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Abstract— In contrast to classical observers operating syn-
chronously with the plant, this paper proposes a state estimation
algorithm that executes Luenberger observers in a back-and-
forth manner using the stored inputs and output signals. One
benefit of this technique is the rapid convergence of state
estimation error without relying on high injection gain, so
that the amplification of measurement noise is much relieved.
Moreover, by operating the observer in the proposed manner,
we obtain an upper bound on the estimation error independent
of its initial value. Some real-time applications of the proposed
idea, and the effect of disturbances, are also discussed.

I. INTRODUCTION

State observers are employed in practice to estimate the
internal state variables of a dynamical system (called a
‘plant’) from the knowledge of the input/output signals
and the mathematical model of the plant. Conventionally,
state observers (such as the observer by [10]) operate syn-
chronously in time with the plant, meaning that the observer
time index is synchronized with the time index of the real
plant. On the other hand, a batch operation involves storing
the input and output signals for a certain time interval, and
then processing all the gathered information at certain time
instants to compute the state estimate; see [11] as an example
of using an optimization routine to generate state estimates
using the signals stored over an interval. As a matter of fact,
the synchronous operation has been preferred over the batch
operation because the latter is not so easy to implement
in real-time whereas the former requires less memory and
computing power. It can be recalled that the recursive form
of the Kalman filter is preferred over its closed form for the
same reasons [9].

However, recent advancements in computing power and
memory capacity make the implementation of batch oper-
ations quite feasible. This motivates us to present a new
method of operation for state observers in this correspon-
dence, that uses the stored input and output signals to process
the state estimates. Out of the several benefits emerging from
this technique, following are the most notable ones.

1) Peaking phenomenon: In order to obtain a good esti-
mate rapidly, one often employs a high injection gain
in the observer design, and this incurs amplification
of measurement noise and large transients in the es-
timation error for some initial conditions of the error
(known as ‘peaking phenomenon [14]’). Researchers
in the past have employed time-varying gains to over-
come this problem [1], where the basic idea is to obtain
rapid convergence initially with high gain and then
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switch to a low gain around the steady state. Address-
ing the same issue, our proposed scheme provides an
alternate method to avoid these undesirable effects in
the transient response without injecting output with
high gain, while achieving rapid convergence.

2) Error estimate: One drawback of the conventional state
observers is that, even if the estimate x̂(t) is guaranteed
to converge asymptotically to the actual state x(t) with
the passage of time, it is not known how close the
current estimate x̂(t) is to the real state x(t) unless the
size of initial error is known. The algorithm proposed
in this paper is used to obtain an upper bound on state
estimation error that is independent of the initial value
of the error. Moreover, by successive iterations of the
proposed back-and-forth scheme, the estimation error
over any finite interval can be made arbitrarily small.
The error reduction can be achieved simply at the cost
of higher computation, and not necessarily requiring
the knowledge of inputs to the observer over larger
time period.

The underlying idea of our observer scheme is to generate
state estimates using integration forward and backward in
time. Specifically, we run a classical Luenberger observer
over a certain interval forward in time, and with the estimate
obtained at the end of this interval, we run another observer
backward in time over the same interval. The poor transient
performance of the state estimation error is eliminated by
the backward recursion, thus the resulting estimate obtained
after one cycle of this back-and-forth operation is close to
the actual state on the entire interval. Successive iterations of
this routine then yield better and better estimates. This simple
idea provides good estimates without necessarily employing
the high injection gains and, unlike classical observers, one
also obtains the bound on estimation error. Even though these
benefits arrive at the cost of some delay in the computation
of the estimate x̂(t) for the current state x(t), this delay can
be compensated by a ‘catch-up’ procedure that inherently
relies on performing numerical integration faster than the
real time frame (this will be clarified in Section IV-A). We
envisage the use of proposed technique especially when the
knowledge of input and output signals is available for brief
amount of time but still the state estimates are required to
be arbitrarily close to the actual state.

On an intuitive level, a variant of the proposed scheme,
called back-and-forth nudging (BFN) method, has been
adopted in several applications [2], [3], [5], [8] to reconstruct
the initial state of the system when the output measurements
are sparse in time and space. The BFN algorithm was
first introduced in [2] for a linear system with convergence
analysis. It has been generalized to nonlinear systems in



[3] without convergence analysis, and the method has been
applied to identify the initial state of a quantum system
in [5], [8]. The proposed operation is different from the
smoothing filter [9] in the stochastic estimation field, in
that their objectives are different and that the forward and
backward integrations are not simultaneous but sequential,
although both of them utilize the integration in forward and
backward directions.

Developing further the idea of back-and-forth operation of
state observers in this paper, we discuss several utilities of the
proposed scheme in an analytical setting. In Section II, we
begin with an overview of the back-and-forth operation with
convergence analysis of estimation error, and obtain an upper
bound on the state estimation error over a finite interval.
For linear systems, gains selection method is discussed in
Section III. Some real-time applications are discussed in
Section IV, and the effect of process and measurement
disturbances is studied in Section V.

