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Abstract

This technical note points out certain limitations of our results from the paper mentioned in the

title and provides a modified approach to overcome these limitations. In particular, the observer design

addressed in the aforementioned paper is, in general, only applicable to switched linear systems with

invertible state reset maps and this note presents a modified algorithm for state estimation that can also

handle non-invertible state reset maps. In the process, we also identify some equalities from that paper

which may not hold in general for arbitrary state reset maps.

I. INTRODUCTION

In our recent papers [1], [2], we studied observability conditions and observer construction

for switched linear systems described as

ẋ(t) = Aqx(t) +Bqu(t), t ∈ [tq−1, tq), (1a)

x(tq) = Eqx(t−q ) + Fqvq, (1b)

y(t) = Cqx(t) +Dqu(t), t ∈ [tq−1, tq), (1c)

where x(t) ∈ Rn is the state, y(t) ∈ Rdy is the output, vq ∈ Rdv and u(t) ∈ Rdu are the

inputs, and u(·) is a locally bounded measurable function. The index q ∈ N determines the

active subsystem over the interval [tq−1, tq) and it is assumed that the switching times do not

accumulate at any time instant.

In our work [2], we have derived geometric conditions for observability and used them in

designing an observer where we consider a very general class of state reset maps so that Eq, q ∈
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N, may be non-invertible. However, it turns out that certain equalities derived in [2, Section II.C]

only hold for a certain class of state reset maps (specified later in (4)), and in particular the

invertible matrices Eq, q ∈ N. Because of that, the state estimator proposed in [2] mainly works

for invertible state reset maps. The primary objective of this note is to present a modified observer

design to cater for general state reset maps, where Eq may be non-invertible. This generality

comes at the cost of complexity involved in designing the state estimators: The observer proposed

in [2] is simpler to design, whereas the observer designed to handle general state reset maps in

this paper is relatively more complex.

In order to make this note self-contained, we first recall the geometric tools for characterization

of observability in Section II on which the observer design of Section III is based. In the process,

we also point out the errors from [2], that is, which mathematical formulae may not hold for

non-invertible state reset maps.

II. OBSERVABILITY CONDITIONS

Our observer is built on the notion of determinability considered in [2, Definition 1] and in this

section we recall some tools that are used in deriving determinability conditions and designing

observers. Roughly speaking, the switched system (1) is determinable if there exists m ∈ N

such that x(tm) could be determined from the knowledge of external signals (u, v, y) measured

over the interval [t0, tm+1). Because x(t−m+1) = eAm+1(tm+1−tm)x(tm), the unknown information

contained in x(tm) and x(t−m+1) is the same, so that, recovering x(tm) is equivalent to recovering

x(t−m+1). We now proceed towards quantifying the unknown information about the state using

the measurements of (u, v, y) over a certain interval. Since our notion of observability does

not require individual subsystems to be observable, the basic idea in formulating the geometric

conditions that quantify the unknown information is to characterize how much information could

be extracted from each subsystem about the state by measuring the output over a certain interval.

To do so, it is seen that system (1) is an LTI system between two consecutive switching times, so

that its unobservable subspace on the interval [tq−1, tq) is simply given by the largest Aq-invariant

subspace contained in kerCq, i.e., kerGq where

Gq := col(Cq, CqAq, · · · , CqAn−1q ).

For system (1), let Qmq be the subspace such that x(t−m) is determined modulo Qmq using the

knowledge of external signals (u, v, y) over the interval [tq−1, tm). We callQmq the undeterminable
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subspace for [tq−1, tm) and compute it recursively as follows for q ∈ N:

Qqq := kerGq

Qkq := kerGk ∩ Ek−1eAk−1τk−1Qk−1q , q + 1 ≤ k ≤ m,
(2)

where τk := tk − tk−1. Alternatively, by computing the orthogonal complement of Qmq and

denoting it by Mm
q , we can quantify the information about the state trajectory that can be

recovered using the signals (u, v, y). The recursive expression for Mm
q is thus given by

Mq
q = R(G>q )

Mk
q = E−>k−1e

−A>k−1τk−1Mk−1
q +R(G>k ), q + 1 ≤ k ≤ m,

(3)

where the notation E−>M denotes (E>)−1M := {x ∈ Rn |E>x ∈M} for a matrix E ∈ Rn×n

and a subspace M⊆ Rn. From (3), it is observed that the dimension of Mk
q is non-decreasing

when k increases and q is fixed. We now characterize the determinability of system (1) using these

subspaces in the following result which follows directly from [2, Proposition 1 & Theorem 3]:

Theorem 1 (Determinability Characterization): Consider the switched system (1) with (u, v) ≡

0. Then Qmq for some m ≥ q ≥ 1 characterizes the undeterminable space in the following sense:

y[tq−1,tm) ≡ 0 ⇔ x(t−m) ∈ eAmτmQmq .

