
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust. Nonlinear Control2012;00:1–25
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rnc

Hybrid-type Observer Design Based on a Sufficient Condition
for Observability in Switched Nonlinear Systems

Hyungbo Shim1∗and Aneel Tanwani2

1 ASRI, Department of Electrical Engineering, Seoul National University, Korea,
2 Team BIPOP, Institut National de Recherche en Informatiqueet Automatique (INRIA), Rhône-Alpes, France.

SUMMARY

This paper presents a sufficient condition for observability of continuous-time switched nonlinear systems
that also involve state jumps. Without assuming observability of individual modes, the sufficient condition is
based on gathering partial information from each mode so that the state is completely recovered after several
switchings. Based on the sufficient condition, a hybrid-type observer is designed, which comprises a copy
of the actual plant and an error correction scheme at discrete time instants. In order to execute the proposed
design, the observable component of the state at each mode needs to be estimated without transients or
“peaking” (caused by high-gain observers), and this motivates us to introduce a back-and-forth estimation
technique. Under the assumption of persistent switching, analysis shows that the estimate thus generated
converges asymptotically to the actual state of the system.Simulation results validate the utility of proposed
algorithm. Copyrightc© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We study observability conditions and observer design for aclass of switched systems, that comprise
a family of nonlinear control affine dynamical subsystems with state jumps. These subsystems
are activated by a switching signalσ : R → N, which is right-continuous and piecewise constant
where the discontinuities occur at discrete time instants{tq}, q ∈ N, called the switching times.
Mathematically, the systems under consideration are modeled as:

ẋ(t) = fσ(t)(x(t)) + gσ(t)(x(t))u(t), t 6= {tq}, (1a)

x(tq) = pσ(tq),σ(t−q )(x(t
−
q )), (1b)

y(t) = hσ(t)(x(t)), (1c)

where x : R 7→ R
n is the state trajectory,y : R 7→ R

ny is the output, the measurable function
u : R 7→ Rnu is the input belonging to some input classU of interest, and the mappσ(tq),σ(t−q )(·)

denotes the jumps in state trajectories at timetq while switching from modeσ(t−q ) to σ(tq). Such
jumps may model impulse effects, state resets, or any other discontinuity in the state trajectory. For
the development of results in this paper, we assume that the following hypotheses hold for system (1)
throughout the paper.
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2 SHIM AND TANWANI

(H1) The switching signalσ(·) is assumed to be a function of time only and is considered to be
known for designing observers.

(H2) There are a finite number of switching times in any finite time interval, that is, the Zeno
phenomenon is not exhibited.

(H3) The solutionx(t) remains in a setX ⊂ Rn on the time interval of interest.
(H4) All the vector fields and functions are smooth onX , and there exists a unique solution for

every time interval under consideration.

Under the hypotheses (H1)–(H4), the resulting solution is absolutely continuous between any two
consecutive switching instants and the possible discontinuities in the state trajectory, appearing at
the switching instants, are represented by (1b).

When dealing with observability of nonlinear systems, there are different notions that are
involved. The work in [11, 13] talks about observability in local neighborhoods of the state space.
Authors in [12, 14] describe the notion of ‘large-time’ versus ‘small-time’ observability where the
difference lies in the fact whether it is possible to recoverthe state instantaneously in time or the
system becomes observable after certain time. If the systemdescription has exogenous inputs acting
on it, then the question arises whether observability holdsfor all inputs or not [8, 9]; if it does, the
system is called uniformly observable.

The concept of observability studied in this paper is a refinement of the ‘large-time observability’
already considered in the literature (e.g., [12, 14, 24]) and the ‘uniform observability’ studied in
[8, 9]. Switched systems can be thought of as a family of dynamicalsubsystems, where a switching
signal determines the active subsystem at each time instant. It is entirely possible that none of these
subsystems is observable in the sense that information about the full state is not immediate in the
output signal. But the information available from each modecan be combined in a certain manner
so that, under some conditions, it is possible to recover thestate vector completely after several
switchings have occurred. This explains how the concept of ‘large-time’ comes into picture when
dealing with switched systems and our aim is to derive conditions that make the system large-
time observable when the state trajectories are contained in a given setX . Moreover, since our
ultimate goal lies in the construction of an observer, the observability for all inputs (i.e., uniform
observability) is of concern in order for the observer to be independent of particular inputs. For a
formal definition of large-time uniform observability on a given set, see Section2.

For switched systems, the problems of observability and observer design have been studied
primarily for the linear case. Some initial observer results, such as [1, 17], have assumed that each
mode in the subsystem is in fact an observable system that admits a state observer; and then analyzed
the stability problem of the switched error dynamics using classical tools, such as dwell time, or
common Lyapunov function. More relaxed approaches do not assume observability of the individual
modes, and the notion of gaining observability by switchinghas appeared in, e.g., [5, 26, 27]. The
sufficient conditions proposed in [5, 26] imply that the full state information is recovered after one
or several switchings. Both papers use outputs and their derivatives to recover the state. The work
of [27] gives geometric conditions under which there exists at least one switching signal that makes
the system observable. However, in spite of being limited tothe linear case, it is not clear how the
conditions in [5, 26, 27] can lead to feasible observer design. This gap was bridged in our recent
work [24], where the idea of a hybrid-type observer is proposed in linear setting for estimating the
state trajectories asymptotically.

For observability of switched nonlinear systems, however,there doesn’t exist much literature. The
authors in [3] address observer design using observability of individual modes. Somewhat related
to our approach is the work of [14], where the authors propose some preliminary abstract results
for observability. The basic idea is to recover the entire state by collecting the partial information at
each mode and transporting it unperturbed to some point in time. As done in [24], this transportation
is easily carried out in linear systems because the system statex(t) can always be written as thesum
of an observable vectorxo(t) and an unobservable vectorxu(t) for the active mode at timet; and the
transportation over a certain interval is achieved simply by multiplying the state-transition matrix
corresponding to that interval withx(t)(= xo(t) + xu(t)). Because of the linearity of the state-
transition matrix, the transported state is still the sum oftwo vectors, out of which the unobservable
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 3

component can be easily annihilated, leaving behind the other part as a linear combination of the
observable components of individual modes only, and makingit possible to recover the state. This
strategy cannot be adopted in nonlinear systems, and instead of transportingx to a future time via
the state-transition matrix, we exploit the system structure to construct some nonlinear dynamics,
whose integration plays the role of transporting the known partial information. This idea yields
a sufficient (but not a necessary) observability condition that renders a particular structure to the
switched system, which is amenable for construction of asymptotic observers. A motivating example
and further discussion of this concept appear in Section2. The proposed sufficient condition for
observability and an overview of observer construction areprovided in Section3. A geometric
characterization of the proposed condition is given in Section 4, along with illustrative examples.

Finally, the design of hybrid-type observer based on the proposed observability condition is
studied in Section5. The proposed observer consists of a copy of plant dynamics that is running
synchronously with the plant, and an error correction implemented as a jump in the state of the
observer. Before the jump, an estimation algorithm is executed in which several sub-observers
are run to process the input and the output data that are recorded in the memory. Unlike the
simpler hybrid-type observer in [24], the so-called ‘back-and-forth’ operation of the observer is
newly proposed and specifically required for nonlinear systems as a remedy for transient overshoot
that might be caused by the high-gain observers employed in the estimation algorithm. Since the
estimation algorithm does not run synchronously to the plant, we also take into account the time
consumed by the algorithm, which was not considered in the preliminary version [21] of this paper.
Simulation results are also presented in Section5.

For the observer design, our approach shares the same spiritwith [2], and the result of this paper
may be regarded as an extension of the linear result in [2], in the sense that, a coordinate-independent
condition is derived for observability and nonlinear systems are treated with a new observer design
strategy. More discussions and concluding remarks are found in Section6.

The notation and terminology used in this paper are summarized as follows. For a signalx(·),
x[t1,t2] means{x(t) : t1 ≤ t ≤ t2}. For a vectorx, |x| denotes the Euclidean norm ofx. R(A)

implies the range space of the columns of matrixA, andA⊤ is the transpose ofA. We write
[x⊤

1 , x
⊤
2 ]

⊤ simply by col(x1, x2). A composite functionλ(p(·)) is denoted byλ ◦ p. With given
functionsλi, i = 1, · · · , k, we denoteλ〈k〉 := col(λ1, . . . , λk). Now let X be a set inRn, and
whenever we say a property holds ‘onX ,’ we mean that it holds for everyx ∈ X . Smooth
functionsλ1(x), . . . , λk(x), defined onX , are said to beindependent onX if their differential one-
forms,dλ1(x), . . . , dλk(x), are linearly independent onX . In addition, if there existn− k smooth
functionsλk+1, . . . , λn such thatcol(λ1(x), . . . , λn(x)) becomes a diffeomorphism fromX to Rn,
then we say thatλ1, . . . , λk arepotential coordinate functions onX . We also recall that the Lie
derivative of a functionλ along the vector fieldf is Lfλ(x) :=

∂λ(x)
∂x

f(x) andLf(dλ) = dLfλ.
The differential of a mapp acting on the vector fieldv is denoted byp∗v. For a distributionV ,
p∗V = {p∗v | v ∈ V}. We call a codistributionW at xo nonsingularwhendimW is constant in
a neighborhood ofxo. A codistributionW is invariant with respect to (w.r.t.) a vector fieldv if
LvW ⊂ W. If W = span {dλ1, . . . , dλk} andLv(dλj) = dLvλj ∈ W for j = 1, . . . , k, thenW is
invariant w.r.t.v. Involutivityof a codistribution is determined by the involutivity of itskernel which
is a distribution [13]. A codistribution generated by the exact one-forms is always involutive. The
operatormod denotes modulus after division (over the set of integers).

2. OBSERVABILITY NOTION AND MOTIVATING EXAMPLE

Let us formalize the notion of observability considered in this paper.

Definition 1(Large-time observability)
System (1) with a switching signalσ(·) is large-time uniformly observable on a setX ⊂ R

n if there
exists a finite timeT > t0 so thatx(T ) is determined uniquely fromy[t0,T ], u[t0,T ], andσ[t0,T ] for
any measurable inputu[t0,T ], when the statex(t) remains inX for t ∈ [t0, T ]. If the timeT > t0 is
arbitrary, then system (1) is calledsmall-time uniformly observable on a setX . �
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4 SHIM AND TANWANI

In case of no jump map (1b), the knowledge ofx(T ), σ[t0,T ], andu[t0,T ] determinesx[t0,T ]

uniquely by (1a). This is not the case in general because the jump map (1b) may not be reversible.
In this sense, the notion of observability studied in this paper is also referred to as ‘determinability’
in [27, 24] and ‘reconstructability’ in [22] (where the systems considered are linear). From the
definition, if a certain mode of system (1) is small-time uniformly observable and the switching
signal activates that mode at a certain timet1, then the system is automatically large-time uniformly
observable withT > t1. Note thatx(T ) may be reconstructed using the derivatives ofy(·) andu(·)
(although differentiation should not be used in the observer construction). It is noted that, although
the observability in Definition1 is uniform† w.r.t. the inputu, uniformity w.r.t. the switching signal
σ is not required.

The following example motivates the forth-coming discussion on the large-time observability.

