Output Stabilization of Time-Varying Input Delay System using Interval Observer Technique

Andrey Polyakova, Denis Efimova, Wilfrid Perruquettia,b and Jean-Pierre Richarda,b

a - NON-A, INRIA Lille Nord-Europe
b - LAGIS CNRS, Ecole Centrale de Lille
1 Introduction
1. Introduction

2. Problem statement
Outline

1. Introduction
2. Problem statement
3. Interval observer and interval predictor
Outline

1. Introduction
2. Problem statement
3. Interval observer and interval predictor
4. Control design
Outline

1. Introduction
2. Problem statement
3. Interval observer and interval predictor
4. Control design
5. Examples
Motivation

I. Output-based control is usual for practice; challenging problem in many cases.

II. Input Delay arises in models of a control system due to a physical nature of a system (transport delays, computational delay, etc); "artificially", for example, in order to model a sampling effect.

III. In practice, delay may be time-varying; unknown.
Motivation

I. Output-based control is
 - usual for practice;
 - challenging problem in many cases.
Motivation

I. Output-based control is

- usual for practice;
- challenging problem in many cases.

II. Input Delay arises in models of a control system

- due to a physical nature of a system (transport delays, computational delay, etc);
- ”artificially”, for example, in order to model a sampling effect.
Motivation

I. Output-based control is
 - usual for practice;
 - challenging problem in many cases.

II. Input Delay arises in models of a control system
 - due to a physical nature of a system (transport delays, computational delay, etc);
 - ”artificially”, for example, in order to model a sampling effect.

III. In practice, delay may be
 - time-varying;
 - unknown.
Existing results

I. Stabilizing output-based control is designed for linear systems with known and constant input delay (Olbrot 1972, Watanabe 1986); with known and time-varying input delay (Artstein 1982; Witrant, Canudas-de-Wit, Georges & Alamir 2007); with unknown and constant input delay the possible ways are: finite-time delay identification (Belkoura, Richard & Fliess 2009); adaptive control approach (Bresch-Pierti, Krstic 2009).

II. For linear systems with an unknown time-varying input delay are designed the full state feedback control (Fridman, Seuret & Richard 2004); observer for systems with unknown time-varying input and state delays (Seuret, Floquet, Richard, Spurgeon 2007).

I. Stabilizing **output-based** control is designed for linear system
 - with *known* and *constant* input delay (Olbrot 1972, Watanabe 1986);

II. For linear system with an *unknown* time varying input delay are designed
 - the full state feedback control (Fridman, Seuret & Richard 2004);
 - observer for systems with unknown time varying input and state delays (Seuret, Floquet, Richard, Spurgeon 2007).

Existing results

I. Stabilizing **output-based** control is designed for linear system
 - with *known* and *constant* input delay (Olbrot 1972, Watanabe 1986);
 - with *known* and *time-varying* input delay (Artstein 1982; Witrant, Canudas-de-Wit, Georges & Alamir 2007);

II. For linear system with an *unknown* time varying input delay are designed the full state feedback control (Fridman, Seuret & Richard 2004);
 observer for systems with unknown time varying input and state delays (Seuret, Floquet, Richard, Spurgeon 2007).

I. Stabilizing **output-based** control is designed for linear system

- with *known* and *constant* input delay (Olbrot 1972, Watanabe 1986);
- with *known* and *time-varying* input delay (Artstein 1982; Witrant, Canudas-de-Wit, Georges & Alamir 2007);

- with *unknown* and *constant* input delay the possible ways are:
 - finite-time delay identification (Belkoura, Richard & Fliess 2009);
 - adaptive control approach (Bresch-Piertz, Krstic 2009).
Existing results

I. Stabilizing **output-based** control is designed for linear system
 - with *known* and *constant* input delay (Olbrot 1972, Watanabe 1986);
 - with *known* and *time-varying* input delay (Artstein 1982; Witrant, Canudas-de-Wit, Georges & Alamir 2007);
 - with *unknown* and *constant* input delay the possible ways are:
 - finite-time delay identification (Belkoura, Richard & Fliess 2009);
 - adaptive control approach (Bresch-Pierti, Krstic 2009).