In particular, if there exists m ≥ q such that Qmq = {0}, or equivalentlyMm
q = Rn, then the state

x(tm−1), and hence the complete future trajectory x[tm−1,∞), can be determined for system (1)

(with possibly non-zero (u, v)) from the knowledge of (u, v, y) on the interval [tq−1, tm).

Remark 1: We are often interested in deriving a direct formula for Qmq instead of the recursive

one given in (2). For that, let us consider the matrix

Ψk
j := Ek−1e

Ak−1τk−1 . . . Eje
Ajτj , k > j

which defines the flow of system (1) with zero inputs from tj−1 to tk−1, and assume that the

following condition holds for k ≥ q + 2, i = 1, 2, . . . , k − q − 1, q ∈ N:

Ψk
k−i(kerGk−i ∩Ψk−i

k−i−1Q
k−i−1
q ) = Ψk

k−i kerGk−i ∩Ψk
k−i−1Qk−i−1q . (4)

It is readily checked that, if (4) holds, then the sequential definition (2) leads to another equivalent

expression for Qmq , m ≥ q ≥ 1, that is,

Qmq =
⋂

j=m,...,q

Ψm
j kerGj = kerGm ∩ Em−1 ker(Gm−1) ∩

(
m−2⋂
i=q

i+1∏
l=m−1

Ele
AlτlEi kerGi

)
, (5)
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where Ψk
k denotes the identity matrix and we used the fact that eAkτk kerGk = kerGk, for k ∈ N.

Condition (4) indeed holds when each of the matrix Eq, q ∈ N, is invertible because in that case

the mapping Ψk
j , for all j, k ∈ N, k > j, is invertible. In [2, Section II.C], no such condition

as (4) was specified and the equality (5) was claimed to hold without any constraints on the

state reset maps Eq. We emphasize that [2, pg. 896, eq. (13)] holds if and only if (4) is satisfied.

Similarly, when (4) holds, one can obtain an equivalent expression for Mm
q from (3):

Mm
q = (Qmq )⊥ =

m−2∑
i=q

i+1∏
l=m−1

E−>l e−A
>
l τlE−>i R(G>i ) + E−>m−1R(G>m−1) +R(G>m). (6)

Once again, in [2, pg. 896, Remark 2], (6) was claimed to hold without specifying condition

(4), and we emphasize that this may not be the case for arbitrary non-invertible state reset maps

Eq, q ∈ N. Equation (6) was used in the proof of convergence of state estimation error [2,

Theorem 4], and thus for that result to be valid, condition (4), or (the simpler but stronger

requirement of) invertibility of each matrix Eq, q ∈ N, must be added to [2, Assumption 1].

III. OBSERVER DESIGN

Using the geometric conditions for determinability stated in the previous section, we now

proceed to design an asymptotically convergent observer without requiring the matrices Eq,

q ∈ N, to satisfy (4). Our proposed observer is given by:

˙̂x(t) = Aqx̂(t) +Bqu(t), t ∈ [tq−1, tq), (7a)

x̂(tq) = Eq(x̂(t−q )− ξq) + Fqvq, (7b)

with an arbitrary initial condition x̂(t0) ∈ Rn and the expression for ξq will be computed in the

sequel. The observer consists of a system copy and unlike classical methods where the continuous

dynamics of the estimate are driven by an error injection term, the observer (7) updates the state

estimate only at discrete switching instants by an error correction vector ξq. It is noted that the

structure of the observer (7) is the same as one proposed in [1], [2]. However, the difference

lies in the computation of ξq as the approach adopted in this note is different in several aspects

which we highlight later.