II. BACK-AND-FORTH PROCESS AND
ESTIMATION OF ERROR BOUND

We introduce the back-and-forth operation of an observer
for a general nonlinear case in this section. Consider a
smooth nonlinear system written as

ẋ = f(x, u),

y = h(x), x(0) = x0,
(1)

where x ∈ Rn is the state, u ∈ Rm is the input, and y ∈ Rp
is the output. Suppose that, for a given time interval [0, d]
with d > 0, the input u(t) and the output y(t) are collected
and stored in memory for the entire interval.

The solution x(t) obviously satisfies the forward-time
description of the system

dx(t)

dt
= f(x(t), u(t)), y(t) = h(x(t)), x(0) = x0 (2)

for t ∈ [0, d], and the following backward-time description,
with s := d− t and x̄(s) := x(d− s),

dx̄(s)

ds
= −f(x̄(s), u(d− s)), y(d− s) = h(x̄(s)), (3)

with the initial value x̄(0) = x(d) for s ∈ [0, d].
Now suppose that there are two observers for both system

(2) and (3). More specifically, we assume the following.
Assumption 1: There exist the forward observer for sys-

tem (2) given by

dx̂f (t)

dt
= f̂f (x̂f (t), u(t), y(t)) (4)

and the backward observer for (3) given by

dx̂b(s)

ds
= f̂b(x̂b(s), u(d− s), y(d− s)) (5)

such that, for t, s ∈ [d2 , d],

|x̂f (t)− x(t)| ≤ α|x̂f (0)− x(0)| (6)
|x̂b(s)− x̄(s)| ≤ α|x̂b(0)− x̄(0)| (7)

where 0 < α < 1. ♦
Remark 1: In the literature, there are many design meth-

ods for nonlinear observers which guarantee asymptotic error

convergence. These designs are suitable for Assumption 1
by taking d sufficiently large. If d is not large, then several
nonlinear observer designs, that assign arbitrary convergence
rate, can also be employed. For example, the high-gain
observer design in [6] yields the error inequality |x̂f (t) −
x(t)| ≤ λ(θ) exp(−θt)|x̂f (0) − x(0)| for a given constant
θ > 0, and the polynomial λ in θ. Here, by choosing
observer gains appropriately, θ can be made arbitrarily large.
Although, the value of λ(θ) increases with θ in general, the
growth of λ is suppressed by the exponential decrease of
exp(−θt) at a positive time t. Hence, Assumption 1 can still
be met by increasing θ. Once the forward observer satisfying
(6) is obtained, the backward observer is often derived by the
same method such that (7) holds. ♦

We now explain the back-and-forth operation of the ob-
servers. Suppose that, at time t = d, the following operation
is performed. Let x̂0(0) be an arbitrary initial guess for x(0).
Setting x̂f (0) = x̂0(0), the forward observer (4) is integrated
first, with the stored u(t) and y(t), over the interval [0, d].
The corresponding solution x̂f (t), t ∈ [0, d], is then stored
in the memory. At time t = d, the backward observer (5) is
integrated over the same interval [0, d] with x̂f (d) as the
initial condition of x̂b, i.e., x̂b(0) = x̂f (d), the solution
obtained is then stored as x̂b(s), s ∈ [0, d]. Finally, we take

x̂1(t) :=

{
x̂b(d− t), t ∈ [0, d2 )

x̂f (t), t ∈ [d2 , d]
(8)

as the estimate of x(t) on the interval [0, d]. Then it is
trivially seen that x̂1(t) is quite a rich estimate of x(t) on the
interval without transients (but with a possible discontinuity
at t = d/2). Indeed, by Assumption 1, we have

sup
t∈[ d2 ,d]

|x̂1(t)− x(t)| = sup
t∈[ d2 ,d]

|x̂f (t)− x(t)|

≤ α|x̂f (0)− x(0)| = α|x̂0(0)− x(0)|
and

sup
t∈[0, d2 )

|x̂1(t)− x(t)| = sup
s∈( d2 ,d]

|x̂b(s)− x̄(s)|

≤ α|x̂b(0)− x̄(0)| = α|x̂f (d)− x(d)|
≤ α2|x̂0(0)− x(0)| ≤ α|x̂0(0)− x(0)|.

Therefore, we obtain that

sup
t∈[0,d]

|x̂1(t)− x(t)| ≤ α|x̂0(0)− x(0)|, (9)

and |x̂1(0)− x(0)| ≤ α2|x̂0(0)− x(0)|, (10)

in which, inequality (9) indicates that x̂1(t) is an estimate of
x(t) on the entire interval [0, d] without any transients.

As a matter of fact, the back-and-forth process can be
repeated by setting x̂f (0) = x̂i(0) in order to obtain an im-
proved estimate x̂i+1(t) from another round-trip excursion.
If the process is repeated R times, then

sup
t∈[0,d]

|x̂R(t)− x(t)| ≤ αR|x̂0(0)− x(0)|, (11)

|x̂i(0)− x(0)| ≤ α2|x̂i−1(0)− x(0)|, 1 ≤ i ≤ R, (12)

that is, the estimation error decreases by the factor of αR
times the initial error |x̂0(0)− x(0)|, and thus, converges to
zero as R tends to infinity.



