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Abstract— In this paper, we address the effects of un-
certainties in output measurements and initial conditionson
invertibility of the switched systems – the problem concerned
with the recovery of the input and the switching signal using
the output and the initial state. By computing the reachable
sets and maximal error in the propagation of state trajectories
through the inverse system, we derive conditions under which
it is possible to recover the exact switching signal over a certain
time interval, provided the uncertainties are bounded in some
sense. In addition, we discuss separately the case where each
subsystem is minimum phase and it is possible to recover the
exact switching signal globally in time. The input, though,is
recoverable only up to a neighborhood of the original input.

I. I NTRODUCTION

In the past decade, much literature has been published that
relates to the structural properties of the switched systems;
most recent of which is the problem of invertibility [1], [2].
Viewing the switching signal as an additional exogenous
signal, invertibility of switched systems deals with the re-
construction of the input and the switching signal using the
measured output and the initial state.

One of the main drawbacks of the algorithms used in
the reconstruction of the input and the switching signal
using the invertibility approach is that they require precise
knowledge of the output and the initial state. Due to physical
limitations of the sensors and non-uniform/unpredictable
operating conditions of the system, it is often the case that
these two quantities (the output and the initial condition)are
not precisely known. Thus, it is natural to ask whether it
is possible to recover the unknown switching signal and the
input with disturbances in the measurement of the output and
lack of precise knowledge of the initial state. Motivated by
this practical setup, this paper deals with the reconstruction
of the input and the switching signal when there are uncer-
tainties in the output measurements and the initial condition.

We restrict our attention to linear switched systems de-
scribed as:

Γσ :

{
ẋ = Aσx+Bσu,

y = Cσx+Dσu.
(1)

The switching signalσ takes values in a finite index setP .
For eachp ∈ P , Ap ∈ R

n×n, Bp ∈ R
n×m, Cp ∈ R

m×n,
Dp ∈ R

m×mso thatu(t) ∈ R
m, and y(t) ∈ R

m; also,
state variablex ∈ R

n. The input and output dimensions are
assumed to be same so that the system is square. Further,
u ∈ Fn, so that the outputy ∈ Fn, whereFn denotes
the subset of piecewise right-continuous functions whose

Coordinated Science Laboratory, Department of Electricaland Computer
Engineering, University of Illinois at Urbana Champaign, Urbana, IL 61801,
USA. Email:{tanwani2,liberzon}@illinois.edu

This work was supported by NSF under grant ECCS-0821153.

elements aren-times continuously differentiable between any
two consecutive discontinuities. We denote byΓO

p,x0
(u) the

output of subsystemp with initial conditionx0 and inputu.
The Euclidean norm of a vector is denoted by| · | and the
induced norm of a matrix by‖ · ‖. For two matrices,A1 and
A2, col(A1, A2) := [A⊤

1 , A
⊤
2 ]

⊤. For a vectorz in Euclidean
space, and a positive scalarr, letBr(z) := {y : |y − z| ≤ r}.

Problem Setup:With y : R → R
m as the exact output

of the system, letY k := col(y, ẏ, ÿ, · · · , y(k)), k ∈ N,
denote the vector comprising the exact output and its first
k-derivatives. For brevity,Y := Y n. Both y and Y k are
considered to be unknown. Let̂Y k := col(ŷ, ˆ̇y, ˆ̈y, · · · , ŷ(k))
denote the imprecise estimate of the output and its deriva-
tives obtained by inaccurate measurements and numerical
differentiation. Several useful techniques for obtainingthe
estimates of the derivatives, even for noisy signals, have been
discussed in the literature, see [3] and references therein. It is
assumed that for eacht, the uncertainty in the measurement
of the output and its derivatives is bounded by some fixed and
known number̺ > 0, that is, |Y (t)− Ŷ (t)| ≤ ̺. Also, the
exact knowledge of the initial statex0 := x(t0) is no longer
assumed, insteadx0 is assumed to be contained in a known
compact and convex setRt0 , so thatx̂0 ∈ Rt0 is an initial
estimate ofx0. Our objective is to: (a) find conditions on
subsystem dynamics and a deterministic functionΣ̃−1(x̂0, ŷ)
that reconstructs the original value ofσ over some time
interval, (b) compute the maximum error between the actual
and the reconstructed input, (c) find conditions under which
Σ̃−1(x̂0, ŷ) yields the actual value ofσ at all times for a
particular class of systems.

