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Part I : Overview of Stability Analysis

A combined reference for the material in these lectures is:

B. Brogliato and A. Tanwani, Dynamical systems coupled with monotone
set-valued operators: Formalisms, applications, well-posedness, and stability.
Submitted for publication, 2019.

Useful references for related topics:

S. Adly. A Variational Approach to Nonsmooth Dynamics: Applications in
Unilateral Mechanics and Electronics, Springer Briefs in Mathematics,
Springer International Publishing, Cham, 2017.

R. Goebel, R. Sanfelice, and A. Teel. Hybrid Dynamical Systems: Modeling,
Stability, and Robustness. Princeton Press, 2012.

H.-K. Khalil. Nonlinear Systems, Prentice Hall, 3rd ed., 2002.

D. Liberzon. Switching in systems and control. Birkhaüser, 2003.

R.-I. Leine and N. van de Wouw, Stability and Convergence of Mechanical
Systems with Unilateral Constraints, vol. 36 of Lecture Notes in Applied and
Computational Mechanics, Springer-Verlag, Berlin Heidelberg, 2008.
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A Model Differential Inclusion

Consider the differential inclusion

ẋ(t) ∈ F (x(t)), t ≥ t0, x(0) = x0 ∈ dom(F ) (DI)

where it is assumed that

F : dom(F ) ⇒ Rn is closed, and convex valued.

dom(F ) is closed.

The solution at time t, starting from x(t0) = x0 is denoted by x(t, t0, x0), or
simply x(t, x0) if t0 = 0.

For each T > 0, there exists a unique absolutely continuous solution
x : [0, T ]→ Rn that satisfies (DI) for almost every t ≥ 0.

If x0 = 0, then x(t, 0) ≡ 0, for all t ≥ 0, that is, {0} is an equilibrium.

Regularity of F is not being specified, which may be necessary for existence
of solutions in the first place.

Most of the discussion will revolve around stability of the origin.
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Stability Notions

Definition

(Stability) The origin is stable if for every ε > 0 there exists δ > 0 such that

x0 ∈ dom(F ), ‖x0‖ ≤ δ ⇒ ‖x(t, x0)‖ ≤ ε, ∀t ≥ 0.

(Attractivity) The origin is attractive if there exists δ > 0 such that

x0 ∈ dom(F ), ‖x0‖ ≤ δ ⇒ lim
t→+∞

‖x(t;x0)‖ = 0.

(Asymptotic Stability) The origin is asymptotically stable if it is stable and
attractive.

(Exponential Stability) The origin is exponentially stable if there exists
c0 > 0 and α > 0 such that ‖x(t;x0)‖ ≤ c0e−αtx0, for every x0 ∈ dom(F ).

Exercise: Can you think of a system which is attractive but not stable?
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Lyapunov Functions: Basic Idea

Stability is analyzed using a function V : Rn → R+.

Consider, for the moment, a single-valued system

ẋ = f(x)

then the derivative of V along the trajectories of this system is

V̇ (x) =
n∑
i=1

∂V

∂xi
ẋi =

n∑
i=1

∂V

∂xi
fi(x) = 〈∇V (x), f(x)〉

Also, if x(0) = z, we can write,

V̇ (z) =
d

dt
V (x(t; z))

∣∣∣
t=0

Therefore, if V̇ is negative, V decreases along the solutions of the system.
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Lyapunov Functions: Stability Conditions

Theorem (Lyapunov Conditions)

Consider the system (DI). Suppose that there exists V : Rn → R such that

V is continuously differentiable and positive definite on dom(F ),

For each x ∈ dom(F )
max
f∈F (x)

〈∇V (x), f〉 ≤ 0,

then {0} is Lyapunov stable.

Furthermore, if there exists W : Rn → R, continuous and positive definite, such
that

max
f∈F (x)

〈∇V (x), f〉 ≤ −W (x)

then {0} is asymptotically stable.

A function V : Rn → R is positive definite on dom(F ), if it is continuous on
dom(F ), V (0) = 0, and V (x) > 0 for every x 6= 0, x ∈ dom(F ).
Proof: on the board in a while.
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Some Subtleties-I

Exercise: Consider a single-valued system in R2:

ẋ1 = − 2x1
1 + x21

+ 2x2

ẋ2 = −2
x1 + x2

(1 + x21)2

Consider the Lyapunov function

V (x) =
x21

1 + x21
+ x22.

What can you conclude?

V (x) > 0 and 〈∇V (x), f〉 < 0, for x ∈ R2 \ {0}.
The system is asymptotically stable, but not globally. Look at the curve

(γ) ∈ R2 describe by (1 + x21)(x2 − 2)− 1 = 0.