Fig. 1. With L = |x̂1(0)−x̂0(0)|, solid circle shows the region containing
x(0) according to Remark 3. The dashed circle displays the set {x : |x−
x̂1(0)| ≤ Lα

1−α2 } related to the coarse bound in (14).

Another benefit of the back-and-forth operation comes
from inequality (10). From (10) and the triangular inequality

|x̂0(0)− x(0)| − |x̂1(0)− x̂0(0)| ≤ |x̂1(0)− x(0)|,

it follows that

|x̂0(0)− x(0)| ≤ 1

1− α2
|x̂1(0)− x̂0(0)|. (13)

Using (9), this in turn leads to

sup
t∈[0,d]

|x̂1(t)− x(t)| ≤ α

1− α2
|x̂1(0)− x̂0(0)|. (14)

Note that the right-hand sides of (13) and (14) become
known after one excursion, which constitute the guaranteed
upper bound on the estimation error. If the computing power
is strong so that the back-and-forth operation is quickly
performed on-line, then the upper bound of estimation error,
as well as the estimate x̂1(t), can be obtained soon after
t = d when the computation begins. These discussions are
summed up in the following result:

Theorem 1: Suppose that Assumption 1 holds for sys-
tem (1). For each i = 1, 2, . . ., let

x̂i(t) :=

{
x̂b(d− t), t ∈ [0, d2 )

x̂f (t), t ∈ [d2 , d]
(15)

where x̂f (·) and x̂b(·) are obtained from the integration of
(4) and (5) by setting x̂f (0) = x̂i−1(0), and x̂b(0) = x̂f (d),
respectively, with x̂0(0) picked arbitrarily. Then, it holds that,

sup
t∈[0,d]

|x̂i+1(t)− x(t)| ≤ α

1− α2
|x̂i+1(0)− x̂i(0)|, (16)

where |x̂i+1(0)−x̂i(0)| = O(αi), that is, the state-estimation
error is bounded by a known quantity and converges to zero
as i tends to infinity. ♦

Note that, by (11), the right-hand side of (16) goes to zero
as i increases, so Theorem 1 states that one can perform
the back-and-forth operation repeatedly until the required
precision of the estimation is obtained, and stop. This is
simply done by monitoring |x̂i+1(0)− x̂i(0)|.

Remark 2: The norm of x(t) can also be estimated from
(16) because x̂i and x̂i+1 are known. An advantage over
the norm-estimator of [13] is that the estimated norm is a

guaranteed upper bound obtained at time t = d + D where
D is the time elapsed for computation while the information
from the norm-estimator of [13] converges to the actual norm
of the state as time tends to infinity. On the other hand, the
norm-estimator of [13] requires much weaker condition of
‘output-to-state stability’ than Assumption 1. ♦

Remark 3: (Tighter bound on the estimation error) In
fact, without using the triangular inequality, tighter bound
than (13) can be obtained. Note that {x : |z1 − x| ≤
α2|z0 − x|} = {x : |x − ( 1

1−α4 z1 − α4

1−α4 z0)| ≤ α2

1−α4 |z1 −
z0|}. Therefore, it follows from (10) that x(0) is located
within the circle of radius α2

1−α4L, where L is the distance
|x̂1(0)− x̂0(0)|, centered at x̄ = 1

1−α4 x̂1(0)− α4

1−α4 x̂0(0) =
1

1−α4 (x̂1(0)− x̂0(0)) + x̂0(0). See Fig. 1 for illustration. ♦
The back-and-forth operation is intrinsically a batch pro-

cess. However, with strong computing power and large
memory, it can be used on-line. The details of on-line
implementation will be given in Section IV.

III. LINEAR SYSTEMS CASE

For linear systems, more concrete method for observer
construction can be addressed, under which Assumption 1
holds. Consider the linear system

ẋ = Ax+Bu

y = Cx
(17)

with x(0) = x0, where (A,C) is an observable pair.
Proposition 1: For a given d > 0 and a given α such that

0 < α < 1, there exist gain matrices Lf and Lb such that

‖ exp((A− LfC)t)‖ ≤ α, ∀t ∈ [d/2, d], (18)

and

‖ exp(−(A− LbC)t)‖ ≤ α, ∀t ∈ [d/2, d]. (19)
See the Appendix for a constructive proof of Proposition 1.
Then, the forward observer is given by

d

dt
x̂f = Ax̂f +Bu(t) + Lf (y(t)− Cx̂f ) (20)

while the backward observer is

d

ds
x̂b = −Ax̂b −Bu(d− s)− Lb(y(d− s)− Cx̂b). (21)

In fact, the backward observer is based on the backward-time
description of the system (17) written as

d

ds
x̄ = −Ax̄−Bu(d−s), y(d−s) = Cx̄, x̄(0) = x(d),

with x̄(s) = x(d − s) for s = d − t ∈ [0, d]. With
Proposition 1, it is clear that Assumption 1 holds.

