TIME DELAY APPROACH TO THE MODELING OF FLUID NETWORKS

David Novella
Emmanuel Witrant
Olivier Sename

GIPSA LAB, FRANCE
DELSYS Workshop
20-22 November 2013
Table of Contents.

INTRODUCTION

Different Approaches
Objective

Flow dynamics

Riemann Invariants

Method of Characteristics

Time Delay Model

Network Model
Outline

INTRODUCTION

Different Approaches
Objective

Flow dynamics

Riemann Invariants

Method of Characteristics

Time Delay Model

Network Model
Fluid Networks

Fluid network systems appear in different areas

Figure 1: Mine Ventilation Systems

Figure 2: Gas and Water Distribution Lines
Figure 3: Traffic Flow

Figure 4: Blood flow
The main difficulties of dealing with this class of systems are:

- High order nonlinear dynamics
- Complex interconnected flows
- Transport phenomena
Different Approaches

Lumped Parameter Model

- Modeling of pipes as lumped parameters
- Use of approximations of incompressible Navier-Stokes equation
- Network modeled using Kirchhoff’s laws
- Analogies with RL non-linear circuits
Different Approaches

Lumped Parameter Model

- Modeling of pipes as lumped parameters
- Use of approximations of incompressible Navier-Stokes equation
- Network modeled using Kirchhoff’s laws
- Analogies with RL non-linear circuits

- [Petrov et al., 1992]
- [HL et al., 1997]
- [Hu et al., 2003]
- [Koroleva and Krstic, 2005]
Boundary Feedback Control

- Modeling by means of partial differential equations
- Riemann invariants transformation
- Boundary control techniques
Boundary Feedback Control

- Modeling by means of partial differential equations
- Riemann invariants transformation
- Boundary control techniques

- [de Halleux et al., 2003], [Halleux, 2004]
- [Prieur et al., 2008]
- [Bastin et al., 2008]
- [Gugat and M., 2011], [Gugat et al., 2011]
Time-delay modeling

- Model for large convective flows
- Transport properties involved in the flow model
- Parameter estimation of the transport coefficient
- Using some appropriate physical hypotheses
- A mathematical equivalence is then obtained between the distributed model and a time-delay system
Time-delay modeling

- Model for large convective flows
- Transport properties involved in the flow model
- Parameter estimation of the transport coefficient
- Using some appropriate physical hypotheses
- A mathematical equivalence is then obtained between the distributed model and a time-delay system

- [Witrant and Marchand, 2008]
- [Witrant and Niculescu, 2010]
- [Bradu et al., 2010]
Aims

- To improve the classical lumped parameter model.
- To obtain a dynamic model from the physics properties.
- To introduce the transport phenomena as a time-delay.

Figure 5: Fluid Flow Network
INTRODUCTION

Flow dynamics
Riemann Invariants
Method of Characteristics
Time Delay Model
Network Model

Objective

Physical Model
Isothermal Euler Equations
\[\rho_t + q_x = 0 \]
\[q_t + (\frac{q^2}{\rho} - a^2 \rho)_x = -G \left(\frac{\rho \mid q \mid}{2D \rho} \right) \]

Riemann Invariants

Hyperbolic Quasilinear System
\[\xi_t + A(\xi)\xi_x = S(\xi) \]

Physical Hypotheses

Hyperbolic Decoupled System
\[\xi^1_t + \lambda_1 \xi^1_x = s_1(\xi^1) \]
\[\xi^2_t + \lambda_2 \xi^2_x = s_2(\xi^2) \]

Method of Characteristics

Delayed equations of the propagation waves

Conservation Laws

Fluid flow network
Time-delay model
Outline

INTRODUCTION
Different Approaches
Objective

Flow dynamics

Riemann Invariants

Method of Characteristics

Time Delay Model

Network Model
Navier-Stokes Equations\(^1\)

\[
\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \vec{v} \\ \rho E \end{bmatrix} + \vec{\nabla} \cdot \begin{bmatrix} \rho \vec{v} \\ \rho \vec{v} \otimes \vec{v} + p \vec{I} - \mathbf{T} \\ \rho \vec{v} H - \mathbf{T} \cdot \vec{v} - k \vec{\nabla} T \end{bmatrix} = \begin{bmatrix} 0 \\ \vec{f}_e \\ W_f + q_H \end{bmatrix} \tag{1}
\]

- \(\rho\) is the density,
- \(\vec{v}\) is the velocity vector,
- \(E\) is the total energy,
- \(p\) is the pressure,
- \(\mathbf{T}\) is the stress tensor,
- \(H\) is the total enthalpy,
- \(k\) is the coefficient of thermal conductivity,
- \(T\) is the temperature,
- \(\vec{f}_e\) is the external force vector,
- \(q_H\) is the heat source.

