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Abstract— In this paper, we address the effects of un- elements ara-times continuously differentiable between any
certainties in output measurements and initial conditionson  two consecutive discontinuities. We denotelbym (u) the
; o . /2o
invertibility of the switched systems — the problem concered output of subsysterp with initial conditionz, and inputu.

with the recovery of the input and the switching signal using . .
the output and the initial state. By computing the reachable The Euclidean norm of a vector is denoted |by and the

sets and maximal error in the propagation of state trajectoies  induced norm of a matrix byt - ||. For two matricesA; and
through the inverse system, we derive conditions under whit A, col(A;, As) := [A], AJ]T. For a vectorz in Euclidean

it is possible to recover the exact switching signal over a dain space, and a positive scataret B,.(z) := {y : |y — z| < r}.

time interval, provided the uncertainties are bounded in sme Problem SetupWith ¥ : R — R™ as the exact output
sense. In addition, we discuss separately the case where leac ok ’ . (k)
of the system, letY’® := col(y,y,9, -+ ,y'"™), & € N,

subsystem is minimum phase and it is possible to recover the - o
exact switching signal globally in time. The input, though,is ~denote the vector comprising the exact output and its first

recoverable only up to a neighborhood of the original input. k-derivatives. For brevityy := Y™. Both y and YF are
considered to be unknown. L&t* := col(4, 7,4, - -, §*))
|. INTRODUCTION denote the imprecise estimate of the output and its deriva-
In the past decade, much literature has been published thiges obtained by inaccurate measurements and numerical
relates to the structural properties of the switched systemdifferentiation. Several useful techniques for obtainthg
most recent of which is the problem of invertibility [1], [2] estimates of the derivatives, even for noisy signals, haenb
Viewing the switching signal as an additional exogenougdiscussed in the literature, see [3] and references thdtésn
signal, invertibility of switched systems deals with the reassumed that for each the uncertainty in the measurement
construction of the input and the switching signal using thef the output and its derivatives is bounded by some fixed and
measured output and the initial state. known numberg > 0, that is, |[Y (¢t) — Y (¢)| < o. Also, the
One of the main drawbacks of the algorithms used iexact knowledge of the initial state, := x(t,) is no longer
the reconstruction of the input and the switching signadssumed, insteag, is assumed to be contained in a known
using the invertibility approach is that they require pseci compact and convex s®;,, so thati, € R;, is an initial
knowledge of the output and the initial state. Due to physicastimate ofzy. Our objective is to: (a) find conditions on
limitations of the sensors and non-uniform/unpredictableubsystem dynamics and a deterministic funclion (2, )
operating conditions of the system, it is often the case th@iat reconstructs the original value af over some time
these two quantities (the output and the initial conditiarg interval, (b) compute the maximum error between the actual
not precisely known. Thus, it is natural to ask whether itind the reconstructed input, (c) find conditions under which
is possible to recover the unknown switching signal and the—1(z,, ) yields the actual value of at all times for a
input with disturbances in the measurement of the output aggrticular class of systems.
lack of precise knowledge of the initial state. Motivated by
this practical setup, this paper deals with the reconstuct Il. BACKGROUND AND PRELIMINARIES
of the input and the switching signal when there are uncer- Invertibility of switched system (1) requires each sub-
tainties in the output measurements and the initial cooliti system to be invertible and the identification of the active
We restrict our attention to linear switched systems demode [1]. To check the former property, i.e., invertibiliy
scribed as: ] a subsystem, one uses Silverman’s structure algorithm [4],
T, : { & = Asx + Bou, (1) [5]; this paper, however, uses the notations developed in a
y = Cox + Dou. terse version of the structure algorithm given in [1]. If a
The switching signab takes values in a finite index sgt.  subsystem is invertible, the structure algorithm leadsh® t
For eachp € P, A4, € R"™", B, € R"™*™ (, € R™*n,  construction of an inverse subsystem that reconstructs the
D, € R™*™mso thatu(t) € R™, andy(t) € R™; also, original input using the state and the output values. Forenod
state variable: € R™. The input and output dimensions areidentification in (1), we first develop a relationship betwee
assumed to be same so that the system is square. Furtiieg output and the state for each subsystem and then utilize i
u € F", so that the outpuy € F", where F denotes to determine the active subsystem at each time instant. This
the subset of piecewise right-continuous functions whogelationship is characterized by the range theorem [5] had t
characterization uses certain operatés and W}, which
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in the Appendix. The exact expressions of these operatdfsC,, andV,, denote the range spaces of the matritgs
are not required in the understanding of this paper, and veand 1V, respectively, then geometrically, condition (3) is
refer the reader to [1] and the Appendix if such formulagquivalent to saying that,, N W,, = {0}.
are sought. The following example helps illustrate how¢hes Next, let) be the set of piecewise smooth functions such
operators show up in computations: that if y € ), thenW,,,Y (to) # 0 for all p # ¢, p,g € P. It
Example 1:Consider a non-switched linear SISO systenhas been shown in [1] that, for the output 3&ta switched
R S ) B system is invertible if and only if all subsystems are inizet
To:{ &= [3 1] 2+ %] u,andy = [0 0.5z and subsystem dynamics are such that there exist no switch-