IV. REAL-TIME APPLICATIONS

In this section, we discuss some applications of the pro-
posed back-and-forth state estimation algorithm.



Fig. 2. Operation time chart. Solid arrow implies real time frame, and
solid-dot means numerical integration time frame that is faster than real
time.

A. Enhancing Convergence Rate of Conventional Observers

In order to enhance the convergence rate without using
unnecessarily high injection gain, a conventional observer
given by

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)) (22)

can be equipped with the estimation update law

x̂(ti) = x̂f (ti) (23)

in which the time ti and x̂f (ti) will be specified shortly as
an outcome of the back-and-forth operation. Since the update
law (23) introduces discontinuity in the state trajectory, the
overall observer becomes hybrid-type.

1) Choosing the gains: Suppose that L is designed as
L = P−1CT where P is the symmetric positive definite
solution of

PA+ATP − 2CTC = −θP (24)

with some θ ≥ 0, so that (A−LC) becomes Hurwitz. (Note
that θ is not necessarily high.) Let Lf = L and find d such
that ‖ exp((A− LfC)t)‖ < 1 for t > d. Then, find Lb that
satisfies ‖ exp(−(A−LbC)t)‖ < 1 for t > d (one may refer
to the Appendix).

2) Computing ti and x̂f (ti): With the gains Lf and Lb,
prepare two additional observers (20) and (21). The state
observer given in (22) is started at t = 0 with some initial
condition x̂(0), and it runs synchronously with the plant in
the regular time frame. At time t = t0 := d, the backward
observer (21) starts with the history of inputs and outputs
over the interval [t0 − d, t0] and with the initial condition
x̂b(0) = x̂(t0). After the backward integration reaches the
time t0−d, the forward observer (20) takes over with x̂f (t0−
d) = x̂b(d). It is integrated with the input and output history
for [t0 − d, t0 +D], where positive D indicates the elapsed
time for going backward and forward. At time t = t1 :=
t0 +D, the state x̂(t1) is reset as in (23) (with i = 1). Then,
with x̂b(0) = x̂(t1) at the time t = t1, this back-and-forth
operation repeats as illustrated in Fig. 2.

We assume that the backward and forward observers can
be integrated at a much faster time scale σt where σ � 1.
Thus, the integration of the backward observer takes d/σ
seconds, and the time of integration for both observers is
(2d+D)/σ seconds, which should be the same D seconds
measured in the regular time frame (see Fig. 2). This implies
that D = 2d/(σ − 1), and let the time ti = ti−1 +D.

3) Analysis of state estimation error: We now analyze
the reduction in estimation error due to (23) compared to
the observer without such reset map. If x̂c(t) denotes the
continuous solution of (22) without the reset map (23), then
the size of estimation error x̃c := x̂c − x can be evaluated
in terms of the error Lyapunov function V = x̃c(t)

TPx̃c(t).
It is observed that V̇ = −θV along the observer (22) and
the plant (17) when there is no reset (23). Considering the
interval [0, t1] for the sake of simplicity, we have

x̃c(t1)TPx̃c(t1) = exp

(
−θ 2

σ − 1
d

)
x̃c(t0)TPx̃c(t0).

On the other hand, to see the error reduction with the reset
map (23), let x̃ := x̂−x, x̃f := x̂f−x and Ab := −A+LbC.
By the fact that A − LC = A − LfC and d + D = ((σ +
1)/(σ − 1))d, we obtain that

x̃(t1)TPx̃(t1) = x̃f (t1)TPx̃f (t1)

= exp

(
−θσ + 1

σ − 1
d

)
x̃f (t0 − d)TPx̃f (t0 − d)

= exp

(
−θσ + 1

σ − 1
d

)
x̃c(t0)T exp(ATb d)P exp(Abd)x̃c(t0).

Therefore, the use of state update (23) provides more reduc-
tion in estimation error within the same real time interval by
the amount

x̃c(t1)TPx̃c(t1)− x̃(t1)TPx̃(t1)

= e−θ
2

σ−1dx̃(t0)T (P − e−θdeA
T
b dPeAbd)x̃(t0)

where the matrix P − e−θdeATb dPeAbd is positive definite.
This argument can be applied at each ti, i ≥ 1, which
suggests that the update law (23) indeed diminishes the size
of estimation error.

