individual mode into a particular triangular form, whichesxually leads to the desired canonical
form (3). However, for MIMO case, there are several structuregghatantee uniform observability;
and each one of these structures has different geometriditmors associated to them (for
example RQ]). Therefore, without giving the geometric condition, ievassume that the individual
modes of the system are endowed with uniform observabitiperty in the form of structuresj,
then the results hold for MIMO case as well.

4.3. Example: Linear Case

To get a better understanding of the conditions given in tegipus subsection, let us consider the
case of linear systems. If the system is linear, then Assiomgtand Theoren3 (or, Assumptior3
and Theoren®2) become much simpler leading to a global result (&5 R™). Consider a linear
version of (1) as

i(t) = Agyx(t) + Boyult),  t# {tq}, (14a)
x(tq) = Pa(t;)x(tq_), reR" ueR,yeR, (14b)
y(t) = Coya(t). (14c)

Define the matrice®, andO;, as
Oy = col(Cq, CyAg,...,CoAy ™Y, and O := O P, 1,

wherey, is the observability index ofC,, A4,) so thatrank O, = v,. Then the codistributiod, of
the previous subsection corresponds to the range $p&@g ), andO;, to R(O,"). It is noted that
the codistribution, related to the vector subspace in tlaig 8 always nonsingular oli = R™.

Before presenting the linear version, a terminology is defwwhich is taken fron¥]. A subspace
Y is a conditioned invariant subspace under a linear tramsftion given by a matrix4, w.r.t.
another subspacd# (or, briefly, an(A, V’)-conditioned invariantif

AVnV)cy.

Corollary 1
Define, with, = {0}, the sequence of subspaces:

V, is the largest ] -invariant subspace contained(iR(O] ) +V,-1) such thab);- is
(Py, ker Oy, )-conditioned invariant.

If there exists anm € N such thatdim(R(O,),) + Vim—1) = n, then system 1(4) is large-time
observableonRR™.

Proof

We can simply show that Assumptiof holds with the subspac®, corresponding to the
codistribution W,. Indeed, Assumptiord.(a) trivially holds with O, = span{d(n;z) =7 :

n; is each row ofO,}, f, = A4z, and g, = B,. Now we can always find a basis for
Ve as {ef,- @) @l @l ) with kg +1g = dimV, (kg <vg) such thate] € R(O])
and w;? gR(OqT). Assumption4.(b) holds with W, being the span of those basis vectors
of V,. We also take some vectors; in R(O,) such thatR(O])+V, 1 has the basis
L ALl il @l wherekg o+ L1+ p = dim(R(O] ) + V1)

then Assumptiod.(c) holds. Similarly, we take some vectqu’ﬁ among the columns cﬂ);L such

§For linear systems, uniform observability is equivalenthte standard observability.
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12 SHIM AND TANWANI

thatV, + R(0,%,) has the basigy], - RO ,wfq,u’f, ‘e ,u;qé} wherek, + I, + 1, =
dim(V, + R(O;TH)), which guarantees Assumptidr(d).
On the other hand, invariance of, w.rt. A] implies the invariance oV, w.rt. f, and

gq- (Invariance w.r.t.g, trivially follows becauseg, = B, is a constant vector field.) Finally,
(P, ker O, ,)-conditioned invariance of;" implies that

Py(Vy Nker Ol ) C V', (15)

which corresponds to the conditiop, ). (ker W, Nker O ;) C ker W,. O

For convenience, let us construct the linear version8fhere. For this, suppose th&} =
span {pf, -+ | gazq T, w;lq} where all column vectors]’s andw]'s are a basis of, such that
¢! € R(O)) andw?! ¢ R(O,). With©, := [¢f, - -- ,gozq]—r andW, := [w?,- - ,w;{l]T, define the
coordinate, := Oy, 6, := ©,z, andw, := W,z. We also note that, by construction, there is a
matrix X, € R**¥« such tha®, = X,0,.

By (15), and the fact thaP, 'V, = ker[®, W,']" P,, there exist two matriceS] andS;° such
that

© o | ©
@] 7= 53 [22] +s700m

Likewise, A, -invariance of), implies the existence of matricég such that
Ty T _— T Typ*T
AW, =10, W/ ]F;,
and, since/, C O, + V,_1, there are two matrice$] and S} such that
W, =0, 8" +[0, , W ,]SET.
Taking all these equations into account, we obtain that
y = Hy&q
€ = Fy&y + Gqu
Wy = WeAqx + WyBgu

«|© « | Xe&
=F, [Wi] r+ W Bgu = F [ U‘iqq} + W,B,u

wq(tg—1) = Wea(tg—1)

0, )
= 5104(ty_1) + S {Wq 1} (Pyra(t; )
qg—1

O41
W, 1

qulqul(tqiﬂ
wq—l(tqiﬂ

= ngq(tq—l) + 531:5371 { } x(t, q) + 5553310111311—135@;1)

= Slgq(tqfl) + Sj; 1 { ] + Sﬁsiflﬁq(tq—l),

where the first two equations are from observability decasitium so that{ H,, F,) is an observable
pair. These equations correspond to the strucuture pessan@).

4.4. Revisiting Examplé
As a showcase, let us verify Assumptidiior the switched system of ExampleFirst of all, since
dim O = vy = 2,dim Oz = v» = 1, anddim O3 = v3 = 1, the functions\? = Lij‘lhq are listed as
M) =2, Aj(2) = 2f —af + 221,
M(z) =22 — 22+ 2x1, N(z) =2 + 22,
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 13

and
A (pi(2)) = 2] — 23 + 221, A (p2(x)) = 21 + 3.