Clearly,y andy are independent of the input, that {s)) =  singular pairs among them. So, if Assumption 1 and (3) hold
[2 93]z, or equivalentlyZox2 0241]Y = [ % 82| 2, where  then the switched system is invertible for the outputBet
Y :=col(y, 9, §). So, we letlW; := [Iax2 02x1], and Ly := In case a switched system is invertible, a switched inverse

[ 9-2] and the relationW;Y (t) = Liz(t) holdsVt > system can be constructed to recover the input and the
to. Computing the expression fgj, solving it for v, and switching signaloc from the given output and the initial
plugging the resultant back into the original dynamicsdsel state. Towards that end, define timglex-inversion function
the corresponding inverse system, TR XY P as:

It e= [ e+ [3lGu=[0 —4d+4). < S (wo,y) = {p: W,Y(to) = Lyao}- (4)

For the sake of clear presentation, we introduce the fol-
lowing assumptions to state a simplified version of the rangdaving determined the mode using (4), the corresponding
theorem in Proposition 1 which characterizes the relakigns inverse system is activated to recover the input. Thus, an
between the output and the state for a subsydtgm inverse switched systei; !, with initial condition x, is

Assumption 1: Throughout the paper, it is assumed thatimplemented as follows:

1) each subsysteri,, p € P, is invertible; =
2) and the inputs are such that the output produced by olt) = EA (x(t),g[t7t+5)), (5a)
each subsystem is-times differentiable (i.e.(™). = A,z + Bow)Y, (5b)
Proposition 1: Consider system (1) with initial statey. — éa(t)iﬂ + f)d(t)y (5¢)
If Assumption 1 holds ang € C"([to,t1),R™), then there R o R .
exists an inputu such thaty = ngo(u) if and only if where A, := (A — BD, Cu)s, B, = (BD, V),
W,Y € CO([to, t1), R™) and W, Y (to) = Lpo. a G, = (-D, Ty, and D, := (D, 'V),. The matrices

It is also noted from the structure algorithm that regaslles”,,, D,V are defined for each subsystem through the
of what the input is, the output and the state are related kyructure algorithm; formulae fof ., D,, are given in [1],
the equationV,Y (t) = L,xz(t), for all t > t, whenT', is  and the expression fdr is developed in the Appendix.
active, and not just at the initial timg. When dealing with
the switched systems, this is the fundamental idea employed Il INVERSION UNDERUNCERTAINTIES
in mode detection and it also leads to the following concept In the problem setup, it is assumed that and Y are
of switch-singular pairs [1]. unknown, and we work with their respective estimatgs=

Definition 2: Let o € R™ andy € C" be anR™-valued R, , andY. So, instead of (5), the following equations are
function on some time interval. The paitq( y) is aswitch- utilized, with the initial conditioni,, to get an estimate of the
singular pair of the two subsystem§,, I', if there exist actual state trajectory and the input appearing in (1), Wwhic

uy, ue such thatfgmo(ul[twﬁs)) = Fgmo(uQ[tMOM) = are now denoted by and respectively.