Example 1: A simulation is performed for a linear sys-
tem with A = [0, 1, 0; 0, 0, 1;−0.03,−0.5,−0.2], B =
[0.5; 0.5; 1], C = [1, 0, 0], and u(t) = sin(t). Both injection
gains Lf and Lb are chosen with θ = 1.5 in (24). For
comparison, another gain Lh is chosen with θ = 2.5, which
will be used for a conventional observer, e.g., like (22).
The value θ = 2.5 is selected such that the error reduces
by more than 1/8-th of its initial value within 3 seconds,
which is verified in Fig. 3. On the other hand, we suppose
that the back-and-forth operation begins at t0 = 3 like in
Fig. 2. Since max{‖e3(A−LfC)‖, ‖e−3(A−LbC)‖} < 1/2,
the reduction in error after one back-and-forth operation is
more than 1/8 = (1/2)3. This can be clearly observed in
Fig. 4, in which the estimate is obtained immediately after
t = 3, and after that, a conventional observer with Lf is
used. However, with a measurement disturbance (analyzed
formally in Section V), y = Cx + sin(3t), it can be seen
in Fig. 5 that the performance of the high-gain observer
becomes degraded while the back-and-forth observer gives
better results because the relatively small gain. ♦
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Fig. 3. Plot of ‖e(A−LhC)t‖, ‖e(A−LfC)t‖, and ‖e−(A−LbC)t‖,
in which Lh = [3.6; 8.2; 4.4], Lf = [2.1; 2.7; 0.25], Lb =
[−2.5; 4.2;−1.9].
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Fig. 4. Plot of the estimation error ‖x̂(t)− x(t)‖ from the conventional
observer with high gain Lh (blue solid), the back-and-forth operation (green
dashed), and the first run of the forward observer (red +). It is seen that,
even though the first estimate of the forward observer is not satisfactory, the
back-and-forth operation results in the estimate as good as that of the high
gain observer at time t = 3. Initial condition of the plant is [5;−3;−3]
while initial conditions of both observers are set to zero.
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Fig. 5. Plot of the estimation error ‖x̂(t)− x(t)‖ as in Fig. 4, but with a
measurement disturbance sin(3t).

B. Intermittent Monitoring

As mentioned earlier, the conventional observers only
guarantee the convergence of state estimation error to zero
but don’t provide any information about the size of error.
However, the use of the back-and-forth operation, in par-
ticular the use of backward observer in conjunction with a
conventional observer, allows us to monitor the quality of

Fig. 6. All switches are synchronized.

estimation error. With a gain L for the conventional observer,
one can find d such that ‖ exp((A−LC)d)‖ =: α < 1, and
then design Lb such that ‖ exp((−A+ LbC)d)‖ ≤ α. From
time to time when the information about the estimation error
is required, say, at t = t∗, the backward observer is employed
with x̂b(0) = x̂(t∗) over the interval [t∗−d, t∗] to obtain the
estimate

|x̂(t∗)− x(t∗)| ≤ (α/(1− α2))|x̂b(d)− x̂(t∗ − d)|

which is derived in the same manner as one arrives at (14)
using (10).

C. State Estimation of a Switched System
Consider a switched system given in Fig. 6, which has

two modes of operation described by

Σ1 :

{
ẋ1 = A1x1 +B1u, y = C1x1,

ẋ2 = A2x2 +A21x1,
(25)

for mode 1, and

Σ2 :

{
ẋ1 = A1x1 +A12x2

ẋ2 = A2x2 +B2u, y = C2x2,
(26)

for mode 2, where the pair (Ai, Ci), i = 1, 2, is observable.
Now suppose that the system configuration switches between
modes 1 and 2 (i.e., between (25) and (26)) after every
T seconds, and we want to estimate the states x1 and
x2 completely. Note that, at each mode, the system is not
completely observable. For example, at mode 1, the state x2
is unobservable.

One can design a separate observer for each mode of
operation as follows:

˙̂x1 = A1x̂1 +B1u− L1C1x̂1 + L1y (27a)
˙̂x2 = A2x̂2 +A21x̂1 (27b)

for Σ1, and

˙̂x1 = A1x̂1 +A12x̂2 (28a)
˙̂x2 = A2x̂2 +B2u− L2C2x̂2 + L2y (28b)

for Σ2, where L1 and L2 are large enough so that some
meaningful estimates x̂1 and x̂2 are obtained over the interval
of length T . In fact, at the end of the first period [0, T ),
one can obtain the estimate x̂1(T ) by (27a) for mode 1.
For the second interval [T, 2T ), this estimate serves as the
initial condition of (28a), and the observer (28b) starts to
estimate x2(t). However, the observer (28b) will exhibit
some transients during the initial period of the interval
[T, 2T ), which may corrupt the estimate x̂1(t) being obtained
through the observer (28a) because of initially large error
between x̂2(t) and x2(t).



To overcome this problem, the following hybrid-type ob-
server may be utilized instead of (27) and (28)

Σ̂1 :

{
˙̂x1 = A1x̂1 +B1u
˙̂x2 = A2x̂2 +A21x̂1

(29)

Σ̂2 :

{
˙̂x1 = A1x̂1 +A12x̂2
˙̂x2 = A2x̂2 +B2u

(30)(
x̂1(kT )
x̂2(kT )

)
=

(
ξ̂1(kT−)

ξ̂2(kT−)

)
, k ≥ 1, (31)

where the variables ξ̂1 and ξ̂2 will be obtained shortly using
the back-and-forth operation such that the inequality,

|x̂((k + 2)T )− x((k + 2)T )| ≤ γ|x̂(kT )− x(kT )|, (32)

holds for all k ≥ 1, x := (xT1 , x
T
2 )T , and a desired

parameter γ < 1. The inequality (32) guarantees the con-
vergence of estimation error to zero due to the fact that
supt∈[kT,(k+1)T ) |x̂(t) − x(t)| ≤ M |x̂(kT ) − x(kT )| where
M is a constant. The latter inequality holds because the
dynamics for x̂− x are linear and their growth is bounded
over a finite interval.