\(^1\)Hirsch, 2007
Euler Equations

\[
\frac{\partial}{\partial t} \begin{bmatrix}
\rho \\
\rho \mathbf{V} \\
\rho E
\end{bmatrix} + \nabla \cdot \begin{bmatrix}
\rho \mathbf{V}^T \otimes \mathbf{V} + p \mathbf{I} \\
\rho \mathbf{V} \mathbf{H}
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
\dot{q}
\end{bmatrix}
\] (2)

- \(\rho \) is the density,
- \(\mathbf{V} \) is the velocity,
- \(\rho \mathbf{V} \) is the moment,
- \(\dot{q} \) is the rate of heat addition,
- \(\mathbf{I} \) is the identity matrix,
- \(\mathbf{H} \) is the total enthalpy,
- \(\otimes \) is a tensor product.

\[\text{[Toro, 2009]}\]
Isothermal Euler Equations

- A common model for gas flow in pipes
- The temperature is considered constant
- [Gugat and M., 2011], [Gugat et al., 2011]
- Pressure is obtained from a equation of state:

\[p = p(\rho) \equiv a^2 \rho, \] \hspace{1cm} (3)

where \(a \) is a non zero constant propagation speed of sound, [Toro, 2009].
We define:

\[a = \sqrt{\frac{ZRT}{M_g}} \]

- \(Z \) is the natural gas compressibility factor
- \(R \) the universal gas constant
- \(T \) the absolute gas temperature
- \(M_g \) the gas molecular weight
The isothermal Euler equations for a single pipe are defined by:

- **Mass conservation**

\[
\frac{\partial \rho}{\partial t} + \frac{\partial q}{\partial x} = 0
\]

(5)

- **Momentum conservation**

\[
\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2}{\rho} + a^2 \rho \right) = -f_g \frac{q \left| q \right|}{2D \rho}
\]

(6)

- \(f_g\) is the friction factor,
- \(D\) is the diameter of the pipe.
Outline

INTRODUCTION
Different Approaches
Objective

Flow dynamics

Riemann Invariants

Method of Characteristics

Time Delay Model

Network Model
Definition

Consider the hyperbolic systems described as follows

\[
\frac{\partial U}{\partial t} + A(U) \frac{\partial U}{\partial x} = 0 \tag{7}
\]

\[x \in [0, L], \quad t \in [0, T]\]

The system (7) can be transformed into a system of coupled transport equations

\[
\frac{\partial \xi_i(x, t)}{\partial t} + \lambda_i(\xi(x, t)) \frac{\partial \xi_i(x, t)}{\partial x} = 0 \quad \text{for} \quad i = 1 \cdots , n. \tag{8}
\]
\[
\frac{dx}{dt} = \lambda_i(\xi(x, t)). \tag{9}
\]

Since \(d\xi_i/dt = 0\) along the characteristic curve, it follows that \(\xi_i\) is constant (or invariant) along the characteristic curve.
Riemann Invariants for the Isothermal Euler Equations

We can express the equations (5) and (6) as follows

\[
\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = D(U), \tag{10}
\]

with \(U(x, t) = [\rho, q] \). The Jacobian of the flux matrix \(F(U(x, t)) \) is

\[
A(U) = \begin{pmatrix}
0 & 1 \\
\frac{a^2}{\rho^2} - \frac{q^2}{\rho^2} & 2 \frac{q}{\rho}
\end{pmatrix}. \tag{11}
\]
Eigenvalues and Eigenvectors

The eigenvalues of the Jacobian matrix $A(U)$ are

$$\lambda_{1,2} = \frac{q}{\rho} \pm a. \quad (12)$$

And the right eigenvectors are

$$K_1 = \begin{bmatrix} 1 \\ q/\rho - a \end{bmatrix} \quad K_2 = \begin{bmatrix} 1 \\ q/\rho + a \end{bmatrix} \quad (13)$$
Diagonal System