Example 1(Large-time observable switched system)
Let X := {x ∈ R3 : x1 > 0, x3 > 0} and suppose that the statex(t), with x(0) ∈ X , evolves
according to system (1) that consists of three modes given by

mode 1:















ẋ = f1(x) :=





0.1x3

x2
1 − x2

3 + 2x1

0.1(x1 + 1)





y = h1(x) := x2

mode 2:















ẋ = f2(x) :=





x3

−(x2
1 − x2

3 + 2x1)x2

x1 + 1





y = h2(x) := x2
1 − x2

3 + 2x1

mode 3:















ẋ = f3(x) :=





x2
2

− 1
2x2

0





y = h3(x) := x1 + x2
2

and the jump maps

p2,1(x) :=





x1

x2
1 − x2

3 + 2x1 + 0.1x2

x3





with all other jump maps being identity (e.g.,p3,2(x) = p1,3(x) = x). It is easily seen that, for any
switching signal, the system has no finite escape time and thesetX is forward invariant. None of
the three modes are observable in the classical sense, whichcan be verified by inspecting the rank of
the observability codistributionOi := span {dhi, dLfihi, dL

2
fi
hi, · · · } for each modei. While the

dimension of the state is3, we obtain, for mode 1,Lf1h1(x) = x2
1 − x2

3 + 2x1 andLk
f1
h1(x) = 0

for all k ≥ 2, which ensures thatO1 = span {[0, 1, 0], [2x1 + 2, 0,−2x3]} has rank2 for all x ∈ X .
Similarly, it is seen thatO2 = span {[2x1 + 2, 0,−2x3]} andO3 = span {[1, 2x2, 0]}, both of which
indicate that their rank is1 onX .

Nevertheless, we claim that the switching among these threemodes:1 → 2 → 3, makes it possible
to recover complete information about the state. Assume that a particular execution has been
observed on some time interval[0, T ] including two switching timest1 (for 1 → 2) and t2 (for
2 → 3) such that0 < t1 < t2 < T . Then, with the outputy(t) and its derivatives at hand, it is seen
that the statex(t) is recovered immediately aftert2. Indeed, it follows from the system equations at

† For nonlinear systems, observability depends on particular inputs in general. Therefore, uniform observability, which
means ‘observability for any input,’ is a stronger notion than observability. See [8, 9, 10].
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 5

mode 1 and mode 2 that

x2(t2) = x2(t
−
2 ) = e−

∫ t
−
2

t1
y(s)dsx2(t1)

= e−
∫ t

−
2

t1
y(s)ds(x2

1(t
−
1 )− x2

3(t
−
1 ) + 2x1(t

−
1 ) + 0.1x2(t

−
1 )) = e−

∫ t
−
2

t1
y(s)ds(ẏ(t−1 ) + 0.1y(t−1 )).

(2)

Then, the statex2(t2) is determined from known quantities. Also, from mode 3, we determine

x1(t2) = y(t2)− x2
2(t2).

Finally, from mode 2 and the fact thatx3 > 0 onX ,

x3(t2) = x3(t
−
2 ) = +

√

x2
1(t

−
2 ) + 2x1(t

−
2 )− y(t−2 ) = +

√

x2
1(t2) + 2x1(t2)− y(t−2 ).

In this way, we can recoverx(t2) (orx(T ) for anyT > t2). Thus, the switched system with switching
sequence1 → 2 → 3 is large-time (uniform) observable onX . �

Let us highlight some interesting aspects of this example inorder to motivate the technical details
that follow:

1. The main idea of the example was to illustrate that even though the individual modes of the
system are not observable, it is possible to extract partialinformation about the state from
each mode. Under certain constraints on the dynamics of the system, it is then possible to
accumulate all the information at some time instant in future so that it becomes possible to
determine complete knowledge of the state of the system. In this example, we have seen that
the information from mode 1 and mode 2 is combined with that ofmode 3 at timet2 to recover
the state at that time instant.

2. In equation (2), even thoughx2 is unobservable under mode 2 and mode 3, we are able to
expressx2 at timet2 as a function of the output measured during mode 2 and mode 1. This
could be done becausex2(t1), obtained from the jump mapp2,1(x), depends only on the
observable quantities att−1 given byx2(= y) andx2

1 − x2
3 + 2x1(= ẏ). Also, the evolution of

x2 under the dynamics of mode 2 over the interval[t1, t2) depends only on the measurable
signaly(·) and not the unobservable quantities. Sincex2(t2) is obtained by transportingx2(t1)
under the dynamics of mode 2, it is now possible to calculatex2(t2). This enables collecting
all the information at timet2 to determine the whole statex.

The above mentioned arguments underline the basic ideas of our treatments about observability
and observer design. This approach of combining the available information from various modes
and preserving parts of it, leads to a sufficient condition for large-time observability, which will be
formalized in the next section. Since the condition relies on the system structure, we also provide, in
Section4, the geometric conditions to verify such structural properties. The sufficient condition for
large-time observability is in fact closely related to the observer construction and, to put the entire
development into perspective, the next section discusses briefly how this condition leads to observer
design.

3. OBSERVER SYNOPSIS: IN THE PERSPECTIVE OF OBSERVABILITY

In this section, we present the underlying idea for the observer design, which will be detailed in
Section5. The key aspect of our approach is the transformation of the dynamics at each mode to
particular canonical structures, on which the observability is clearly seen assuming that the outputs
and its derivatives are available. After presenting the structure in this section, existence of such a
structure will be formulated under a geometric condition inSection4. The design of asymptotic
observer (to generate state estimates without using the derivatives of the output) based on this
particular structure is given in Section5.
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6 SHIM AND TANWANI

Before proceeding, let us rename the switching sequence forconvenience. That is, when the
switching signalσ(t) takes the mode sequence{q1, q2, · · · }, we rename them as increasing integers
{1, 2, 3, · · · } which is ever increasing even though the same mode is revisited. This way jump maps
take the formp2,1, p3,2, . . . , so that the jump map attq is given bypq+1,q(·), and for brevity we
denote it simply aspq, that is,x(tq) = pq(x(t

−
q )). When the mode is switched without the state

jump (1b) from the mode numberq, we takepq(x) = x, and when the state jump occurs at modeq
without mode switching we takefq+1(x) = fq(x), gq+1(x) = gq(x), andhq+1(x) = hq(x).

We first note that the individual system at each mode may not beobservable, calling for the
classical observability decomposition [13]: Changing the coordinates so that the system is explicitly
split into the observable part and the unobservable part. Thus, for a fixed modeq that comprises (1a)
and (1c) (the jump map (1b) will be treated shortly), we assume the following:

Assumption 1(Uniform observability decomposition)
For each modeq ∈ N, there exists a diffeomorphismλq defined onX such that, withcol(ξq, ξ′q) :=
λq(x) ∈ R

n, the dynamical equations (1a) and (1c) are transformed into

y = Hq(ξq), (3a)

ξ̇q = Fq(ξq) +Gq(ξq)u, ξq ∈ R
νq , (3b)

ξ̇′q = F ′
q(ξ

′
q, ξq) +G′

q(ξ
′
q , ξq)u, ξ′q ∈ R

n−νq , (3c)

where theξq-subsystem with the outputy is small-time uniformly observable onΞq := λq

〈νq〉
(X ). �

In equation (3), the stateξq is small-time uniformly observable at modeq so that it can be
determined from the input and the output of modeq only. In fact, as long as we restrict our attention
to (3a) and (3b), small-time uniform observability becomes the standard uniform observability that
has often been studied in the literature (see [10] and references therein), which can be checked in
various ways. For instance, if the class of inputsU consists of smooth functions, then one may try
to find a functionE such that

ξq = E(y, ẏ, . . . , y(d
q
y−1), u, u̇, . . . , u(dq

u−1)) (4)

wheredqy ∈ N anddqu ∈ N, and that the functionE( · , u, u̇, . . . , u(dq
u−1)) is surjective ontoΞq for all

u(·) ∈ U . The existence of such a functionE is used as the definition of uniform observability in
[25, 13]. Other ways to check uniform observability can be found in [18], but we will also present a
geometric condition in Section4.

The stateξ′q denotes unobservable parts at modeq. However, if the information obtained from the
previous mode is taken into account, then some components ofξ′q may be determined. For example,
suppose that some part ofξ′q(tq−1) depends only on the knownξq−1(t

−
q−1), and the evolution of that

part ofξ′q(t) over[tq−1, tq) is governed by a differential equation that depends only on the known or
observable quantities. Then, such components ofξ′q(t) are recovered completely during the interval
[tq−1, tq). This idea is formalized by the following structural assumption.

Assumption 2(Switched canonical structure)
For each modeq ∈ N, there exists a diffeomorphismcol(ϑq

〈kq〉
, ωq

〈lq〉
, πq

〈n−kq−lq〉
) on X such that,

with θq := ϑq

〈kq〉
(x) ∈ R

kq , wq := ωq

〈lq〉
(x) ∈ R

lq , andςq := πq

〈n−kq−lq〉
(x) ∈ R

n−kq−lq , system (1)
takes the following form:

θ̇q = F o
q (θq, wq) +Go

q(θq, wq)u (5a)

ẇq = F †
q (θq, wq) +G†

q(θq, wq)u (5b)

ς̇q = F ‡
q (ςq, θq, wq) +G‡

q(ςq, θq, wq)u (5c)

for t ∈ [tq−1, tq) with




θq+1(tq)
wq+1(tq)
ςq+1(tq)



 =





Ro
q(θq(t

−
q ), wq(t

−
q ), ςq(t

−
q ))

R∗
q(wq(t

−
q ), ξq(t

−
q ), ξq+1(tq))

R‡
q(θq(t

−
q ), wq(t

−
q ), ςq(t

−
q ))



 , (5d)
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 7

where each component ofθq = ϑq

〈kq〉
(x) ∈ R

kq is a smooth function ofξq = λq

〈νq〉
(x) ∈ R

νq of
Assumption1 (andkq ≤ νq); i.e., there exists a smooth mapχq : Ξq → ϑq

〈kq〉
(X ) such that

θq = χq(ξq). (6)

Let l1 = 0 andw1 be a null vector. �

By the assumption, the statesθq can be thought of as small-time uniformly observable since they
depend only on the small-time uniformly observable stateξq. Meanwhile, the stateswq(t) may not
be observable. However, assuming thatwq−1(t) is known for the interval[tq−2, tq−1), we note that
the initial conditionwq(tq−1) = R∗

q−1(wq−1(t
−
q−1), ξq−1(t

−
q−1), ξq(tq−1)) is known because both

ξq−1 and ξq are known. Moreover, thewq-subsystem in (5b) shows that the evolution ofwq at
modeq is not affected by the unknown componentςq. It can also be interpreted that, through the
evolution ofwq, the accumulated information around the timetq−1 (i.e., wq−1(t

−
q−1), ξq−1(t

−
q−1),

andξq(tq−1)) is delivered up to the timet−q , and at the next mode, more information is accumulated
through the observable componentξq+1. This idea leads to the following outcome.