To give an intuitive interpretation of how to calculate ξq, note that, if for some q ∈ N, ξq

equals the state estimation error x̂(t−q )− x(t−q ), then the equation (7b) gives x̂(tq) = x(tq), and

from there onwards we can recover the exact value of the trajectory x by setting ξk = 0 for
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k > q. However, in practice, where we don’t use the derivatives of the output, it is not easy to

recover the exact value of the state estimation error. Thus, our goal is to compute ξq, for each

q ∈ N, such that it approximates the value of state estimation error at time t−q which will result

in x̂(t) converging to x(t) as t increases.

With this motivation, we introduce the state estimation error x̃ := x̂−x, and the error dynamics

are given by

˙̃x(t) = Aqx̃(t), t ∈ [tq−1, tq), (8a)

x̃(tq) = Eq(x̃(t−q )− ξq). (8b)

The corresponding output error is defined as

ỹ(t) := Cqx̂(t) +Dqu(t)− y(t) = Cqx̃(t), t ∈ [tq−1, tq).

The basic idea in computing ξq is to

• First identify the observable components of the individual subsystems that can be estimated

using classical state-estimation techniques. For subsystem p ∈ N, let zp : [tp−1, tp)→ R(G>p )

denote its observable component.

• Secondly, derive an equation for x̃(t−q ) of the form

x̃(t−q ) = Ξq(zq(t
−
q ), zq−1(t

−
q−1), · · · , zq−N(t−q−N), ξq−1, · · · , ξq−N) (9)

for some linear function Ξq(·) and N ∈ N.

• Finally, letting ẑqp : [tp−1, tp)→ R(G>p ) denote the estimate of zp which we compute at t−q ,

q > N , q −N ≤ p ≤ q, we set

ξq = Ξq(ẑ
q
q(t
−
q ), ẑqq−1(t

−
q−1), · · · , ẑ

q
q−N(t−q−N), ξq−1, · · · , ξq−N). (10)

We will develop calculations for each of the aforementioned steps in detail and arrive at a

formal statement on error convergence that results from the observer. To do that, we need to

introduce some assumptions that allow us to follow this proposed line of thought.

The identification of observable components in the first step could be achieved easily by

Kalman-like decomposition. For the second step, however, where we want to write x̃(t−q ), for

each q ∈ N, in terms of the observable components of the currently active mode and some past

modes, we need the following assumption on the switching signal and system dynamics:
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Assumption 1: The switched system (1) is persistently determinable in the sense that there

exists an N ∈ N such that

dimMq
q−N = n, ∀ q ≥ N + 1. (11)

The integer N in Assumption 1 is interpreted as the minimal number of switches required to

gain determinability.

For the third step, it is seen that if ẑqq−k(t
−
q−k) “closely approximates” zq−k(t

−
q−k), for k =

0, . . . , N , then (8) implies that the norm of the state estimation error at switching instants x̃(tq)

is “close” to zero. Since the individual subsystems are not assumed to be observable, so that the

error dynamics for a particular mode (between any two switching instants) cannot be stabilized

by output injection, it is important to update the estimate repeatedly for asymptotic convergence

and also make sure that the error doesn’t get arbitrarily large between the two switching instants.

This motivates us to introduce the following assumptions for our observer design:

Assumption 2: The switching is persistent in the sense that a switch occurs at least once in

any time interval of length TD; that is,

tq − tq−1 < TD, ∀ q ∈ N. (12)

Assumption 3: The induced matrix norms ‖Aq‖ are uniformly bounded for all q ∈ N.

Note that Assumption 3 holds when Aq, q ∈ N, belong to a set of finite elements. By placing a

uniform bound on the time between two consecutive error updates in Assumption 2, we can get

a bound on the maximum growth of the state estimation error between two consecutive switches

which is eventually compensated by obtaining sufficiently close approximations of observable

components.

