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Nomenclature

- a = semi-major axis ;

- e = eccentricity ;

- ν = true anomaly ;

- φ#′

(ν) = φ−1(ν) andφ(ν) = fundamental matrix of relative motion ;

- Φ(ν, ν1) = φ(ν)φ−1(ν1) = transition matrix of relative motion ;

- B(ν) = input matrix of relative motion dynamical model ;

- R(ν) = φ#t(ν)B(ν) = φ−1(ν)B(ν) = primer vector evolution matrix ;

- uf = φ−1(νf )Xf − φ−1(ν1)X1 6= 0 = boundary conditions ;

- N = number of velocity increments ;

- νi, ∀ i = 1, · · · , N = impulses application times ;

- ∆vi = impulse modulus atνi ;

- β(νi) = impulse direction vector atνi ;

- ∆V (νi) = ∆viβ(νi) = velocity increment vector atνi ;

- R[x1, · · · , xn] stands for the algebra of polynomials in variables(x1, · · · , xn) with coefficients inR ;

I. Introduction

The first space missions involving more than one vehicle (Gemini, Apollo, Vostok) have highlighted

the fact that the space rendezvous between two spacecraft isa key technology raising relevant open control

issues. Given the increasing need for satellite servicing in current and future space programs developed in

conjunction with rendezvous missions for the International Space Station (ISS), the interest of most space

agencies in the Guidance Navigation and Control (GNC) systems has been rapidly rising. In particular, new

challenges have appeared relating to the synthesis of guidance schemes capable of achieving autonomous

far range rendezvous on highly elliptical orbits while preserving optimality in terms of fuel consumption.
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Strictly speaking, the space rendezvous maneuver is an orbital transfer between a passive target and an

actuated spacecraft called the chaser, within a fixed or floating time period. Since the rendezvous maneuver

can only be performed within a certain period of time while utilizing as little fuel as possible to extend the

chaser lifetime, we mainly focus on the so-called time-fixedfuel optimal rendezvous problem [1], [2], [3].

In this paper, far range rendezvous in a linearized gravitational field is viewed as a time-fixed minimum-

fuel impulsive orbital transfer between two known elliptical orbits. This issue may therefore be formulated

as a time-fixed impulsive optimal control problem. Because of the constraints of on-board guidance algo-

rithms, numerical solutions based on linear relative motion are particularly appealing. With respect to the

numerical solution, direct methods based on discretizing the original problem and converting it into a linear

programming problem may be used as in [4]. Indirect approaches based on the solution of optimality con-

ditions derived from Pontryagin’s Maximum Principle, leading to the development of the so-called primer

vector theory presented in [5], have also been an avenue of research in numerous studies [6], [7], [2], [8].

If they only focus on fixed number and location of impulses, these approaches fail to optimize trajectory

planning in terms of the number of impulsive maneuvers. Neither can they ensure the global optimality of

the result provided for a fixed number of impulses. To optimize the number of impulses as well as their

specific application times, an iterative algorithm based onthe calculus of variations originally developed by

Lion and Handelsman [9] has been designed [10–12]. The main drawback however is due to the possible

non smoothness and sub-optimality of the resultant trajectory of the primer vector norm. To overcome this

difficulty, a Davidon-Fletcher-Powell penalty minimization step is proposed in order to move the impulses

and achieve a smooth trajectory as detailed in [11] or [1].

The paper’s contribution is twofold: First, by exploiting the polynomial nature of the necessary and

sufficient conditions of optimality of the time-fixed impulsive optimal control problem for a fixed number of

impulses, a new powerful algorithm can be designed. Based onrecent results on convex relaxations for non-

linear polynomial optimization [13], [14], the first rendezvous algorithm can be devised with the use of time

interval grid that helps find the optimal location of the impulsive maneuvers. One of the key advantages is to

furnish a certificate of global optimality for the proposed solution. Secondly, the iterative algorithm based on

the calculus of variations is revisited and extended to the case of elliptic Keplerian orbits. In particular, this

new iterative algorithm combines the algebraic formulation of Carter’s necessary and sufficient conditions,
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supporting the use of powerful numerical tools from the algebraic geometry field, and improving variational

tests as derived in [9]. This results in a mixed different iterative strategy bypassing the local optimal search

step and cusp occurrence. An interesting feature of the present results is that both algorithms complement

each other and may be integrated into a single optimal trajectory planning tool.