This leads to

07 =span{[0, 1,0], [2z1 + 2,0, —2x3]},
Oy = span {[2z1 + 2,0, —2z3]}, O, = span {[2z1 + 2,0, —2z3]},
O3 = span {[1, 222, 0]}, O} = span {[1, 22, 0]}.
Starting withW, = {0}, we pickW; = O; since; is the largest,f;-invariant, nonsingular, and

involutive codistribution contained ii¥; on X = {z € R® : 21 > 0,23 > 0}, and satisfies that
(p1)«(ker Wi Nker Of) C ker W, becausé

1 0 0 T3 T3
2¢1 +2 0.1 —2z3| -span 0 C span 0
0 0 1 1 + 1 xr1 + 1

Here, we simply lef,; = 9} = A}, j = 1,2, so thatk; = r; = 2 andl, = 0. SinceW; + Oy =W,
r; =0.
Noting thatW, C O3 + Wi = Wi, we taked? (z) = A2 (x) = 2 — 22 + 221 andw?(x) = x5 SO
that
Wy = span {d¥3, dwi} = span {[2z1 + 2,0, —2x3],[0,1,0]} = W, = Oy,
which is, onX’, the largest nonsingular and involutive codistributi@wariant w.r.t.f>, contained in

O3 + Wy, and satisfies thdps ). (ker Wy Nker O%) C ker W, becauséer W, N ker 0% = {0} (or,
because.(x) = ). Indeed, invariance w.r.i; is verified as

Ly,dw? = Ly,dxo = dLs,ze = d([0,1,0] - fo)
= [—(221 + 2)z2, — (2] — 23 + 221), 2x322] € Wh,

o
Lf2d’l9? =d (a—xl . f2> = d([Qle + 2,0, —2333] . fg) =0¢e W,

As a result,ky =1, =1, rp = dim((’)g + Wl) =2, M% = 19%, /J% = w%, 7“/2 = dim(WQ + Og) —
dim Ws = 1, andpZ(z) = A (pa2()) = 21 + 23.

Finally, W5 C O3 + W, = R? so that we takéVs; = R3 andks; = 1 andl; = 2. Therefore, the
hypothesis in Theorerd holds withm = 3.

These functions can now be used to arrive at the form predent€8). For mode 1, let
&1 = Al (z) andg; 2 := Ai(x). Then we get

y=2~&, €10 =27 — a3 + 221 = &1 9,

i (16a)
5172 =0.2201203 — 0.2333(331 + 1) +0.2z3 = 0.

Similarly, for mode 2, we introduce the following coordigaté, := \?(x) = 2 — 23 + 22; and
wy 1= w(x) = z2. The dynamics of mode 2 then take the following form:

y = &2, €o = 2w1w3 — 2a3(z1 + 1) + 223 = 0,
g = —(27 — 23 + 221) 72 = —E2w0, (16b)

wa(t) = ¥ (ty) — 25 (t7) + 221 (87) + 0.1aa(ty) = &ra(t7) + 0181 (7).
9t actually shows thatp; ). ker Wy C ker W1, which implies that, because of Lemrha, the mapR;_, in (8d) does
not depend owy, or in this particular exampley2 (¢, ) does not depend afy as shown in16b).
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14 SHIM AND TANWANI

Finally, for the third mode, the new coordinates &re= \}(z) = x1 + 23, w31 = 2o, andws 5 :=
x? — a3 + 21, and the resulting system dynamics become:

: 1
y:€37 §3:I3+2I2(—§$2):0,
1 1

w31 = %2 = T5Ws, ws1(t2) = x2(ty ) = wa(ty), (16c)
W3 = 2m1xh + 225 = 2(x1 + 12y wap(ta) = a1(ty) —a3(ty) + 221 (t3)
=2(& — w§,1 + 1)w§71, = 52(t5)-

It is seen that the system dynamics in the new coordinateethébllow the structure prescribed
in (8), which is crucial for the observer design in the next sectio

5. OBSERVER DESIGN

Based on the study of large-time observability, let us noscas the design of an asymptotic
observer for systeml]. By asymptotic observer, we mean an observer whose stateonverges
to the plant state(t) as time tends to infinity. It is shown in this section that aynagtotic observer
can be constructed based on the following assumptions.

Assumption 5 1. The solutionz(¢) of the plant {) remains in a compact s& c R”, and the
input u(t) (and its derivatives, whenever necessary) is uniformlynoled. Let|u(t)| < C,,
for ¢ > t.
2. The switching is persistent and occurs within the durafip that is,

Tg=tg—ty1 <D, YgeN (17)

wheret, is the switching time.

3. There are a finite number of modes in systel)) &nd the same mode sequence repeats.
We denote each cycle of modes @52, --- ,m}, so thato(t) = ((¢ — 1) mod m) + 1 for
t € [tg—1,tq), g € N, and the mode andq + m refer to the same mode.