In the sequel, the above thought process is formalized by setting up a machinery to compute

the correction vector ξq. The explicit formula appears in equation (20) and we show in Theorem 2

that by choosing certain design parameters in the computation of ξq appropriately, the estimate

indeed converges to the actual state. To keep the presentation simple, we will neglect the effect

of computation time required in processing the stored information and computing ξq. In order to

take into account the computation time, the idea developed in this note could be tailored within

the framework of [2] to obtain similar results, albeit implemented differently.
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A. Observability decomposition of error dynamics

As a first step in computing ξq, q ∈ N, we want to write x̃ in terms of observable components

of individual subsystems. To do that, we first find a coordinate change for each mode, similar

to the Kalman decomposition. For each p ∈ N, choose a matrix Zp such that its columns are

an orthonormal basis of R(G>p ), so that R(Zp) = R(G>p ). Similarly, choose a matrix Wp such

that its columns are an orthonormal basis of kerGp. From the construction, there are matrices

Sp ∈ Rrp×rp and Rp ∈ Rdy×rp , where rp = rankGp, such that Z>p Ap = SpZ
>
p and Cp = RpZ

>
p ,

and that the pair (Sp, Rp) is observable. Let zp := Z>p x̃ ∈ Rrp and wp := W>
p x̃ ∈ Rn−rp . Then,

for the interval [tp−1, tp), we obtain,

żp = Z>p Apx̃ = Spzp, ỹ = Cpx̃ = Rpzp, (13a)

zp(tp−1) = Z>p x̃(tp−1), (13b)

which denotes observable components of the error dynamics (8), for mode p ∈ N during the

interval [tp−1, tp). Since zp is observable over the interval [tp−1, tp), a standard Luenberger

observer is designed as

˙̂zqp(t) = Spẑ
q
p(t) + Lqp(ỹ(t)−Rpẑ

q
p(t)), t ∈ [tp−1, tp), (14a)

ẑqp(tp−1) = 0, (14b)

whose role is to estimate zp(t−p ) at the end of the interval. This observer parses the data from ỹ

over the interval [tp−1, tp), and ẑqp(t
−
p ) is used in the computation of ξq, max{p,N + 1} ≤ q ≤

p+N . Note that we have fixed the initial condition of the estimator to be zero for each interval.

Since x̃(t−q ) can be written as,

x̃(t−q ) =

Z>q
W>
q

−1 zq(t−q )

wq(t
−
q )

 = Zqzq(t
−
q ) +Wqwq(t

−
q ), (15)

we obtain partial information of x̃(t−q ) in the sense that Zqzq(t−q ) can be recovered, but the value

of x̃(t−q ) remains unknown because it is corrupted by the unobservable state wq(t−q ).

B. Computing the vector ξq

The differences between the current observer and the observers treated in [1], [2] start at this

stage as we will see that the calculations for the error correction vector ξq, and the gain criteria

for asymptotic convergence are entirely different.
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For p, q ∈ N with p ≤ q let M q
p and Qq

p be matrices such that their columns are an orthonormal

basis of e−A
>
q τqMq

p and eAqτqQqp, respectively. The corresponding projections of x̃(t−q ) onto these

subspaces can be expressed by letting µqp := M q
p
>x̃(t−q ) and χqp := Qq

p
>x̃(t−q ). Thus, it is seen

that in addition to (15), another way of expressing x̃(t−q ) is:

x̃(t−q ) =

M q
p
>

Qq
p
>

−1 µqp
χqp

 = M q
pµ

q
p +Qq

pχ
q
p. (16)

The definition of µqp implies that it contains the information of the error x̃(t−q ) which we are

able to extract from the output on the interval [tp−1, tq) as given by the observability space

Mq
p. For q > N , determinability of the system (Assumption 1) ensures that µqq−N contains all

the information of x̃(t−q ); in fact M q
q−N is then an invertible matrix and hence the equation

µqq−N = M q>
q−N x̃(t−q ) is uniquely solvable for x̃(t−q ).

We are interested in representing x̃(t−q ) only in terms of the known vectors µqp, and eliminate

its dependency over the terms involving χqp, p = q, q − 1, . . . , q −N . For that, we introduce the

matrix Θq
p whose columns form the basis of the subspace R(eAq+1τq+1EqQ

q
p)
⊥; that is,

Θq
p
>eAq+1τq+1EqQ

q
p = 0. (17)

Compared to the case treated in [1], [2], the key difference is that we do not transport

the observable components of the individual subsystems to one time instant through the state-

transition matrix. Instead, we gather all the observable information for x̃(t−q−1) over the interval

