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Abstract— This article addresses the invertibility problem for
switched nonlinear systems affine in controls. The problem is
concerned with finding the input and switching signal uniquely
from given output and initial state. We extend the concept of
switch-singular pairs, introduced recently, to nonlinear systems
and develop a formula for checking if given state and output
form a switch-singular pair. We give a necessary and sufficient
condition for a switched system to be invertible, which says
that the subsystems should be invertible and there should be no
switch-singular pairs. When all the subsystems are invertible,
we demonstrate output tracking by finding switching signals
and inputs that generate a given output in a finite interval
when there is a finite number of such switching signals and
inputs. Detailed examples are included to illustrate these newly
developed concepts.

I. INTRODUCTION

Switched systems consist of a family of dynamical sub-
systems together with a switching signal that determines the
active subsystem at each time instant. These systems have
been a focus of ongoing research and several results related
to stability, controllability, observability, and input-to-state
stability of such systems have been published; see [1] for
references. More recently, Vu and Liberzon introduced the
problem of invertibility of switched linear systems in [2]. In
this paper, we extend their methodology to study the prob-
lem of invertibility of continuous-time switched nonlinear
systems, which concerns with the following question: What
is the condition on the subsystems of a switched system so
that, given an initial state x0 and the corresponding output y
generated with some switching signal σ and input u, we can
recover the switching signal σ and the input u uniquely? The
problem statement is analogous to the classical invertibility
problem for non-switched systems. In fact, for every control
system with an output, we have an input-output map and the
question of left (resp. right) invertibility is, roughly speaking,
that of the injectivity (surjectivity) of this map.

System invertibility problems are of great importance from
theoretical and practical viewpoint and have been studied
extensively for fifty years, after being pioneered by Brockett-
Mesarovic [3]. The systematic study of invertibility for non-
switched nonlinear systems began with Hirschorn, who first
studied the single-input single-output (SISO) case [4], and
then generalized Silverman’s structure algorithm to multiple-
input multiple-output (MIMO) nonlinear systems [5]. Singh
[6] then modified the algorithm to cover a larger class of
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systems. Isidori and Moog [7] used this algorithm to calcu-
late zero-output constrained dynamics and reduced inverse
system dynamics. The algorithm is also closely related to
the dynamic extension algorithm used to solve the dynamic
state feedback input-output decoupling problem [8, Sections
8.2 and 11.3]. A higher-level interpretation given by a linear-
algebraic framework, which also establishes links between
these algorithms and the geometric approach, is presented by
Di Benedetto et al. in [9]. We also recommend [10, Chapter
5] for a useful survey on various invertibility techniques.

The problem of invertibility for switched linear systems
was introduced very recently in [2] where the authors used
Silverman’s structure algorithm to formulate conditions for
the invertibility of switched systems with continuous dynam-
ics. The problem of invertibility for discrete time switched
linear systems has been discussed in [11], [12] but here, the
authors assume that the switching sequence is known. In this
paper, we make no such assumption and adopt an approach
similar to [2]. We use Singh’s nonlinear structure algorithm
to study the invertibility problem for switched systems with
continuous-time nonlinear dynamical subsystems that are
affine in controls.1 Although the form of the main condition
(invertibility of subsystems plus no switch-singular pairs) is
essentially similar to [2], the technical details of checking the
conditions are different because we work with the nonlinear
structure algorithm.

Due to space constraints, certain details have been omitted;
see [14] for a complete version.

II. PRELIMINARIES

A. Nonlinear Non-switched Systems

The dynamics of a square nonlinear system affine in
controls are given by:

Γ :=
{

ẋ = f(x) + G(x)u = f(x) +
∑m

i=1 gi(x)ui,
y = h(x) (1)

where x ∈ M, an n-dimensional real connected smooth
manifold, for example Rn; and f , gi are smooth vector fields
on M, h : M → Rm is a smooth function.