II. BACKGROUND AND PRELIMINARIES

Invertibility of switched system (1) requires each sub-
system to be invertible and the identification of the active
mode [1]. To check the former property, i.e., invertibilityof
a subsystem, one uses Silverman’s structure algorithm [4],
[5]; this paper, however, uses the notations developed in a
terse version of the structure algorithm given in [1]. If a
subsystem is invertible, the structure algorithm leads to the
construction of an inverse subsystem that reconstructs the
original input using the state and the output values. For mode
identification in (1), we first develop a relationship between
the output and the state for each subsystem and then utilize it
to determine the active subsystem at each time instant. This
relationship is characterized by the range theorem [5] and the
characterization uses certain operatorsLp and Wp, which
are obtained by applying the structure algorithm to each
subsystemΓp. The formula forLp in terms of system data
appears in [1], whereas the expression forWp is developed



in the Appendix. The exact expressions of these operators
are not required in the understanding of this paper, and we
refer the reader to [1] and the Appendix if such formulae
are sought. The following example helps illustrate how these
operators show up in computations:

Example 1:Consider a non-switched linear SISO system

Γ1 :
{

ẋ =
[−1 1

1 1

]
x+ [ 0.50 ]u, andy = [0 0.5]x.

Clearly,y andẏ are independent of the input, that is,
( y
ẏ

)
=

[ 0 0.5
0.5 0.5 ]x, or equivalently[I2×2 02×1]Y = [ 0 0.5

0.5 0.5 ]x, where
Y := col(y, ẏ, ÿ). So, we letW1 := [I2×2 02×1], andL1 :=
[ 0 0.5
0.5 0.5 ] and the relationW1Y (t) = L1x(t) holds ∀ t ≥
t0. Computing the expression for̈y, solving it for u, and
plugging the resultant back into the original dynamics yields
the corresponding inverse system,

Γ−1
1 :

{
˙̂x =

[−1 −1
1 1

]
x̂+ [ 20 ]

ˆ̈y;u = [0 − 4]x̂+ 4ˆ̈y. ⊳

For the sake of clear presentation, we introduce the fol-
lowing assumptions to state a simplified version of the range
theorem in Proposition 1 which characterizes the relationship
between the output and the state for a subsystemΓp.

Assumption 1: Throughout the paper, it is assumed that:
1) each subsystemΓp, p ∈ P , is invertible;
2) and the inputs are such that the output produced by

each subsystem isn-times differentiable (i.e.,Cn).
Proposition 1: Consider system (1) with initial statex0.

If Assumption 1 holds andy ∈ Cn([t0, t1),R
m), then there

exists an inputu such thaty = ΓO
p,x0

(u) if and only if
WpY ∈ C0([t0, t1),R

m) andWpY (t0) = Lpx0. ⊳

It is also noted from the structure algorithm that regardless
of what the input is, the output and the state are related by
the equationWpY (t) = Lpx(t), for all t ≥ t0 whenΓp is
active, and not just at the initial timet0. When dealing with
the switched systems, this is the fundamental idea employed
in mode detection and it also leads to the following concept
of switch-singular pairs [1].

Definition 2: Let x0 ∈ R
n andy ∈ Cn be anRm-valued

function on some time interval. The pair (x0, y) is a switch-
singular pair of the two subsystemsΓp, Γq if there exist
u1, u2 such thatΓO

p,x0
(u1[t0,t0+ǫ)

) = ΓO
q,x0

(u2[t0,t0+ǫ)
) =

y[t0,t0+ǫ), for someǫ > 0. ⊳

Essentially, if a state and an output (the time domain can be
arbitrary) form a switch-singular pair, then there exist inputs
for the two subsystems to produce that same output starting
from that same initial state. Under Assumption 1, it follows
from Definition 2 and Proposition 1 that(x0, y) is a switch-
singular pair forΓp,Γq if, and only if,

WpqY (t0) = Lpqx0, (2)

where Wpq := col(Wp,Wq), Lpq := col(Lp, Lq), x0 =
x(t0), andt0 is the initial time ofy. This condition for ver-
ifying the existence of switch-singular pairs can be checked
easily for a certain class of outputs using a rank condition.
According to [1, Lemma 3], ify is such thatWpqY (t) 6= 0,
for any t ≥ t0, then there exist no switch-singular pairs
(x0, y) between subsystemsΓp andΓq if, and only if,

rank [Lpq Wpq] = rankLpq + rankWpq . (3)

If Lpq andWpq denote the range spaces of the matricesLpq

and Wpq respectively, then geometrically, condition (3) is
equivalent to saying thatLpq ∩Wpq = {0}.

Next, letY be the set of piecewise smooth functions such
that if y ∈ Y, thenWpqY (t0) 6= 0 for all p 6= q, p, q ∈ P . It
has been shown in [1] that, for the output setY , a switched
system is invertible if and only if all subsystems are invertible
and subsystem dynamics are such that there exist no switch-
singular pairs among them. So, if Assumption 1 and (3) hold
then the switched system is invertible for the output setY .