4. Assumptiond and2 hold onX, andk,, + l,, = n so that systemi is large-time uniformly
observable or’, whereX is any set that properly contains the getind their boundaries do
not intersect. <

In Assumption5, item 1 is often the outcome of control, which is not an obseproblem but
makes the observer problem much easier. It should not benasksupriori when the estimated state
Z(t) is used for a state-feedback control, in a certainty-edgmae manner, and the stability of the
overall closed-loop system needs to be analyzed diffgrentiich is however beyond the scope of
this paper. Item 2 is introduced for a practical reason: Asused before, when the system is not
(small-time) observable at any mode, only switching carvige new and fresh information into
the observer. Therefore, assuming that the switching sigtent is natural in order to construct an
observer whose estimate converges to the true value intafimie. More discussions on items 2
and 3 can be found in Sectighl The requirement that the assumptions hold on a slightbelar
setX in item 4 is because we will utilize the Lipschitz extensiaid.

For a given mapf : A — R¥, a Lipschitz extensiomf f from a compact sefd(c A C R!)
is a mapf : R! — R¥ such that it is globally Lipschitzf(z) = f(z) for everyz € A, and it
preserves the structure ¢fx) (for example, if the arguments of;(z) consist only ofz; and
z2 on A, then the arguments of;(z) are the same oRR!). When a compact set is contained
in A and their boundaries do not intersect, there always existipschitz extension off from
A (see L9)). One simple choice of Lipschitz extension ¢fis to saturate its arguments, i.e.,
f(z) = f(saty(z1),- -+ ,sat;(z;)), with each saturation being inactivea{;(z;) = z;) on A. See
[18] for more practical methods to get Lipschitz extensionsthis section, whenever we put an
overbar on a map, we imply the Lipschitz extension of the map.
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 15

Under Assumptiorm, the observer we propose is of hybrid-type, and has the form

B(t) = fo(2(t) + gg(@()ult),  tE€ [tg—1.ty), (18a)
2(tq) = pe(2(ty)), t=tq, qe€N, (18b)
i.(tz*m> - j*(tjm% t:m = tim + Tcompa Z S N7 (180)

with an initial conditionz(ty) € X, where f,, g,, andp, are Lipschitz extensions of;,, g,, and
pq from X, respectively. Let us denote the Lipschitz coefficientspfg,, andp, by Cy, C,, and
C,, respectively, for aly € N. Note that, since the plant staté) remains int’, we can also treat
system {) as if the vector fieldg,, g,, andp, in (1) are replaced with their Lipschitz extensions, so
that the plant) and the observef @) are both globally Lipschitz. Then, it is seen that the obser
equations 189 and (L8b) are just a copy of systeni) without any error correction. Instead, the
estimation error is corrected through the vectorat eacht},,, i = 1,2,---. The estimater* is
computed by an estimation algorithm to be proposed, ancoimpatation oft* (¢}, ) begins at every
tim (i.€., right after everyn-th switch occurs). The delay tin#,., represents an upper bound of
the time required for the computation, and we implicitlyase thatt;,, + Tcomp < t(i1)m and
thatt;,, does not coincide with any switching instarige

Now we propose an estimation algorithm for(¢7, ), which guarantees thaim; ... |Z(t) —
z(t)| = 0.

5.1. Estimation Algorithm

The proposed estimation algorithm is based on the reprasemt@) of system {). It consists
of four steps; (i) running,-observers, (ii) runningu,-observers, (iii) taking inverse of a map,
and (iv) performing a catch-up process to compensate fopotational delayl,m,. We discuss
each of these steps in this subsection one by one. The &lgotiegins at every time;,,,
i €N, and processes the past data (i€, .t..]» Yt 1ym.tinls Olti-sym tinls AN T (),
g=(i—1)m, - ,im — 1) that is stored in the memory.

For notational simplicity, we denote the mogle- (i — 1)m + k just byq = & (as ifi = 1) in this
subsection. Therefore, when we sgy m + 1 it should be interpreted ag= im + 1.

5.1.1. {,-observer and the back-and-forth technigUée &,-observer means an observer for the
small-time uniformly observable syster@a] and @h). Instead of presenting a particular form of
observer, we display the required minimal property of theewber (in Assumptio) that will be
used in our algorithm. In this way, we incorporate many obsedesign techniques available in
the literature into the proposed algorithm. For this, wepgge that an observer fdd) and gb) is
generally written as (here the superscripindicates ‘forward’ whose meaning will become clear
soon)

C; = 22( fpyvv>a t € [tCI*l’tq)v Ccf] € Rn(q
E=To(Chuv)  Cltgm) = g (tgmr). 0(Eg—1)

whereéf] is the estimate of the statg, andv represents the input and its derivatives The
dynamics of the state* will be discussed in detail when we introduce the catch-wggss, and for
now, let us suppose that (¢,_1) = (t,—1) Wherez is the state of{8). The maps\, andY, have
the property that

(19)

)\‘<1Vq>(x) =Y, (Ay(z,v), Hy(x),v) forall admissiblev and allz: € X. (20)
It can be interpreted tha‘@(t) is an estimate oh,(z(¢), v(t)). SinceX is compact (and with the
boundedness af), we assume, without loss of generality, thaf(-, y, v) andA,(-,v) are globally

IThe reason for introducing the derivatives of the inptitroughw is to incorporate the high-gain observers, studied in,
e.g., [7, 25, where the input derivatives take part in the change ofdioates. When contains the derivatives af as
well as the input: itself, Assumptiorb.1is strengthened by adding thadt) is uniformly bounded.
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16 SHIM AND TANWANI

Lipschitz uniformly w.r.t.y andv (otherwise, take the Lipschitz extension). Let their Liptc
coefficients b&’+ andC, for all ¢ € N.