We start off by reviewing classical definitions of invert-
ibility for such systems. For that, consider the input-output
map Hx0 : U → Y for some input function space U and
the corresponding output function space Y . Since nonlinear
systems exhibit finite blow-up times, some input signals may
not have a well defined image in the output space, over
the same length of interval, under this map. We don’t give

1A related problem is discussed in [13] but it doesn’t follow the same
theoretical approach we do, and instead uses a heuristic approach with the
purpose of studying a specific application.



a rigorous definition of Hx0 but use it, nevertheless, for
better illustration. It is assumed that the outputs exist on
the intervals considered. Denote by Γx0(u) the trajectory of
the corresponding system with the initial state x0 and the
input u, and the corresponding output by ΓO

x0
(u). In case of

non-switched systems, the following notion of invertibility2

was introduced in [5].
Definition 1: The system (1) is invertible at a point x0 :=

x(t0) ∈ M if ΓO
x0

(u1[t0,T ]) = ΓO
x0

(u2[t0,T ]) implies that
∃ ε > 0 such that u1[t0,t0+ε) = u2[t0,t0+ε). The system is
strongly invertible at a point x0 if it is invertible for each
x ∈ N(x0), where N is some open neighborhood of x0.
The system is strongly invertible if there exists an open and
dense submanifold Mα (called inverse submanifold) such
that ∀x0 ∈ Mα, the system is strongly invertible at x0. C

In the most general construction of inverse systems as the
one given by Singh [6], we seek invertibility on an open
and dense subset of output space, Yα, such that the system
is strongly invertible for y ∈ Yα. Its complement, Ys :=
Y\Yα, consists of singular outputs for which the system is
not invertible. All these notions will be developed in Section
IV. Here, we just want to say that the system (1) is strongly
invertible when the domain of signals is restricted to [t0, T )
with T ∈ [t0, t̄) and t̄ := min{t > t0 : (x(t), y(t)) /∈ Mα ×
Yα}. We will generalize this notion of local invertibility to
the switched systems.

B. Switched Systems

A finite family of systems defined by (1) generates a
switched system and in this paper we will consider such
switched nonlinear systems, affine in controls, that have the
following structure:

Γσ :
{

ẋ = fσ(x) + Gσ(x)u = fσ(x) +
∑m

i=1(gi)σ(x)ui,
y = hσ(x)

(2)
where σ : [0,∞) → P is the switching signal that indicates
the active subsystem at every time, P is some finite index
set, and fp, Gp, hp, where p ∈ P , define the dynamics of
individual subsystems. The state space M is a connected real
smooth manifold of dimension n, for example Rn; fp, (gi)p

are real smooth vector fields on M, and hp : M → Rm

is a smooth function. A switching signal, as defined in
[1], is a piecewise constant and everywhere right-continuous
function that has a finite number of discontinuities τi, which
we call switching times, on every bounded time interval
and thus σ(t) = p ∈ P , ∀ t ∈ [τi, τi+1). We assume
that all the subsystems are equi-dimensional, they evolve in
the same state space M, and that there is no state jump
at switching times. For any initial state x0, a switching
signal σ, and a piecewise continuous input u on any time
domain, a solution of (2) over the same domain always
exists (in Carathéodory sense) and is unique, provided the
flow of the active subsystem is defined ∀ t ∈ [τi, τi+1). In
case of no switching this condition is equivalent to forward
completeness of the flow and we assume that each subsystem

2Throughout the paper invertibility refers to the left invertibility.

satisfies this condition. For p ∈ P , denote by Γp,x0(u) the
trajectory of the corresponding subsystem with the initial
state x0 and the input u, and the corresponding output
by ΓO

p,x0
(u). Since switching signals are right-continuous,

the outputs are also right-continuous and whenever we take
derivative of the output, we assume it is the right derivative.
We will use Fpc to denote the space of piecewise continuous
functions, and ⊕ for concatenation of signals.

In case of switched systems (2), the map Hx0 has an aug-
mented domain, that is, now we have a (switching signal ×
input)-output map Hx0 : S × U → Y , where S is a switching
signal set. Let us first extend the definition of invertibility of
non-switched systems to define the invertibility of the map
Hx0 for switched systems.

Definition 2: A switched system is invertible at a point x0

if Hx0(σ1[t0,T ], u1[t0,T ]) = Hx0(σ2[t0,T ], u2[t0,T ]) = y[t0,T ],
implies that ∃ ε > 0 such that σ1[t0,t0+ε) = σ2[t0,t0+ε) and
u1[t0,t0+ε) = u2[t0,t0+ε); that is, the pre-image of Hx0 is
unique on some interval for given x0 and y. A switched
system is strongly invertible at a point x0 if it is invertible
at each x ∈ N(x0), where N is some open neighborhood of
x0. A switched system is strongly invertible if there exists an
open and dense submanifold Mα of M such that ∀x0 ∈ Mα,
the system is strongly invertible at x0 for given y ∈ Y . C