In case a switched system is invertible, a switched inverse
system can be constructed to recover the input and the
switching signalσ from the given output and the initial
state. Towards that end, define theindex-inversion function
Σ

−1
: Rn × Y → P as:

Σ
−1

(x0, y) = {p : WpY (t0) = Lpx0}. (4)

Having determined the mode using (4), the corresponding
inverse system is activated to recover the input. Thus, an
inverse switched systemΓ−1

σ , with initial condition x0, is
implemented as follows:

σ(t) = Σ
−1

(x(t), y[t,t+ǫ)), (5a)

ẋ = Âσ(t)x+ B̂σ(t)Y, (5b)

u = Ĉσ(t)x+ D̂σ(t)Y (5c)

where Âσ := (A − BD
−1

α Cα)σ, B̂σ := (BD
−1

α V )σ,
Ĉσ := (−D

−1

α Cα)σ, and D̂σ := (D
−1

α V )σ. The matrices
Cα, Dα, V are defined for each subsystem through the
structure algorithm; formulae forCα, Dα are given in [1],
and the expression forV is developed in the Appendix.

III. I NVERSION UNDERUNCERTAINTIES

In the problem setup, it is assumed thatx0 and Y are
unknown, and we work with their respective estimatesx̂0 ∈
Rt0 , and Ŷ . So, instead of (5), the following equations are
utilized, with the initial condition̂x0, to get an estimate of the
actual state trajectory and the input appearing in (1), which
are now denoted bŷx and û respectively.

˙̂x = Âσx̂+ B̂σŶ , (6a)

û = Ĉσx̂+ D̂σŶ . (6b)

In (6), the switching signalσ remains unknown and the
remainder of this section concentrates on recovering the
switching signal usingRt0 and Ŷ . In §III-A, we use the
concept of reachable sets to computeσ; in §III-B, simpler
computations are devised to reconstructσ for the caseRt0 =
Bδ0(x̂0) and some knownδ0; and§III-C quantifies the error
between the actual inputu and its estimatêu.

A. Switching Signal Recovery using Reachable Sets

In the presence of uncertainties in the output and the state
values, the most natural extension of the mode identification
method described in the previous section is to compute the
set that containsx(t) and look at the intersection of the
image of this set under the mapLp with Wp(B̺(Ŷ (t))).



The subsystemΓp is declared active if the corresponding
intersection is non-empty. In the sequel, we formalize this
argument to show how the switching signal can be recovered
using that approach.

1) Reachable Sets:It follows from Fillipov’s theorem for
linear time varying systems [6] that if the initial condition
lies in a compact and convex set, then the reachable set
Rt1 := {x(t1) : x(t) solves (6a) witht ∈ [t0, t1], x(t0) ∈
Rt0} is compact, convex and varies continuously witht1.
Several methods for computing the setRt are available in
literature [7] and we assume thatRt can be computed. Note
that the operatorLp obtained from the structure algorithm is
linear and continuous. SinceRt is a compact and convex set
at each timet, the setLp(Rt) is also compact and convex.

2) Index Matching Function̂Σ−1: To compute the value
of the switching signalσ(t) using the index-inversion func-
tion (4), we find p for which WpY (t) = Lpx(t), or
alternatively|WpY (t) − Lpx(t)| = 0. SinceY (t) andx(t)
are no longer available, this condition cannot be verified
anymore. A new function, that recovers the value of the
switching signal is computed using the following proposition.

Proposition 3: For system (1), if there exists an inputu
such thatΓO

p,x0
(u) = y over an interval[t0, t1), and|Y (t)−

Ŷ (t)| ≤ ̺, then |Lpx(t) − WpŶ (t)| ≤ ‖Wp‖̺, for each
t ∈ [t0, t1).

Proof: SinceΓO
p,x0

(u) = y over the interval[t0, t1) for
some inputu, it follows from Proposition 1 thatLpx(t) =

WpY (t) for eacht ∈ [t0, t1). So that,|Lpx(t)−WpŶ (t)| =
|��

��Lpx(t) −�
�
��WpY (t) + WpY (t) − WpŶ (t)| = |Wp(Y (t) −

Ŷ (t))| ≤ ‖Wp‖ |Y (t)− Ŷ (t)| ≤ ‖Wp‖̺.
Note that, rather than the exact value ofx(t), it is only

known thatx(t) ∈ Rt. If Zp(t) := Lp(Rt), we define the
distance between the setZp(t) and the vectorWpŶ (t) to be:

dp(t) := min
z∈Zp(t)

|WpŶ (t)− z|· (7)

The setZp(t) is compact, convex and containsLpx(t), so
there exists a unique solution to this optimization problem
according to theprojection theorem[8]. Use of Proposition 3
guarantees that ifΓp produces the output at timet, then
the distance between the setZp(t) and WpŶ (t) is less
than ‖Wp‖̺. This motivates us to introduce the following
definition of index-matching function:

Σ̂−1(Rt, ŷ[t,t+ǫ)) := {p | dp(t) ≤ ‖Wp‖̺}. (8)

Next, in Proposition 4, it is shown that the distance func-
tion (7) is continuous locally in time and that the value of
the index-matching function (8) coincides with the original
switching signal. The proof uses continuity of reachable sets
and has been omitted due to space constraints.