In order to design ξ̂1 and ξ̂2, we prepare the back-and-forth
observer (20) and (21) for the x1-subsystem of (25) and for
the x2-subsystem of (26), respectively. For each subsystem,
the injection gains Lf and Lb are designed such that (18)
and (19) hold with d = T/2 and

α =

(
γ√

2 max{α1, α2, α3, α4}

) 1
R

where α1 = M1 + L1L2 + L2, α2 = L1M2 + M2, α3 =
M2 + L1L2 + L1, α4 = L2M1 +M1 and

Mi := ‖eAiT ‖, Li :=

∥∥∥∥∥
∫ T

0

eAisdsAij

∥∥∥∥∥ , i, j = 1, 2, i 6= j,

and let R+1 be the number of round-trips of numerical back-
and-forth integrations that are possible within the interval of
length T/2. Clearly, the number R relies on the computation
power.

Let the initial condition ξ̂1(0−) and ξ̂2(0−) be arbi-
trary. Fig. 7 illustrates the strategy to obtain ξ̂1(kT−) and
ξ2(kT−), for k = 2, over the interval [T, 2T ) when mode 2
is active. At time t = T , the estimate x̂1(T ) and x̂2(T )
are set to ξ̂1(T−) and ξ̂2(T−) respectively, and they are
integrated in the real time by (30). At the same time, the
initial condition of the forward observer (for estimating x2)
is set by ξ̂2(T−) = x̂2(T ), and this forward observer runs in
the real time first until T + T/2. At T + T/2, the backward
observer is employed with the terminal state of the forward
observer as its initial condition. The round-trip of back-
and-forth operation continues R times with the input-output
data of the interval [T, T + T/2], after which the forward
observer is finally integrated from T to 2T . Since the time
elapsed by the back-and-forth operation and the last forward
operation does not exceed T/2, the last forward integration
will ‘catch up’ with the real time, as indicated in Fig. 7.
While these operations are performed, the information about
ξ̂2(t) is collected as illustrated in the figure. At the same

catch up real time

A

A

A

B

C

C

Fig. 7. Operation time chart for mode 2 in the interval [T, 2T ). Solid
arrow implies real time frame, and solid-dot means numerical integration
time frame that is faster than real time. Circles with letters indicate the
synchronized time.

time with the start of the last forward observer, we begin the
integration of

˙̂
ξ1 = A1ξ̂1 +A12ξ̂2 (33)

with the initial condition ξ̂1(T ) = ξ̂1(T−) and with the signal
ξ̂2(t) obtained by back-and-forth operation over the interval
[T, 2T ). By this procedure, we obtain ξ̂1(2T−) and ξ̂2(2T−).
This procedure repeats in the next interval, with the role for
x1 and x2 being switched, and instead of (33), following
equation is used to compute ξ̂2:

˙̂
ξ2 = A2ξ̂2 +A21ξ̂1 (34)

instead of (33).
We now proceed with the error analysis. Let ε := x̂ − x.

Then, ε(kT ) = x̂(kT )−x(kT ) = ξ̂(kT−)−x(kT ). We note
that, for the (2k + 1)-th interval, k ∈ N, ξ̂1 is the estimate
from the back-and-forth observer while ξ̂2 is the state of (34),
and for the 2k-th interval, their roles are reversed. Therefore,
in the first interval [0, T ), we have that

|ε1(T )| ≤ αR|ε1(0)|

|ε2(T )| ≤ ‖eA2T ‖|ε2(0)|+

∥∥∥∥∥
∫ T

0

eA2sdsA21

∥∥∥∥∥ [αR|ε1(0)|
]
.

Similarly, we can derive the following expressions for the
second interval [T, 2T ),

|ε1(2T )| ≤ ‖eA1T ‖|ε1(T )|+

∥∥∥∥∥
∫ T

0

eA1sdsA12

∥∥∥∥∥ [αR|ε2(T )|
]

≤ αR‖eA1T ‖|ε1(0)|+ αR

∥∥∥∥∥
∫ T

0

eA1sdsA12

∥∥∥∥∥ ‖eA2T ‖|ε2(0)|

+ α2R

∥∥∥∥∥
∫ T

0

eA1sdsA12

∥∥∥∥∥
∥∥∥∥∥
∫ T

0

eA2sdsA21

∥∥∥∥∥ |ε1(0)|

and

|ε2(2T )| ≤ αR|ε2(T )|

≤ αR‖eA2T ‖|ε2(0)|+ α2R

∥∥∥∥∥
∫ T

0

eA2sdsA21

∥∥∥∥∥ |ε1(0)|.