When systemX) has single input and single output,(= n, = 1), the system&a) and @b) can
take the form of §), and thus, a particular example of the obserié) (s the high-gain observer
studied in B]. This corresponds to the case tﬁ?t: T,(¢,y,v) = ¢ and

E = Fy(E) + Gy @)ut K- (y— Hy(&)), 1€ [tg1,t),
é;(tqfl) - X?Vw(ﬁf*(tqfl));

whereK is a constant injection gaili‘gy , is a Lipschitz extension off, , from X, andF,, G,

andH, are Lipschitz extensions df,, G,, andH, from =, = )\‘<1Vq> (X), respectively.

Now we state the property required for the proposed algorith

(21)

Assumption §High-gain observer property)
For any constants > 0 andd > 0, there exist an (forward) observerd) and a clasgc £ function

p! satisfying

1. |Ccf](t) - Aq(m(t),v(t))| < B; (|C;(ﬁq—1) - Aq(Jf(tq—l)7U(ﬁq—l)”v’f - ﬁq—l) fort e [ﬁq—latq)v
2. ff(a,t) < daforalla>0andb <t <. <

In the assumption, the firstitem implies that the obseri/@rié an asymptotic observer while the
second item states that the convergence rate can be mattardybiast, which are characteristics
of the high-gain observers. In fact, most of the nonlineareober designs in the literature, such as
[15,8, 7, 25, 20], give rise to exponential functions that play the roleﬁg);fthat is,ﬂ;(a, t) = ke *a
and, by choosing the observer gains appropriately, the@otiscan be made arbitrarily large while
the constant increases with the polynomial order@f 23], which satisfies Assumptiofi2 with o
such thatte=** < 4. This is because the designs are based on a quadratic eapuhgv function
in particular coordinates, so that the error satisfies ammeaptial convergence property in those
coordinates.

Although the observei@) can provide quite a good estimétgt) after arelatively short transient
period beginning at,_1, the proposed estimation algorithm will require a “goodtirmste of¢,(¢)
for theentireinterval[t,_1,t,) (the reason for this requirement will become clear when eutis
wq-observer shortly). The task of obtaining good estimatesHe whole interval is not achieved
solely by the forward observer even though a high observir igaused. (This point has been
well studied in R3].) To solve this problem, we propose a ‘back-and-forth obeton technique’
here. First, note that the solutigg(¢) on the intervalt,_1,¢t,) satisfies the following backward
differential equation: withg? (t) := &, (t, — t) and&p(0) = &,(t,),

§2 = —Fq(ﬂ}') - Gq(gg)“(tq —t), yltg—1t) = Hq(ﬁg), t € (0,7 (22)

Then, by slightly modifying the forward observeid), we may design a backward observer f2i2)(
as follows:

C=30(C0ylty —1),0°(tg — 1),  te(0,7], (beR™a
€ = Ty(Cylty —t)v(ts — 1), C5(0) = Chi(ty)

where the vector® containsu(t, — t) and its derivatives (which differs from by the signs of
certain components; odd number of differentiation yieldgative sign). It should be noted that the
initial condition ofgﬁlO is set to be the final value of the forward obsenid)( This implies that the
backward observer runs after the forward observer has besuied. A backward observer, for
example, could be obtained by a simple modificatior2dj @s follows:

(23)

& = ~FuE) — Gu€ults — 1) = K7 - (ylta — 1) ~ HuE}),

> (24)
52(0) = §f1(t(;)7 te (OaTQL
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 17

where the injection gaiiy may not be related tﬁ’; and needs to be redesigned. For the backward
observer 23), we also assume the following:

Assumptiors’ (Backward high-gain observer property)
For any constants > 0 andd > 0, there exist an (backward) observeB)land a clasgcL function
jb satisfying

1[G (1) — Ag(a(ty — 1), v(tg — 1)) < By (165(0) — Ag(a(ty ), v(t; )] t) for t € (0,7,
2. Bb(a,t) < daforalla>0andb <t <, <

Once Assumptiof® holds for (L9), this additional requirement is mild. For example, theigies
of [15, 8, 7, 25, 2(] readily satisfy this requirement (because the systentitre does not change
and only the signs of vector fields and signals are reversed).

The operation of,-observers is now summarized. Suppose, for now, that

B (tg-1) = &(tg—1) forg=1,---.,m (25)
are stored (we will remove2f) later in Section 5.1.4). When the-th switch occurs at time,,, the

algorithm integrates thg,-observer {9) using the stored data from the past, followed by integgatin
(23), forg =1,--- ,m sequentially. The estimatfg(t) is taken to be

o f8tg ), teltyrty + ), i
- {52@% EE [ty + 20 ty). (26)

Since the estimation transients have been removed@) érbitrarily small estimation error can
now be obtained for the entire intenvia}_+,¢,). Indeed, suppose that, with= 7,/2 and a given
6 € (0,1), the observersl@) and @3) are suitably designed under Assumptiérand6’. Then, with

§q =& — &a»
sup G ()= sup & (1) — &) (27a)
teltq_1+L,tq) t€ltg_1+ L ,tq)

= sup [To(Gt), y(t), v(t) — Ta(Ag(a(t), v(t), y(t), v(?))] (27b)

tEltg 1+ tq)