Proposition 4: Consider the switched system (1) with
initial condition contained in a compact, convex setRt0 , and
measured output̂y over some time interval. Assume that:

1) there is a uniquep ∈ P such thatdp(t0) ≤ ‖Wp‖̺,
2) for all q 6= p, dq(t0) > 3‖Wq‖ ̺,

then there existsρ > 0 such thatσ(t) = Σ̂−1(Rt, ŷ[t,t+ǫ))

for all t ∈ [t0, t0 + ρ), whereΣ̂−1 is defined in (8). ⊳

Proposition 4 also suggests that there exists a lower bound
on the time interval for which the switching signal can
be recovered. If the conditions of this proposition are also
satisfied at timet0 + ρ, then there existsρ > 0 such
that the switching signal can be recovered over the interval
[t0, t0 + ρ + ρ). Thus, larger intervals can be obtained by
applying Proposition 4 inductively. The switching signalσ(·)
is recovered by lettingσ(t) = Σ̂−1(Rt, ŷ[t,t+ǫ)) and this
definition leads to the recovery of switching signal over
an interval [t0, T ), where T := min{t ≥ t0 | ∃ p, q ∈
P s.t. dp(t) ≤ ‖Wp‖̺ and dq(t) ≤ ‖Wq‖̺}. We now
illustrate this result with an example.

Example 2:Consider a switched system with two modes,
i.e., P = {1, 2}; where subsystemΓ1 and its inverse are
defined in Example 1,Γ2 and its inverse are given below:

Γ2

{
ẋ =

[

−1 1
1 −1

2

]

x+

[

2
0

]

u

y =
[

0 1
]

x

; Γ−1
2

{
˙̂x =

[ 1
2

−1
4

1 −1
2

]

x̂+

[

1
0

]

ˆ̈y

û =
[

3
4

−5
8

]

x̂+ 1
2
ˆ̈y

For this example,W1 = W2 = [I2×2 02×1]; L1 = [ 0 0.5
0.5 0.5 ]

andL2 :=
[
0 1
1 −0.5

]
. Γ1,Γ2 are invertible and the conditions

in Proposition 4 hold for̺ = 0.25 and R0 = {x : (x −
10)⊤(x − 10) = 1)} for an arbitrarily chosen outputy.
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Fig. 1. The distance functionsd1(t), d2(t) and the correspondingσ(t).
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Fig. 2. The setsZ1(t), Z2(t), and the output trajectory in(y, ẏ) space.

Fig. 1 shows the corresponding distance functions; and the
switching signal obtained by comparing these two distance
functions. It can be seen thatσ(t) = p, p = 1, 2, whendp(t)
is near zero. Fig. 2 gives an insight into the values of these
distance functions by plotting the setsZp(t) := LpRt, p =
1, 2, and the output trajectory in(y, ẏ)-plane. ⊳

B. Approximate Reachable Sets

In the previous section, we recovered the switching signal
using the index-matching function̂Σ−1, whose arguments
were the measured output and the reachable set at each



point in time, and furthermore the evaluation of this function
involved the solution to an optimization problem at each
instant in time. Clearly, this approach is computationally
very expensive. In this section, we letRt0 = Bδ0(x̂0) and
derive an alternative simpler formula for the recovery of
switching signal with the help of certain approximations,
which relieves the computational burden enormously. The
drawback, however, is that the interval over which the
switching signal is recovered is smaller. We start off with
the definition of(R, ̺) switch-singular pair:

Definition 5: Let x0 = x(t0) be contained in a compact
set R ⊂ R

n, and y be anRm-valued function over some
time interval withY0 := Y (t0). We say that(x0, y) forms
an (R, ̺) switch-singular pair for subsystemsΓp,Γq if for
the given̺ > 0, there existx1, x2 ∈ R andY1, Y2 ∈ B̺(Y0)
such thatLpx1 = WpY1 andLqx2 = WqY2. ⊳

In the sequel, we will also refer to(R, ̺) switch-singular
pair as theweak switch-singular pairwhenR and ̺ need
not be specified.

1) Gap between Subspaces:To study the existence of
weak switch-singular pairs, we introduce the notion of min-
imal gap between the subspaces.