V̇ (x) = − 4x21
(1 + x21)4

− 4x22
(1 + x21)2

Aneel Tanwani (LAAS – CNRS, France) Nonsmooth Systems: Stability and Control 16/10/2019 8 / 31



Overview Lur’e and Passivity Constraints and Nonlinearity

Example of Unbounded Level Sets

Figure: Unbounded level sets of a Lyapunov function.
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Radially Unbounded Functions

How can we conclude global asymptotic stability?

In the proof, as we choose ε large, level sets of V may not be bounded, and
δ-ball of initial condition stays bounded.

To remedy this situation, we need V whose finite-level sets are compact.

We say that V is radially unbounded if,

‖x‖ → ∞ ⇒ V (x)→∞

Consequently, for each c > 0, there is r > 0, such that Ωc ⊂ Br.

In the preceding theorem, if we add the condition that V is radially
unbounded, then {0} is globally asymptotically stable.
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Some Subtleties-II

Exercise: Consider a single-valued system in R2:

ẋ1 = −a x1 − x1x2, a > 0

ẋ2 = γx21

Consider the Lyapunov function

V (x) =
1

2
x21 +

1

2γ
x22

What can you conclude? V̇ (x) = −a x21 ≤ 0.
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An Example

Consider the system:
ẋ1 = x2

ẋ2 = −ax2 − g(x1)

where a > 0 (the damping coefficient) and g is such that g(0) = 0 and
ax21 ≤ x1g(x1) ≤ bx21.
Consider the Lyapunov function:

V (x) =
x22
2

+

∫ x1

0

g(s) ds

then V is positive definite, and

V̇ (x) = −a x22 ≤ 0

What can you conclude? Can you justify that the origin is asymptotically stable?

Motivation for Invariance Principle:

The condition V̇ (x) ≤ 0 guarantees stability, but in some cases, it is also possible
to deduce asymptotic stability from such situations. These results are formalized
under the notion of LaSalle Invariance Principle.
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LaSalle’s Invariance Principle

ẋ = f(x), x(0) ∈ Rn. (ODE)

Theorem (Invariance Principle)

Consider system (ODE). Suppose that there exists a positive definite C1 function
V : Rn → R such that V̇ (x) ≤ 0, for every x.

Let M be the largest invariant set contained in the set {x ∈ Rn | V̇ (x) = 0}.
Then the origin of (ODE) is stable. If, in addition, V is radially unbounded, then
every solution approaches M as t→∞.

Radial unboundedness can be relaxed. If it can be established that a solution
remains bounded, then that solution approaches M as t→∞.
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Time-Varying Systems

ẋ(t) ∈ F (t, x(t)), x(t0) ∈ dom(F (t0, ·))

Definition

The origin is stable if for every ε > 0 there exists δ(t0, ε) > 0 such that

x(t0) ∈ dom(F ), ‖x(t0)‖ ≤ δ ⇒ ‖x(t, x0)‖ ≤ ε, ∀t ≥ t0.

The origin is uniformly stable if for every ε > 0 there exists δ(ε) > 0 such
that

x0 ∈ dom(F ), ‖x0‖ ≤ δ ⇒ ‖x(t, x0)‖ ≤ ε,∀t ≥ t0.

There is dependence on initial time t0 in the definitions. We often consider
uniform stability notion in applications.

Lyapunov’s stability theorem extends with straightforward generalizations.

Invariance principle is not-so-straightforward. So, we often conclude that the
trajectories to the set {V̇ (x) = 0}.
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Part II : Lur’e Structures and Passivity

B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative Systems
Analysis and Control, Communications and Control Engineering, Springer
Nature Switzerland AG, London, third ed., 2020.

M.-K. Camlibel and J.-M. Schumacher, Linear passive systems and maximal
monotone mappings, Mathematical Programming B, 157 (2016),
pp. 397–420.

A. Tanwani, B. Brogliato, and C. Prieur, Stability and observer design for
Lur’e systems with multivalued, non-monotone, time-varying nonlinearities
and state jumps, SIAM Journal on Control and Optimization, 56 (2014),
pp. 3639–3672.

A. Tanwani, B. Brogliato, and C. Prieur, Observer design for unilaterally
constrained Lagrangian systems: A passivity-based approach, IEEE
Transactions on Automatic Control, 61 (2016), pp. 2386–2401.

A. Tanwani, B. Brogliato, and C. Prieur, Well-posedness and output
regulation for implicit time-varying evolution variational inequalities, SIAM
Journal on Control and Optimization, 56 (2018), pp. 751–781.
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Nonsmooth Systems as Lur’e System

A nonsmooth system: For a given quadruple (A,B,C,D), consider the system

ẋ = Ax+Bλ

y = Cx+Dλ

λ ∈ −Mt(y)

where Mt : Rp ⇒ Rp is a maximal monotone operator for each t ≥ 0, so that

−〈λ1 − λ2, y1 − y2〉 ≥ 0,

Feedback perspective: A linear system with set-valued nonlinearities in feedback.