II. For linear system with an *unknown time varying input delay* are designed
Existing results

I. Stabilizing output-based control is designed for linear system
 - with known and constant input delay (Olbrot 1972, Watanabe 1986);
 - with known and time-varying input delay (Artstein 1982; Witrant, Canudas-de-Wit, Georges & Alamir 2007);
 - with unknown and constant input delay the possible ways are:
 finite-time delay identification (Belkoura, Richard & Fliess 2009);
 adaptive control approach (Bresch-Pierni, Krstic 2009).

II. For linear system with an unknown time varying input delay are designed
 - the full state feedback control (Fridman, Seuret & Richard 2004);
Existing results

I. Stabilizing output-based control is designed for linear system
 - with known and constant input delay (Olbrot 1972, Watanabe 1986);
 - with known and time-varying input delay (Artstein 1982; Witrant, Canudas-de-Wit, Georges & Alamir 2007);
 - with unknown and constant input delay the possible ways are:
 - finite-time delay identification (Belkoura, Richard & Fliess 2009);
 - adaptive control approach (Bresch-Pierniti, Krstic 2009).

II. For linear system with an unknown time varying input delay are designed
 - the full state feedback control (Fridman, Seuret & Richard 2004);
 - observer for systems with unknown time varying input and state delays (Seuret, Floquet, Richard, Spurgeon 2007).
Existing results

I. Stabilizing **output-based** control is designed for linear system
- with **known** and **constant** input delay (Olbrot 1972, Watanabe 1986);
- with **known** and **time-varying** input delay (Artstein 1982; Witrant, Canudas-de-Wit, Georges & Alamir 2007);
- with **unknown** and **constant** input delay the **possible ways** are:
 - finite-time delay identification (Belkoura, Richard & Fliess 2009);
 - adaptive control approach (Bresch-Pierti, Krstic 2009).

II. For linear system with an **unknown time varying input delay** are designed
- the full state feedback control (Fridman, Seuret & Richard 2004);
- observer for systems with unknown time varying input and state delays (Seuret, Floquet, Richard, Spurgeon 2007).

Consider the input delay control system of the form

$$\dot{x} = Ax + Bu(t - h(t)), \quad y = Cx,$$ \hspace{1cm} (1)

where $x \in \mathbb{R}^n$ is the system state, $u \in \mathbb{R}^m$ is the vector of control inputs, $y \in \mathbb{R}^k$ is the measured output, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{k \times n}$ are known matrices and input delay $h(t)$ is assumed to be unknown but within the bounded interval:

$$0 \leq h \leq h(t) \leq \bar{h},$$ \hspace{1cm} (2)

where the minimum delay h and the maximum delay \bar{h} are known.
Consider the input delay control system of the form

\[\dot{x} = Ax + Bu(t - h(t)), \quad y = Cx, \quad (1) \]

where \(x \in \mathbb{R}^n \) is the system state, \(u \in \mathbb{R}^m \) is the vector of control inputs, \(y \in \mathbb{R}^k \) is the measured output, \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} \) and \(C \in \mathbb{R}^{k \times n} \) are known matrices and input delay \(h(t) \) is assumed to be unknown but within the bounded interval:

\[0 \leq h \leq h(t) \leq \bar{h}, \quad (2) \]

where the minimum delay \(\underline{h} \) and the maximum delay \(\bar{h} \) are known.

The system (1) is studied with the initial conditions:

\[x(0) = x_0, \]
\[u(t) = v(t) \text{ for } t \in [-\bar{h}, 0), \quad (3) \]

where \(v(t) \) is some bounded function. For simplicity we may assume \(v(t) = 0 \).
Basic Assumptions

Assumption (1)

The set $\Omega \subset \mathbb{R}^n$ of admissible initial conditions $x_0 \in \Omega$ of the system (1) is assumed to be bounded and known.
Basic Assumptions

Assumption (1)

The set \(\Omega \subset \mathbb{R}^n \) of admissible initial conditions \(x_0 \in \Omega \) of the system (1) is assumed to be bounded and known.

Assumption (2)

The pair \((A, B)\) is controllable and the pair \((A, C)\) is observable.
Basic Assumptions

Assumption (1)

The set $\Omega \subset \mathbb{R}^n$ of admissible initial conditions $x_0 \in \Omega$ of the system (1) is assumed to be bounded and known.