The reason we have a different notion of invertibility is
because in switched systems, if a subsystem is invertible at
x0 for a given non-singular output y, then it is possible that
another subsystem might produce the same output starting
from the same initial condition. This means that the pre-
image of Hx0 at such (x0, y) is not unique and hence
the switched system is not invertible at x0 if such pairs
(x0, y) exist. We call all such pairs switch-singular pairs3.
The concept of switch-singular pairs for switched systems
basically refers to the ability of more than one subsystem to
produce a segment of the desired output starting from the
same initial condition. The formal definition is given below:

Definition 3: Let x0 ∈ M and y ∈ Y on some time
interval. The pair (x0, y) is a switch-singular pair of the
two subsystems Γp, Γq if there exist u1, u2 such that
ΓO

p,x0
(u1) = ΓO

q,x0
(u2) = y. C

The invertibility problem for switched nonlinear systems is
now formally defined as:

The invertibility problem: Consider a (switching signal ×
input)-output map Hx0 : S × U → Y for the switched system
(2). Find the largest possible set Y , an open dense set in
M and a condition on the subsystems such that for a given
output y ∈ Y over a finite time interval [t0, T ′], there exist
T ∈ (t0, T ′] and a unique (σ, u) over [t0, T ) having the
property that Hx0(σ[t0,T ), u[t0,T )) = y[t0,T ).

III. CHARACTERIZATION OF INVERTIBILITY

We now give conditions on the subsystem dynamics so
that the map Hx0 is injective for some sets S, U , and Y .
We do not explicitly specify what the input sets U and S

3This is similar to the concept of singular pairs conceived in [2]. We use
the term “switch-singular pair” to avoid conflict with the singularities of
individual nonlinear subsystems.



are but instead we specify the set Y and then U will be the
corresponding set which, together with S, generates Y .

For all p ∈ P , let Mα
p be the inverse submanifold of Γp,

Yp be the set of sufficiently smooth4 outputs that can be
generated by Γp, Ys

p be the set of singular outputs of Γp, and
Yα

p be the set of outputs on which Γp is strongly invertible.
Define Ys := ∪p∈PYs

p as the collection of all singular
outputs and let Yall be the set of outputs generated by all
the possible concatenations of all elements of Yp, ∀p ∈ P .
Let Yα := Yall\Ys; we consider outputs y ∈ Yα over a
finite interval [t0, T ′] and seek invertibility on a subinterval
[t0, T ) ⊂ [t0, T ′] such that (σ[t0, T ), u[t0, T )) is a unique
preimage of y[t0, T ). The first main result is about strong
invertibility at some x0 ∈ M.

Theorem 1: Consider the switched system (2) and the
output set Yα. The switched system is strongly invertible
at x0 ∈ M for given y ∈ Yα if and only if there exists a
neighborhood N(x0) such that each subsystem is invertible
at every x ∈ N(x0), and for all x ∈ N(x0), y ∈ Yα, the
pairs (x, y) are not switch-singular pairs of Γp, Γq for all
p 6= q, and p, q ∈ P .

Proof. Necessity: Suppose that a subsystem Γp, p ∈ P
is not invertible at some x in arbitrary N(x0), then there
exist y ∈ Yα ∩ Yα

p , and inputs u1 6= u2 over time interval
[t0, t0 + ε) ⊂ [t0, T ′], for some ε > 0 such that ΓO

p,x(u1) =
ΓO

p,x(u2) = y[t0,t0+ε). This implies that Hx(σp, u1) =
Hx(σp, u2) = y, and the map Hx is not injective for given
y. Hence, the switched system is not invertible at x. Since
there exists such x in every neighborhood of x0, it follows
that the switched system is not strongly invertible at x0.

For necessity of the second condition, suppose that ∃x ∈
N(x0), y ∈ Yα ∩ C∞ such that (x, y) is a switch-singular
pair of Γp, Γq, p 6= q. This means that both subsystems,
even though invertible at x, can produce this output over the
interval [t0, t0 +ε) ⊂ [t0, T ′], for some ε > 0. Consequently,
∃ u1, u2 (possibly same) on the corresponding interval
such that ΓO

p,x(u1) = ΓO
q,x(u2) = y. Hence, we have

Hx(σp, u1) = Hx(σq, u2) = y, that is the preimage of y
is not unique as σp 6= σq. This implies that the switched
system is not invertible at x for given y ∈ Yα. Since there
exists such x in every neighborhood of x0, it follows that
the switched system is not strongly invertible at x0.