Then we obtain the following transformation of the system (10):

$$\frac{\partial \xi}{\partial t} + \Lambda(\xi) \frac{\partial \xi}{\partial x} = S(\xi),$$

(14)

where

$$\Lambda(\xi) = \begin{bmatrix} -\frac{\xi_1 + \xi_2}{2} + a & 0 \\ 0 & -\frac{\xi_1 + \xi_2}{2} - a \end{bmatrix}$$

and the source term

$$S(\xi) = -\frac{fg}{8D}(\xi_1 + \xi_2)|\xi_1 + \xi_2| \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
Riemann Invariant

The respective Riemann invariant for this conservation system are

$$\xi_{1,2}(\rho, q) = -\frac{q}{\rho} \mp a \ln(\rho) \quad (15)$$

We can express the original variables ρ and q in terms of the Riemann invariant as

$$\rho = \exp\left(\frac{\xi_2 - \xi_1}{2a}\right), \quad (16)$$

$$q = \frac{\xi_1 + \xi_2}{2} \exp\left(\frac{\xi_2 - \xi_1}{2a}\right)$$
Outline

INTRODUCTION
 Different Approaches
 Objective

Flow dynamics

Riemann Invariants

Method of Characteristics

Time Delay Model

Network Model
Definition

Allows to solve linear, quasilinear and nonlinear first-order PDEs. E.g. for the first order linear equation:

\[a(x, y)u_x + b(x, y)u_y = c(x, y) \] \hspace{1cm} (17)

- Suppose we can find a solution \(u(xy) \). Consider the graph of this function given for

\[S = \{(x, y, u(x, y))\} \]

- If \(u \) is a solution of (17), we know that at each point \((x, y)\), then

\[(a(x, y), b(x, y), c(x, y)) \cdot (u_x(x, y), u_y(x, y), -1) = 0. \] \hspace{1cm} (18)
Then the normal to the surface $S = \{(x, y, u(x, y))\}$ at the point $(x, y, u(x, y))$ is given by

$$N(x, y) = (u_x(x, y), u_y(x, y), -1).$$
Then the normal to the surface $S = \{(x, y, u(x, y))\}$ at the point $(x, y, u(x, y))$ is given by
\[N(x, y) = (u_x(x, y), u_y(x, y), -1). \]

To construct a curve C (the integral or characteristic curve) parameterized by s such that it is tangent to
\[(a(x(s), y(s)), b(x(s), y(s)), c(x(s), y(s))) \]
at each point (x, y, z)
Then the normal to the surface \(S = \{(x, y, u(x, y))\} \) at the point \((x, y, u(x, y))\) is given by
\[
N(x, y) = (u_x(x, y), u_y(x, y), -1).
\]

To construct a curve \(C \) (the integral or characteristic curve) parameterized by \(s \) such that it is tangent to
\[
(a(x(s), y(s)), b(x(s), y(s)), c(x(s), y(s)))
\]
at each point \((x, y, z)\)
\[
\Rightarrow \text{In particular, the curve } C = \{(x(s), y(s), u(x(s), y(s)))\} \text{ will satisfy the following system of ODEs:}
\[
\begin{align*}
\frac{dx}{ds} &= a(x(s), y(s)) \\
\frac{dy}{ds} &= b(x(s), y(s)) \\
\frac{dz}{ds} &= c(x(s), y(s))
\end{align*}
\]
Outline

INTRODUCTION
 Different Approaches
 Objective

Flow dynamics

Riemann Invariants

Method of Characteristics

Time Delay Model

Network Model
Assumptions

Remark 1

Note that the method of characteristics can not be applied directly to the PDE system (14) due to the coupled term in the source

\[
S(\xi) = -\frac{fg}{8D}(\xi_1 + \xi_2)|\xi_1 + \xi_2| \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