Assumption (2)

The pair (A, B) is controllable and the pair (A, C) is observable.

Assumption (3)

The information on the control signal $u(t)$ on the time interval $[t - \bar{h}, t)$ can be stored and used for control design.
Problem statement

Problem

The main objective of this research is to design a control algorithm for exponential stabilization of the system (1), i.e. for some numbers $c, r > 0$ any solution of the closed-loop system (1) has to satisfy the inequality

$$\|x(t)\| \leq ce^{-rt}, \forall t > 0,$$

where $x(0) \in \Omega$.
\[\dot{x}(t) = \tilde{A}\tilde{x}(t) + f(t), \quad y = \tilde{C}\tilde{x} \]

where \(\tilde{x} \in \mathbb{R}^n \), \(y \in \mathbb{R}^k \), \(\tilde{A} \in \mathbb{R}^{n \times n} \), \(\tilde{C} \in \mathbb{R}^{k \times n} \), and \(f : \mathbb{R} \rightarrow \mathbb{R}^n : \)

\[\underline{f}(t) \leq f(t) \leq \bar{f}(t), \]

where \(\underline{f}(t) \) and \(\bar{f}(t) \) are known.
\[\dot{x}(t) = \tilde{A}\tilde{x}(t) + f(t), \quad y = \tilde{C}\tilde{x} \]

where \(\tilde{x} \in \mathbb{R}^n, \ y \in \mathbb{R}^k, \ \tilde{A} \in \mathbb{R}^{n \times n}, \ \tilde{C} \in \mathbb{R}^{k \times n}, \ \) and \(f : \mathbb{R} \to \mathbb{R}^n : \)

\[\underline{f}(t) \leq f(t) \leq \bar{f}(t), \]

where \(\underline{f}(t) \) and \(\bar{f}(t) \) are known.

\[\dot{x}(t) = \tilde{A}x(t) + f(t) + \tilde{L}(\tilde{C}x(t) - y(t)), \]
\[\dot{x}(t) = \tilde{A}\tilde{x}(t) + \bar{f}(t) + \tilde{L}(\tilde{C}\tilde{x}(t) - y(t)), \]
\[x(0) \leq \tilde{x}(0) \leq \bar{x}(0) \text{ and } \tilde{A} + \tilde{L}\tilde{C} = \text{Hurwitz and Metzler matrix.} \]
Interval observation (Gouze, Rapaport & Hadj-Sadok 2000)

\[
\dot{x}(t) = \tilde{A}\tilde{x}(t) + f(t), \quad y = \tilde{C}\tilde{x}
\]

where \(\tilde{x} \in \mathbb{R}^n\), \(y \in \mathbb{R}^k\), \(\tilde{A} \in \mathbb{R}^{n\times n}\), \(\tilde{C} \in \mathbb{R}^{k\times n}\), and \(f : \mathbb{R} \rightarrow \mathbb{R}^n\):

\[
f_u(t) \leq f(t) \leq \bar{f}(t),
\]

where \(f_u(t)\) and \(\bar{f}(t)\) are known.

\[
\begin{align*}
\dot{x}(t) &= \tilde{A}x(t) + f(t) + \tilde{L}(\tilde{C}x(t) - y(t)), \\
\dot{x}(t) &= \tilde{A}x(t) + \bar{f}(t) + \tilde{L}(\tilde{C}x(t) - y(t)), \\
x(0) &\leq \bar{x}(0) \leq x(0) \text{ and } \tilde{A} + \tilde{L}\tilde{C} \text{ is a Hurwitz and Metzler matrix.}
\end{align*}
\]

\[
\begin{align*}
\bar{e} &= \bar{x} - x \text{ and } \bar{e} = x - \bar{x} \\
\dot{e} &= (\tilde{A} + \tilde{L}\tilde{C})e + f(t) - \bar{f}(t), \\
\dot{\bar{e}} &= (\tilde{A} + \tilde{L}\tilde{C})\bar{e} + \bar{f}(t) - f(t),
\end{align*}
\]

\(\bar{e}(t) \geq 0\) and \(\bar{e}(t) \geq 0\) — positive system.
Illustration of the interval observation
Lemma