[tp−1, tq−1) into the vector µq−1p , p < q, and combine it with the local observability information

zq(t
−
q ) of x̃(t−q ) obtained on the interval [tq−1, tq) in order to recover more information for x̃(t−q ),

represented by µqp. For that, the following relationship between x̃(t−q ) and µq−1p , p < q, is crucial:

x̃(t−q ) = eAqτqEq−1(x̃(t−q−1)− ξq−1)

= eAqτqEq−1
(
M q−1

p µq−1p +Qq−1
p χq−1p − ξq−1

)
. (18)

Combining this with (15) and (17), we obtain Z>q

Θq−1
p
>

 x̃(t−q ) =

 zq(t
−
q )

Θq−1
p
>
eAqτqEq−1

(
M q−1

p µq−1p − ξq−1
)
 ,

where the right-hand side consists of observable, or known terms only, which allow us to

accumulate more information about x̃(t−q ) by combining zq(t
−
q ), µq−1p , and ξq−1 accordingly.
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Consider a full column rank matrix U q
p such that

[Zq,Θ
q−1
p ]U q

p = M q
p .

This matrix always exists because from the definition of Mq
p and Zq it follows that

R(M q
p ) = R([Zq,Θ

q−1
p ]).

Indeed, note that R(Θq−1
p ) = e−A

>
q τqE−>q−1e

−A>q−1τq−1Qq−1⊥p , so that

R(M q
p ) = e−A

>
q τqMq

p

= e−A
>
q τq(E−>q−1e

−A>q−1τq−1Mq−1
p +R(G>q ))

= R(Θq−1
p ) +R(Zq),

where the last equality was obtained using the fact that R(G>q ) is invariant under A>q , and

Mq−1
p = Qq−1⊥p . From µqp = M q

p
>x̃(t−q ), it now follows that

µqp = U q
p
>

 Z>q

Θq−1
p
>

 x̃(t−q )

= U q
p
>

 zq(t
−
q )

Θq−1
p
>
eAqτqEq−1

(
M q−1

p µq−1p − ξq−1
)


= U q
p
>

 Z>q 0

0 Θq−1
p
>
eAqτqEq−1

 Zqzq(t
−
q )

M q−1
p µq−1p − ξq−1


, JqpZqzq(t

−
q ) +Kq

p

(
M q−1

p µq−1p − ξq−1
)
. (19)

Note that (19) expresses the vector µqp recursively in terms of µq−1p . Recall thatMp
p = R(G>p ) =

R(Zp), hence we can assume Mp
p = Zp and we have the “initial value” for the recursion (19)

given by µpp = zp(t
−
p ).

If zq−N , · · · , zq were known, then we would be able to compute µqq−N , and hence the error

x̃(t−q ) exactly, and would pick ξq = x̃(t−q ). Since this is not the case, we work with the estimates

ẑqq−N , · · · , ẑqq to compute ξq.

In summary, having introduced the matrices Zq and as in (13), M q
p as in (16), and Θq

p as in

(17), for q ∈ N, we let

ξq =

0, 1 ≤ q ≤ N,

M q
q−N µ̂

q
q−N , q > N,

(20a)
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where µ̂q−kq−N , for k = N − 1, · · · , 0, is computed recursively as follows:

µ̂q−Nq−N = ẑqq−N(t−q−N)

µ̂q−kq−N = Jq−kq−NZq−kẑ
q
q−k(t

−
q−k) +Kq−k

q−N

(
M q−k−1

q−N µ̂q−k−1q−N − ξq−k−1
)
,

(20b)

and

[Jq−kq−N , K
q−k
q−N ] := U q−k

q−N
>

Z>q−k 0

0 Θq−k−1
q−N

>
eAq−kτq−kEq−k−1

 . (20c)

C. Error Convergence and Gain Criterion

The only design parameters in the computation of ξq, q > N , are the gain matrices Lqp,

p = q − N, . . . , q which were introduced in obtaining the estimates ẑqp in (14). It is not true

that every choice of Lqp, that makes (Sp − LqpRp) Hurwitz, would actually result in asymptotic

convergence of the state estimation error. In order to state the criteria for choosing the gain

matrix that guarantees the convergence of the state estimation error to zero, for each p ∈ N, and

max{p,N + 1} ≤ q ≤ p+N , we introduce the matrices

Λq
p := e(Sp−Lq

pRp)τp . (21)