Sufficiency: Suppose that for given x0 ∈ M, there exist
some inputs u1, u2 and switching signals σ1, σ2 such that
Hx0(σ1, u1) = Hx0(σ2, u2) = y ∈ Yα over [t0, T ′].
Initially, we have σ1(t0) = σ2(t0) = p because (x0, y) is
not a switch-singular pair. Since y ∈ Yα

p , and Γp is invertible
at every x ∈ N(x0), ∃ ε1 > 0 such that u1[t0,t0+ε1) =
u2[t0,t0+ε1) = Γ−1,O

p,x0
(y[t0,t0+ε1)), the output of the inverse

subsystem. As there are no switch-singular pairs in N(x0),
∃ ε2 > 0 such that σ1[t0,t0+ε2) = σ2[t0,t0+ε2). Let ε =
min{ε1, ε2}, then it follows from Definition 2 that the
switched system is invertible at every x ∈ N(x0) and hence
is strongly invertible at x0. �

Based on the result of Theorem 1, the conditions for

4The required differentiability assumptions are discussed in Section IV.

strong invertibility of switched systems can be developed.
Let Mα :=

⋂
p∈P Mα

p , then Mα is an open and dense subset
of M because it is a finite intersection of open and dense
subsets. Since, every subsystem is strongly invertible on Mα,
we have the following result.

Corollary 1: The switched system (2) is strongly invertible
at every x0 ∈ Mα and for y ∈ Yα if and only if Γp,
∀ p ∈ P , is strongly invertible at every x0 ∈ Mα

p and the
subsystem dynamics are such that the pairs (x0, y) are not
switch-singular pairs of Γp, Γq for all p 6= q, p, q ∈ P ,
∀x0 ∈ Mα, y ∈ Yα. C

It follows from the proof of sufficiency part in The-
orem 1 that the switched system is strongly invertible
over the interval [t0, T ), where T ∈ [t0, t̄) and t̄ :=
min{t > t0 : (x(t), y(t)) /∈ Mα × Yα}. If the output
y loses continuity over the interval [t0, T ) because of
switching, then (σ[t0,T ), u[t0,T )) = (σ[t0,τ1), u[t0,τ1))⊕ · · · ⊕
(σ[τk,T ), u[τk,T )), where τi, i = 1, · · · , k, are the switching
instants in the interval [t0, T ).

IV. CHECKING INVERTIBILITY
In this section, we address the computational aspect of

the concepts introduced in previous sections and develop
algebraic criteria for checking the invertibility of switched
systems. To put everything into perspective, we provide
appropriate background related to the invertibility of non-
switched systems and use it to develop the concept of
functional reproducibility. To check if (x0, y) is a switch-
singular pair, we develop a formula using the functional
reproducibility criteria of non-switched systems.

A. Single-Input Single-Output (SISO) Systems

We start off with the case when all the subsystems are
SISO because it gives more insight into computations and
helps understand the concepts which we will later generalize
to multivariable systems. To this end, consider a SISO non-
linear system affine in controls (1) with m = 1 and assume
it has a relative degree r at x0 [15], i.e, ∃ a neighborhood
N(x0) such that LgL

r−1
f h(x) 6= 0 ∀x ∈ N(x0), where

Lk
fh(x) =

∂(Lk−1
f h(x))

∂x f(x) and L0
fh(x) = h(x). To check

if the subsystem is invertible or not, we first derive an explicit
expression for the input u in terms of the output y by
computing the derivatives of y, i.e, y(t) = h(x(t)), ẏ(t) =
Lfh(x(t)), · · · , y(r)(t) = Lr

fh(x(t)) + LgL
r−1
f h(x(t))u(t).

From the last equation, we can derive an expression for u(t):

u(t) = −
Lr

fh(x)

LgL
r−1
f h(x)

+
1

LgL
r−1
f h(x)

y(r)(t) (3)

Hence, u can be determined explicitly in terms of measured
output y. On substituting the expression for u from (3) in
equation (1), one gets the dynamics for the inverse system:

ż = f(z) + g(z)
(
−

Lr
fh(z)

LgL
r−1
f h(z)

+
1

LgL
r−1
f h(z)

y(r)(t)
)

The dynamics of this inverse subsystem evolve on the set
Mα := {z ∈ M | LgL

r−1
f h(z) 6= 0}. The discussion

motivates the following result, given in [4]:



Lemma 1: A SISO system is strongly invertible at x0 if
and only if the system has a finite relative degree r at x0.