< sup CTB;(K;(tq—l) = Ag(@(tg—1), v(tg—1))l,t — tg-1) (27¢)
te[tflfl"’_%zatq)
< CT(SlC;(tq—l) - Aq(x(tq—l)vv(tq—l))l (27d)
= 6Cv[Ag (2" (tg—1), v(tg—1)) = Ag(x(tg—1),v(tg-1))] (27e)
< 30T Cli* (tg1) — a(tg1)| (27f)
And, similarly,
sup o (t)] = sup oty —) = &(1)] (28a)
t€[tg—1,tq-1+73) t€[tg—1,tq-1+3)

= sup |T4(Cg(tg — 1),y (1), v(t) — Tq(Ag(x(t), v(1)), y(t),v(1))]  (28b)

t€[tg—1,tq-1+3)

< sup Crl¢o(ty — ) — Agla(t), v(?))] (28¢)
t€ltq—1,tq—1+3")
= sup  Cr[(t) — Ag(a(ty — 1), v(tg — 1)) (28d)
te(%frq]
< sup OrBe(I¢e(0) — Ag(a(ty), v(t)))l 1) (28e)
te(%frq]
< 8Cr|G(ty) — Aqla(ty ) vty )] (28f)
< 5CT52(|<;(tq71) - Aq(x(tqfl)a U(tqflmatq - tqfl) (289)
< 5CT5CTCA|j*(tq_1) — x(tq_1)|. (28h)
Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2012)
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18 SHIM AND TANWANI

Therefore, combining?) and @8), the operation of,,-observer for the modgleads to

sup |£q(ﬁ)| <0 -max{CyCh, C%CA} & (tg=1) — z(tg—1)]. (29)

te[tqflvtq)

Let us defineMy, := max{CyCx, C%C, } for simplicity.

5.1.2. w,-observer. Thew,-observer forg = 2, --- ,m is just a replication of§c) and @d), given

by ) _ . _ .
g = F (g, &) + Gy(tg, §g)u, (30a)

with the initial condition
“A’q(ﬁq—l) = R;—l(wq—l(t;—l)v §q—1(ﬁ;71)a &q (tq—l))- (30b)

andw; := 0 for convenience. Letting}, := w?lq>(/’\,’), the vector fieldsF; andG; are Lipschitz
extensions off and G; from the set, x Z,, andR;_, is Lipschitz extension ofz; ; from
Qg1 X Eq—1 X Eq. Let Cp+, Cg~, and Cr- be their Lipschitz coefficients, respectively. Again
we emphasize that the role af;,-observer is not to reduce the errdg(t) := wq(t) — wy(t), but
to deliver the estimateél_l(tqil) andw,—1(t,_,), that are obtained from the previously active
mode, to the next mode through,(¢) along the copy of system dynamic30@). In order for the
information not to be corrupted too much during the deliyery require tha‘fq(t) remains near its
true valueg,(¢) for the entire intervalt,—.,t,). This is the reason why we required the reduction
in estimation erro€, (t) for the entire interval in the previous subsection. Heregwghasize that,
shrinking the transient period by increasing the obseraér mmay worsen the situation because of
the peaking phenomenogd]; that is, the peaking iéq(t) may damage the delivery role &@{3).

The operation ofv,-observers30) for ¢ = 2, - -- ,m begins after the operation gf-observers,
and the error caused by the operationgfobservers will be analyzed in Section 5.2.

5.1.3. Inversion.After the integrations of,-observers and,-observers, the estimatés (t;,) €
R and,, (t,,) € R'™ become available. Since, by Assumptio, the mageol(97; . wj ) isa
diffeomorphism onY, let its inverse on the range be given, referring®o By 2 = ®(xm (&m), wim).
Now define a map¥(¢&,,, w,,) as a Lipschitz extension of the map, o ®(xm (&m), ws) from
I (X)) x Wi (X)) wherep,, is the jump map ofX). Then, we set the estimaié(¢,,) for the

(km) (lm)
plant statec(t,,) as

j*(th) = ‘Il(é’m(t'r_n)’ w‘m(f’r_n)))' (31)
Let the Lipschitz coefficient o¥ be Cy .

5.1.4. Catch-up process he algorithm to computeé*(¢,,) begins at time = ¢,,,, and takes some
time until the value ofi*(¢,,) is calculated. Therefore, in order to update the obserate stof
(18) by z*, we should translate*(¢) from ¢,,, to the current time. This can be done by integrating
a copy of (89 and (8h) from time¢,, onwards with the initial condition:*(¢,,). This separate
integration should be sufficiently fast, compared to theiea-observer8) running synchronously
in real time, so that the expressions resulting from bothiritegrations coincide after some time
tr, = tm + Tcomp. We call this procedure as a ‘catch-up process,’” which ismarized as follows.

m

Wheni*(t,,) is obtained by inversion fronB8(), integration of the following equation starts:

B(t) = fo(@ (1) + Go(#* ()ult), ¢ € [tg—1,1q), (32a)
¥ (ty) = Pg(*(t)), (32b)
for g=m+1,---,2m with the initial conditioni*(¢,,). This integration is performed fast

during [t tm + Teomp), and (8¢ is updated at = ¢,, + Tomp- Then, the integration continues
synchronously with real time unti;,,, or just storez*(¢t) = Z(t) for rest of the time (which
is possible because botB2) and (L8) yield the same result). Reason for the integration after

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2012)
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 19

tm + Teomp IS that the knowledge af*(¢,) for ¢ = m,--- ,2m — 1 will be used for¢,-observers
in the next cycle of the algorithm that starts at ¢o,,.
Now we can remove the statemeRb) because we have specifiet(t,) here.