Since the pair (Sp, Rp), p ∈ N is observable in the classical sense, the norm of Λq
p can be made

arbitrarily small by choosing Lqp appropriately. In order to make precise statements about the

“smallness” of Λq
p we need to define the following matrices for q > N , k = N − 2, . . . , 0 and

i = 0, . . . , N − k − 1

V q−N+1
q−N,q−N := Kq−N+1

q−N (22a)

V q−N+1
q−N,q−N+1 := Jq−N+1

q−N (22b)

V q−k
q−N,q−N+i := Kq−k

q−NM
q−k−1
q−N V q−k−1

q−N,q−N+i (22c)

V q−k
q−N,q−k := Jq−kq−N . (22d)

The main result on observer convergence now follows:

Theorem 2: Consider the observer (7) under Assumptions 1 – 3, with ξq given in (20). If,

for each q > N , and k = N, . . . , 0, the output injection matrices Lqq−k are chosen to reduce the

norm of Λq
q−k such that, for some 0 < c < 1

N+1
,

‖EqM q
q−NV

q
q−N,q−kZq−kΛ

q
q−kZ

>
q−k‖ ≤ c, (23)

May 15, 2014 DRAFT



11

then, it holds that limt→∞ |x̂(t)− x(t)| = 0.

Remark 2: An important thing to note is that ẑqp (with q varying) represent the estimate of the

same variable zp, and the computation of ξq depends on ẑqp(t
−
p ), max{q −N, 1} ≤ p ≤ q. For a

fixed p ∈ N, condition (23) requires that, the gains Lqp, max{p,N + 1} ≤ q ≤ p + N , used to

generate the estimate ẑqp must satisfy (at most) N + 1 different inequalities, each corresponding

to a different value of q. Hence, even for the estimates of a single mode p ∈ N, we have N + 1

different gain criteria (given by Lqp), because the estimates of that mode are used for (at most)

N + 1 subsequent error correction updates ξq, max{p,N + 1} ≤ q ≤ p+N . If the knowledge of

switching times is available offline, then the gains can be computed offline, else verifying (23)

for each q > N , would require the knowledge of τq−k, k = N, . . . , 0. Choosing different gains

for the estimates of the observable components of a single mode is in contrast to the strategy

adopted in [2], which only relied on recycling the single estimate (and choosing single gain

matrix) for every single mode.

Proof of Theorem 2: Using (8), it follows from Assumptions 2 and 3 that the estimation

error x̃(t) for the interval [tq, tq+1) is bounded by

|x̃(t)| = |eAq+1(t−tq)x̃(tq)| ≤ ebA(t−tq)|x̃(tq)|, t ∈ [tq, tq+1),

with a constant bA such that ‖Aq‖ ≤ bA, for all q ∈ N, and thus,

|x̃(t)| ≤ ebATD |x̃(tq)|, t ∈ [tq, tq+1).

Therefore, if |x̃(tq)| → 0 as q →∞, then convergence of x̂(t) towards x(t) as t→∞ follows.

It is noted that, for q > N , x̃(t−q ) = M q
q−Nµ

q
q−N by definition, and ξq = M q

q−N µ̂
q
q−N using (20),

so that,

x̃(tq) = Eq(x̃(t−q )− ξq) (24a)

= EqM
q
q−N(µqq−N − µ̂

q
q−N) (24b)

= −EqM q
q−N µ̃

q
q−N , (24c)

where µ̃qq−N := µ̂qq−N − µ
q
q−N . In the sequel, we will derive an expression for µ̃qq−N for a fixed

q > N and plug it in (24c) to show that |x̃(tq)| converges to zero as q increases.
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Towards this end, we first compute the difference z̃qp := ẑqp−zp, for q−N ≤ p ≤ q, as follows:

z̃qp(t
−
p ) = ẑqp(t

−
p )− zp(t−p )

= e(Sp−Lq
pRp)τp z̃qp(tp−1)

= −e(Sp−Lq
pRp)τpZp

>x̃(tp−1).