For SISO subsystems, the input u appears in the r-th
derivative of the output. Thus the smoothness of u doesn’t
affect the existence of the first r − 1 derivatives of y. If u :
[0, t) → R is a locally essentially bounded, Lebesgue mea-
surable function, then y(r)(t) exists almost everywhere and
y(r−1)(t) is absolutely continuous. So for SISO nonlinear
subsystems, U can be defined as the space of functions which
are locally essentially bounded and Lebesgue measurable;
and Yp can be the set of corresponding outputs.

We now turn to the concept of functional reproducibility,
which in broad terms means the ability to follow a given ref-
erence signal. This concept will help us study the existence
of switch-singular pairs. We look at the conditions under
which a system can produce the desired output yd over some
interval [t0, T ) starting from a particular initial state x0. The
following result was given in [4]:

Lemma 2: If the system (1), with m = 1 and x(t0) = x0,
has a relative degree r < ∞ at x0, then there exists a control
input u such that ΓO

x0
(u) = yd(·) if and only if

y
(k)
d (t0) = Lk

fh(x0) ∀ k = 0, 1, · · · , r − 1 (4)
This result is easy to comprehend by looking at the

expressions for the output derivatives. As control u(t) does
not directly affect y(k)(t), ∀k = 1, · · · , r−1, their values at
t0 are determined by the initial state. The control u, for which
ΓO

x0
(u) = yd(·), is given by (3) with y replaced by yd in that

formula. We can now easily check for the switch-singular
pairs among Γp,Γq with relative degrees rp, rq respectively,
where p, q ∈ P .

Lemma 3: For SISO switched systems, (x0, y) is a switch-
singular pair of two subsystems Γp and Γq if and only if
y ∈ Yp ∩ Yq and y

...
y(rκ−1)

 (t0) =

 hκ(x0)
...

Lrκ−1
fκ

hκ(x0)

 , κ = p, q ∈ P

Example 1: Consider a two-mode SISO switched system:

Γp :=

 ẋ =

 x1 + x2

x2

x1x2

 +

 0
1
x2

 u, M = R3

y = x1

Γq :=

 ẋ =

 x2

x2x3

−x2

 +

 0
1
x2

 u, M = R3

y = 2x1

If Γp is active, then ẏ = x1+x2; if Γq is active, then ẏ = 2x2.
Both subsystems have relative degree 2 on R3 which can be
verified by taking second derivative of the output. If there
exists x ∈ R3 which forms a switch-singular pair with y ∈
Yp ∩ Yq, then we must have x1 = 2x1 and x1 + x2 = 2x2,
or subsequently x1 = x2 = 0. This state constraint yields

y = ẏ = 0. If we let Yα
:=

{
y ∈ Fpc :

(
y(t)
ẏ(t)

)
6= 0 ∀t

}
,

then there exists no switch-singular pair between x ∈ R3 and

y ∈ Yα
. Theorem 1 and Lemma 1 infer that the switched

system generated by {Γp,Γq} is strongly invertible on Yα
,

∀x0 ∈ R3. C
We now have the tool set to check for the invertibility

conditions given in Theorem 1. If these conditions are
satisfied and the switched system is strongly invertible, a
switched inverse system can be constructed to recover the
input and switching signal σ from given output and initial
state. For the switched inverse system, define the index
inversion function Σ

−1
: Mα × Yα → P as:

Σ
−1

(x0, y) = p : y ∈ Yp and y(k)(t0) = Lk
fp

hp(x0) (5)

where k = 0, 1, · · · , rp − 1, t0 is the initial time of y, and
x0 = x(t0). The function Σ

−1
is well-defined since p is

unique by the fact that there are no switch-singular pairs.
The existence of p is guaranteed as it is assumed that y ∈ Yα

is an output. Thus, an inverse switched system Γ−1
σ is:

σ(t) = Σ
−1

(z(t), y(t)),

ż = fσ(z) + gσ(z)
(
− Lrσ

fσ
hσ(z)

Lgσ Lrσ−1
fσ

hσ(z)
+ y(rσ)(t)

Lgσ Lrσ−1
fσ

hσ(z)

)
,

u(t) = − Lrσ
fσ

hσ(z)

Lgσ Lrσ−1
fσ

hσ(z)
+ y(rσ)(t)

Lgσ Lrσ−1
fσ

hσ(z)

with the initial condition z(t0) = x0. The initial condition
σ(t0) determines the initial active subsystem at the initial
time t0, from which time onwards, the active subsystem
indexes and the input as well as the state are determined
uniquely and simultaneously.