Ylto,to+e)» fOr somee > 0. < . A

Essentially, if a state and an output (the time domain can be r = fax + lfa}:a (6a)
arbitrary) form a switch-singular pair, then there exigiuts U Cy2+ D,Y. (6b)

for the two subsystems to produce that same output startin N . .
from that same initial state. Under Assumption 1, it followslrc" (6), the switching signab remains unknown and the

from Definition 2 and Proposition 1 théto, y) is a switch- remainder of this section concentrates on recovering the
singular pair forr T, i zfnd only i 0,Y switching signal usingR:, and Y. In §llI-A, we use the
prma ' concept of reachable sets to computein §llI-B, simpler

WpeY (to) = Lpgo, (2) computations are devised to reconstridbr the caseR,, =
WhEe 1y, = ol 1), Ly = colly ).~ B5{15) 300 some Kowi - C anifeste eror
x(to), andty is the initial time ofy. This condition for ver- P '
ifying the existence of switch-singular pairs can be chelckea, Switching Signal Recovery using Reachable Sets
easily for a certain class of outputs using a rank condition. in th f inties in th dth
According to [1, Lemma 3], ify is such thatiV,,, Y () # 0 n the presence of uncertainties in the output and the state
' ' pq ' . values, the most natural extension of the mode identifinatio

for any t > tg, then there exist no switch-singular pairs hod d ived in th . o h
(20, ) between subsystents, andT, if, and only if method described in the previous section is to compute the
0:Y a7 ' set that contains:(¢) and look at the intersection of the

rank [Lpq Wpq| = rank L, + rank Wp,. (3) image of this set under the map, with W, (B,(Y (¢))).



The subsysteni’, is declared active if the corresponding Proposition 4 also suggests that there exists a lower bound
intersection is non-empty. In the sequel, we formalize thisn the time interval for which the switching signal can
argument to show how the switching signal can be recoverda recovered. If the conditions of this proposition are also
using that approach. satisfied at timety + p, then there exist$ > 0 such

1) Reachable Setdt follows from Fillipov’s theorem for that the switching signal can be recovered over the interval
linear time varying systems [6] that if the initial conditio [ty,%o + p + p). Thus, larger intervals can be obtained by
lies in a compact and convex set, then the reachable sgiplying Proposition 4 inductively. The switching signdl)
R, = {x(t1) : x(t) solves (6a) witht € [to,t1],x(to) € is recovered by lettings(t) = X' (R, §j1,¢4+)) and this
R4, } is compact, convex and varies continuously with  definition leads to the recovery of switching signal over
Several methods for computing the et are available in an interval [ty,T), where T := min{t > tq|3p,q €
literature [7] and we assume thRY;, can be computed. Note P s.t. dj,(t) < |[Wplle and d,(t) < |[[W,]le}. We now
that the operatoL,, obtained from the structure algorithm isillustrate this result with an example.
linear and continuous. Sind@, is a compact and convex set Example 2:Consider a switched system with two modes,
at each timet, the setl,(R;) is also compact and convex. i.e., P = {1,2}; where subsysteni’; and its inverse are

2) Index Matching Functioi—!: To compute the value defined in Example 1I'; and its inverse are given below:
of the switching signab (t) using the index-inversion func- IR . o1 -1 .
tion (4), we find p for which W,Y'(t) = Lyz(t), or p {ﬂ'ﬂ: {1 %1} @+ M “. {55: [f é} z+ M y
alternatively|W, Y (t) — L,z (t)| = 0. SinceY (¢) and z(t) y=1[0 1]z a=[3 %25} &+ 1§
are no longer available, this condition cannot be verifie
anymore. A new function, that recovers the value of th
switching signal is computed using the following propasiti