Theorem 1(Large-time uniform observability)
Under Assumptions1 and 2, if there is a mode numberm ∈ N such thatkm + lm = n, then
system (1) is large-time uniformly observable onX . �

This is because at any timeT after the timetm−1, enough information about the state is
accumulated, and therefore, by inverting the diffeomorphism

[

ϑm
〈km〉(x(T ))

ωm
〈lm〉(x(T ))

]

=

[

θm(T ) = χm(ξm(T ))
wm(T )

]

, (7)

the statex(T ) is recovered.
A consequence of Theorem1 is that system (1) with any switching signal containing the

consecutive subsequence{1, 2, . . . ,m} is large-time uniformly observable as well.

Remark 1
In equation (5d), the arguments ofR∗

q could be justwq(t
−
q ) and ξq(t

−
q ). However, by allowing

ξq+1(tq) in R∗
q , the restriction is relaxed because it is basically asking that ωq+1

〈lq+1〉
(pq(x)) is a

function of (ωq

〈lq〉
(x), λq

〈νq〉
(x), λq+1

〈νq+1〉
(x)) rather than just(ωq

〈lq〉
(x), λq

〈νq〉
(x)). On the other hand,

since(θq, wq, ςq) gives a complete coordinate system inRn, the format ofR‡
q andRo

q in (5d) is not
a restriction. �

The large-time uniform observability discussed so far inspires a way of constructing an observer.
Here we discuss a synopsis of the observer construction, andthe details are given in Section5. First,
we observe that, by (6) and from (3a), (3b), (5b), and (5d), there are mapsF ∗

q andG∗
q such that the

evolution ofξq andwq at each modeq is governed by

y = Hq(ξq) (8a)

ξ̇q = Fq(ξq) +Gq(ξq)u (8b)

ẇq = F ∗
q (wq , ξq) +G∗

q(wq, ξq)u (8c)

for t ∈ [tq−1, tq), and

wq(tq−1) = R∗
q−1(wq−1(t

−
q−1), ξq−1(t

−
q−1), ξq(tq−1)). (8d)

We then design two separate observers for the componentξq andwq to generate the corresponding
estimateŝξq andŵq , respectively. While it is possible to obtain a good estimate of the observable
componentξq, the variablewq is not a directly observable quantity at modeq. Therefore, the role of
the observer forwq is not to reduce the error̂wq(t)− wq(t), but to deliver the estimateŝξq−1(t

−
q−1)

andŵq−1(t
−
q−1), that are obtained from the previously active mode and are encoded in the initial
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condition equation (8d) along withξ̂q(tq−1), to the next mode througĥwq(t). Suppose that the input
u and the outputy are stored during the interval[t0, tm), and at timet = t−m, an observer operates and
computes the estimatêξq(t) of ξq(t) for each interval[tq−1, tq), q = 1, . . . ,m. Owing to small-time
uniform observability, identifyingξq for each switching interval should be theoretically possible,
and let us suppose thatξ̂q(t) ≈ ξq(t) on [tq−1, tq) for now. With the estimatêξ1(t−1 ) ≈ ξ1(t

−
1 ) and

ξ̂2(t1) ≈ ξ2(t1) for example, we obtain the estimatêw2(t1) ≈ w2(t1) by using (8d) (with all the
states replaced by their estimates). Then, integration of (8c) for q = 2 results in an approximation
ŵ2(t) ≈ w2(t) on [t1, t2). (The error between̂w2 andw2 may tend to increase during the interval,
though.) This process repeats until we getξ̂m(t−m) ≈ ξm(t−m) and ŵm(t−m) ≈ wm(t−m). Assuming
that km + lm = n, the estimatex⋆(t−m) of x(t−m) is now determined uniquely from̂ξm(t−m) and
ŵm(t−m), by the map (7) (with x(T ), ξm(T ), andwm(T ) replaced byx⋆(t−m), ξ̂m(t−m), andŵm(t−m)
respectively). The details of the implementation of this idea, as well as error analysis, will be given in
Section5. In particular, for obtaining the estimatêξq(t) we employ the high-gain observers presented
in, e.g., [7, 8, 25]. However, in order to integratêwq(t) by (8c), we need rather good estimate
ξ̂q(t) ≈ ξq(t) on the whole interval[tq−1, tq) while the (high-gain) observer usually experiences
transients (or, peaking in the estimates) before it provides a good estimate. So if we run the observer
from the timetq−1 as usual, we may not get a good estimate for the transient period aftertq−1. We
overcome this difficulty by proposing a novel back-and-forth observation technique in Section5.

4. GEOMETRIC CONDITIONS FOR CANONICAL STRUCTURE AND OBSERVABILITY

In this section, we discuss a geometric condition that yields the switched canonical structure of
Assumption2 as well as the uniform observability decomposition of Assumption1, and thus, leads
to a sufficient condition for large-time uniform observability. For simplicity, we study the case of
single input and single output (nu = ny = 1).

4.1. Geometric Condition for Large-time Uniform Observability: Local Version

According to [11, 16, 13], a geometric condition to decompose system (1) at a modeq into the
form of (3) is as follows. Let the observability codistribution bẽOq := span {dLv1Lv2 · · ·Lvjhq :

vj ∈ {fq, gq}, j ≥ 0}. Then, the condition that the codistributioñOq is nonsingular at somexo ∈ X

(i.e., dim Õq(x) is constant aroundxo) guarantees, by Frobenius theorem, that there exist a local
neighborhoodX ′ ⊂ X of xo and a diffeomorphism defined onX ′ such that system (1) is represented
as (3). Note that the codistributioñOq is invariant w.r.t.fq andgq by construction. However, since
we are interested in the ‘uniform observability’ of the observable part in (3), the condition needs to
be strengthened. For this, let us assume that the input classU includes the zero input (u(t) ≡ 0), and
defineOj

q := span {dhq, dLfqhq, . . . , dL
j−1
fq

hq}.

Assumption 3(Uniform observability of the observable part)
For each modeq, there is an integerνq(≤ n) such that

1. Oνq
q is nonsingular atxo ∈ X anddimO

νq
q = νq,

2. Oνq
q is invariant w.r.t.fq,

3. Oj
q is invariant w.r.t.gq for j = 1, . . . , νq. �

By Assumption3, there exists a neighborhoodX ′ of xo where Assumption1 holds [16, 13].
In fact, by Assumption3.1, there is a setX ′ on whichξq,j = Lj−1

fq
hq, j = 1, . . . , νq, are potential

coordinate functions. With this choice of coordinates, we obtain

y = ξq,1,

ξ̇q,j = ξq,j+1 + LgqL
j−1
fq

hq · u, j = 1, . . . , νq − 1,

ξ̇q,νq = L
νq
fq
hq + LgqL

νq−1
fq

hq · u.

(9)
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By Assumptions3.2 and3.3, Lemma1.1 in the Appendix can be employed repeatedly to show that
L
νq
fq
hq depends only onξq ∈ Rνq , andLgqL

j−1
fq

hq depends only onξq,1, · · · , ξq,j . Gauthieret al. [8]
have shown that this triangular structure is sufficient (andnecessary as well in the case of single
output) for (small-time) uniform observability ofξq. (Or, by taking successive derivatives of the
output inξq-coordinates, one can simply compute the map (4).)

Now let us denoteOνq
q simply by Oq. For q ≥ 2, defineO′

q := span {d(hq ◦ pq−1), d(Lfqhq ◦

pq−1), · · · , d(L
νq−1
fq

hq ◦ pq−1)}. We then define a sequence of codistributionsWq for q ∈ N, with
W0 := {0}. In particular,

let Wq be the largest nonsingular and involutive codistribution, invariant with respect
to fq andgq, contained in(Oq +Wq−1) such that(pq)∗(kerWq ∩ kerO′

q+1) ⊂ kerWq.

Following observations are immediate: (a) By Assumption3, the codistributionOq itself is
invariant w.r.t. fq and gq. (b) If pq(x) = x, so that there is no state jump, then the condition
(pq)∗(kerWq ∩ kerO′

q+1) ⊂ kerWq automatically holds. (c) The “largest” codistribution is well-
defined because involutivity and invariance of a codistribution generated by exact one-forms is
preserved under the addition, and if two smooth nonsingularcodistributionsWa andWb satisfy
p∗(kerWi ∩D) ⊂ kerWi, wherei ∈ {a, b}, for any differentiable mapp and any distributionD,
thenp∗(ker(Wa +Wb) ∩ D) ⊂ ker(Wa +Wb).‡

Theorem 2(Large-time uniform observability: Local version)
If Assumption 3 holds; and the codistributionsWq, Oq +Wq−1, and Wq +O′

q+1, q ∈ N, are
nonsingular atxo ∈ X , then there exist diffeomorphisms on a neighborhoodX ′ ⊂ X of xo which
induce the structures (3) and (5) proposed in Assumptions1 and2, respectively. Furthermore, if
there is an integerm ∈ N such that

dim(Om +Wm−1)(x
o) = n (10)

(or simply dimWm(xo) = n becauseWm = Om +Wm−1 by construction), then system (1) is
large-time uniformly observable onX ′. �

The proof of the theorem appears after the statement of Theorem3 in the next subsection.

4.2. Geometric Condition for Large-time Uniform Observability: Global Version

Compared to the local observability in the previous subsection, the condition in this subsection may
be thought of as a “global” version in the sense that the observability holds over the setX given
a priori. In this case, the condition explicitly assumes the existence of coordinate functions, which
makes its statements no more compact.

Assumption 4
For each modeq,

(a) there is an integerνq(≤ n) such that

(1) {hq, Lfqhq, . . . , L
νq−1
fq

hq} are potential coordinate functions onX ,

(2) Oq = O
νq
q is invariant w.r.t.fq,

(3) Oj
q is invariant w.r.t.gq for j = 1, . . . , νq,

(b) there are potential coordinate functions{ϑq

〈kq〉
, ωq

〈lq〉
: kq + lq = dimWq} onX such that

Wq = span {dϑq
1, · · · , dϑ

q
kq
, dωq

1, · · · , dω
q
lq
}, dϑq

j ∈ Oq, dωq
j 6∈ Oq, (11)

‡ For eachi ∈ {a, b}, ker(Wa +Wb) ⊂ kerWi, so that(ker(Wa +Wb) ∩D) ⊂ kerWi ∩ D, which in turn implies
that p∗(ker(Wa +Wb) ∩ D) ⊂ p∗(kerWi ∩ D) ⊂ kerWi by the assumption. Therefore, we have thatp∗(ker(Wa +
Wb) ∩ D) ⊂ kerWa ∩ kerWb = ker(Wa +Wb).