Definition 6: LetM, N be two subspaces of an Euclidean
space. Theminimal gapα(M,N ) is defined as:

α(M,N ) = α(N ,M) := min{α̂(M,N ), α̂(N ,M)}

whereα̂(M,N ) := min|x|=1,x∈M d(x,N ). ⊳

The notion of minimum gap between subspaces has ap-
peared in [9], [10] for spaces other than Euclidean spaces.

Proposition 7 (Computation of̂α(M,N )): Let ΠN de-
note the orthogonal projection onN and matrixM be such
that its columns are orthonormal vectors that spanM, then

α̂(M,N )2 = min
|x|=1,x∈M

d2(x,N ) = 1− ‖ΠNM‖2 (9)

Proof: Using the projection theorem [8], the square of the
distance between a pointx and a subspaceN is given by
|x|2 − |ΠNx|2. The desired expression can now be derived:

min
|x|=1,x∈M

d2(x,N ) = min
|x|=1,x∈M

{
|x|2 − |ΠNx|2

}

= 1− max
|x|=1,x∈M

|ΠNx|2 = 1− max
|Mz|=1

|ΠNMz|2

= 1−max
|z|=1

|ΠNMz|2 = 1− ‖ΠNM‖2.

Note thatα(M,N ) = 0 if and only if M∩N 6= {0}, and
α(M,N ) = 1 if and only if M andN are mutually orthog-
onal to each other. Roughly speaking,α(M,N ) measures
the sine of minimum angle betweenM andN .

Corollary 8: SupposeM, N are two subspaces such that
M∩N = {0}. Givenx ∈ M, z ∈ N , |x − z| < ǫ only if
|x| < ǫ

α(M,N ) .
Proof: For x 6= 0, x ∈ M can be written asx = cy

wherey ∈ M has unit norm, andc ∈ R. Note that|x| = |c|.
Using the reverse triangle inequality, we obtain:

ǫ > |x− z| ≥ ||x| − |z|| ≥ |c|
∣∣∣|y| −

∣∣∣z
c

∣∣∣
∣∣∣ ≥ |c|d(y,N )

≥ |c| inf
|y|=1,y∈M

d(y,N ) = |c|α̂(M,N ) ≥ |c|α(M,N ),

whence the desired result follows.

2) Necessary Conditions for Weak Switch-Singular Pairs:
If for a given x̂0 and ŷ, there existx0 ∈ Bδ0(x̂0) andY0 ∈
B̺(Ŷ0), Ŷ0 := Ŷ (t0), such thatLpx0 = WpY0, i.e., Γp

produces the outputy with initial conditionx0, then

|Lpx̂0 −WpŶ0| ≤ |Lpx̂0 − Lpx0|+
(
(
(
(
(
((

|Lpx0 −WpY0|

+ |WpY0 −WpŶ0| ≤ ‖Lp‖δ0 + ‖Wp‖̺.

In particular, if(x̂0, ŷ) forms an(Bδ0(x̂0), ̺) switch-singular
pair then,

|Lpqx̂0 −WpqŶ0| ≤ |Lpx̂0 −WpŶ0|+ |Lqx̂0 −WqŶ0|

≤ (‖Lp‖+ ‖Lq‖)δ0 + (‖Wp‖+ ‖Wq‖)̺

=: κ0
pq.

This leads to the following necessary conditions for weak
switch-singular pairs.

Proposition 9: If Lpq ∩ Wpq = {0}, then (x̂0, ŷ) forms
a (Bδ0(x̂0), ̺) switch-singular pair for subsystemsΓp and

Γq, p, q ∈ P only if |Lpqx̂0| ≤
κ0
pq

α(Lpq,Wpq)
and |Wpq Ŷ0| ≤

κ0
pq

α(Lpq,Wpq)
.

Proof: This is a straightforward consequence of Corol-
lary 8 applied withM := Lpq andN := Wpq.
The above proposition, thus, gives two necessary conditions
under which subsystemsΓp, Γq, p, q ∈ P , may form weak
switch-singular pairs.

Example 3:Consider the second order SISO switched
system given in Example 2. The columns ofW12 :=
col(W1,W2) andL12 := col(L1, L2) span two dimensional
subspaces ofR4 and it can be verified that their intersection
is the null vector. In terms of orthonormal basis, we can write
W12 = span

{
col( 1√

2
, 0, 1√

2
, 0), col(0, 1√

2
, 0, 1√

2
)
}
;L12 =

span
{
col( 1√

5
, 0, 2√

5
, 0), col( 1√

7
, 1√

7
, 2√

7
, −1√

7
)
}
. Since both

W12 andL12 comprise linearly independent columns, they
are left-invertible and the orthogonal projection can be writ-
ten in terms of the left-pseudo inverse (denoted by†), that
is, ΠL12 = L12L

†
12 = L12(L

⊤
12L12)

−1L⊤
12, and ΠW12 =

W12W
†
12 = W12(W

⊤
12W12)

−1W⊤
12. From these matrices we

can now compute the gap betweenL12 andW12 using (9):

α(W12,L12) = α̂(W12,L12) = α̂(L12,W12) = 0.1368.