The terms within the brackets, [·], are due to the back-and-
forth observer, which yield a rich estimation on the entire
interval of length T , including the initial period. Finally, it
is seen that

|ε(2T )| ≤ |ε1(2T )|+ |ε2(2T )|
≤ αR(M1 + L1L2 + L2)|ε1(0)|+ αR(L1M2 +M2)

× |ε2(0)|

≤ γ√
2

(|ε1(0)|+ |ε2(0)|) ≤ γ|ε(0)|.

This proves the claim (32) for even k. For odd k, the proof
is similar and thus omitted.

Thus we have shown that the use of the back-and-forth
observer has improved the transient response of the state
estimation error, thus leading to quality estimates of the state
variable over the entire interval.

V. EFFECTS OF DISTURBANCES

In this section we are interested in the effects of external
disturbances on the back-and-forth operation. In particular,
we consider an observable linear system given by

ẋ = Ax+Bu+ d1(t)

y = Cx+ d2(t)
(35)

where d1 and d2 denote the process disturbance and the
measurement disturbance, respectively. Then, the following
result shows that, even under the disturbances, the upper
bound of the estimation error is obtained.

Proposition 2: Pick d > 0 and 0 < α < 1, and suppose
that two gains Lf and Lb are designed by Proposition 1. The
repeated back-and-forth operation of the forward observer
(20) and the backward observer (21) for system (35) results
in

sup
t∈[0,d]

|x̂i+1(t)− x(t)| ≤ α

1− α2
|x̂i+1(0)− x̂i(0)|

+

(
α(αMf +Mb)

1− α2
+ (Mf +Mb)

)
×max{‖d1(t)− Lfd2(t)‖[0,d], ‖d1(t)− Lbd2(t)‖[0,d]}

(36)

for i = 0, 1, · · · , where Mf :=
∫ d
0
‖ exp((A − LfC)t)‖dt,

Mb :=
∫ d
0
‖ exp(−(A − LbC)t)‖dt, and ‖x(t)‖[0,d] :=

supt∈[0,d] |x(t)|, with x̂0(0) = x0 being the initial guess.
Moreover,

lim
i→∞

|x̂i+1(0)− x̂i(0)| = 0. (37)
Proof: From the repeated back-and-forth operation, we

get

x̂i(t) =

{
x̂ib(d− t), t ∈ [0, d2 )

x̂if (t), t ∈ [d2 , d]
(38)

where x̂if and x̂ib are obtained from the i-th iteration of
equations (20) and (21), respectively. Let x̃i(t) = x̂i(t) −
x(t). The initial conditions for each iteration are given as
x̂ib(0) = x̂if (d) and x̂i+1

f (0) = x̂ib(d) with x̂1f (0) = x̂0(0).
Now with the error variables x̃if (t) = x̂if (t) − x(t) and

x̃ib(s) = x̂ib(s)−x̄(s) = x̂ib(s)−x(d−s), two error dynamics
become
dx̃if (t)

dt
= (A− LfC)x̃if + (Lfd2(t)− d1(t)),

dx̃ib(s)

ds
= −(A− LbC)x̃ib − (Lbd2(d− s)− d1(d− s)).

For convenience, let Df (t) = Lfd2(t) − d1(t) and Db(d −
s) = Lbd2(d− s)− d1(d− s). Then it is seen that

sup
t∈[ d2 ,d]

|x̃i+1(t)| = sup
t∈[ d2 ,d]

|x̃i+1
f (t)|

= sup
t∈[ d2 ,d]

∣∣∣ exp((A− LfC)t)x̃i+1
f (0)

+

∫ t

0

exp((A− LfC)(t− τ))Df (τ)dτ
∣∣∣

≤ α|x̃i(0)|

+ sup
t∈[ d2 ,d]

∣∣∣∣∫ t

0

exp((A− LfC)γ)Df (t− γ)dγ

∣∣∣∣
≤ α|x̃i(0)|+Mf‖Df (t)‖[0,d].

Similarly,

sup
t∈[0, d2 )

|x̃i+1(t)| = sup
t∈( d2 ,d]

|x̃i+1
b (t)|

= sup
t∈( d2 ,d]

∣∣∣ exp(−(A− LbC)t)x̃i+1
b (0)

−
∫ t

0

exp(−(A− LbC)(t− τ))Db(d− τ)dτ
∣∣∣

≤ α|x̃i+1
f (d)|

+ sup
t∈( d2 ,d]

∣∣∣∣∫ t

0

exp(−(A− LbC)γ)Db(d− t+ γ)dγ

∣∣∣∣
≤ α(α|x̃i(0)|+Mf‖Df (t)‖[0,d]) +Mb‖Db(t)‖[0,d].

Therefore we have that

sup
t∈[0,d]

|x̃i+1(t)| ≤ α|x̃i(0)|+ (Mf +Mb)∆ (39)

|x̃i+1(0)| ≤ α2|x̃i(0)|+ (αMf +Mb)∆ (40)

where ∆ = max{‖Df (t)‖[0,d], ‖Db(t)‖[0,d]}. From this and
the triangular inequality |x̂i(0)−x(0)| ≤ |x̂i+1(0)− x̂i(0)|+
|x̂i+1(0)− x(0)|, it follows that

|x̂i(0)− x(0)| ≤ 1

1− α2
(|x̂i+1(0)− x̂i(0)|+ (αMf +Mb)∆) .