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2012)
Prepared usingrncauth.cls DOI: 10.1002/rnc



10 SHIM AND TANWANI

(c) there are potential coordinate functions{µq

〈rq〉
: rq = dim(Oq +Wq−1)} onX such that

Oq +Wq−1 = span {dhq, dLfqhq, · · · , dL
νq−1
fq

hq,

dϑq−1
1 , · · · , dϑq−1

kq−1
, dωq−1

1 , · · · , dωq−1
lq−1

}

= span {dµq
1, . . . , dµ

q
rq
}

(12)

where eachµq
j is a function of{hq, · · · , L

νq−1
fq

hq, ϑ
q−1
1 , · · · , ϑq−1

kq−1
, ωq−1

1 , · · · , ωq−1
lq−1

},

(d) there are potential coordinate functions{µ′q
〈r′q〉

: r′q = dim(Wq +O′
q+1)− dimWq} on X

such that

Wq +O′
q+1 = span {dϑq

1, · · · , dϑ
q
kq
, dωq

1, · · · , dω
q
lq
, dµ′q

1 , . . . , dµ
′q
r′q
} (13)

where eachµ′q
j is a function of{hq+1 ◦ pq, · · · , L

νq+1−1
fq+1

hq+1 ◦ pq}. �

Remark 2
Reason thatkq may be less thanνq is because of the condition(pq)∗(kerWq ∩ kerO′

q+1) ⊂
kerWq. For example, sinceO1 is involutive (because it is generated by exact one-forms),
nonsingular, and invariant w.r.t.f1 andg1 on X (by Assumption4.(a)), the largest involutive and
invariant codistributionW1 contained inO1 +W0 = O1 is O1 itself (i.e.,k1 = ν1) if the condition
(p1)∗(kerW1 ∩ kerO′

2) ⊂ kerW1 is not taken into account. �

Theorem 3(Large-time uniform observability: Global version) 1. If Assumption4 holds, then
the canonical structures (3) and (5) from Assumptions1 and2, respectively, exist globally
on the setX .

2. If Assumption4 holds and there is an integerm ∈ N such that

dim(Om +Wm−1) = n onX ,

then system (1) is large-time uniformly observable onX . �

Proof of Theorem3 is found in the Appendix while the proof of Theorem2 is given here.

Proof of Theorem2
When the codistributionsOq, Wq, Oq +Wq−1, andWq +O′

q+1 are nonsingular at a pointxo,
then Assumptions4.(a).(1), (b), (c), and (d) hold in a neighborhoodX ′ of xo. Indeed, since the
smooth codistributionWq is nonsingular and involutive, then by Frobenius theorem, there exist
potential coordinate functionsϑq

〈kq〉
andωq

〈lq〉
, whose differential one-forms spanWq in a local

neighborhood ofxo (see the proof of [13, Theorem 1.4.1]), thus satisfying Assumption4.(b). By the
same argument, involutivity and nonsingularity ofOq +Wq−1 andWq +O′

q+1 yield independent
smooth functions that satisfy Assumptions4.(c) and4.(d), respectively, in a neighborhood ofxo. Let
X ′ be the intersection of such neighborhoods. From the statement of Theorem3.1, with X = X ′,
the existence of diffeomorphisms yielding (3) and (5) is now guaranteed. Now, if (10) holds, then
dim(Om +Wm−1)(x

′) = n for eachx′ ∈ X ′, and the statement of Theorem3.2 proves the large-
time uniform observability of system (1) on a local neighborhoodX ′ of xo.

Another interpretation of Theorems2 and3 in terms of “distribution” is also possible. In order to
recover the system statex(t), the partial information from each mode is quantified in terms of the
maximal integral submanifold of the distributionO⊥

q which has the property that the states on the
slices (or “leaves”) of this submanifold are not distinguishable by the output of modeq. If there are
certain states on this submanifold which were observable under the previous modeq − 1, and are
also decoupled from the remaining indistinguishable states of the current modeq, then we can carry
this additional information forward, thereby reducing theuncertainty about the unknown state. This
is exactly the intuition formalized in constructingWq and later developed in Assumption4. This
process is continued at each modeq and if at some point in time, the uncertainty is reduced to a
point, we term the system observable as the entire state can now be reconstructed.
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Remark 3(Multiple-input multiple-output (MIMO) case)
The geometric conditions given in Assumptions3 and 4.(a) enable the transformation of the
individual mode into a particular triangular form, which eventually leads to the desired canonical
form (3). However, for MIMO case, there are several structures thatguarantee uniform observability;
and each one of these structures has different geometric conditions associated to them (for
example [20]). Therefore, without giving the geometric condition, if we assume that the individual
modes of the system are endowed with uniform observability property in the form of structure (3),
then the results hold for MIMO case as well.

4.3. Example: Linear Case

To get a better understanding of the conditions given in the previous subsection, let us consider the
case of linear systems. If the system is linear, then Assumption 4 and Theorem3 (or, Assumption3
and Theorem2) become much simpler leading to a global result (i.e.,X = Rn). Consider a linear
version of (1) as

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), t 6= {tq}, (14a)

x(tq) = Pσ(t−q )x(t
−
q ), x ∈ R

n, u ∈ R, y ∈ R, (14b)

y(t) = Cσ(t)x(t). (14c)

Define the matricesOq andO′
q as

Oq := col(Cq , CqAq, . . . , CqA
νq−1
q ), and O′

q := OqPq−1,

whereνq is the observability index of(Cq, Aq) so thatrankOq = νq. Then the codistributionOq of
the previous subsection corresponds to the range spaceR(O⊤

q ), andO′
q to R(O′⊤

q ). It is noted that
the codistribution, related to the vector subspace in this way, is always nonsingular onX = Rn.

Before presenting the linear version, a terminology is defined which is taken from [4]. A subspace
V is a conditioned invariant subspace under a linear transformation given by a matrixA, w.r.t.
another subspaceV ′ (or, briefly, an(A,V ′)-conditioned invariant) if

A(V ∩ V ′) ⊂ V .

Corollary 1
Define, withV0 = {0}, the sequence of subspaces:

Vq is the largestA⊤
q -invariant subspace contained in(R(O⊤

q ) + Vq−1) such thatV⊥
q is

(Pq, kerO
′
q+1)-conditioned invariant.

If there exists anm ∈ N such thatdim(R(O⊤
m) + Vm−1) = n, then system (14) is large-time

observable§ onRn.

Proof
We can simply show that Assumption4 holds with the subspaceVq corresponding to the
codistribution Wq. Indeed, Assumption4.(a) trivially holds with Oq = span {d(ηjx) = ηj :
ηj is each row of Oq}, fq = Aqx, and gq = Bq. Now we can always find a basis for
Vq as {ϕq

1, · · · , ϕ
q
kq
, ̟q

1, · · · , ̟
q
lq
} with kq + lq = dimVq (kq ≤ νq) such that ϕq

j ∈ R(O⊤
q )

and ̟q
j 6∈ R(O⊤

q ). Assumption4.(b) holds with Wq being the span of those basis vectors
of Vq. We also take some vectorsλq

j in R(O⊤
q ) such thatR(O⊤

q ) + Vq−1 has the basis

{λq
1, · · · , λ

q
ρ, ϕ

q−1
1 , · · · , ϕq−1

kq−1
, ̟q−1

1 , · · · , ̟q−1
lq−1

} wherekq−1 + lq−1 + ρ = dim(R(O⊤
q ) + Vq−1);

then Assumption4.(c) holds. Similarly, we take some vectorsµ′q
j among the columns ofO′⊤

q+1 such

§For linear systems, uniform observability is equivalent tothe standard observability.
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that Vq +R(O′⊤
q+1) has the basis{ϕq

1, · · · , ϕ
q
kq
, ̟q

1, · · · , ̟
q
lq
, µ′q

1 , · · · , µ
′q
r′q
} wherekq + lq + r′q =

dim(Vq +R(O′⊤
q+1)), which guarantees Assumption4.(d).

On the other hand, invariance ofVq w.r.t. A⊤
q implies the invariance ofWq w.r.t. fq and

gq. (Invariance w.r.t.gq trivially follows becausegq = Bq is a constant vector field.) Finally,
(Pq, kerO

′
q+1)-conditioned invariance ofV⊥

q implies that

Pq(V
⊥
q ∩ kerO′

q+1) ⊂ V⊥
q , (15)

which corresponds to the condition(pq)∗(kerWq ∩ kerO′
q+1) ⊂ kerWq.

For convenience, let us construct the linear version of (8) here. For this, suppose thatVq =
span {ϕq

1, · · · , ϕ
q
kq
, ̟q

1, · · · , ̟
q
lq
} where all column vectorsϕq

j ’s and̟q
j ’s are a basis ofVq such that

ϕq
j ∈ R(O⊤

q ) and̟q
j 6∈ R(O⊤

q ). With Θq := [ϕq
1, · · · , ϕ

q
kq
]⊤ andWq := [̟q

1, · · · , ̟
q
lq
]⊤, define the

coordinatesξq := Oqx, θq := Θqx, andwq := Wqx. We also note that, by construction, there is a
matrixXq ∈ Rkq×νq such thatΘq = XqOq.

By (15), and the fact thatP−1
q V⊥

q = ker[Θ⊤
q W⊤

q ]⊤Pq, there exist two matricesS⋄
q andS⋄⋄

q such
that

[

Θq

Wq

]

Pq = S⋄
q

[

Θq

Wq

]

+ S⋄⋄
q Oq+1Pq.

Likewise,A⊤
q -invariance ofVq implies the existence of matricesF ∗

q such that

A⊤
q W

⊤
q = [Θ⊤

q W⊤
q ]F ∗⊤

q ,

and, sinceVq ⊂ Oq + Vq−1, there are two matricesS†
q andS‡

q such that

W⊤
q = O⊤

q S
†⊤
q + [Θ⊤

q−1 W⊤
q−1]S

‡⊤
q .

Taking all these equations into account, we obtain that

y = Hqξq

ξ̇q = Fqξq +Gqu

ẇq = WqAqx+WqBqu

= F ∗
q

[

Θq

Wq

]

x+WqBqu = F ∗
q

[

Xqξq
wq

]

+WqBqu

wq(tq−1) = Wqx(tq−1)

= S†
qOqx(tq−1) + S‡

q

[

Θq−1

Wq−1

]

(Pq−1x(t
−
q−1))

= S†
qξq(tq−1) + S‡

qS
⋄
q−1

[

Θq−1

Wq−1

]

x(t−q−1) + S‡
qS

⋄⋄
q−1OqPq−1x(t

−
q−1)

= S†
qξq(tq−1) + S‡

qS
⋄
q−1

[

Xq−1ξq−1(t
−
q−1)

wq−1(t
−
q−1)

]

+ S‡
qS

⋄⋄
q−1ξq(tq−1),

where the first two equations are from observability decomposition so that(Hq, Fq) is an observable
pair. These equations correspond to the strucuture presented in (8).

4.4. Revisiting Example1

As a showcase, let us verify Assumption4 for the switched system of Example1. First of all, since
dimO1 = ν1 = 2, dimO2 = ν2 = 1, anddimO3 = ν3 = 1, the functionsλq

j = Lj−1
fq

hq are listed as

λ1
1(x) = x2, λ1

2(x) = x2
1 − x2

3 + 2x1,

λ2
1(x) = x2

1 − x2
3 + 2x1, λ3

1(x) = x1 + x2
2,
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and
λ2
1(p1(x)) = x2

1 − x2
3 + 2x1, λ3

1(p2(x)) = x1 + x2
2.

This leads to

O1 = span {[0, 1, 0], [2x1 + 2, 0,−2x3]},

O2 = span {[2x1 + 2, 0,−2x3]}, O′
2 = span {[2x1 + 2, 0,−2x3]},

O3 = span {[1, 2x2, 0]}, O′
3 = span {[1, 2x2, 0]}.