Proposition 3: For system (1), if there exists an input
such that¢, (u) = y over an intervalty, t,), and|Y (t) —

or this exampleV; = W = [Iox2 02x1); L1 = [ 02 ]
andL; := [ §5]. I'1,T'2 are invertible and the conditions
in Proposition 4 hold foro = 0.25 and Ry = {z : (x —
10) T (x — 10) = 1)} for an arbitrarily chosen output

p,Zo

Y(t)| < o then|Lyz(t) — WY (t)] < |Wylle, for each _ "] IR
t € [to, t1). 3 . ]

Proof: Sincel'S, (u) =y over the intervalto, t,) for P S S S S S |
some inputu, it follows from Proposition 1 thaf,z(t) = -0 j
W,Y (¢) for eacht € [to, t1). So that|L,z(t) = W,Y ()| = = o
[Lp{t] — WAT] + WpY (1) = WY ()] = [Wy(Y(t) — = of
Y(t))| S ||WPH |Y(t) — Y(t)| S HWPHQ ] 7100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Note that, rather than the exact valueagf), it is only 25 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

known thatz(t) € Ry. If Z,(t) := L,(R.), we define the = 2|
distance between the sgf(¢) and the vectonf/(t) tobe: ¢

~ 0'50 011 012 0‘.3 014 015 0‘.6 017 018 0.‘9 1
o : W, _ . t
dp(t) T Zer%lpr%t) | pY(t) Z| ) Fig. 1. The distance functiong; (), d2(¢) and the corresponding(t).

The setZ,(t) is compact, convex and contaits,z(t), SO ‘ R —ounnt
there exists a unique solution to this optimization problem .| =22 1
according to therojection theorenfi8]. Use of Proposition 3 L
guarantees that if’, produces the output at timg then 1
the distance between the sé&i,(¢t) and W,Y (¢) is less =
than ||, | ¢. This motivates us to introduce the following
definition of index-matching functian

ST Ry Guere) = | dp(t) < [Wylla} (8)
Yy

Next, in Proposition 4, it is shown that the distance funcrigy 5  The setsz, (1), 2, (1), and the output trajectory iy, ) space.
tion (7) is continuous locally in time and that the value of
the index-matching function (8) coincides with the oridina
switching signal. The proof uses continuity of reachabts se
and has been omitted due to space constraints.
Proposition 4: Consider the switched system (1) with
initial condition contained in a compact, convex &, and

Fig. 1 shows the corresponding distance functions; and the
switching signal obtained by comparing these two distance
functions. It can be seen thatt) = p,p = 1,2, whend),(t)
is near zero. Fig. 2 gives an insight into the values of these
distance functions by plotting the se,(¢) := L,R,p =

measured outpuj over some time interval. Assume that: 1,2, and the output trajectory ity, j)-plane. <
1) there is a unique € P such thatd,(to) < [|W,e, B. Approximate Reachable Sets
2) forall g # p, dq(to) > 3[[Well e, In the previous section, we recovered the switching signal

then there existg > 0 such Athatcr(t) = ifl(Rt,:&[t,tﬁue)) using the index-matching function—!, whose arguments
for all ¢ € [to,to + p), whereX~! is defined in (8). < were the measured output and the reachable set at each



point in time, and furthermore the evaluation of this fuanti 2) Necessary Conditions for Weak Switch-Singular Pairs:
involved the solution to an optimization problem at eachf fol a given :%OAandgj, there existrg € Bs,(40) andYy €
instant in time. Clearly, this approach is computationally3,(Yy), Yy := Y (¢0), such thatL,zo = W,Yy, i.e., T
very expensive. In this section, we I&;, = Bs,(Zo) and produces the outpuf with initial condition z, then

derive an alternative simpler formula for the recovery of

switching signal with the help of certain approximations, |LpZo — WpYo| < |Lpdo — LpI2| + | Lpze—W, Yo
which relieves the computational burden enormously. The + W, Yo — W, Yo| < ||Lplldo + [[Wp]| 0.