As a first step in arriving at the expression for µ̃qq−N , we observe that µ̃q−Nq−N = z̃qq−N(t−q−N) and

we compute µ̃q−N+1
q−N as follows:

µ̃q−N+1
q−N = µ̂q−N+1

q−N − µq−N+1
q−N

= Jq−N+1
q−N Zq−N+1z̃

q
q−N+1(t

−
q−N+1) +Kq−N+1

q−N Zq−N z̃
q
q−N(t−q−N)

= −
1∑
i=0

V q−N+1
q−N,q−N+iZq−N+iΛ

q
q−N+iZ

>
q−N+ix̃(tq−N+i−1).

Finally, with these calculations, the expression for µ̃q−kq−N , k = N−2, . . . , 0, is derived recursively

below:

µ̃q−kq−N = µ̂q−kq−N − µ
q−k
q−N

= Jq−kq−NZq−kz̃
q
q−k(t

−
q−k) +Kq−k

q−NM
q−k−1
q−N µ̃q−k−1q−N

= −
N−k∑
i=0

V q−k
q−N,q−N+iZq−N+iΛ

q
q−N+iZ

>
q−N+ix̃(tq−N+i−1).

Plugging this expression for µ̃qq−N in (24c), we now obtain

x̃(tq) = EqM
q
q−N

q∑
i=q−N

V q
q−N,iZiΛ

q
iZ
>
i x̃(ti−1). (25)

From condition (23), it now follows that

|x̃(tq)| ≤ c

q∑
i=q−N

|x̃(ti−1)|

for some 0 < c < 1
N+1

. Using Lemma 1 in [1], we obtain limq→∞ |x̃(tq)| = 0, which proves the

desired result.
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IV. SIMULATIONS

To illustrate our observer design, we consider a simple academic example of a third order

(n = 3) switched system with three modes where Aq, Bq, Fq, Dq, q ∈ N, are zero matrices of

appropriate dimensions. The output measurements are given by:

C3k−2 = [1 0 0], C3k−1 = [0 1 0], C3k = [0 0 1], k ≥ 1

and the state reset maps are:

E3k−2 = E3k = I3×3, E3k−1 =
[
1 1 0
1 1 0
0 0 1

]
, k ≥ 1.

For this system, it can be checked that Assumption 1 indeed holds, that is, dimMq
q−N = 3, for

each q > 2, where we take N = 2. The observer (7) is now implemented to obtain the state

estimate in which we let ξ1 = ξ2 = 0. For q ≥ 3, the following expressions are obtained for the

vector ξq using the calculations in the previous section:

ξ3k =


ẑ3k3k−2 + ẑ3k3k−1

ẑ3k3k−2 + ẑ3k3k−1

ẑ3k

−

ξ3k−2(1) + ξ3k−1(1) + ξ3k−1(2)

ξ3k−2(1) + ξ3k−1(1) + ξ3k−1(2)

0

 , k ≥ 1,

ξ3k+1 =


ẑ3k3k+1

0

ẑ3k3k

−


1√
2
ξ3k(1)− 1√

2
ξ3k(2)

1√
2
ξ3k(2)− 1√

2
ξ3k(1)

ξ3k(3)

 , k ≥ 1,

ξ3k+2 =


ẑ3k3k+1

ẑ3k3k+2

ẑ3k3k

−


ξ3k+1(1)

0

ξ3k+1(3) + ξ3k(3)

 , k ≥ 1,

where we use the notation ξq(j) to denote the j-th component of the vector ξq and the short-hand

ẑqp to denote ẑqp(t
−
p ), which for each p ∈ N, and max{p, 3} ≤ q ≤ p + 2, is obtained from the

following equation:

˙̂zqp(t) = −lqpỹ(t), t ∈ [tp−1, tp), ẑqp(tp−1) = 0.

For simplicity, if we let lqp = l, and τp = τ for some l, τ > 0 and each p ∈ N, then the condition

(23) boils down to:
√

2 · e−lτ < 1

3
⇔ l >

log 3
√

2

τ
.
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Fig. 1. The plot shows the state estimates x̂i, i = 1, 2, 3 (dashed lines in blue) converging to the actual states of the plant xi,

i = 1, 2, 3 (solid lines in red).

For τ = 1, the simulation results are shown in Figure 1. The plots show the continuous

and discrete nature of the error dynamics where the estimate doesn’t improve between the two

switching instants and only when the correction ξq is applied, the estimate gets closer to the

actual state value.
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