Starting withW0 = {0}, we pickW1 = O1 sinceO1 is the largest,f1-invariant, nonsingular, and
involutive codistribution contained inO1 on X = {x ∈ R3 : x1 > 0, x3 > 0}, and satisfies that
(p1)∗(kerW1 ∩ kerO′

2) ⊂ kerW1 because¶





1 0 0
2x1 + 2 0.1 −2x3

0 0 1



 · span











x3

0
x1 + 1











⊂ span











x3

0
x1 + 1











.

Here, we simply letµ1
j = ϑ1

j = λ1
j , j = 1, 2, so thatk1 = r1 = 2 andl1 = 0. SinceW1 +O′

2 = W1,
r′1 = 0.

Noting thatW2 ⊂ O2 +W1 = W1, we takeϑ2
1(x) = λ2

1(x) = x2
1 − x2

3 + 2x1 andω2
1(x) = x2 so

that
W2 = span {dϑ2

1, dω
2
1} = span {[2x1 + 2, 0,−2x3], [0, 1, 0]} = W1 = O1,

which is, onX , the largest nonsingular and involutive codistribution, invariant w.r.t.f2, contained in
O2 +W1, and satisfies that(p2)∗(kerW2 ∩ kerO′

3) ⊂ kerW2 becausekerW2 ∩ kerO′
3 = {0} (or,

becausep2(x) = x). Indeed, invariance w.r.t.f2 is verified as

Lf2dω
2
1 = Lf2dx2 = dLf2x2 = d([0, 1, 0] · f2)

= [−(2x1 + 2)x2,−(x2
1 − x2

3 + 2x1), 2x3x2] ∈ W2,

Lf2dϑ
2
1 = d

(

∂ϑ2
1

∂x
· f2

)

= d([2x1 + 2, 0,−2x3] · f2) = 0 ∈ W2.

As a result,k2 = l2 = 1, r2 = dim(O2 +W1) = 2, µ2
1 = ϑ2

1, µ2
2 = ω2

1, r′2 = dim(W2 +O′
3)−

dimW2 = 1, andµ′2
1 (x) = λ3

1(p2(x)) = x1 + x2
2.

Finally, W3 ⊂ O3 +W2 = R3 so that we takeW3 = R3 andk3 = 1 and l3 = 2. Therefore, the
hypothesis in Theorem3 holds withm = 3.

These functions can now be used to arrive at the form presented in (8). For mode 1, let
ξ1,1 := λ1

1(x) andξ1,2 := λ1
2(x). Then we get

y = ξ1,1, ξ̇1,1 = x2
1 − x2

3 + 2x1 = ξ1,2,

ξ̇1,2 = 0.2x1x3 − 0.2x3(x1 + 1) + 0.2x3 = 0.
(16a)

Similarly, for mode 2, we introduce the following coordinates,ξ2 := λ2
1(x) = x2

1 − x2
3 + 2x1 and

w2 := ω2
1(x) = x2. The dynamics of mode 2 then take the following form:

y = ξ2, ξ̇2 = 2x1x3 − 2x3(x1 + 1) + 2x3 = 0,

ẇ2 = −(x2
1 − x2

3 + 2x1)x2 = −ξ2w2,

w2(t1) = x2
1(t

−
1 )− x2

3(t
−
1 ) + 2x1(t

−
1 ) + 0.1x2(t

−
1 ) = ξ1,2(t

−
1 ) + 0.1ξ1,1(t

−
1 ).

(16b)

¶It actually shows that(p1)∗ kerW1 ⊂ kerW1, which implies that, because of Lemma1.3, the mapR∗
q−1

in (8d) does
not depend onξq, or in this particular example,w2(t1) does not depend onξ2 as shown in (16b).
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14 SHIM AND TANWANI

Finally, for the third mode, the new coordinates areξ3 := λ3
1(x) = x1 + x2

2,w3,1 := x2, andw3,2 :=
x2
1 − x2

3 + 2x1, and the resulting system dynamics become:

y = ξ3, ξ̇3 = x2
2 + 2x2(−

1

2
x2) = 0,

ẇ3,1 = −
1

2
x2 = −

1

2
w3,1, w3,1(t2) = x2(t

−
2 ) = w2(t

−
2 ), (16c)

ẇ3,2 = 2x1x
2
2 + 2x2

2 = 2(x1 + 1)x2
2 w3,2(t2) = x2

1(t
−
2 )− x2

3(t
−
2 ) + 2x1(t

−
2 )

= 2(ξ3 − w2
3,1 + 1)w2

3,1, = ξ2(t
−
2 ).

It is seen that the system dynamics in the new coordinates indeed follow the structure prescribed
in (8), which is crucial for the observer design in the next section.

5. OBSERVER DESIGN

Based on the study of large-time observability, let us now discuss the design of an asymptotic
observer for system (1). By asymptotic observer, we mean an observer whose statex̂(t) converges
to the plant statex(t) as time tends to infinity. It is shown in this section that an asymptotic observer
can be constructed based on the following assumptions.

Assumption 5 1. The solutionx(t) of the plant (1) remains in a compact setX ⊂ Rn, and the
input u(t) (and its derivatives, whenever necessary) is uniformly bounded. Let|u(t)| ≤ Cu

for t ≥ t0.
2. The switching is persistent and occurs within the duration D; that is,

τq := tq − tq−1 ≤ D, ∀q ∈ N (17)

wheretq is the switching time.
3. There are a finite number of modes in system (1), and the same mode sequence repeats.

We denote each cycle of modes as{1, 2, · · · ,m}, so thatσ(t) = ((q − 1) mod m) + 1 for
t ∈ [tq−1, tq), q ∈ N, and the modeq andq +m refer to the same mode.

4. Assumptions1 and2 hold onX̄ , andkm + lm = n so that system (1) is large-time uniformly
observable on̄X , whereX̄ is any set that properly contains the setX and their boundaries do
not intersect. �

In Assumption5, item 1 is often the outcome of control, which is not an observer problem but
makes the observer problem much easier. It should not be assumeda priori when the estimated state
x̂(t) is used for a state-feedback control, in a certainty-equivalence manner, and the stability of the
overall closed-loop system needs to be analyzed differently, which is however beyond the scope of
this paper. Item 2 is introduced for a practical reason: As discussed before, when the system is not
(small-time) observable at any mode, only switching can provide new and fresh information into
the observer. Therefore, assuming that the switching is persistent is natural in order to construct an
observer whose estimate converges to the true value in infinite time. More discussions on items 2
and 3 can be found in Section6.1. The requirement that the assumptions hold on a slightly larger
setX̄ in item 4 is because we will utilize the Lipschitz extension below.

For a given mapf : Ā → Rk, a Lipschitz extensionof f from a compact setA(⊂ Ā ⊂ Rl)
is a mapf̄ : Rl → Rk such that it is globally Lipschitz,̄f(x) = f(x) for every x ∈ A, and it
preserves the structure off(x) (for example, if the arguments offj(x) consist only ofx1 and
x2 on Ā, then the arguments of̄fj(x) are the same onRl). When a compact setA is contained
in Ā and their boundaries do not intersect, there always exists aLipschitz extension off from
A (see [19]). One simple choice of Lipschitz extension off is to saturate its arguments, i.e.,
f̄(x) = f(sat1(x1), · · · , satl(xl)), with each saturation being inactive (satj(xj) = xj) on A. See
[18] for more practical methods to get Lipschitz extensions. Inthis section, whenever we put an
overbar on a map, we imply the Lipschitz extension of the map.
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 15

Under Assumption5, the observer we propose is of hybrid-type, and has the form

˙̂x(t) = f̄q(x̂(t)) + ḡq(x̂(t))u(t), t ∈ [tq−1, tq), (18a)

x̂(tq) = p̄q(x̂(t
−
q )), t = tq, q ∈ N, (18b)

x̂(t⋆im) = x̂⋆(t⋆im), t⋆im = tim + Tcomp, i ∈ N, (18c)

with an initial conditionx̂(t0) ∈ X , wheref̄q, ḡq, and p̄q are Lipschitz extensions offq, gq, and
pq from X , respectively. Let us denote the Lipschitz coefficients off̄q, ḡq, andp̄q by Cf , Cg, and
Cp, respectively, for allq ∈ N. Note that, since the plant statex(t) remains inX , we can also treat
system (1) as if the vector fieldsfq, gq, andpq in (1) are replaced with their Lipschitz extensions, so
that the plant (1) and the observer (18) are both globally Lipschitz. Then, it is seen that the observer
equations (18a) and (18b) are just a copy of system (1) without any error correction. Instead, the
estimation error is corrected through the vectorx̂⋆ at eacht⋆im, i = 1, 2, · · · . The estimatêx⋆ is
computed by an estimation algorithm to be proposed, and the computation of̂x⋆(t⋆im) begins at every
tim (i.e., right after everym-th switch occurs). The delay timeTcomp represents an upper bound of
the time required for the computation, and we implicitly assume thattim + Tcomp < t(i+1)m and
thatt⋆im does not coincide with any switching instancetq.

Now we propose an estimation algorithm forx̂⋆(t⋆im), which guarantees thatlimt→∞ |x̂(t)−
x(t)| = 0.

5.1. Estimation Algorithm

The proposed estimation algorithm is based on the representation (8) of system (1). It consists
of four steps; (i) runningξq-observers, (ii) runningwq-observers, (iii) taking inverse of a map,
and (iv) performing a catch-up process to compensate for computational delayTcomp. We discuss
each of these steps in this subsection one by one. The algorithm begins at every timetim,
i ∈ N, and processes the past data (i.e.,u[t(i−1)m,tim], y[t(i−1)m,tim], σ[t(i−1)m,tim], and x̂⋆(tq),
q = (i − 1)m, · · · , im− 1) that is stored in the memory.

For notational simplicity, we denote the modeq = (i − 1)m+ k just byq = k (as if i = 1) in this
subsection. Therefore, when we sayq = m+ 1 it should be interpreted asq = im+ 1.

5.1.1. ξq-observer and the back-and-forth technique.The ξq-observer means an observer for the
small-time uniformly observable system (8a) and (8b). Instead of presenting a particular form of
observer, we display the required minimal property of the observer (in Assumption6) that will be
used in our algorithm. In this way, we incorporate many observer design techniques available in
the literature into the proposed algorithm. For this, we suppose that an observer for (8a) and (8b) is
generally written as (here the superscript ‘f’ indicates ‘forward’ whose meaning will become clear
soon)

ζ̇ fq = Σf
q(ζ

f
q, y, υ), t ∈ [tq−1, tq), ζ fq ∈ R

nζq

ξ̂fq = Υq(ζ
f
q , y, υ), ζ fq(tq−1) = Λq(x̂

⋆(tq−1), υ(tq−1))
(19)

where ξ̂fq is the estimate of the stateξq, andυ represents the inputu and its derivatives‖. The
dynamics of the statêx⋆ will be discussed in detail when we introduce the catch-up process, and for
now, let us suppose thatx̂⋆(tq−1) = x̂(tq−1) wherex̂ is the state of (18). The mapsΛq andΥq have
the property that

λq

〈νq〉
(x) = Υq(Λq(x, v), Hq(x), v) for all admissiblev and allx ∈ X . (20)

It can be interpreted thatζ fq(t) is an estimate ofΛq(x(t), v(t)). SinceX is compact (and with the
boundedness ofv), we assume, without loss of generality, thatΥq(·, y, v) andΛq(·, v) are globally

‖The reason for introducing the derivatives of the inputu throughυ is to incorporate the high-gain observers, studied in,
e.g., [7, 25], where the input derivatives take part in the change of coordinates. Whenυ contains the derivatives ofu as
well as the inputu itself, Assumption5.1 is strengthened by adding thatυ(t) is uniformly bounded.
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16 SHIM AND TANWANI

Lipschitz uniformly w.r.t.y and v (otherwise, take the Lipschitz extension). Let their Lipschitz
coefficients beCΥ andCΛ for all q ∈ N.