drawback, however, is that the interval over which thefn articular. if (2o ) forms an(Bs (4 switch-sinaular
switching signal is recovered is smaller. We start off with particutar, | (%0, 9) (Bso (%0), 0) swi ngu
the definition of(R, g) switch-singular pair pair then,

Definition 5: Let z = x(to) be contained in a compact |L,,&o — Wy, Yo| < |Lpio — W,Yo| + | Lydo — W, Yo|

setR C R”, andy be anR™-valued function over some < (IL

. . L < + | Lgl)do0 + (|Wp|| + ||W.

time interval with Y := Y (¢y). We say that(zg,y) forms _(”O ol + 1 ZaDdo + (Wl + 1l

an (R, o) switch-singular pair for subsystenis,, I', if for = Fpg-

the giveng > 0, there existry, 22 € R andYy, Y2 € B,(Yo)  This leads to the following necessary conditions for weak
such thatZpz; = WY1 and Lyzs = W, Ya. < switch-singular pairs.

In the sequel, we will also refer (R, o) switch-singular  proposition 9: If £,, N W, = {0}, then (i, ) forms
pair as theweak switch-singular paivhenR and ¢ need g (3;, (i), o) switch-singular pair for subsystenis, and

not be specified. i - Fpq 1%
1) Gap between Subspace3o study the existence of ¢ Pq€ Pronly it |Lyedol < 5z, 5wy and (Wi, Yol <

weak switch-singular pairs, we introduce the notion of min—a%

. (LT—’ 2 PQ) ’ . . .

imal gap between the subspaces. Proof: Thisis a straightforward consequence of Corol-
Definition 6: Let M, N be two subspaces of an Euclideanary 8 applied withM := £,,, and A\ := W,,. ]

space. Theminimal gapa(M,N) is defined as: The above proposition, thus, gives two necessary condition

(M, N) = a(N, M) := min{G(M,N), (N, M)} under Which subsysterﬂép, Iy, p,q € P, may form weak
R . switch-singular pairs.
wherea(M, N) = minjy =1 zem d(z, N). < Example 3:Consider the second order SISO switched
The notion of minimum gap between subspaces has agystem given in Example 2. The columns Bfj, :=
peared in [9], [10] for spaces other than Euclidean SPaceSol(W,, Ws) and Ly = col(Ly, L2) span two dimensional
Proposition 7 (Computation ak(M, N)): Let Iy de-  gypspaces dk?* and it can be verified that their intersection
tnhOtf':he olrthogonal pr(t)#]ec'uon dlld an? mattr:IXtM be tShUCh is the null vector. In terms of orthonormal basis, we canevrit
at its columns are orthonormal vectors that spdnthen _ . —
AI u2 . , v m: W2 = span {601(%,0,%,0),(301(0,%,0,%)},Elg =
a(M,N) :| |_Hllm€Md (@, N) =1 |y M|~ (9) span col(% 0 % 0) col(% % % \—_[1)} Since both
. . ZIJ*,ZIJ_ ) 57 3 57. ) ) 77 .77 77 7 *
_Proof: Using the projection theorem [8], the square of thgy.,, and L1, comprise linearly independent columns, they
distance between a point and a subspac#/ is given by  gre left-invertible and the orthogonal projection can bé-wr

|z|* — [TTyrz|*. The desired expression can now be deriveden in terms of the left-pseudo inverse (denotedthythat

min  d*(z,N) = min {|z]> - [Iyaz*} is, Tz, = LisLly = Lia(L{3L12) "' Ly, and Thy,, =
|z|=1,2eM lz|=1,2eM WiaWiy = Wia(W,,Wio) =W}, From these matrices we
=1- ‘ ‘IrllaXM Tyz)? =1— IJ{/[na‘Lxl [T M 2 |? can now compute the gap betwegm, and W, using (9):
z|=1,z€ z|=
=1- max Ty Mz* =1 — ||y M|2. ] a(Whz, L12) = @(Wiz, L12) = a(L12, Wi2) = 0.1368.
z|=1