Using (39), we obtain

sup
t∈[0,d]

|x̂i+1(t)− x(t)| ≤ α

1− α2
|x̂i+1(0)− x̂i(0)|

+
α

1− α2
(αMf +Mb)∆ + (Mf +Mb)∆

which corresponds to (36).
In order to prove (37), we first observe from (20) that

˙̂xi+1
f − ˙̂xif = Ax̂i+1

f +Bu+ Lf (y − Cx̂i+1
f )

− [Ax̂if +Bu+ Lf (y − Cx̂if )]

= (A− LfC)(x̂i+1
f − x̂if ).



Hence, from (18),

‖x̂i+1(t)− x̂i(t)‖[ d2 ,d] = ‖x̂i+1
f (t)− x̂if (t)‖[ d2 ,d]

≤ α|x̂i(0)− x̂i−1(0)|.

Similarly, from (19),

‖x̂i+1(t)− x̂i(t)‖[0, d2 ) = ‖x̂i+1
b (d− t)− x̂ib(d− t)‖[0, d2 )

≤ α|x̂i+1
f (d)− x̂if (d)| ≤ α2|x̂i(0)− x̂i−1(0)|.

This implies

|x̂i+1(0)− x̂i(0)| ≤ α2i|x̂1(0)− x̂0(0)| (41)

which proves (37).

VI. CONCLUSION

In this paper, we have studied a new technique for estima-
tion of state variables in dynamical systems. The scheme is
based on running conventional observers forward and back-
ward in time to obtain not only better state estimates, but also
the bounds on state estimation error. Further, we presented
three notable applications of the proposed observer, where
each of them illustrates one of the three utilities of the back-
and-forth operation. These are: a) improving convergence
rate without high-gain, b) monitoring of estimation error,
and c) obtaining quality estimates on the whole interval
including the initial period. We remark that even though the
computation may take time, the catch-up procedure outlined
in Section IV-A and IV-C allows for the compensation of
such delays. The effect of disturbances on the estimation
bounds was analyzed which revealed why the choice of low
gain is favorable.

We conclude this article by mentioning that the back-
and-forth scheme may have several utilities because of its
simple structure and useful implications. This has already
led to its usage in observers for nonlinear switched systems
by [12]. Another important utility could be in the estimation
of output derivatives for certain class of systems. This may
prove to be a useful alternative to the existing numerical
differentiation schemes since additional computation leads
to accurate estimates on entire interval while alleviating the
effect of noise.

APPENDIX

We prove Proposition 1 by constructing Lf and Lb here. In fact,
this task could be achieved in several different ways, but we discuss
one possible method.

In order to obtain Lf , find a symmetric positive definite matrix
Pf such that

PfA+ATPf − 2CTC = −θfPf (42)

or, equivalently,

(−A− (θf/2)I)
TPf + Pf (−A− (θf/2)I) = −2CTC (43)

with a sufficiently large positive constant θf . Then, set Lf =
P−1
f CT . In fact, there exists a constant θ∗f > 0, dependent on the

given α < 1 and d > 0, such that, for each Lf obtained from (43)
with θf ≥ θ∗f , the inequality (18) holds. This is because, for
sufficiently large θf , the matrix (−A− (θf/2)I) becomes Hurwitz
while the pair (−A−(θf/2)I,

√
2C) is observable (since (A,C) is

observable), which guarantees the existence of the unique positive
definite solution Pf to (43) [4]. Moreover, each element of the
matrix Pf is a rational function of θf that is continuous for θf ≥ θ∗f

(because it is a solution of linear equation (43)). Hence, the ratio of
its maximum and minimum eigenvalues λmax(Pf )/λmin(Pf ) are
bounded by a polynomial of θf .1 Let Vf = x̃Tf Pf x̃f and x̃f = x̂f−
x. Since V̇f = −θfVf , it follows that λmin(Pf )|x̃f (t)|2 ≤ Vf (t) =
exp(−θf t)Vf (0) ≤ exp(−θf t)λmax(Pf )|x̃f (0)|2. Hence, it holds
that

|x̃f (t)| = | exp((A− LfC)t)x̃f (0)|

≤

√
λmax(Pf )

λmin(Pf )
exp

(
−θf

2
t

)
|x̃f (0)|

for all x̃f (0). Since the induced matrix norm is a tight bound [7],
it follows that

‖ exp((A− LfC)t)‖ ≤

√
λmax(Pf )

λmin(Pf )
exp

(
−θf

2
t

)
.

Then, since the quantity
√
λmax(Pf )/λmin(Pf ) as a function of

θf is bounded by a polynomial of θf , the right-hand side can be
made arbitrarily small on the interval t ∈ [d/2, d] by increasing θf .

The gain Lb can be designed in a similar manner, but instead
of (42), one solves the following Lyapunov equation PbA+ATPb−
2CTC = θbPb for a sufficiently large constant θb > 0, and set
Lb = P−1

b CT . Rest of the proof proceeds identically.
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