When system (1) has single input and single output (nu = ny = 1), the system (8a) and (8b) can
take the form of (9), and thus, a particular example of the observer (19) is the high-gain observer
studied in [8]. This corresponds to the case thatξ̂fq = Υq(ζ

f
q, y, υ) = ζ fq and

˙̂
ξfq = F̄q(ξ̂

f
q) + Ḡq(ξ̂

f
q)u+K f

q · (y − H̄q(ξ̂
f
q)), t ∈ [tq−1, tq),

ξ̂fq(tq−1) = λ̄q

〈νq〉
(x̂⋆(tq−1)),

(21)

whereK f
q is a constant injection gain,̄λq

〈νq〉
is a Lipschitz extension ofλq

〈νq〉
from X , andF̄q, Ḡq,

andH̄q are Lipschitz extensions ofFq, Gq, andHq from Ξq = λq

〈νq〉
(X ), respectively.

Now we state the property required for the proposed algorithm.

Assumption 6(High-gain observer property)
For any constantsb > 0 andδ > 0, there exist an (forward) observer (19) and a class-KL function
βf
q satisfying

1. |ζ fq(t)− Λq(x(t), υ(t))| ≤ βf
q

(

|ζ fq(tq−1)− Λq(x(tq−1), υ(tq−1))|, t− tq−1

)

for t ∈ [tq−1, tq),
2. βf

q(a, t) < δa for all a > 0 andb ≤ t ≤ τq. �

In the assumption, the first item implies that the observer (19) is an asymptotic observer while the
second item states that the convergence rate can be made arbitrarily fast, which are characteristics
of the high-gain observers. In fact, most of the nonlinear observer designs in the literature, such as
[15, 8, 7, 25, 20], give rise to exponential functions that play the role ofβf

q; that is,βf
q(a, t) = ke−αta

and, by choosing the observer gains appropriately, the constantα can be made arbitrarily large while
the constantk increases with the polynomial order ofα [23], which satisfies Assumption6.2 withα
such thatke−αb < δ. This is because the designs are based on a quadratic error Lyapunov function
in particular coordinates, so that the error satisfies an exponential convergence property in those
coordinates.

Although the observer (19) can provide quite a good estimateξ̂q(t) after a relatively short transient
period beginning attq−1, the proposed estimation algorithm will require a “good” estimate ofξq(t)
for theentire interval[tq−1, tq) (the reason for this requirement will become clear when we discuss
wq-observer shortly). The task of obtaining good estimates for the whole interval is not achieved
solely by the forward observer even though a high observer gain is used. (This point has been
well studied in [23].) To solve this problem, we propose a ‘back-and-forth observation technique’
here. First, note that the solutionξq(t) on the interval[tq−1, tq) satisfies the following backward
differential equation: withξbq(t) := ξq(tq − t) andξbq(0) = ξq(t

−
q ),

ξ̇bq = −Fq(ξ
b
q)−Gq(ξ

b
q)u(tq − t), y(tq − t) = Hq(ξ

b
q), t ∈ (0, τq]. (22)

Then, by slightly modifying the forward observer (19), we may design a backward observer for (22)
as follows:

ζ̇bq = Σb
q(ζ

b
q , y(tq − t), υb(tq − t)), t ∈ (0, τq], ζbq ∈ R

nζq

ξ̂bq = Υq(ζ
b
q , y(tq − t), υ(tq − t)), ζbq (0) = ζ fq(t

−
q )

(23)

where the vectorυb containsu(tq − t) and its derivatives (which differs fromυ by the signs of
certain components; odd number of differentiation yields negative sign). It should be noted that the
initial condition ofζbq is set to be the final value of the forward observer (19). This implies that the
backward observer runs after the forward observer has been executed. A backward observer, for
example, could be obtained by a simple modification of (21) as follows:

˙̂
ξbq = −F̄q(ξ̂

b
q )− Ḡq(ξ̂

b
q)u(tq − t)−Kb

q · (y(tq − t)− H̄q(ξ̂
b
q )),

ξ̂bq(0) = ξ̂fq(t
−
q ), t ∈ (0, τq],

(24)
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 17

where the injection gainKb
q may not be related toK f

q and needs to be redesigned. For the backward
observer (23), we also assume the following:

Assumption6 ′ (Backward high-gain observer property)
For any constantsb > 0 andδ > 0, there exist an (backward) observer (23) and a class-KL function
βb
q satisfying

1. |ζbq (t)− Λq(x(tq − t), υ(tq − t))| ≤ βb
q

(

|ζbq (0)− Λq(x(t
−
q ), υ(t

−
q ))|, t

)

for t ∈ (0, τq],
2. βb

q(a, t) < δa for all a > 0 andb ≤ t ≤ τq. �

Once Assumption6 holds for (19), this additional requirement is mild. For example, the designs
of [15, 8, 7, 25, 20] readily satisfy this requirement (because the system structure does not change
and only the signs of vector fields and signals are reversed).

The operation ofξq-observers is now summarized. Suppose, for now, that

x̂⋆(tq−1) = x̂(tq−1) for q = 1, · · · ,m (25)

are stored (we will remove (25) later in Section 5.1.4). When them-th switch occurs at timetm, the
algorithm integrates theξq-observer (19) using the stored data from the past, followed by integrating
(23), for q = 1, · · · ,m sequentially. The estimatêξq(t) is taken to be

ξ̂q(t) :=

{

ξ̂bq(tq − t), t ∈ [tq−1, tq−1 +
τq
2 ),

ξ̂fq(t), t ∈ [tq−1 +
τq
2 , tq).

(26)

Since the estimation transients have been removed in (26), arbitrarily small estimation error can
now be obtained for the entire interval[tq−1, tq). Indeed, suppose that, withb = τq/2 and a given
δ ∈ (0, 1), the observers (19) and (23) are suitably designed under Assumptions6 and6′. Then, with
ξ̃q := ξ̂q − ξq,

sup
t∈[tq−1+

τq

2 ,tq)

|ξ̃q(t)| = sup
t∈[tq−1+

τq

2 ,tq)

|ξ̂fq(t)− ξq(t)| (27a)

= sup
t∈[tq−1+

τq

2 ,tq)

|Υq(ζ
f
q(t), y(t), υ(t)) −Υq(Λq(x(t), υ(t)), y(t), υ(t))| (27b)

≤ sup
t∈[tq−1+

τq

2 ,tq)

CΥβ
f
q(|ζ

f
q(tq−1)− Λq(x(tq−1), υ(tq−1))|, t− tq−1) (27c)

≤ CΥδ|ζ
f
q(tq−1)− Λq(x(tq−1), υ(tq−1))| (27d)

= δCΥ|Λq(x̂
⋆(tq−1), υ(tq−1))− Λq(x(tq−1), υ(tq−1))| (27e)

≤ δCΥCΛ|x̂
⋆(tq−1)− x(tq−1)|. (27f)

And, similarly,

sup
t∈[tq−1,tq−1+

τq
2 )

|ξ̃q(t)| = sup
t∈[tq−1,tq−1+

τq
2 )

|ξ̂bq(tq − t)− ξq(t)| (28a)

= sup
t∈[tq−1,tq−1+

τq
2 )

|Υq(ζ
b
q (tq − t), y(t), υ(t)) −Υq(Λq(x(t), υ(t)), y(t), υ(t))| (28b)

≤ sup
t∈[tq−1,tq−1+

τq
2 )

CΥ|ζ
b
q (tq − t)− Λq(x(t), υ(t))| (28c)

= sup
t∈(

τq
2 ,τq]

CΥ|ζ
b
q (t)− Λq(x(tq − t), υ(tq − t))| (28d)

≤ sup
t∈(

τq

2 ,τq]

CΥβ
b
q (|ζ

b
q (0)− Λq(x(t

−
q ), υ(t

−
q ))|, t) (28e)

≤ δCΥ|ζ
f
q(t

−
q )− Λq(x(t

−
q ), υ(t

−
q ))| (28f)

≤ δCΥβ
f
q(|ζ

f
q(tq−1)− Λq(x(tq−1), υ(tq−1))|, tq − tq−1) (28g)

≤ δCΥδCΥCΛ|x̂
⋆(tq−1)− x(tq−1)|. (28h)
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18 SHIM AND TANWANI

Therefore, combining (27) and (28), the operation ofξq-observer for the modeq leads to

sup
t∈[tq−1,tq)

|ξ̃q(t)| ≤ δ ·max{CΥCΛ, C
2
ΥCΛ} · |x̂

⋆(tq−1)− x(tq−1)|. (29)

Let us defineMΥΛ := max{CΥCΛ, C
2
ΥCΛ} for simplicity.

5.1.2. wq-observer.Thewq-observer forq = 2, · · · ,m is just a replication of (8c) and (8d), given
by

˙̂wq = F̄ ∗
q (ŵq, ξ̂q) + Ḡ∗

q(ŵq , ξ̂q)u, (30a)

with the initial condition

ŵq(tq−1) = R̄∗
q−1(ŵq−1(t

−
q−1), ξ̂q−1(t

−
q−1), ξ̂q(tq−1)). (30b)

and ŵ1 := 0 for convenience. LettingΩq := ωq

〈lq〉
(X ), the vector fieldsF̄ ∗

q and Ḡ∗
q are Lipschitz

extensions ofF ∗
q andG∗

q from the setΩq × Ξq, and R̄∗
q−1 is Lipschitz extension ofR∗

q−1 from
Ωq−1 × Ξq−1 × Ξq. Let CF∗ , CG∗ , andCR∗ be their Lipschitz coefficients, respectively. Again
we emphasize that the role ofwq-observer is not to reduce the errorw̃q(t) := ŵq(t)− wq(t), but
to deliver the estimateŝξq−1(t

−
q−1) and ŵq−1(t

−
q−1), that are obtained from the previously active

mode, to the next mode througĥwq(t) along the copy of system dynamics (30a). In order for the
information not to be corrupted too much during the delivery, we require that̂ξq(t) remains near its
true valueξq(t) for the entire interval[tq−1, tq). This is the reason why we required the reduction
in estimation error̃ξq(t) for the entire interval in the previous subsection. Here, weemphasize that,
shrinking the transient period by increasing the observer gain may worsen the situation because of
the peaking phenomenon [23]; that is, the peaking in̂ξq(t) may damage the delivery role of (30a).

The operation ofwq-observers (30) for q = 2, · · · ,m begins after the operation ofξq-observers,
and the error caused by the operation ofwq-observers will be analyzed in Section 5.2.

