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1 Course Summary

This note is prepared in the spirit of summarizing the topics that we have covered during this course, and give some
references for the material that was not covered with sufficient depth in the class due to time constraints. For a
formal description of the material covered in this course, please go through to the references [15] and [9, 10].

1.1 Introduction and Calculus of Variations

We started this course with an overview of finite-dimensional optimization and studied first and second-order con-
ditions for computing the minima of a function. Several cases for unconstrained, and constrained problems were
studied. While these topics are a subject of many books, two standard references are [4, 17]. We then briefly dis-
cussed how these notions can be generalized for infinite-dimensional optimization. The conditions that we formulate
are rather abstract, and it is seen that for the class of problems encountered in calculus of variations, one can compute
explicit expressions. This way we derived the Euler-Lagrange equations which provide first oder necessary conditions
for a local weak extremum. We saw several simplified cases of this equation and studied its relevance in the context of
mechanics. One can also compute second order necessary conditions as well, although we did not cover it in the class.
We refer the readers to article [21] for some historical references and see how a classical problem like Brachristochrone
is solved using the tools we have studied. Several generalizations involving integral and non-integral constraints were
also studied which allowed us to handle the constraints modeled by ordinary differential equations.

1.2 Pontryagin’s Maximum Principle

In the context of finding optimal control for dynamical systems with cost functional in Bolza form, we extended the
variational approach to find first order necessary conditions for optimal control inputs. This leads us to canonical
equations for the state and the adjoint vector along the optimal trajectory, and we also see that the optimal control
maximizes the Hamiltonian. These are the two key statements in the Pontryagin’s Maximum Principle. One must
be careful with the fact that our derivation of these equations cannot be seen as a proof of maximum principle
which deals with local optimality in the stronger sense. Plus, certain assumptions (which were swept under the
rug) in adopting the variational approach, are addressed very elegantly in the actual proof of Maximum principle.
The two statements that we wrote down correspond to the cost functional in Lagrangian form and there was no
time-dependence in the Lagrangian or the system vector fields [2]. These are not the most general results related to
maximum principle. Interested reader may consult additional references such as [7, 19, 23].

We then saw the applications of maximum principle in the context of time-optimal control problems and in
particular how the bang-bang optimal controls are obtained as a solution to such problems for controllable linear
systems which are normal. For the discussion in class related to bounds on the number of switchings, please see [20,
Theorem 8.1.2]. The same reference extends the treatment of bang bang optimal controls to nonlinear systems by
discussing singular controls, and the role of Lie brackets in determining bang-bang optimal trajectories. A formal
result appears in [20, Theorem 8.3.1], which provides conditions under which there exists a time optimal bang-bang
control for nonlinear systems. One may also find a condensed version of these topics in [19, Handout 5]. However,
an interesting observation in nonlinear systems is that, for certain problems, the optimal control may be bang bang
but it may require infinitely many switches in finite-time, This is seen in Fuller’s problem formulated in plane, but it



may also happen in time-optimal control problems in higher dimensions. Again, [20, Section 8] provides a compact
discussion on these issues.

For numerical aspects concerning the implementation of optimal candidates generated by maximum principle, the
difficulty appears in finding algorithms for solving two-point boundary value problems, and the book [11] addresses
some numerical techniques to address these issues. Another reference which is useful from implementation viewpoint
is [18]. In the lab session, we implemented a simple instance of shooting method, which has its drawbacks. You may
find some related discussion on numerical techniques in [22, Chapter 9.

1.3 Dynamic Programming and Hamilton-Jacobi-Bellman Equations

Another approach for optimal control originates from dynamic programming [3]. Using the principle of optimality,
we saw that this approach leads to the formulation of Hamilton-Jacobi-Bellman (HJB) equation, which is a partial
differential equation, and the big advantage here is that it provides sufficient conditions for global optimality. How-
ever, even for relatively simple problems, it is difficult to compute. One tool for solving HJB equations numerically
is [5].

Also, we saw through examples that the value function may not be differentiable and hence the interpretation
of partial derivatives in HJB equation becomes ambiguous if the value function is not differentiable. This issue was
resolved in the seminal work [8], where the authors propose the notion of wviscosity solutions by employing the notion
of subdifferentials from nonsmooth analysis. You may consult the online lectures by second author [16].

1.4 Polynomial optimization and Moment-based techniques

This part of the course was based on a technique introduced in [12], see also [13], to solve globally nonconvex
optimization problems on multivariate polynomials with the help of a hierarchy of convex semidefinite programming
problems (linear matrix inequalities or LMI = linear programming problems in the cone of positive semidefinite
matrices). Instrumental to the development of this technique is the duality between the cone of positive polynomials
(real algebraic geometry) and the cone of moments (functional analysis). These basic objects were introduced, with
a special focus on conic optimization duality, and some illustrative examples were presented. Then, we studied
polynomial optimal control, which consists of minimizing a polynomial Lagrangian over a polynomial vector field
subject to semi-algebraic constraints on control and state, typically a nonconvex problem for which there is no solution
in classical Lebesgue spaces [14]. To overcome this, polynomial optimal control problems are first formulated as linear
programming (LP) problems in the cone of occupation measures (standard objects in Markov decision processes and
ergodic theory of dynamical systems), and infinite-dimensional convex duality is used to establish the link with
subsolutions of the HJB equation satisfied by the value function. Then, the Lasserre hierarchy is applied to solve
numerically these infinite-dimensional LP problems.

1.5 Applications

Using the aforementioned tools, we were able to address the Linear Quadratic Regulator problem in a more construc-
tive manner. Exploiting the quadratic nature of the Lagrangian, and the linearity of the system dynamics, we saw
that finding the optimal control (which is also a feedback law) boils down to solving Riccati differential equation
for a matrix of size n x n backwards in time, along with the system equations. In the infinite horizon case, under
the suitable controllability and observability assumption, this differential equation reduces to an algebraic equation
of matrices. This theory can be applied to deal with more generalized problems which may come up, for example,
in tracking a trajectory. The utility of Riccati equations is also seen in problems related to computing £2 gains
of a system, and hence are relevant in the context of designing robust controllers which minimize H° norm of the
transfer function from the disturbance to regulated output. As a follow up to the preliminary discussions in the class
on these topics, you may go through the books [1, 6], and [24] further details.
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