B. Multiple-Input Multiple-Output (MIMO) Systems

For multiple-input multiple-output (MIMO) nonlinear sys-
tems affine in controls (1), one uses the structure algorithm
to compute the inverse. When a system is invertible, the
structure algorithm, or Singh’s inversion algorithm, allows us
to express the input as a function of the output, its derivatives
and possibly some states.

The Structure Algorithm: This version of the algorithm
closely follows the construction given in [9], which is a
slightly modified version of the algorithm in [6].

Step 1: Calculate ẏ = Lfh(x) + LGh(x)u = ∂h
∂x [f(x) +

G(x)u] and write it as ẏ =: a1(x) + b1(x)u. Define
s1 := rank b1(x), which is the maximal rank of b1(x) in
some neighborhood of x0, denoted as N1(x0). Permute, if
necessary, the components of the output so that the first
s1 rows of b1(x) are linearly dependent. Decompose y as

ẏ =
( ˙̃y1

˙̂y1

)
=

(
ã1(x) + b̃1(x)u
â1(x) + b̂1(x)u

)
where ˙̃y1 consists of

the first s1 rows of ẏ. Since the last m − s1 rows of b1(x)
are linearly dependent upon the first s1 rows, there exists a
matrix F1(x) such that

˙̃y1 = ã1(x) + b̃1(x)u,

˙̂y1 = ĥ1(x, ˙̃y1) = â1(x) + F1(x)( ˙̃y1 − ã1(x)) (6)

where the last equation is affine in ˙̃y1. Finally, set B̃1(x) :=
b̃1(x).

Step k+1: Suppose that in steps 1 through k,
˙̃y1, · · · , ỹ

(k)
k , ŷ

(k)
k have been defined. Suppose also that



the matrix B̃k := [b̃T
1 , . . . , b̃T

k ]T (vertical stacking of the
linearly independent rows obtained at each step) has full
rank equal to sk in Nk(x0). Then calculate ŷ

(k+1)
k =

∂ĥk

∂x [f(x) + G(x)u] +
∑k

i=1

∑k
j=i

∂ĥk

∂ỹ
(j)
i

ỹ
(j+1)
i and write it

as ŷ
(k+1)
k = ak+1(x, {ỹ(j)

i | 1 ≤ i ≤ k, i ≤ j ≤ k +
1}) + bk+1(x, {ỹ(j)

i | 1 ≤ i ≤ k, i ≤ j ≤ k})u. Define
Bk+1 := [B̃T

k , bT
k+1]

T , and sk+1 := rankBk+1. Permute,
if necessary, the components of ŷ

(k+1)
k so that the first

sk+1 rows of Bk+1 are linearly independent. Decompose
ŷ
(k+1)
k as ŷ

(k+1)
k = [ỹ(k+1)

k+1 , ŷ
(k+1)
k+1 ]T , where ỹ

(k+1)
k+1 con-

sists of the first (sk+1 − sk) rows. Since the last rows
of Bk+1(x, {ỹ(j)

i | 1 ≤ i ≤ k, i ≤ j ≤ k}) are linearly
dependent on the first sk+1 rows, we can write

ỹ
(k+1)
k+1 = ãk+1(x, {ỹ(j)

i | 1 ≤ i ≤ k, i ≤ j ≤ k + 1})

+ b̃k+1(x, {ỹ(j)
i | 1 ≤ i ≤ k, i ≤ j ≤ k})u,

ŷ
(k+1)
k+1 = ĥk+1(x, {ỹ(j)

i | 1 ≤ i ≤ k + 1, i ≤ j ≤ k + 1})

where once again everything is rational in ỹ
(j)
i . Finally, set

B̃k+1 := [B̃T
k , b̃T

k+1]
T , which has full rank equal to sk+1

locally. End of Step k + 1.
By construction, s1 ≤ s2 ≤ · · · ≤ m. If for some integer

α we have sα = m, then the algorithm terminates. We call α
the relative order5 of the system. The closed form expression
for u is derived from the α-th step of the structure algorithm
which gives an invertible matrix B̃α := [b̃T

1 , . . . , b̃T
α ]T having

full rank equal to m in a neighborhood Nα(x0) =: N(x0).