With o = o = 0.25, we getx, = 1.0224. Considering the

Note thata(M, V) = 0 if and only if M AN 7 {0}, and data of Example 1 at initial timg& with Z, = col(10, 10), we

a(M,N) = 1if and only if M and A are mutually orthog- by . X

onal to each other. Roughly speaking.M, ) measures have|Wp,Yo| = 11.45 > o7 = 7.02, and| Ly, 0| =

the sine of minimum angle betweew and \. 11.18. Both necessary conditions are violated, so there are
Corollary 8: SupposeM, N are two subspaces such thatho weak switch-singular pairs at tinte. <

MNN = {0}. Givenz € M, z € N, |z — z| < e only if 3) Spherical Approximation and Elimination of Switch-
|lz| < m Singular Pairs over an IntervalProposition 9 provides nec-

Proof: i:or xr # 0, z € M can be written ag: = ¢y  €ssary conditions for the existence of weak switch-singula
wherey € M has unit norm, and € R. Note that|z| = |¢|.  pairs at time instant, when the uncertainty in the initial

Using the reverse triangle inequality, we obtain: state is given by a ball of radiu&. Our goal now is to
Py determine whether, under certain conditions, it is possibl
€ > |z =z 2 [l = [2]] = || ‘|y| - ‘EH = |eld(y, N) to rule out the existence of weak switch-singular pairs over
>l inf  d(y,N) = |c|a(M,N) > |c|a(M,N), some time interval. Note that, even though the output is
lyl=1,yeM changing with time, there is a constant upper bound on the

whence the desired result follows. H uncertainties in the output, whereas the uncertainty in the



state variable, denoted hy(¢), is a function of time. The

C. Input Recovery

value of4(t) is basically obtained from the norm of the error - The input reconstructed using the measured output is given
vectorz = x — , the dynamics for which are obtained as &,y (gp). Using the exact expression ferin (5c), the input

difference of (5b) and (6a),

i(t) = A, i(t) + Byw(t), (10)

wherew(t) := Y (t) — Y (¢), and |w(t)| < o for eacht >
to. With |Z(to)| < o := (to), an upper bound oh(t) is
obtained by solving (10) analytically far. To guarantee that
the statez(t) does not form(B;)((t)), o) switch-singular
pairs with the outputj(t), one must verify that, at time,

the following inequality holds:
|Lpg(t) = Wag Y (0] = 5, (12)

where r, == ([|Lp]l + [[1Lq])3(t) + (IWpll + [[Wql))e-
The lower bound ort, for which (11) holds, is given in

Theorem 10 as it specifies the length of a time interv%
during which the output and the state do not form th

weak switch-singular pairs. Avoiding the details due tocgpa

constraints, we introduce some notation to state the reSl#It

only. For eachp € P, there exists\, # 0,a, € R such

that || exp (/Alpt)H < elaptApt) Qefine/\ ‘= MaXpeP Ap,
a = MaXpep ap, b := max,ep || By, and
© g 2o W) = (W + IWalde
PaEP (I Lpll + 1 Zqll)

Theorem 10:Consider switched system (1), and let

Y (t) — Y(t)| < o for eacht > t,. Moreover, assume that
1) condition (3) holds (i.e £,,NWp, = {0}),Vp,q € P,
2) ming>q, (W,Y (t)| > 8 > o for eachp € P.