Under Assumptions 2-3 there always exist matrices $L \in \mathbb{R}^{n \times k}$ and $S \in \mathbb{R}^{n \times n}$, $\det(S) \neq 0$ such that

$$S^{-1}(A + LC)S - \text{Hurwitz and Metzler},$$

and the interval observer of the form

$$\dot{x}(t) = \tilde{A}x(t) + \min_{s \in [t-H,t-h]} \tilde{B}u(s) + \tilde{L}(\tilde{C}x(t) - y(t)),$$
$$\dot{\bar{x}}(t) = \tilde{A}\bar{x}(t) + \max_{s \in [t-H,t-h]} \tilde{B}u(s) + \tilde{L}(\tilde{C}\bar{x}(t) - y(t)),$$

$$\underline{x}(0) \leq \tilde{x}(0) \leq \overline{x}(0),$$

$$\tilde{A} = S^{-1}AS, \quad \tilde{B} = S^{-1}B, \quad \tilde{L} = S^{-1}L, \quad \tilde{C} = CS, \quad \tilde{x} = S^{-1}x,$$

guarantees

$$\underline{x}(t) \leq \tilde{x}(t) \leq \overline{x}(t) \quad \forall t > 0,$$

and $\underline{x}(t) \rightarrow \tilde{x}(t), \overline{x}(t) \rightarrow \bar{x}(t)$ if $u(t) \rightarrow 0$ for $t \rightarrow +\infty$.

(NON-A & LAGIS)
Some remarks

I. Let Hurwitz and Metzler matrix R be given and we need to find S, L:

$$S - 1(A + LC)S = R.$$ (7)

Denote $X = S - 1$ and $Y = S - 1L$. Then $XA + YC = RX$. (7)

If the matrix R has disjoint spectrum and the pair (A, C) is observable then the equation (7) has a solution.

II. The condition $x(0) \leq \tilde{x}(0) \leq x(0)$ may be guaranteed, since the set of admissible initial conditions Ω is assumed to be known and bounded.

For example, if $\Omega = \{x \in \mathbb{R}^n : x^TPx < 1\}$, $P \succ 0$, then $\tilde{x}^TSTPS \tilde{x} < 1$ and $x_i(0) = -x_i(0) = -1/\lambda_{\min}(STPS)$, $i = 1, 2, \ldots, n$. (NON-A & LAGIS)
I. Let Hurwitz and Metzler matrix R be given and we need to find S, L:

\[S^{-1}(A + LC)S = R. \]

Denote $X = S^{-1}$ and $Y = S^{-1}L$. Then

\[XA + YC = RX. \] \((7) \)

If the matrix R has disjoint spectrum and the pair (A, C) is observable then the equation (7) has a solution.
Some remarks

I. Let Hurwitz and Metzler matrix R be given and we need to find S, L:

$$S^{-1}(A + LC)S = R.$$

Denote $X = S^{-1}$ and $Y = S^{-1}L$. Then

$$XA + YC = RX.$$ \hspace{1cm} (7)

If the matrix R has disjoint spectrum and the pair (A, C) is observable then the equation (7) has a solution.

II. The condition $x(0) \leq \tilde{x}(0) \leq \bar{x}(0)$ may be guaranteed, since the set of admissible initial conditions Ω is assumed to be known and bounded. For example, if $\Omega = \{x \in \mathbb{R}^n : x^TPx < 1\}$, $P \succ 0$, then $\tilde{x}^TS^TPS\tilde{x} < 1$ and $x_i(0) = -\bar{x}_i(0) = -1/\lambda_{\min}(S^TPS), \; i = 1, 2, \ldots, n.$
let us introduce the following predictor variables:

\[
 z(t) = e^{\tilde{A}h} \bar{x}(t) + \int_{-\Delta}^{0} e^{-A\theta} \min_{s \in [t+\theta-\Delta, t+\theta]} \tilde{B}u(s) \, d\theta, \quad (8)
\]

\[
 \bar{z}(t) = e^{\tilde{A}h} \bar{x}(t) + \int_{-\Delta}^{0} e^{-A\theta} \max_{s \in [t+\theta-\Delta, t+\theta]} \tilde{B}u(s) \, d\theta, \quad (9)
\]

which are correctly defined due to Assumption 3.
Let us define the control in the form

\[u(t) = Kz(t), \quad z(t) = \frac{\overline{z}(t) + \underline{z}(t)}{2}, \tag{10} \]

where \(K \in \mathbb{R}^{m \times n} \).
Let us define the control in the form

\[u(t) = Kz(t), \quad z(t) = \frac{\bar{z}(t) + \underline{z}(t)}{2}, \]

(10)

where \(K \in \mathbb{R}^{m \times n} \).