5.2. Convergence of Estimation Error

We first look at the errof*(t) := @*(¢t) — z(t), and thenz(¢) := z(t) — «(¢). It can be thought that
the statei* (¢) obeys 82) and is updated at every= ¢;,,, in computer timej € N, by the inverse
relation @1). Since there is no error correction betwegn andt ;. 1),,, the estimation errat*(¢)
may increase during the interval. However, its growth igtiah and can be computed by Gronwall-
Bellman’s inequality and the Lipschitz property &2 as follows: for anyt’ and ¢! such that
tim < tT <t <tiiiym,

|7 (t1)] < (Cp)” exp ((Cy + CyCu)(tF — 1)) 7 (t1)| = M (¢, £1)] 2" (¢1)] (33)

wherep is the number of switches in the interval, ¢¥], and for convenience, let

k
Mlz = M (timsk, tim) = (Cp)k exp ((Cf + Cgcu) ZTj+im> )

j=1
andM{ := 1 for convenience. This in turn implies fro@9) that, forg = im + 1,...,im + m,
S ()] < OMra|Z* (tg—1)] < SMryaAMy_y_ iy & (tim)]- (34)
tE(tg—1,tq

It then follows from @09 that |w,| < M. (|@,| + |&,]), where M, := Cp- + Cq-C,. For q =
im+2,...,1m+ m, this leads to,

g (1)) < M Tojidg(tg-1)| + (M7 = 1) sup  [€,(1)]
t€lte—1.tq) (35)
< M Ty (tg-1)] + (M7 — 1)SMyaMy_y iy, |7 (tim)].

From (30b) and @4), with w;,,,1+1 := 0,
| (tg—1)| < CrelEq(tg—1)| + Crelq1(t; 1) + Creltg—1(t; )|
< 0CR Mrya(Mg_y iy + My_g_ i )| (tim)| + Cre g1 (t,_)].
Putting 86) into (35), we obtain

(36)

g (tg)] < Cree™ g1 (tg_1)| + SNg_1 i & (tim)]

where N; ;. = (eM70 — )My M, + M TaCpe Mya(ME_y_, +M:_, ). From
this, it is not difficult to derive that, fog = im +2,...,im +m,

| (tg )| < ONg_1 i |Z" (tim)| (37)
where
q—1—im q
NI; 1—im = ;—l—im—i_ Z (CR*)q_j_lmN;‘eXp M* Z Tk
=2 k=g+2—j
So far, we have obtained(; s 1)m (t;,1),,)| < OMraMy,_y[F* (tim)| AN D41y (E 4 y)] <

SN _1|3*(tim)| from (34) and @7), which, by @1), flnaIIy lead to,

|i*(t(i+1)m)| < |\Il(g(i+1)m(t&+1) )vw(i+1)m(t&+1) )) - \Il(g(i-f-l)m(t&Jrl)m)vw(i+1)m(t&+1)m))|
< C‘I’(|£(z+1) ( (i+1)m | + |U} z+1)m( (i+1)m )|)
< 6Cy (MyaMy,_y + Ny, )| (tim) |-

Copyright© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Contr¢2012)
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Suppose that is chosen such that
§Cy (MyaMy,_; + Ny, _q) <y <1 (38)

with a constanty. Then, lim; ,« |Z* (¢ )| = 0. This implies thatlim,; . |Z*(¢)| = 0 because
t(iJrl)m —tim <mD and
sup  [T()| < sup Mt tim) [T (fim)]
tE[tim,tit1)m) tE[tim,tit1)m) (39)

< (Cp)" L exp((Cy + CyCu)mD)|E* (tim)

for all i € N, due to 83) and Assumptiors.2.
Finally, sincelim; . |Z*(t)| =0 and z*(t},,) = Z(t},,), we have thatlim;_, |2*(t},,)| =
lim;_, |Z(t7,,)| = 0. Therefore,
sup  [E(t)] < sup  M(t,t5,)|E(t,)]

ram

tE[t;m,t(*Hl)m) tE[t;m,t(*Hl)m) (40)
< (Cp)™ exp((Cy + CyCu)mD) |2 (85,

which ensures thatm;_, . |Z(t)| = 0.
Summarizing the discussions so far, we arrive at the foligwheorem.

Theorem 4Asymptotic observer)
Under Assumptions, 6, and6’, system {) admits an asymptotic observer; and the observer gains
are designed according to the criteria givendf)(under Assumption§ andé'. N

Convergence rate of the proposed observer can be incregseduringy in (38), but is limited
by the fact that the estimation error cannot be reduced thifirst update time’,. This is natural
because the observer is based on the property of largedimiejot small-time, observability.

5.3. Simulation Results of Examgle

The proposed observer has been implemented and simulat&kdéonplel, and the results are
depicted in Figl. For this, theg,-observers1) and @4), which are linear for this example, are
employed withK! = col(2,1), K = Kf =2, K® = col(-2,1), andK} = K2 = —2.

For the simulation, we did not apply Lipschitz extensionsatty maps or functions. This is
justified by regarding that the regioti for large-time observability is so large that both the plant
trajectory and the observer trajectory remain in the inaaggion” of the Lipschitz extension. As
a matter of fact, Lipschitz extension becomes critical wtihenplant trajectory is operating near the
boundary ofX, or the observer gain is so high that the initial peakingdiam often goes beyond
the setX.