5.1.3. Inversion.After the integrations ofξq-observers andwq-observers, the estimatesξ̂m(t−m) ∈
Rkm andŵm(t−m) ∈ Rlm become available. Since, by Assumption5.4, the mapcol(ϑm

〈km〉, ω
m
〈lm〉) is a

diffeomorphism onX , let its inverse on the range be given, referring to (7), byx = Φ(χm(ξm), wm).
Now define a mapΨ(ξm, wm) as a Lipschitz extension of the mappm ◦ Φ(χm(ξm), wm) from
ϑm
〈km〉(X )× ωm

〈lm〉(X ) wherepm is the jump map of (1). Then, we set the estimatêx⋆(tm) for the
plant statex(tm) as

x̂⋆(tm) = Ψ(ξ̂m(t−m), ŵm(t−m))). (31)

Let the Lipschitz coefficient ofΨ beCΨ.

5.1.4. Catch-up process.The algorithm to computêx⋆(tm) begins at timet = tm, and takes some
time until the value of̂x⋆(tm) is calculated. Therefore, in order to update the observer state x̂ of
(18) by x̂⋆, we should translatêx⋆(t) from tm to the current time. This can be done by integrating
a copy of (18a) and (18b) from time tm onwards with the initial condition̂x⋆(tm). This separate
integration should be sufficiently fast, compared to the on-line observer (18) running synchronously
in real time, so that the expressions resulting from both theintegrations coincide after some time
t⋆m = tm + Tcomp. We call this procedure as a ‘catch-up process,’ which is summarized as follows.
Whenx̂⋆(tm) is obtained by inversion from (31), integration of the following equation starts:

˙̂x⋆(t) = f̄q(x̂
⋆(t)) + ḡq(x̂

⋆(t))u(t), t ∈ [tq−1, tq), (32a)

x̂⋆(tq) = p̄q(x̂
⋆(t−q )), (32b)

for q = m+ 1, · · · , 2m with the initial condition x̂⋆(tm). This integration is performed fast
during [tm, tm + Tcomp), and (18c) is updated att = tm + Tcomp. Then, the integration continues
synchronously with real time untilt−2m, or just storex̂⋆(t) = x̂(t) for rest of the time (which
is possible because both (32) and (18) yield the same result). Reason for the integration after
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OBSERVER DESIGN FOR SWITCHED NONLINEAR SYSTEMS 19

tm + Tcomp is that the knowledge of̂x⋆(tq) for q = m, · · · , 2m− 1 will be used forξq-observers
in the next cycle of the algorithm that starts att = t2m.

Now we can remove the statement (25) because we have specifiedx̂⋆(tq) here.

5.2. Convergence of Estimation Error

We first look at the error̃x⋆(t) := x̂⋆(t)− x(t), and theñx(t) := x̂(t)− x(t). It can be thought that
the statêx⋆(t) obeys (32) and is updated at everyt = tim, in computer time,i ∈ N, by the inverse
relation (31). Since there is no error correction betweentim andt(i+1)m, the estimation error̃x⋆(t)
may increase during the interval. However, its growth is limited and can be computed by Gronwall-
Bellman’s inequality and the Lipschitz property of (32) as follows: for anyt† and t‡ such that
tim ≤ t† < t‡ ≤ t(i+1)m,

|x̃⋆(t‡)| ≤ (Cp)
ρ exp

(

(Cf + CgCu)(t
‡ − t†)

)

|x̃⋆(t†)| =: M(t‡, t†)|x̃⋆(t†)| (33)

whereρ is the number of switches in the interval(t†, t‡], and for convenience, let

M i
k := M(tim+k, tim) = (Cp)

k exp

(

(Cf + CgCu)

k
∑

j=1

τj+im

)

,

andM i
0 := 1 for convenience. This in turn implies from (29) that, forq = im+ 1, . . . , im+m,

sup
t∈[tq−1,tq)

|ξ̃q(t)| ≤ δMΥΛ|x̃
⋆(tq−1)| ≤ δMΥΛM

i
q−1−im|x̃⋆(tim)|. (34)

It then follows from (30a) that | ˙̃wq | ≤ M∗(|w̃q|+ |ξ̃q|), whereM∗ := CF∗ + CG∗Cu. For q =
im+ 2, . . . , im+m, this leads to,

|w̃q(t
−
q )| ≤ eM∗τq |w̃q(tq−1)|+ (eM∗τq − 1) sup

t∈[tq−1,tq)

|ξ̃q(t)|

≤ eM∗τq |w̃q(tq−1)|+ (eM∗τq − 1)δMΥΛM
i
q−1−im|x̃⋆(tim)|.

(35)

From (30b) and (34), with w̃im+1 := 0,

|w̃q(tq−1)| ≤ CR∗ |ξ̃q(tq−1)|+ CR∗ |ξ̃q−1(t
−
q−1)|+ CR∗ |w̃q−1(t

−
q−1)|

≤ δCR∗MΥΛ(M
i
q−1−im +M i

q−2−im)|x̃⋆(tim)|+ CR∗ |w̃q−1(t
−
q−1)|.

(36)

Putting (36) into (35), we obtain

|w̃q(t
−
q )| ≤ CR∗eM∗τq |w̃q−1(t

−
q−1)|+ δÑ i

q−1−im |x̃⋆(tim)|

where Ñ i
q−1−im := (eM∗τq − 1)MΥΛM

i
q−1−im + eM∗τqCR∗MΥΛ(M

i
q−1−im +M i

q−2−im). From
this, it is not difficult to derive that, forq = im+ 2, . . . , im+m,

|w̃q(t
−
q )| ≤ δN i

q−1−im|x̃⋆(tim)| (37)

where

N i
q−1−im := Ñ i

q−1−im +

q−1−im
∑

j=2

(CR∗)q−j−imÑ i
j exp



M∗

q
∑

k=q+2−j

τk



 .

So far, we have obtained|ξ̃(i+1)m(t−(i+1)m)| ≤ δMΥΛM
i
m−1|x̃

⋆(tim)| and |w̃(i+1)m(t−(i+1)m)| ≤

δN i
m−1|x̃

⋆(tim)| from (34) and (37), which, by (31), finally lead to,

|x̃⋆(t(i+1)m)| ≤ |Ψ(ξ̂(i+1)m(t−(i+1)m), ŵ(i+1)m(t−(i+1)m))−Ψ(ξ(i+1)m(t−(i+1)m), w(i+1)m(t−(i+1)m))|

≤ CΨ(|ξ̃(i+1)m(t−(i+1)m)|+ |w̃(i+1)m(t−(i+1)m)|)

≤ δCΨ(MΥΛM
i
m−1 +N i

m−1)|x̃
⋆(tim)|.
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20 SHIM AND TANWANI

Suppose thatδ is chosen such that

δCΨ(MΥΛM
i
m−1 +N i

m−1) ≤ γ < 1 (38)

with a constantγ. Then, limi→∞ |x̃⋆(tim)| = 0. This implies thatlimt→∞ |x̃⋆(t)| = 0 because
t(i+1)m − tim ≤ mD and

sup
t∈[tim,t(i+1)m)

|x̃⋆(t)| ≤ sup
t∈[tim,t(i+1)m)

M(t, tim)|x̃⋆(tim)|

≤ (Cp)
m−1 exp((Cf + CgCu)mD)|x̃⋆(tim)|

(39)

for all i ∈ N, due to (33) and Assumption5.2.
Finally, since limt→∞ |x̃⋆(t)| = 0 and x̃⋆(t⋆im) = x̃(t⋆im), we have thatlimi→∞ |x̃⋆(t⋆im)| =

limi→∞ |x̃(t⋆im)| = 0. Therefore,

sup
t∈[t⋆

im
,t⋆

(i+1)m
)

|x̃(t)| ≤ sup
t∈[t⋆

im
,t⋆

(i+1)m
)

M(t, t⋆im)|x̃(t⋆im)|

≤ (Cp)
m exp((Cf + CgCu)mD)|x̃(t⋆im)|

(40)

which ensures thatlimt→∞ |x̃(t)| = 0.
Summarizing the discussions so far, we arrive at the following theorem.

Theorem 4(Asymptotic observer)
Under Assumptions5, 6, and6′, system (1) admits an asymptotic observer; and the observer gains
are designed according to the criteria given in (38) under Assumptions6 and6′. �

Convergence rate of the proposed observer can be increased by reducingγ in (38), but is limited
by the fact that the estimation error cannot be reduced untilthe first update timet⋆m. This is natural
because the observer is based on the property of large-time,and not small-time, observability.

5.3. Simulation Results of Example1

The proposed observer has been implemented and simulated for Example1, and the results are
depicted in Fig.1. For this, theξq-observers (21) and (24), which are linear for this example, are
employed withK f

1 = col(2, 1), K f
2 = K f

3 = 2, Kb
1 = col(−2, 1), andKb

2 = Kb
3 = −2.

For the simulation, we did not apply Lipschitz extensions toany maps or functions. This is
justified by regarding that the regionX for large-time observability is so large that both the plant
trajectory and the observer trajectory remain in the inactive regionX of the Lipschitz extension. As
a matter of fact, Lipschitz extension becomes critical whenthe plant trajectory is operating near the
boundary ofX , or the observer gain is so high that the initial peaking transient often goes beyond
the setX .

MATLAB source code is available upon request from the authors.

6. DISCUSSIONS AND CONCLUDING REMARKS

6.1. Discussions

1. Large-time observability for switched linear systems isstudied in our previous work [24],
where a necessary and sufficient condition for it is presented. It turns out that the switching
times also affect the observability because it has been shown that there are singular switching
times which destroy observability even though the same modesequence with different
switching times ensures observability. The conditions in this paper are independent of
switching times, which is one evidence of sufficiency. In [24], one can also find a condition
independent of switching times, which is of course a sufficient condition, but it can be seen
that the linear version of the proposed condition in Section4.3 is still stronger than [24]. It is
actually due to the restrictive structure ofwq-dynamics in this paper.
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Figure 1. The first two figures show the plant statex(t) (dotted black) and its estimatêx(t) (dashed red),
initiated fromx(0) = col(1, 1, 1) and x̂(0) = col(0, 0, 0), respectively. WithTcomp = 0.5, the update (18c)
occurs at 3.5, 6.5, and 9.5 seconds while the mode switches after every second. This is clearly seen from
the third figure, which plots|x̂(t)− x(t)|. The convergence of error to zero is also observed. The fourth plot
illustrates the operation of back-and-forthξq-observer for mode 2 over the interval[1, 2). In this mode,ξ2
is a scalar variable (dotted black). It is observed that the estimateξ̂2 (dashed red) is obtained from̂ξf2 of
the forward observer (dashdot magenta) over the interval[1.5, 2) andξ̂b2 of the backward observer (dashdot

green) over the interval[1, 1.5).

2. In the convergence analysis of state estimation error in Section5.2, the constantsM i
m−1 and

N i
m−1 of (38) are dependent on the switching intervalsτq, but since they are nondecreasing

w.r.t. τq, one can make the condition (38) independent ofτq by setting allτq = D. In this
way, δ can be chosen off-line and allξq-observers (i.e., observer gains) are designed before
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22 SHIM AND TANWANI

the actual operation. Else,δ is chosen on-line andξq-observers are designed whenever the
estimation algorithm is executed. The latter case tends to yield lower gain than the former.