Remark

Let us mention that the control function can be selected in a more general form

\[u(t) = K \bar{z}(t) + \bar{K} \underline{z}(t), \]

where \(K, \bar{K} \in \mathbb{R}^{m \times n} \).
Theorem

If for some given $\alpha, \beta, \gamma \in \mathbb{R}_+$ the matrices $X, Z, R_i, S_i \in \mathbb{R}^{n \times n}$, $i = 1, 2, \ldots, 2n$ and the matrix $Y \in \mathbb{R}^{m \times n}$ satisfy the following LMI system

\[
\begin{pmatrix}
W_e & W_{ez} \\
W_{ez}^T & W_z
\end{pmatrix} \preceq 0, \quad X \succ 0, \quad Z \succ 0, \quad R_i \succ 0, \quad S_i \succ 0,
\]

(11)

then the system (1) together with the control (10) for

\[K = YX^{-1}\]

is exponentially stable with the convergence rate: $r \geq \min\{\alpha, \beta, \gamma\}$.

(NON-A & LAGIS)
\[
W_e = \begin{pmatrix}
\Pi_1 & \tilde{B}_1 Y & \ldots & \tilde{B}_{2n} Y \\
Y^T \tilde{B}_1^T & -e^{-\beta \Delta h} S_1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
Y^T \tilde{B}_{2n}^T & \ldots & \ldots & -e^{-\beta \Delta h} S_{2n}
\end{pmatrix},
\]

\[
W_z = \begin{pmatrix}
\Pi_2 & \tilde{B}_1 Y & \ldots & \tilde{B}_{2n} Y \\
X \tilde{A}^T + Y^T \tilde{B}^T & \Pi_3 & \tilde{B}_1 Y & \ldots & \tilde{B}_{2n} Y \\
Y^T \tilde{B}_1^T & \ldots & \ldots & \ldots & \ldots \\
Y^T \tilde{B}_{2n}^T & \ldots & \ldots & 0 & \ldots & -e^{-\alpha \Delta h} R_{2n}
\end{pmatrix},
\]

\[
W_{ez} = \begin{pmatrix}
Z \tilde{C}^T \hat{L}^T e^{\tilde{A}^T h} \begin{bmatrix} I_n & I_n \end{bmatrix} 0 \\
0 & 0
\end{pmatrix},
\]

\[
\Pi_1 = (\tilde{A} + \tilde{L} \tilde{C}) Z + Z (\tilde{A} + \tilde{L} \tilde{C})^T + \beta Z,
\]

\[
\Pi_2 = \tilde{A} X + \tilde{B} Y + X \tilde{A}^T + Y^T \tilde{B}^T + \alpha X,
\]

\[
\Pi_3 = \frac{1}{4} \sum_{i=1}^{2n} (R_i + e^{\gamma h} S_i) - \frac{2}{\Delta h} X, \quad \Delta h := \bar{h} - h,
\]

where \(\tilde{B}_i \in \mathbb{R}^{n \times m}, i = 1, 2, \ldots, n\) is such that \(i\)-th row of \(\tilde{B}_i\) coincides with \(i\)-th row of \(\tilde{B}\) but all other rows of \(\tilde{B}_i\) are zero; \(\tilde{B}_{n+i} = \tilde{B}_i, i = 1, 2\ldots, n\).