If 6o < —ey» andz(to) € Bs, (&(to)), then(z(t), j(t)) do

not form a(R:, o) switch-singular pair for any € [to, T),

where < ) )

andk is the number of switches over the interyal, 7). <

AQ + elatkalp,
Adg + bo

(k+1)a
A 3

1
T <ty+ —log

X (13)

Based on the result of Theorem 10, one can formulate an

alternativeindex-matching functioi—! as follows:

SN @, Yinero) = {p ¢ [Lod()= WY (8)] < ILp]I5(8)+ Wyl 0}
(14)

If we compare the two functions~ in (8) and~~! in (14),
then it is observed that the mode detection throdgh'
requires the computation of minimum distance between t

estimation errory := u — 1, IS given by
~ —=—1—= - —1 -~
u(t) = (—Dy Ca)oyZ(t) + (Do V)ew (Y () =Y (1))

Using the notationd,. := max,cp H(ﬁ;lﬁa)pu andd, :=
maxpep ||(ﬁ;1V)p||, the maximal error in the reconstruc-
tion of u at any timet is given by

la(t)] < ded(t) + dyo.

IV. MINIMUM PHASE SYSTEMS

In the previous section, the results were stated for a genera
class of linear systems without any stability assumptiéms.
classical linear systems theory, the stability of the igeer
ystem is closely related to the minimum phase property of

e system. This idea is now employed to derive conditions
or recovering the switching signal over the interjl, o).
For each subsystetfi,, the matrix L, hasr, rows and
ankr,. So, there exists ath —r,) x n matrix 7', such that

: ([Ep and L, T; ' = [, xr, Or, x(n_r,)]. The matrix
de

(15)

T
ines a coordinate transformation for the subsystem

and the transformed matrices ard; := T,A4,T, ",
= T,By, C; = C,T,", D Dy, and Ly
[r,xr, Or,x(n—r,)]- Apply the structure algorithm in the
new coordinates, and lgt, be the matrix formed from the
astn — r, rows and columns ofA* — B;EZZIUZP), let
G,, be the matrix formed from the first, columns and the
last (n — r,,) rows of (A% — B;ﬁzlﬁ;), and letG? be
the matrix formed by the lagth —,,) rows ofB;ﬁz;l If
zp = Tpx denotes the new state variable, then

= [(Zp)la ety (Zp)rp]—r = [gg—a T ag(—yrp—l]

and for the remainingn —r,) state variables denoted by,
the dynamical equation is:

"@ui '6’1 ’Bﬂ 'U}ﬂ

1
p

22 2 1,1 2
Zp = Fpz, + Gpz, + Gy,

Let Z, be an estimate of,, and letz,(t) := 2,(t) — z,(t)
denote the error between the actual state trajectory and the
simulated one, thefg}| < ¢ and usingy, , = VY,

2 _ 32
z, = Fpz, + Gpw,

nuhereG, = [G) G2V,] and|w| < o.

reachable sets and the measured output at each instant iiPefinition 11 (Minimum phase systeniJhe  subsystem

time whereas the functiofi—! only requires coarse spherical L » 1S called minimum-phase if}, is Hurwitz.

<

approximation of the reachable set which can be obtaindd'der minimum-phase assumption on each subsystem, we

analytically. The interval over which the switching sigeah
be constructed is, in general, larger wih! than with® 1.
To obtain larger time interval for reconstruction of switodp

signal with light computation, one may combine the indexthen there exists am —rp) x (n —

matching functionX~! in (14) with the computation of

tightly approximated reachable sets. This can be done Bynction for z;

resetting the value of(¢), at regular intervals, to a number
that tightly approximates the radius of reachable sets.

first show that there is a uniform bound on maximal uncer-
tainty in the reachable sets at all times under the dwelgtim
assumption. To see this, note thaflif is minimum-phase,
rp) matrix P, such that

= 22T P,z2 is a Lyapunov
and there exists a positive definite matrix
@Qp such thatf| B, + P, F, = —Q,. With ©,, := 3.7

ande > 0 small enough, the inequality?| > ©,0(1 +¢)