With ̺ = δ0 = 0.25, we getκ0
12 = 1.0224. Considering the

data of Example 1 at initial timet0 with x̂0 = col(10, 10), we

have|Wpq Ŷ0| = 11.45 >
κ0
pq

α(Lpq,Wpq)
= 7.02, and|Lpqx̂0| =

11.18. Both necessary conditions are violated, so there are
no weak switch-singular pairs at timet0. ⊳

3) Spherical Approximation and Elimination of Switch-
Singular Pairs over an Interval:Proposition 9 provides nec-
essary conditions for the existence of weak switch-singular
pairs at time instantt0 when the uncertainty in the initial
state is given by a ball of radiusδ0. Our goal now is to
determine whether, under certain conditions, it is possible
to rule out the existence of weak switch-singular pairs over
some time interval. Note that, even though the output is
changing with time, there is a constant upper bound on the
uncertainties in the output̺, whereas the uncertainty in the



state variable, denoted byδ(t), is a function of time. The
value ofδ(t) is basically obtained from the norm of the error
vector x̃ = x− x̂, the dynamics for which are obtained as a
difference of (5b) and (6a),

˙̃x(t) = Âσx̃(t) + B̂σw(t), (10)

wherew(t) := Y (t) − Ŷ (t), and |w(t)| ≤ ̺ for eacht ≥
t0. With |x̃(t0)| ≤ δ0 := δ(t0), an upper bound onδ(t) is
obtained by solving (10) analytically for̃x. To guarantee that
the statêx(t) does not form(Bδ(t)(x̂(t)), ̺) switch-singular
pairs with the output̂y(t), one must verify that, at timet,
the following inequality holds:

|Lpqx̂(t)−Wpq Ŷ (t)| ≥ κt
pq (11)

where κt
pq := (‖Lp‖ + ‖Lq‖)δ(t) + (‖Wp‖ + ‖Wq‖)̺.

The lower bound ont, for which (11) holds, is given in
Theorem 10 as it specifies the length of a time interval
during which the output and the state do not form the
weak switch-singular pairs. Avoiding the details due to space
constraints, we introduce some notation to state the result
only. For eachp ∈ P , there existsλp 6= 0, ap ∈ R such
that ‖ exp (Âpt)‖ ≤ e(ap+λpt). Define λ := maxp∈P λp,
a := maxp∈P ap, b := maxp∈P ‖B̂p‖, and

Ω := max
p,q∈P

α(Lpq ,Wpq)β − (‖Wp‖+ ‖Wq‖)̺

(‖Lp‖+ ‖Lq‖)
. (12)

Theorem 10:Consider switched system (1), and let
|Ŷ (t)− Y (t)| ≤ ̺ for eacht ≥ t0. Moreover, assume that

1) condition (3) holds (i.e.,Lpq∩Wpq = {0}), ∀ p, q ∈ P ,
2) mint≥t0 |WpŶ (t)| ≥ β > ̺ for eachp ∈ P .

If δ0 < Ω
e(a+ka) , andx(t0) ∈ Bδ0(x̂(t0)), then(x̂(t), ŷ(t)) do

not form a(Rt, ̺) switch-singular pair for anyt ∈ [t0, T ),
where

T < t0 +
1

λ
log

(
λΩ + e(a+ka)b̺

λδ0 + b̺

)
−

(k + 1)a

λ
, (13)

andk is the number of switches over the interval[t0, T ). ⊳
Based on the result of Theorem 10, one can formulate an

alternativeindex-matching functioñΣ−1 as follows:

Σ̃−1(x̂(t), y[t,t+ǫ)) = {p : |Lpx̂(t)−WpŶ (t)| ≤ ‖Lp‖δ(t)+‖Wp‖̺}.
(14)

If we compare the two functionŝΣ−1 in (8) andΣ̃−1 in (14),
then it is observed that the mode detection throughΣ̂−1

requires the computation of minimum distance between the
reachable sets and the measured output at each instant in
time whereas the functioñΣ−1 only requires coarse spherical
approximation of the reachable set which can be obtained
analytically. The interval over which the switching signalcan
be constructed is, in general, larger withΣ̂−1 than withΣ̃−1.
To obtain larger time interval for reconstruction of switching
signal with light computation, one may combine the index-
matching functionΣ̃−1 in (14) with the computation of
tightly approximated reachable sets. This can be done by
resetting the value ofδ(t), at regular intervals, to a number
that tightly approximates the radius of reachable sets.