For sufficiently small \(\Delta h\) the LMI is feasible.
Double integrator

\[A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix} \]
Double integrator

\[A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix} \]

Solving the Silvester’s equation (7) for

\[R = \begin{pmatrix} -3.0000 & 2.3200 \\ 0.2700 & -0.4100 \end{pmatrix} \]

we derive

\[S = \begin{pmatrix} -3.6234 & -0.2599 \\ -1.5558 & -9.1860 \end{pmatrix}, \quad \tilde{L} = \begin{pmatrix} 0.9479 \\ -0.0948 \end{pmatrix} \]

and

\[\tilde{A} = \begin{pmatrix} 0.4346 & 2.5663 \\ -0.0736 & -0.4346 \end{pmatrix}, \quad \tilde{B} = \begin{pmatrix} 0.0079 \\ -0.1102 \end{pmatrix}, \quad \tilde{C} = \begin{pmatrix} -3.6234 & -0.2599 \end{pmatrix} \]
Double integrator

\[A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix} \]

Solving the Silvester’s equation (7) for

\[R = \begin{pmatrix} -3.0000 & 2.3200 \\ 0.2700 & -0.4100 \end{pmatrix} \]

we derive

\[S = \begin{pmatrix} -3.6234 & -0.2599 \\ -1.5558 & -9.1860 \end{pmatrix}, \quad \tilde{L} = \begin{pmatrix} 0.9479 \\ -0.0948 \end{pmatrix} \]

and

\[\tilde{A} = \begin{pmatrix} 0.4346 & 2.5663 \\ -0.0736 & -0.4346 \end{pmatrix}, \quad \tilde{B} = \begin{pmatrix} 0.0079 \\ -0.1102 \end{pmatrix}, \quad \tilde{C} = \begin{pmatrix} -3.6234 & -0.2599 \end{pmatrix}. \]

\[h = 2, \quad \overline{h} = 4; \quad K = \begin{pmatrix} 1.1947 & 4.7560 \end{pmatrix}, \quad h(t) = 3 + \cos(100t); \]

\[x(0) = (1, -1)^T, \quad v(t) = 0, \quad t \in [-\overline{h}, 0) \]
Figure: Controlled double integrator: Interval Predictor-based Feedback.
Figure: Controlled double integrator: Interval Predictor-based Feedback.

Figure: Controlled double integrator: Results of Choi & Lim 2010.
Linear oscillator

\[A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix}. \]

Solving the Silvester’s equation (7) for

\[R = \begin{pmatrix} -44.5200 & 46.0040 \\ 4.4520 & -14.8400 \end{pmatrix} \]

leads to

\[S = 10^3 \begin{pmatrix} -0.0592 & 0.0958 \\ -0.4526 & 1.5394 \end{pmatrix}, \quad \tilde{L} = \begin{pmatrix} 0.9994 \\ -0.0016 \end{pmatrix}. \]

\[\tilde{A} = \begin{pmatrix} 14.6857 & -49.7339 \\ 4.3566 & -14.6857 \end{pmatrix}, \quad \tilde{B} = 10^{-3} \begin{pmatrix} 2.0026 \\ 1.2384 \end{pmatrix}, \]

\[\tilde{C} = \begin{pmatrix} -59.2393 & 95.7922 \end{pmatrix}. \]

Finally, using Sedumi-1.3 for MATLAB we solve LMI system (11) for \(\alpha = \beta = \gamma = 0.2, \ h = 1, \ \bar{h} = 2 \) and obtain

\[K = \begin{pmatrix} 137.1771 & -469.0443 \end{pmatrix}. \]
Figure: Linear oscillator

\[h(t) = 1 + 0.5(1 - \text{sign}(\cos(0.5t))), \quad x(0) = (0, 1)^T \quad \text{and} \quad \nu(t) = 0. \]
Unstable system

\[A = \begin{pmatrix} 0 & 1 \\ 0.1 & 0.2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad h = 1, \text{ and } \bar{h} = 2. \]

\[h(t) = 1.5 + 0.5 \sin(t), \quad x(0) = (1, 0)^T \text{ and } \nu(t) = 0. \]
The interval observer and interval predictor for linear systems with an unknown time-varying input delay are introduced. The interval predictor-based output control algorithm is presented. Control problems with another delays (output or/and state) and system uncertainties can be also tackled by this technique.
The interval observer and interval predictor for linear systems with an unknown time-varying input delay are introduced.
The interval observer and interval predictor for linear systems with an unknown time-varying input delay are introduced.

The interval predictor-based output control algorithm is presented.
The interval observer and interval predictor for linear systems with an unknown time-varying input delay are introduced.

The interval predictor-based output control algorithm is presented.

Control problems with other delays (output or/and state) and system uncertainties can be also tackled by this technique.
THANK YOU FOR YOUR ATTENTION