MATLAB source code is available upon request from the awthor

6. DISCUSSIONS AND CONCLUDING REMARKS

6.1. Discussions

1. Large-time observability for switched linear systemstisdied in our previous work2],
where a necessary and sufficient condition for it is preskritdurns out that the switching
times also affect the observability because it has beenrskioat there are singular switching
times which destroy observability even though the same namipience with different
switching times ensures observability. The conditions hiis tpaper are independent of
switching times, which is one evidence of sufficiency. 2d][ one can also find a condition
independent of switching times, which is of course a suffic@ndition, but it can be seen
that the linear version of the proposed condition in Secti@nis still stronger thanZ4]. It is
actually due to the restrictive structurewf-dynamics in this paper.
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Figure 1. The first two figures show the plant state) (dotted black) and its estimat&t) (dashed red),
initiated fromz(0) = col(1, 1,1) and(0) = col(0, 0, 0), respectively. WithTcomp = 0.5, the update 18¢)
occurs at 3.5, 6.5, and 9.5 seconds while the mode switckessesery second. This is clearly seen from
the third figure, which plotgz(¢) — z(¢)|. The convergence of error to zero is also observed. Thetfqlot
illustrates the operation of back-and-foghrobserver for mode 2 over the intenval 2). In this mode 2

is a scalar variable (dotted black). It is observed that stemateé, (dashed red) is obtained fro&) of

the forward observer (dashdot magenta) over the intéhal2) andéb of the backward observer (dashdot
green) over the interval, 1.5).

2. In the convergence analysis of state estimation erroeati@n5.2, the constantd/!, ; and
Ni _, of (38) are dependent on the switching interva)sbut since they are nondecreasing
w.r.t. 7,, one can make the conditioB§) independent of, by setting allr, = D. In this
way, § can be chosen off-line and &l}-observers (i.e., observer gains) are designed before
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the actual operation. Elsé,is chosen on-line ang,-observers are designed whenever the
estimation algorithm is executed. The latter case tendgetd ipwer gain than the former.

3. The convergence analysis in SectibAsuggests that the mode sequefite, - -- ,m} need
not be the same and repeat. But it is important that, withegaence of every, modes, there
should be a subsequence of modes that guarantees largertifoem observability. Then, at
each execution of the estimation algorithm, the valie computed on-line for3d8) which
guarantees error convergence. This relaxes Assumpton

4. In an ideal case of no uncertainty and no disturbance,rAgdan5.2 can also be relaxed in
theory. The idea is to reuse the past data in the back-atidgpobservers. Looking atLO)
and @3) with (29), it is seen that one more forward and backward operatioh thi initial
valuegg(tq_l) = gg(rq) results in further reduction of the error. Repeating thekksnd-forth
operation, followed by longer catch-up process, one cat@p@8c) at every period oD (if
computation is fast enough) even though the actual swignthires not occur. This approach s,
of course, not practical because the estimation is basedtolated data and does not reflect
current information.

6.2. Concluding Remarks

This paper presented a sufficient condition for large-tinmfoum observability of switched
nonlinear systems. Compared to the existing literature ipeat systems, this condition is
independent of switching times and depends primarily onntleele sequence determined by the
switching signal. The proof reveals how the partial infotima available from each mode can be
combined to recover the state. The observer, based on tpegwd sufficient condition, generates
an estimate that converges to the actual state of the system.

One limitation of the current research is that the switchéngnal o(¢) is known, which is
sometimes not the case. Mode detection as well as the daeteaftiswitching times is one of the
future research directions.

Also, there are potential applications for state estinsaddiswitched nonlinear systems, e @], [
and exploring them in the context of real-time systems usimglesign techniques remains a future
work.
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APPENDIX

The following lemma is frequently used in the paper.

Lemma 1
Consider a codistributionV generated by exact one-forms, i.B/, = span {d\, ..., d\;} where
A1, .., Ak, 1 < k < n, are potential coordinate functions defined on alset R™.

1. If the codistributionV is invariant w.r.t. a smooth vector fielf] i.e.,

LyywcWw onk,

. . O\
then there exists a smooth vector figld A, (X) — R* such that5% - f(z) = F(Ayy ()
for everyz € X.

2. If a smooth functiork : X — R satisfies

dh e W onk,
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then there exists a smooth functiéh: A (X) — R such thati(z) = H (A (x)) for every

reX.
3. Let W' be another codistribution such thatm(W +W’) =k +r on X, and suppose
that there are functiong,, ..., u, such thatV + W' =span{dX\;,dy; :i=1,...,k,j =

Sryand{\, ..., A\, p1,. .., ue} are potential coordinate functions an If a smooth
mapp : X — R™ satisfies
ps(ker W N ker W) C ker W

on X, then there exists a smooth m&p: A (X) x p(y(X) — R¥ such that\ ) (p(x))
P(Agy (), ey (2)) wheneverr andp(x) are contained i’

Al

Proof

Since);, i =1,..., k, are potential coordinate functions ah we can find\;, 1, ..., A\, such that
A(ny(z) becomes a diffeomorphism ofi. Let z = A,y (z). In the z-coordinates, it is seen that
W = span{dz,...,dz}, and thus,

0 0
kerW—span{aZkH,...’a}, (42)

Also, the vector fieldf (z) is represented in-coordinates as:

0 , 7 fa(Za; )]
Oz lo=x7}(2) O () = 1) = |:fb( )]’
wherez, = [z1,...,25] |, 2 = [2k41s- - 20] | fa(2) € RF, and f,(z) € R*~*. Then, since the

codistribution)V is invariant w.r.t.f, the distributionker )V is also invariant w.r.tf on X.** Since
ker W is invariant w.r.t.f on X', or equivalently w.r.tf on A, (X), it follows that

of; o .
k = 1,...
[ 5‘21} Za% € ker W, i=k+1,...,n
Hence, -
afj:o, Vi=1,.. .,k i=k+1,...,n
azi

This impliesf,(za, 20) = fa(z4). TAkingF = f, proves item. )
For proving iten®, the function is represented in thecoordinates as(z) = h o A<‘”1> (z). Since

_ oh
dh = —d s —dzy, , onA;, (&),
o7 21+ + 2, Zn €W ( >( )

itis seen thatf’r =0,i=k+1,...,n. TakingH = h proves iten?.
For item3, we find A\ 11, - . )\ such that

z = Ax) := col(Ay (2), oy (%), Megry1 (), - -0y An(T))

becomes a diffeomorphism on¥. Then, in the coordinates of:, we have that
W =span{dz,...,dz;} and W+ W' =span{dz,...,dzkr}. This way kerW and
ker WnkerW = (W +W')L can be equivalently written asspan{ei1,...,e,} and
span{egtr+1,...,€n}, respectively, on\(X’), wheree; is the elementary basis vector (i.e.,
all elements are zero except theth element which is one). With(z) = Aopo A71(2), the

“* Leto € Wandv € ker W. Then,o - v =0 and(Lyo) - v = 0. By the equalityL ¢ (o - v) = (Lo) - v+ o - [f, ], it
is seen that - [f,v] = 0. See [L6].
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conditionp..(ker W Nker W’) C ker W implies that

95
_pejespan{ek-f-la'--ven} fOl‘j:k:-l-T—f—l,...,n

0z
on A\(X). This implies that the firsk functions ofp do not depend o8y ,1, ..., z,, SO that we
obtainP = p;. This completes the proof. O
Proof of Theoren® '
By Assumption4.(a).(1), systeml(@ and (Lc) is converted into ) with &, ; = L]fq’lhq(x), j=
1,---,v4, 0nthe seft’. Then, the same argument as in Sectidn(after Assumptior3) proves that
Assumptionl holds.

To see that Assumptidhholds, we také, := Jf, (), wq = wf; \(x), ands ==, (x)
in which the existence of?wm%> on the sett follows from Assumptiont.(b). For S|mpI|C|ty, we
denotex!(z) := L)' hy(x), so thatt, = A, (). Here, becauséy € O, (Assumption.(b)) and
O, is generated by the differentials &f, - - - , Af, that are potential coordinate functions &n(by
Assumption.(a)), eachy is a function ofA?w (by Lemmal.2) so that the may, of (6) exists.

BecauseW, is invariant w.r.t. f, and g, and W, = span {d¥9, ..., dﬁzq,dw‘{, e dwqu} with
potential coordinate function@?kq>,w2’lq>} on X, Lemmal.l is applied to obtain smooth vector
fields ¢, Go, Fi, andG} such that

TR

b, = —(2) - (F(2) + gl@)u) = Fy(6w,) + Gy (6, wy)u

Ow! o,y
or

(42)

Wqg = —F

(z) - (f(z) + g(x)u) = Fg(eqqu) + Gj](eqqu)u

which match the equation$4) and 6b). For the remaining coordinate functigp the equations
(50) and 6&d) are naturally derived except

wq—H(tq) = R; (wq(tq_)a fq(t;)a €q+1 (tq))v (43)

which is proved henceforth.
Lemmal.3, along with Assumptior.(d) and(p, ). (ker W, Nker O; ;) C ker W,, implies the
existence of a functioi®] (and thenP; below, sincedy, , andu (+, are functions of\7, , and

A?jlm o pq respectively) such that

[% (alty >>] 0 (1))

w<lq>(:c(tq)) W?zq>(pq(x(tcz_)))
= P}, (@(t)),why (@(tg), s ((t7))) (44)
=PI, (alt ) (@t ) A o py(alty )
= Py(&q(ty ), wqlty ), Eqv1(tq))-

Note thatdw] € Wy C (Og + Wy—1) = span{duf,...,dud },j = 1,...,lq, by the construction of
W, and Assumptior.(c). Therefore, by Lemma2, there existsj ands; such that

+1)
= S NI (0lt), 0% (2lt)s i (2(20)
q+1(§q+1( ) P*(fq( ) (q )a€q+1( q)))
= RZ(wq( q g ):&q(t q ¢ ) &qr1(tq))

W (tg) = W (2(tg)) = S5y (W8 (2(2,)))
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in which, the third equality follows from Assumptich(c), and the fourth equality follows from
(44). With this definition of ?; the equation43) holds true.
Here,w; is a null vector and; = 0 becauseV; c O, + W, = Oy, and therefore,

Wi = span {dV1, dv3, .. .,d19,1€1}, k1 < vy,

with potential coordinate functions; such thaty; € O,. (Without loss of generality, let; > 1
because, i1 = 0, we proceed to the next mode= 2 with W; = {0}.) Hence Assumptio@ holds.
Finally, if dim(O,,, + W,,,—1) = n with somem, thenW,,, = O,,, + W,,_1 by construction. This
implies thatk,,, + ., = n, and from here onwards, the statement of Theofiegompletes the
proof. O
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