Remark 2

As a start point, let us consider the characteristic velocities of the hyperbolic system \(\lambda_1 \) and \(\lambda_2 \) as constant parameters.
In order to handle with this term it is possible to approximate the PDE system (14) as follows

\[
\frac{\partial}{\partial t} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} + \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \frac{\partial}{\partial x} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} = \begin{bmatrix} -\alpha & 0 \\ 0 & -\alpha \end{bmatrix} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} + \alpha \begin{bmatrix} -\bar{\xi}_2 \\ -\bar{\xi}_1 \end{bmatrix}
\]

With

- \(\alpha = \frac{f_g}{4D} \)
- \(\bar{\xi}_i \) represents the averaged value of the respective wave.
Then we can solve separately each PDE, for ξ_1 we have

\[
\frac{dt}{ds_1} = 1 \quad t_0 = 0
\]

\[
\frac{dx}{ds_1} = \lambda_1 \quad x_0 = r
\]

\[
\frac{dz_1}{ds_1} = -\alpha(z_1 + \bar{\xi}_2) \quad z_0 = \phi_1(r)
\]

Solving the system of ODEs we obtain

\[
t = s
\]

\[
x = s\lambda_1 + r \iff r = x - t\lambda_1
\]

\[
z_1(s) = -\bar{\xi}_2 + e^{-\alpha s} \phi_1(r)
\]
Then, it is possible to obtain the following expression

$$\xi_1(L, t) = -\bar{\xi}_2 + e^{-\alpha t} \xi_1(0, t - \frac{L}{\lambda_1}), \quad (20)$$

Similarly for the second wave

$$\xi_2(0, t) = -\bar{\xi}_1 + e^{-\alpha t} \xi_1(L, t - \frac{L}{\lambda_2}), \quad (21)$$
Figure 7: Wave Propagation
Outline

INTRODUCTION
Different Approaches
Objective

Flow dynamics
Riemann Invariants
Method of Characteristics
Time Delay Model

Network Model
AIM

- To consider each node as a finite control volume.
- To apply conservation fundamentals for each wave in each node.
- To obtain a time-delay model of the network in terms of the propagation waves.

Figure 8: Network Example
Dynamic Equations

In general, we can obtain the model from the following principle

\[\dot{\xi}_i^N(t) = \sum \text{inflows} - \sum \text{outflows} \] \hspace{1cm} (22)

Then, for the wave \(\xi_1 \) in the node \(N \) we have the following dynamics

\[\dot{\xi}_1^N(t) = \sum_{i=\text{inflows}} \beta(X_i,N) \xi_1^i(t - h_1(X_i,N)) - \xi_2^i - \sum_{j=\text{outflow}} \xi_1^N_j(t) \] \hspace{1cm} (23)
And for the wave ξ_2 we have

$$\dot{\xi}_2^N (t) = \sum_{j=\text{inflows}} \beta(Y_j, N) \xi_1^{Y_j} (t - h_2^{(Y_j, N)}) - \xi_1^{Y_j} - \sum_{i=\text{outflow}} \xi_1^{N_i} (t) \quad (24)$$

with

- $\beta = e^{-\alpha t}$
- The superscript (X_i, N) points to the coefficient in the line between node X_i and the node N
- The time delay $h_{1,2} = L^{(X_i,N)}/\lambda_{1,2}$.
Conclusion

- We present a time delay model for the flow through a pipe based on the isothermal Euler equations.
- Some physical assumptions were done in order to simplify the solutions.
- Conservation laws yield to delayed differential equations model of the network system.
Further work

- **Validation of the model and comparison with different modeling approaches**
 - Lumped parameter model
 - Computational Fluid Dynamics (CFD)
- **Solution for the hyperbolic coupled quasilinear system**
 - Time varying characteristic velocities
 - Coupled nonlinear source term
- **Design of a feedback control strategy for the network system**
 - Decentralized control
 - LPV approach
Final Goal

Physical Model
Isothermal Euler Equations
\[\rho_t + q_x = 0 \]
\[q_t + \left(\frac{q^2}{p} - a^2 \rho \right)_x = -G \frac{q |q|}{2D \rho} \]

Riemann Invariants

Hyperbolic Quasilinear System
\[\xi_t + A(\xi) \xi_x = S(\xi) \]

Method of Characteristics

Delayed equations of the propagation waves

Conservation Laws

Fluid flow network
Time-delay model

Desig of an appropriate Control Strategy
THANKS FOR YOUR ATTENTION

Flow control in gas networks: Exact controllability to a given demand.