ẋ = Ax+Bλ

λ ∈Mt(y)
y = Cx+Dλ

−
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Lur’e structure

ẋ = Ax+Bu

u ∈ ϕ(t, y)
y = Cx+Du

−

Lur’e system: A linear system with nonlinearities in the feedback

Definition (Sector bounded nonlinearities)

Consider a class of functions Φ[a,b] such that each Φ 3 ϕ : R≥0 × Rp → Rp
belongs to the sector [a, b]:

For each t ≥ 0, ϕ(t, 0) = 0.

For each t ≥ 0,
〈
ϕ(t, y)− ay, by − ϕ(t, y)

〉
≥ 0, for each y ∈ Rp

If ϕ ∈ Φ[0,∞), then
〈
ϕ(t, y), y

〉
≥ 0, for each y ∈ Rp for each t ≥ 0.
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Absolute Stability Problem

Definition (Absolute Stability Problem)

Under what conditions on the quadruple (A,B,C,D), the dynamical system

ẋ = Ax+Bu, u = ϕ(Cx+Du)

is globally asymptotically stable for all ϕ ∈ Φ[a,b]?

Definition (Aizerman’s Conjecture with Linear Feedback)

Let D = 0, and p = 1, and Φ[a,b] be time-invariant. If the matrix (A− kBC),
k ∈ [a, b], is Hurwitz then the system

ẋ = Ax−Bϕ(Cx)

is asymptotically stable for each ϕ ∈ Φ[a,b].

Aizerman’s Conjecture holds for n = 1, 2. There is a counterexample for n = 3.
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Another Solution

Definition (Kalman’s Conjecture with Slope Restricted Nonlinearities)

Let D = 0, and p = 1, and Φ[a,b] be time-invariant. If the matrix (A− kBC),
k ∈ [a, b], is Hurwitz then the system

ẋ = Ax−Bϕ(Cx)

is asymptotically stable for each ϕ ∈ Φ[a,b], ϕ(0) = 0, a ≤ dϕ
dy (y) ≤ b.

Kalman’s Conjecture holds for n = 1, 2, 3. There is a counterexample for n = 4.

How do we solve the problem in general?

Circle criterion

Popov criterion

Positive Realness

Passivity
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Passivity and KYP Lemma

Σ :

{
ẋ = Ax+Bu

y = Cx+Du

Definition (Passivity)

System Σ is passive if there exists a positive semi-definite storage function V such
that

V (x(t))− V (x(0)) ≤
∫ t

0

〈u(s), y(s)〉 ds

holds along all solutions of Σ, for each x(0) ∈ Rn, for each t ≥ 0.

We say that Σ is strictly passive if there exists a storage function V , such that

V (x(t))− V (x(0)) ≤
∫ t

0

〈u(s), y(s)〉 ds−
∫ t

0

ψ(x(s)) ds

for some positive definite function ψ.
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PR and KYP Lemma

Lemma (Positive Real (PR) Lemma)

System Σ is passive with storage function V (x) = x>Px if and only if there exist
matrices L ∈ Rn×p and W ∈ Rp×p and a symmetric positive definite matrix
P ∈ Rn×n, such that:  A>P + PA = −LL>

B>P − C = −W>L>
D +D> = W>W.

Lemma (Kalman-Yakubovich-Popov (KYP) Lemma)

System Σ is strictly passive with storage function V (x) = x>Px if and only if
there exist matrices L ∈ Rn×p and W ∈ Rp×p and a symmetric positive
semi-definite matrix P ∈ Rn×n, such that: A>P + PA = −LL> − εP

B>P − C = −W>L>
D +D> = W>W.
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Absolute Stability Criterion for Nonsmooth Lur’e System


ẋ = Ax+Bλ

y = Cx+Dλ

λ ∈ −∂ϕ(y)

(EVI)

Theorem (Stability of the Origin)

Consider the (EVI), ϕ(·) proper convex LSC, 0 ∈ ∂ϕ(0), and (A,B,C,D) strictly
passive with LMI solution P = P> � 0. Then the origin is globally exponentially
stable.

Proof on the board. It follows from using the storage function V (x) = x>Px,
passivity definition, and monotonicity of the subdifferential.
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Invariance Principle for Nonsmooth Lur’e System


ẋ = Ax+Bλ

y = Cx+Dλ

λ ∈ −∂ϕ(y)

(EVI)

Theorem (Invariance Result)

Consider the (EVI), ϕ(·) proper convex LSC, 0 ∈ ∂ϕ(0), and (A,B,C,D) strictly
passive with LMI solution P = P> � 0. Let P be the largest invariant subset of
E = {z ∈ Rn | z>(A>P + PA)z = 0}. Then for each x0 ∈ dom(M), one has
limt→+∞ dP(x(t;x0)) = 0.
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Part III : Conic Constraints, Convex Optimization, and Lyapunov Functions

D. Goeleven and B. Brogliato. Stability and instability matrices for linear
evolution variational inequalities, IEEE Transactions on Automatic Control,
49 (2004), pp. 521–534.