u(t) = B̃−1
α [Ỹα − Ãα] (7)

where Ỹα = [ ˙̃y1, · · · , ˙̃yα]T and Ãα = [ã1, · · · , ãα]T .
Note that the entries of the matrix B̃α are ratio-
nal functions of the derivatives of the output and
there may exist an output for which the rank of B̃α

drops. All such outputs are called singular outputs and
we define Ys

p := {y ∈ Yp | rank B̃α(x, y) < m,x ∈ N(x0)}.
Hence, we work with u such that ΓO

x0
(u) /∈ Ys

p for any
time instant. Comparing to the SISO case, we had B̃α =
LgL

r−1
f h(x) which is a function of the state only and thus

there exists no singular output for SISO systems. Another
useful class of systems for which Ys

p = ∅ was discussed in [5]
by Hirschorn. As was the case in SISO systems, substitution
of the expression for u from (7) in (1) gives the dynamics of
the inverse system. These dynamics are defined on an open
dense set Mα := {x ∈ M | rank B̃α(x, y) = m, y /∈ Ys

p}.
However, unlike in the SISO case, we need some differ-

entiability assumptions on the input signals. In the structure
algorithm, Step 1 gives ˙̃y1 that has already u on the right-
hand side and the α-th step of the algorithm involves
{ỹ(j)

i | 1 ≤ i ≤ α − 1, i ≤ j ≤ α}. Thus ỹ
(α−1)
i must

be absolutely continuous so that ỹ
(α)
i exists almost every-

where. For the input space, it means that u(α−1) must be
Lebesgue measurable and locally essentially bounded. These
constraints characterize the input space U for MIMO case.

5The term was coined in [5] and is weaker than the notion of vector
relative degree.

Based on the structure algorithm, we now study
the conditions for functional reproducibility of MIMO
nonlinear systems. Using the notation derived in
the structure algorithm, let Z(x, ˙̃y1, · · · , ỹ

(α−1)
α−1 ) :=

[h(x), ĥ1(x, ˙̃y1), · · · , ĥα−1(x, ˙̃y1, · · · , ỹ
(α−1)
α−1 )]T ; ŷ :=

[y, ŷ1, · · · , ŷ
(α−1)
α−1 ]T and ŷd := [yd, ŷd1 , · · · , ŷ

(α−1)
dα−1

]T .
So Z is basically a concatenation of the expressions
appearing at each step of Singh’s structure algorithm
which get differentiated and ŷ is the concatenation of the
corresponding expressions on the left-hand side so that
Z

(
x, ˙̃y1, · · · , ỹ

(α−1)
α−1

)
− ŷ = 0. The following result is

along the same line as Lemma 2.
Lemma 4: If the system given by equation (1) with

x(t0) = x0 has a relative order α < ∞, then there exists a
control input u such that ΓO

x0
(u) = yd(·) if and only if

ŷd(t0) = Z
(
x0, ˙̃yd1(t0), · · · , ỹ

(k)
dk

(t0)
)
∀k = 0, 1, · · · , α− 1

Similarly to the SISO case, the idea is that the portion of
output which is not directly affected by u is determined
initially by the value of state variables; and the input u, for
which ΓO

x0
(u) = yd(·), is given by (7) with y replaced by yd

in that formula.
This result gives the following condition for the verifica-

tion of switch-singular pairs.
Lemma 5: For MIMO switched systems, (x0, y) is a

switch-singular pair of two subsystems Γp, Γq if and only
if y ∈ Yp ∩ Yq and

y
˙̂y1

...
ŷακ−1
(ακ−1)

 (t0) =


hκ(x0)

ĥ1
κ(x0, ˙̃y1)

...
ĥακ−1

κ (x0, ˙̃y1, · · · , ỹ
(ακ−1)
ακ−1 )


(8)

for κ = p, q, where ακ denotes the relative order of
subsystem Γκ.
The procedure for constructing the inverse switched system
is exactly the same as discussed earlier for the SISO case.

V. OUTPUT TRACKING

In the previous section, we considered the question of
left invertibility where the objective was to recover (σ, u)
uniquely for all y in some output set Yα. In this section,
we address a different problem which concerns with finding
(σ, u) (that may not be unique) which generates a given
function yd starting from an initial state x0. In other words,
we are given one particular (x0, yd) and wish to find its
preimage H−1

x0
:= {(σ, u) : Hx0(σ, u) = yd}. For output

tracking, we require the individual subsystems to be strongly
invertible because if this is not the case, then the set H−1

x0
(yd)

may be infinite. However, we do not assume that the switched
system is invertible as the subsystems may have switch-
singular pairs. We will only consider the functions yd(t) over
finite time intervals so that there is only a finite number of
switches under consideration.

We will use a modification of the switching inversion
algorithm from [2] to compute the preimage of yd under



the map Hx0 (see [14] for details). The following example
will illustrate the working of the algorithm.