3. The convergence analysis in Section5.2suggests that the mode sequence{1, 2, · · · ,m} need
not be the same and repeat. But it is important that, within a sequence of everym modes, there
should be a subsequence of modes that guarantees large-timeuniform observability. Then, at
each execution of the estimation algorithm, the valueδ is computed on-line for (38) which
guarantees error convergence. This relaxes Assumption5.4.

4. In an ideal case of no uncertainty and no disturbance, Assumption5.2 can also be relaxed in
theory. The idea is to reuse the past data in the back-and-forth ξq-observers. Looking at (19)
and (23) with (29), it is seen that one more forward and backward operation with the initial
valueξfq(tq−1) = ξbq(τq) results in further reduction of the error. Repeating the back-and-forth
operation, followed by longer catch-up process, one can update (18c) at every period ofD (if
computation is fast enough) even though the actual switching does not occur. This approach is,
of course, not practical because the estimation is based on outdated data and does not reflect
current information.

6.2. Concluding Remarks

This paper presented a sufficient condition for large-time uniform observability of switched
nonlinear systems. Compared to the existing literature on linear systems, this condition is
independent of switching times and depends primarily on themode sequence determined by the
switching signal. The proof reveals how the partial information available from each mode can be
combined to recover the state. The observer, based on the proposed sufficient condition, generates
an estimate that converges to the actual state of the system.

One limitation of the current research is that the switchingsignal σ(t) is known, which is
sometimes not the case. Mode detection as well as the detection of switching times is one of the
future research directions.

Also, there are potential applications for state estimators of switched nonlinear systems, e.g. [6],
and exploring them in the context of real-time systems usingour design techniques remains a future
work.
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APPENDIX

The following lemma is frequently used in the paper.

Lemma 1
Consider a codistributionW generated by exact one-forms, i.e.,W = span {dλ1, . . . , dλk} where
λ1, . . . , λk, 1 ≤ k ≤ n, are potential coordinate functions defined on a setX ⊂ Rn.

1. If the codistributionW is invariant w.r.t. a smooth vector fieldf , i.e.,

LfW ⊂ W onX ,

then there exists a smooth vector fieldF : λ〈k〉(X ) → Rk such that
∂λ〈k〉

∂x
· f(x) = F (λ〈k〉(x))

for everyx ∈ X .
2. If a smooth functionh : X → R satisfies

dh ∈ W onX ,
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then there exists a smooth functionH : λ〈k〉(X ) → R such thath(x) = H(λ〈k〉(x)) for every
x ∈ X .

3. Let W ′ be another codistribution such thatdim(W +W ′) = k + r on X , and suppose
that there are functionsµ1, . . . , µr such thatW +W ′ = span {dλi, dµj : i = 1, . . . , k, j =
1, . . . , r} and{λ1, . . . , λk, µ1, . . . , µr} are potential coordinate functions onX . If a smooth
mapp : X → Rn satisfies

p∗(kerW ∩ kerW ′) ⊂ kerW

on X , then there exists a smooth mapP : λ〈k〉(X ) × µ〈r〉(X ) → Rk such thatλ〈k〉(p(x)) =
P (λ〈k〉(x), µ〈r〉(x)) wheneverx andp(x) are contained inX . �

Proof
Sinceλi, i = 1, . . . , k, are potential coordinate functions onX , we can findλk+1, . . . , λn such that
λ〈n〉(x) becomes a diffeomorphism onX . Let z = λ〈n〉(x). In the z-coordinates, it is seen that
W = span {dz1, . . . , dzk}, and thus,

kerW = span

{

∂

∂zk+1
, · · · ,

∂

∂zn

}

. (41)

Also, the vector fieldf(x) is represented inz-coordinates as:

∂λ〈n〉

∂x

∣

∣

∣

x=λ
−1
〈n〉

(z)
· f(λ−1

〈n〉(z)) =: f̄(z) =

[

f̄a(za, zb)
f̄b(za, zb)

]

,

whereza = [z1, . . . , zk]
⊤, zb = [zk+1, . . . , zn]

⊤, f̄a(z) ∈ Rk, and f̄b(z) ∈ Rn−k. Then, since the
codistributionW is invariant w.r.t.f , the distributionkerW is also invariant w.r.t.f onX .∗∗ Since
kerW is invariant w.r.t.f onX , or equivalently w.r.t.f̄ onλ〈n〉(X ), it follows that

[

f̄ ,
∂

∂zi

]

= −

n
∑

j=1

∂f̄j
∂zi

∂

∂zj
∈ kerW , i = k + 1, . . . , n.

Hence,
∂f̄j
∂zi

= 0, ∀j = 1, . . . , k, i = k + 1, . . . , n.

This impliesf̄a(za, zb) = f̄a(za). TakingF = f̄a proves item1.
For proving item2, the functionh is represented in thez-coordinates as̄h(z) = h ◦ λ−1

〈n〉(z). Since

dh̄ =
∂h̄

∂z1
dz1 + · · ·+

∂h̄

∂zn
dzn ∈ W , onλ〈n〉(X ),

it is seen that∂h̄
∂zi

= 0, i = k + 1, . . . , n. TakingH = h̄ proves item2.
For item3, we findλk+r+1, . . . , λn such that

z = λ(x) := col(λ〈k〉(x), µ〈r〉(x), λk+r+1(x), . . . , λn(x))

becomes a diffeomorphism onX . Then, in the coordinates ofz, we have that
W = span {dz1, . . . , dzk} and W +W ′ = span {dz1, . . . , dzk+r}. This way kerW and
kerW ∩ kerW ′ = (W +W ′)⊥ can be equivalently written asspan {ek+1, . . . , en} and
span {ek+r+1, . . . , en}, respectively, onλ(X ), where ej is the elementary basis vector (i.e.,
all elements are zero except thej-th element which is one). With̄p(z) = λ ◦ p ◦ λ−1(z), the

∗∗ Let σ ∈ W andv ∈ kerW . Then,σ · v = 0 and(Lfσ) · v = 0. By the equalityLf (σ · v) = (Lfσ) · v + σ · [f, v], it
is seen thatσ · [f, v] = 0. See [16].
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conditionp∗(kerW ∩ kerW ′) ⊂ kerW implies that

∂p̄

∂z
ej ∈ span {ek+1, . . . , en} for j = k + r + 1, . . . , n

on λ(X ). This implies that the firstk functions ofp̄ do not depend onzk+r+1, . . . , zn, so that we
obtainP = p̄〈k〉. This completes the proof.

Proof of Theorem3
By Assumption4.(a).(1), system (1a) and (1c) is converted into (9) with ξq,j = Lj−1

fq
hq(x), j =

1, · · · , νq, on the setX . Then, the same argument as in Section4.1 (after Assumption3) proves that
Assumption1 holds.

To see that Assumption2 holds, we takeθq := ϑq

〈kq〉
(x), wq := ωq

〈lq〉
(x), andςq := πq

〈n−kq−lq〉
(x)

in which the existence ofπq

〈n−kq−lq〉
on the setX follows from Assumption4.(b). For simplicity, we

denoteλq
j(x) := Lj−1

fq
hq(x), so thatξq = λq

〈νq〉
(x). Here, becausedϑq

j ∈ Oq (Assumption4.(b)) and
Oq is generated by the differentials ofλq

1, · · · , λ
q
νq

that are potential coordinate functions onX (by
Assumption4.(a)), eachϑq

j is a function ofλq

〈νq〉
(by Lemma1.2) so that the mapχq of (6) exists.

BecauseWq is invariant w.r.t.fq and gq andWq = span {dϑq
1, . . . , dϑ

q
kq
, dωq

1, . . . , dω
q
lq
} with

potential coordinate functions{ϑq

〈kq〉
, ωq

〈lq〉
} on X , Lemma1.1 is applied to obtain smooth vector

fieldsF o
q , Go

q, F †
q , andG†

q such that

θ̇q =
∂ϑq

〈kq〉

∂x
(x) · (f(x) + g(x)u) = F o

q (θq, wq) +Go
q(θq, wq)u

ẇq =
∂ωq

〈lq〉

∂x
(x) · (f(x) + g(x)u) = F †

q (θq, wq) +G†
q(θq, wq)u

(42)

which match the equations (5a) and (5b). For the remaining coordinate functionςq, the equations
(5c) and (5d) are naturally derived except

wq+1(tq) = R∗
q(wq(t

−
q ), ξq(t

−
q ), ξq+1(tq)), (43)

which is proved henceforth.
Lemma1.3, along with Assumption4.(d) and(pq)∗(kerWq ∩ kerO′

q+1) ⊂ kerWq, implies the
existence of a functionP †

q (and thenP ∗
q below, sinceϑq

〈kq〉
andµ′q

〈r′q〉
are functions ofλq

〈νq〉
and

λq+1
〈νq+1〉

◦ pq respectively) such that

[

ϑq

〈kq〉
(x(tq))

ωq

〈lq〉
(x(tq))

]

=

[

ϑq

〈kq〉
(pq(x(t

−
q )))

ωq

〈lq〉
(pq(x(t

−
q )))

]

= P †
q (ϑ

q

〈kq〉
(x(t−q )), ω

q

〈lq〉
(x(t−q )), µ

′q
〈r′q〉

(x(t−q )))

= P ∗
q (λ

q

〈νq〉
(x(t−q )), ω

q

〈lq〉
(x(t−q )), λ

q+1
〈νq+1〉

◦ pq(x(t
−
q )))

= P ∗
q (ξq(t

−
q ), wq(t

−
q ), ξq+1(tq)).

(44)

Note thatdωq
j ∈ Wq ⊂ (Oq +Wq−1) = span {dµq

1, . . . , dµ
q
rq
}, j = 1, . . . , lq, by the construction of

Wq and Assumption4.(c). Therefore, by Lemma1.2, there existS†
q andS∗

q such that

wq+1(tq) = ωq+1
〈lq+1〉

(x(tq)) = S†
q+1(µ

q+1
〈rq+1〉

(x(tq)))

= S∗
q+1(λ

q+1
〈νq+1〉

(x(tq)), ϑ
q

〈kq〉
(x(tq)), ω

q

〈lq〉
(x(tq)))

= S∗
q+1

(

ξq+1(tq), P
∗
q

(

ξq(t
−
q ), wq(t

−
q ), ξq+1(tq)

))

=: R∗
q(wq(t

−
q ), ξq(t

−
q ), ξq+1(tq))
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in which, the third equality follows from Assumption4.(c), and the fourth equality follows from
(44). With this definition ofR∗

q the equation (43) holds true.
Here,w1 is a null vector andl1 = 0 becauseW1 ⊂ O1 +W0 = O1, and therefore,

W1 = span {dϑ1
1, dϑ

1
2, . . . , dϑ

1
k1
}, k1 ≤ ν1,

with potential coordinate functionsϑ1
j such thatdϑ1

j ∈ O1. (Without loss of generality, letk1 ≥ 1
because, ifk1 = 0, we proceed to the next modeq = 2 with W1 = {0}.) Hence Assumption2 holds.

Finally, if dim(Om +Wm−1) = n with somem, thenWm = Om +Wm−1 by construction. This
implies thatkm + lm = n, and from here onwards, the statement of Theorem1 completes the
proof.
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