M. Souaiby, A. Tanwani and D. Henrion. Cone-copositive Lyapunov functions
for complementarity systems: Converse result and polynomial approximation.
Submitted for publication.
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Constrained Systems

What if the nonsmooth system does not satisfy the passivity assumption?

Example: Consider the linear complementarity system

ẋ ∈
[
−1 −2
−1 −1

]
x−NR2

+
(x)

which is of the form Lur’e with quadruple B = C = I2×2 and D = 0.

There does not exist a positive definite matrix P such that the conditions of
KYP Lemma hold. This is because A is not Hurwitz.

The constrained, (or in this case complementarity) system is asymptotically
stable.

Constrained system may be unstable even if A is Hurwitz stable. In this case
also, the passivity assumptions do not hold.

How to modify the Lyapunov theory to handle constraints?
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A Model for Constrained Systems

System Class:

〈ẋ− f(x), v − x〉+ ϕ(v)− ϕ(x) ≥ 0, ∀ v ∈ Rn,∀x ∈ dom(∂ϕ) (EVI)

where

ϕ : Rn → R ∪ {∞} is convex, proper, lower semicontinuous, and

f : Rn → Rn is globally Lipschitz.

Exercise: Recall the definition of subdifferential of a convex function, and write
(EVI) using subdifferential of ϕ. Can you make connections with first order
sweeping process for some choice of ϕ?

Recall: For a convex, lower semicontinuous function ϕ : Rn → R ∪ {∞} , we say
that η ∈ ∂ϕ(x) if 〈η, y − x〉+ ϕ(x)− ϕ(y) ≤ 0 for all y ∈ Rn.
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Lyapunov Functions for Constrained Systems

Theorem (Sufficient Conditions with Constraints)

Consider the system (EVI). Assume that there exists a continuously differentiable,
positive definite function V (·) such that

V (0) = 0, and V (x) ≥ c‖x‖r for x ∈ dom(ϕ),

It holds that

〈f(x),∇V (x)〉+ ϕ(x−∇V (x))− ϕ(x) ≤ −λV (x), ∀x ∈ dom(∂ϕ),

then the following hold:

If λ = 0, then {0} is Lyapunov stable.

If λ > 0, then {0} is globally asymptotically stable.

Proof on the board.
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Copositive Lyapunov Functions

Cone-Complementarity System with Nonlinear Vector Fields:

ẋ = f(x) + η

K? 3 η ⊥ x ∈ K
where f ∈ C1(Rn;Rn), K is a closed convex cone, and K? is its dual.

Proposition (Sufficient Conditions with Copositive Functions)

Consider the system (EVI). Assume that there exists a continuously differentiable,
positive definite function V (·) such that

V (0) = 0, and V (x) ≥ c‖x‖r for x ∈ dom(ϕ),

x−∇V (x) ∈ K, for every x ∈ bd(K)

〈f(x),∇V (x)〉 ≤ −λV (x), for every x ∈ K.

then the following hold:

If λ = 0, then {0} is Lyapunov stable.

If λ > 0, then {0} is globally asymptotically stable.
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Quadratic Forms with Copositive Matrices

Question: Can we still work with quadratic functions for linear vector fields?

Definition (Copositive Matrices)

A matrix P ∈ Rn×n is said to be copositive on K if 〈Px, x〉 ≥ 0, for every
x ∈ K.

A matrix P ∈ Rn×n is said to be strictly copositive on K if there exists c > 0
such that

〈Px, x〉 ≥ c ‖x‖2, for everyx ∈ K

Positive semidefinite matrices ⊂ Copositive matrices
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Stability with Copositive Matrices

Proposition (Cone-Membership Conditions for Matrices)

Consider the system (EVI). Assume that there exists a matrix P = P> ∈ Rn×n
such that

P is strictly copositive.

x− Px ≥ 0, whenever xi = 0.

−(A>P + PA) is (strictly) copositive,

then the origin is (asymptotically) stable.
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Some Concluding Remarks

Under passivity structure, we have to solve linear programs to compute a
quadratic Lyapunov function with linear vector fields

For complementarity systems, without the passivity assumption, we end up
with copositive optimization problems.

Copositive programming is still a convex optimization problem, but it is
NP-hard.

Several algorithms exist for solving such problems, and in this workshop, our
paper talks about adapting those ideas for computing copositive Lyapunov
functions.
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