C. Input Recovery

The input reconstructed using the measured output is given
by (6b). Using the exact expression foru in (5c), the input
estimation error,̃u := u− û, is given by

ũ(t) = (−D
−1

α Cα)σ(t)x̃(t) + (D
−1

α V )σ(t)(Ŷ (t)− Y (t)).

Using the notation,dc := maxp∈P ‖(D
−1

α Cα)p‖ anddv :=

maxp∈P ‖(D
−1

α V )p‖, the maximal error in the reconstruc-
tion of u at any timet is given by

|ũ(t)| ≤ dcδ(t) + dv̺. (15)

IV. M INIMUM PHASE SYSTEMS

In the previous section, the results were stated for a general
class of linear systems without any stability assumptions.In
classical linear systems theory, the stability of the inverse
system is closely related to the minimum phase property of
the system. This idea is now employed to derive conditions
for recovering the switching signal over the interval[t0,∞).

For each subsystemΓp, the matrixLp has rp rows and
rankrp. So, there exists an(n− rp)×n matrix T p such that

Tp :=
[
Lp

Tp

]
andLpT

−1
p = [Irp×rp 0rp×(n−rp)]. The matrix

Tp defines a coordinate transformation for the subsystem
Γp and the transformed matrices are:A∗

p := TpApT
−1
p ,

B∗
p := TpBp, C∗

p := CpT
−1
p , D∗

p := Dp, and L∗
p =

[Irp×rp 0rp×(n−rp)]. Apply the structure algorithm in the
new coordinates, and letFp be the matrix formed from the
last n − rp rows and columns of(A∗

p − B∗
pD

∗−1

αp
C

∗
αp
), let

G1
p be the matrix formed from the firstrp columns and the

last (n − rp) rows of (A∗
p − B∗

pD
∗−1

αp
C

∗
αp
), and letG2

p be

the matrix formed by the last(n− rp) rows ofB∗
pD

∗−1

αp
. If

zp := Tpx denotes the new state variable, then

z1p := [(zp)1, · · · , (zp)rp ]
⊤ = [ỹ⊤0 , · · · , ỹ

⊤
αp−1]

and for the remaining(n−rp) state variables denoted byz2p,
the dynamical equation is:

ż2p = Fpz
2
p +G1

pz
1
p +G2

pyαp
.

Let ẑp be an estimate ofzp, and letz̃p(t) := ẑp(t) − zp(t)
denote the error between the actual state trajectory and the
simulated one, then|z̃1p| ≤ ̺ and usingyαp

= VpY ,

˙̃z2p = Fpz̃
2
p +Gpw,

whereGp = [G1
p G2

pVp] and |w| ≤ ̺.
Definition 11 (Minimum phase system):The subsystem

Γp is called minimum-phase ifFp is Hurwitz. ⊳

Under minimum-phase assumption on each subsystem, we
first show that there is a uniform bound on maximal uncer-
tainty in the reachable sets at all times under the dwell-time
assumption. To see this, note that ifΓp is minimum-phase,
then there exists an(n− rp)× (n− rp) matrix Pp such that
Vp : Rrp → R defined asVp(z̃

2
p) = z̃2⊤p Ppz̃

2
p is a Lyapunov

function for z̃2p and there exists a positive definite matrix

Qp such thatF⊤
p Pp + PpFp = −Qp. With Θp :=

2‖PpGp‖
λmin(Qp)

,
and ε > 0 small enough, the inequality|z̃2p| > Θp̺(1 + ε)



implies V̇p < −|z̃2p|λmin(Qp)Θp̺ε. Introducing some more

notation, defineP p :=

[
Irp 0
0 Pp

]
for eachp ∈ P ; also let

Θ := minp∈P Θp; δ̂ := min{̺,Θ̺(1 + ε)}, andδ := δ̂
‖T‖ ,

where‖T ‖ := maxp∈P ‖Tp‖. Let τd be defined as:

max
p,q∈P

(λ(Mqp)− 1)̺2 + ̺2(1 + ε)2(λ(Mqp)λ(Pp)Θ
2
p − λ(Pq)Θ

2
q)

Θ2
q̺

2(1 + ε)λmin(Qq)ε
,

(16)
whereMqp := H−1⊤

qp P qH
−1
qp , Hqp is an upper triangular

matrix satisfyingT⊤
qpP pTqp = H⊤

qpHqp, Tqp := TpT
−1
q ,

andλ(M) denotes the maximum eigenvalue of a matrixM .
The uniform bound for the state trajectories, under the slow-
switching assumption with dwell-timeτd, comes out to be:

∆ := max
p,q∈P

λmax(Mqp)

λmin(P q)
(̺2+λmax(Pp)Θ

2
p̺

2(1+ε)2). (17)