Vp : R™ — R defined asV,(z2)
2



implies V,, < —|22|Amin(Qp)©,0e. Introducing some more  4) the dwell-time ofo is given by, in (16).

notation, definé?, := [ L ] for eachp < P; alsolet  Thena(t) = {p: [Lya(t) = WV (1)] < [ILy]IA + W, e}

U ) for all ¢ > to. Moreover,||iloc = d.A + dyo. <
O = minyep O,; § := min{p, Op(1 + ¢)}, andd := T The proof uses the bound in Proposition 12 thgt) €
where||T|| := max,ep ||T}|. Let 7, be defined as: Ba(2(t)). Condition 3 of the theorem statement implies

_ s o g~ _ , - ,. that the inequality (11) is violated for all times and this in
max AMap) = 1)o7 + 0 (1 + )" (A Map)A(F)O; = A(Pa)®3) tyrm implies that(#(t), 4(t)) does not form &Ba (i(t)), o)
P 0202(1 + €)Amin(Qq)e " awi ; i i :
P a0 min{{q (16) switch-singular pair for any > t,. Thus, the index-matching
where M,, := Hq;ﬂﬁqH,l H,, is an upper triangular function of (14) is well-defined and it reconstructs the

: o — 17 - original switching signal. The uniform upper bound an
matrix satistying T, P, Ty, = HypHep, Top = T,T, ", is gbtained fromg(15§]. PP

and\(M) denotes the maximum eigenvalue of a matbix

The uniform bound for the state trajectories, under the slow APPENDIX
switching assumption with dwell-time;, comes outto be: | the construction of inverse systems via the structure
Amax (Mgp) algorithm given in [1], there are two differential operator

A= max m(Q2+/\maX(Pp)612702(1+6)2)' (17)  acting on the outpuy, which are denoted by, and N.

» ) Below we seek a simpler representation so thaf and
_ Proposition 12: Consider system (1) and assume gt 7,/ can be written as a matrix (with real coefficients)
is minimum phase for each € P, ande > 0 is such that {imes a vector (comprising of output and its derivatives),
[Y(t) = Y(#)] < o for eacht. Thenz(t) € Ba(2(t)) for je Ny — Wy and N.y = VY, for some matrices
all t > to, provided the initial stater(ly) € Bs(Zo) and - and v. Following the notation of [1, Page 952-953],

ti+1 — t; > 74, fOr every switching instant;. < ~ 3 3 ,_
The result conceptually relates to the incremental input—at Gi i= col (SOK_I’i’SlKO’i"” ’SB_IKB_M)’ Gj =
to-state stability property of the system (10), which hagofa-1; 0 <i < -1,0<j <a, K10 = I, and
been studied in [12] for homogenous systems. But herd st =0 Vk = j+2,Vj. We can then write

the formulation takes into account the disturbances due to ~ d  ~ d  ~ d ~
measurement uncertainties and the bounds on input-te-statN¥ = Goy + E(Gly Tt (Ga—2y + EGB—ly))v
gains are also computed. The proof uses the level sets of — d — d — d—
Lyapunov functions to derive bounds on system trajectorieévay =: Goy + E(Gly ot dat (Ga1y + EGay))-

similar to [11, Chapter 5]; and in the process, followinGue now define the desired matrice®” and V as

lemma is emplqyed to make.t.he bou.nt_js t|ghte_r. W o= [ Gy - 55—1 é@ e G, and V =

Lemma 13:Given two positive definite function¥; = — = = — =~

T T . . [ Gy -+ Gy Gay1 -+ Gy ], whereG; = 0 for
' Pz, and Vo = z' Pz with P, and P, symmetric B<i<nandG—0fora+1<i<
positive definite matrices, the minimal level set 6f that =t=n e @ =t=n
contains the se{x | Vi(z) < ¢} is given by {z|Va(z) < REFERENCES
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