Example 2: Consider a switched system with two modes

Γ1 :

 ẋ =
(

x1x2

x2

)
+

(
0
1

)
u, M = R2

y = x2

Γ2 :

 ẋ =
(

0
x1

)
+

(
ex2

ex2

)
u, M = R2

y = x1

We wish to reconstruct the switching signal σ(t) and the
input u(t) which will generate the following output:

yd(t) =
{

cos t if t ∈ [0, t∗)
2 cos t if t ∈ [t∗, T ) , t∗ = π and T = 4.5

with the given initial state x0 = (0, 1)T .
In this example, any state x lying on the diagonal, ∆ :=

{(x1, x2)T : x1 = x2} forms a switch-singular pair with the
output whose corresponding state trajectory hits the same
state x at any time.

We now use the switching inversion algorithm to find
(σ, u) such that ΓO

x0,σ(u) = yd. Using the index-matching
map with given x0 and yd(0) = 1, we get P∗ :=
Σ−1(x0, yd[0,t∗)) = {1}. The inverse of Γ1 on [0, t∗) is

Γ−1
1 :

 ż =
(

z1z2

0

)
+

(
0
1

)
ẏd, Mα

1 = R2

u(t) = −z2 + ẏd

with z(0) = x0, which then gives

z(t) =
(

0
cos t

)
=: x(t)

u(t) = − cos t− sin t
t ∈ [0, t∗). (9)

We want to find T := {t ≤ t∗ : (x(t), yd[t,t∗)) is a switch-
singular pair of Γ1, Γ2 }, which is equivalent to solving
cos t = x1(t) = 0, for t ∈ (0, t∗). This equation has a
solution t = π/2 =: t1 < t∗, and hence T = {t1}, a finite
set. We have ξ = x(t1) = (0, 0)T and repeat the procedure
for the initial state ξ and the output yd[t1,T ) with P∗ :=
Σ−1(ξ, yd[t1,t∗)) = {1, 2}. We analyze these two cases:

Case 1: p = 1. This implies t1 is not a switching time and
u(t), x(t) are still given by (9) for t1 ≤ t < t∗. Repeating
the procedure with ξ = x(t∗) = (0, 0)T and yd[t∗,T ) and
yd(t∗) = −2, we observe that yd(t∗) 6= x1(t∗) and also
yd(t∗) 6= x2(t∗), thus the index-matching map returns an
empty set, Σ−1(ξ, yd[t∗,T )) = ∅.

Case 2: p = 2, which means that t1 is a switching instant.
So we work with the inverse system of Γ2,

Γ−1
2 :

 ż =
(

0
z1

)
+

(
1
1

)
ẏd, Mα

1 = R2

u(t) = e−z2 ẏd

So z(t1) = ξ gives z(t) =
(

cos t
cos t + sin t− 1

)
=: x(t)

and u(t) = −ecos t+sin t sin t, for t ≥ t1. We find T = {t1 <
t ≤ t∗ : (x(t), yd[t,t∗)) is a switch-singular pair of Γ1, Γ2},
which is equivalent to solving for cos t = x2(t) = cos t +

sin t− 1, where π/2 = t1 < t ≤ t∗ = π. This equation
has no solution and thus there exist no switch-singular pairs
in interval (t1, t∗). So, we let ξ = x(t∗) = (−1, −2)T and
repeat the procedure with ξ and yd[t∗,T ), which gives the
unique solution σ[t∗,T ) = 1 and u[t∗,T ) = −2(cos t + sin t).
Thus, the switching inversion algorithm returns (σ, u), where

(σ, u) =

 (1, − cos t− sin t), if 0 ≤ t < t1
(2, −ecos t+sin t sin t), if t1 ≤ t < t∗

(1, −2(cos t + sin t)), if t∗ ≤ t ≤ T

In this example, the output only loses smoothness at t∗ and
t∗ is a switching instant. However, there is another switching
at t1 where the output doesn’t lose smoothness. Without the
concept of switch-singular pairs, one might falsely conclude
that there is no switching signal and input that generates
yd(t) but instead the use of the switching inversion algorithm
allows us to recover the input and switching signal. C

VI. CONCLUSIONS

For future work, one interesting problem is to develop
conditions for checking the existence of switch-singular
pairs which are more constructive as it is in general not
feasible to verify (8) for every output and state. Another
research direction is to approach the problem geometrically
and investigate characterizations equivalent to non-existence
of switch-singular pairs to obtain geometric criteria for left
invertibility of switched systems.
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