Proposition 12: Consider system (1) and assume thatΓp

is minimum phase for eachp ∈ P , and̺ > 0 is such that
|Y (t) − Ŷ (t)| ≤ ̺ for eacht. Then x(t) ∈ B∆(x̂(t)) for
all t ≥ t0, provided the initial statex(t0) ∈ Bδ(x̂0) and
ti+1 − ti ≥ τd, for every switching instantti. ⊳

The result conceptually relates to the incremental input-
to-state stability property of the system (10), which has
been studied in [12] for homogenous systems. But here,
the formulation takes into account the disturbances due to
measurement uncertainties and the bounds on input-to-state
gains are also computed. The proof uses the level sets of
Lyapunov functions to derive bounds on system trajectories,
similar to [11, Chapter 5]; and in the process, following
lemma is employed to make the bounds tighter.

Lemma 13:Given two positive definite functionsV1 =
x⊤P1x, and V2 = x⊤P2x with P1 and P2 symmetric
positive definite matrices, the minimal level set ofV2 that
contains the set{x |V1(x) ≤ c} is given by {x |V2(x) ≤
λmax(H

−1⊤P2H
−1)c}, where the matrixH is an upper

triangular matrix that satisfiesP1 = H⊤H .
Proof: The matrixP1 admits Cholesky decomposition

given byP1 = H⊤H , whereH is an upper triangular matrix.
It follows thatH−1⊤P1H

−1 = I. Let z = Hx; in the new
coordinates defined byz, the level sets ofV1 are spheres of
dimensionn − 1, with radiusc. Consider the regionR :=
{z | z⊤H−1⊤P2H

−1z ≤ λmax(H
−1⊤P2H

−1)c}. If |z|2 ≤
c, thenz ∈ R. Moreover, if z is in the span of eigenvector
corresponding toλmax(H

−1⊤P2H
−1) with |z|2 = c, then

z is also on the boundary ofR implying that the bounding
region R wraps the level sets ofV1 tightly. Applying the
transformation,x = H−1z gives the desired result.

Using the bound in Proposition 12, a result parallel to
Theorem 10 is now stated.

Theorem 14:For system (1), if each subsystemΓp is
minimum phase and moreover,

1) condition (3) holds (i.e.,Lpq∩Wpq = {0}), ∀ p, q ∈ P ,
2) the measured output ŷ is such that

mint≥t0 |WpŶ (t)| ≥ β > ̺ for eachp ∈ P ,
3) the inequality∆ < Ω holds, where∆ is given in (17),

andΩ in (12),

4) the dwell-time ofσ is given byτd in (16).

Thenσ(t) = {p : |Lpx̂(t) −WpŶ (t)| ≤ ‖Lp‖∆+ ‖Wp‖̺}
for all t ≥ t0. Moreover,‖ũ‖∞ = dc∆+ dv̺. ⊳

The proof uses the bound in Proposition 12 thatx(t) ∈
B∆(x̂(t)). Condition 3 of the theorem statement implies
that the inequality (11) is violated for all times and this in
turn implies that(x̂(t), ŷ(t)) does not form a(B∆(x̂(t)), ̺)
switch-singular pair for anyt ≥ t0. Thus, the index-matching
function of (14) is well-defined and it reconstructs the
original switching signal. The uniform upper bound onũ
is obtained from (15).

APPENDIX

In the construction of inverse systems via the structure
algorithm given in [1], there are two differential operators
acting on the outputy, which are denoted byNα and N.
Below we seek a simpler representation so thatNy and
Nαy can be written as a matrix (with real coefficients)
times a vector (comprising of output and its derivatives),
i.e., Ny = WY and Nαy = V Y , for some matrices
W and V . Following the notation of [1, Page 952-953],
let G̃i := col

(
S̃0K−1,i, S̃1K0,i, · · · , S̃β−1Kβ−2,i

)
, Gj :=

SαKα−1,j, 0 ≤ i ≤ β − 1, 0 ≤ j ≤ α, K−1,0 = I, and
Kj,k = 0 ∀k ≥ j + 2, ∀ j. We can then write

Ny =: G̃0y +
d

dt

(
G̃1y + · · ·+

d

dt

(
G̃β−2y +

d

dt
G̃β−1y

))
,

Nαy =: G0y +
d

dt

(
G1y + · · ·+

d

dt

(
Gα−1y +

d

dt
Gαy

))
.

We now define the desired matricesW and V as,
W := [ G̃0 · · · G̃β−1 G̃β · · · G̃n ] and V :=

[ G0 · · · Gα Gα+1 · · · Gn ], where G̃i = 0 for
β ≤ i ≤ n andGi = 0 for α+ 1 ≤ i ≤ n.
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