In the first section of this paper, the framework of the minimum-fuel fixed-time rendezvous problem is

presented and necessary and sufficient conditions of optimality are recalled. Relative dynamics motion for

rendezvous are the well-known Tschauner-Hempel equations[15] and the transition matrix of Yamanaka-

Ankersen [16]. It is shown that, under mild classical assumptions, the rendezvous problem may be refor-

mulated as a polynomial optimization problem in which a firstrendezvous algorithm based on polynomial

optimization is designed for a number of impulses specifieda priori. The results of [9] are recalled and the

mixed iterative algorithm is presented. For comparison’s sake, the efficiency of the proposed algorithms is

illustrated with four different numerical examples. Two academic examples taken from Carter’s reference [2]

are first studied. Also reviewed are two realistic scenariosbased on PRISMA which is a "technology in-orbit

testbed mission" demonstrating formation flight [17] and SIMBOL-X formation flying mission which is a

particular example of a high elliptical reference orbit [18].

II. The time-fixed optimal rendezvous problem as a polynomial optimization problem

A. Time-fixed optimal rendezvous problem in a linear setting

This paper focuses on transfers between closed non-circular orbits for the fixed-time minimum-fuel

rendezvous of an active (actuated) spacecraft called the chaser with a passive target spacecraft assuming a

linear impulsive setting and an unperturbed Keplerian relative motion. The impulsive approximation for the

thrust means that instantaneous velocity increments are applied to the chaser instead of finite-thrust powered

phases of finite duration. The thrust per unit mass vector is therefore defined by:

Γ(ν) =

N
∑

i=1

∆V (νi)δ(ν − νi) =

N
∑

i=1

∆viβ(νi)δ(ν − νi) (1)

where0 ≤ ν1 ≤ · · · ≤ νN ≤ T , N is the number of impulsive controls and∆V (νi) the discontinuity

in the velocity vector due to a thrust impulse atνi, defined byδ(ν − νi). Note that the true anomaly has

been chosen as the independent variable since this change ofvariables is widely used when dealing with

Tschauner-Hempel equations [15] and Yamanaka-Ankersen’sstate transition matrix [16]. For a minimum-

4



fuel rendezvous, the cost function is defined by the total characteristic velocity:

J =

∫ νN

0

Γ(ν)dν =

N
∑

i=1

∆vi (2)

If the relative equations of motion of the chaser are supposed to be linear and under the previous assump-

tions, the considered rendezvous problem may be reformulated as the following optimal control problem:

min
N,νi,∆vi,β(νi)

J =

N
∑

i=1

∆vi

s.t. Ẋ(ν) = A(ν)X(ν) +B(ν)

N
∑

i=1

β(νi)∆viδ(ν − νi)

‖β(νi)‖ = 1

∆vi ≥ 0

(3)

where matricesA(ν) andB(ν) define the state-space model of relative dynamics. Recalling the Keplerian

elliptic assumptions, the differential constraint in (3) is given by the Tschauner-Hempel (TH) equations [15]:

Ẋ(t) =









δṙ

δv̇









=









0n In

A1(ν) A2(ν)

















δr

δṙ









(4)

whereδr andδv are the relative position and velocity vectors respectively. A1(ν) is a symmetric matrix

andA2 is a time-invariant antisymmetric matrixA2(ν) = A2 = −At
2 while B =

[

0 1

]′

. The optimal

control problem (3) belongs to the class of impulsive linearcontrol problems (see [19] and references therein)

for which a numerical solution is hard to construct. One of the main difficulties encountered with problem

(3) is that the number of impulsesN is part of the optimization process. A highly classical relaxation of

(3) consists of reviewing a fixed-scenario optimal rendezvous for which the number of impulsesN is a

priori set and where the first and last impulses are applied at the beginning and end of the rendezvous [6]

respectively. It should be pointed out that the number of impulsesN may be chosen equal to the upper-

bound on the optimal number of impulses according to Neustadt [20] (that is 2 for out-of-plane rendezvous,

4 for a coplanar rendezvous and 6 for the complete rendezvous). Moreover, since a transition matrix may

be computed in closed form for the TH equations (see [16]), itmay be appropriate to replace the differential

constraint on dynamics by the equivalent algebraic constraint involving this transition matrix. Assuming

boundedness conditions on relative position and velocity,problem (3) for a fixed number of impulsesN may
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then be reformulated as the following optimization problem[8]:

min
νi,∆vi,β(νi)

J =

N
∑

i=1

∆vi

s.t. uf =

N
∑

i=1

φ#′

(νi)B(νi)∆viβ(νi) =

N
∑

i=1

R(νi)∆viβ(νi)

‖β(νi)‖ = 1

∆vi ≥ 0

(5)

where:φ#′

(ν) = φ−1(ν) andφ(ν) is the Yamanaka-Ankersen fundamental matrix for relative motion. The

optimization decision variables are :

- νi, ∀ i = 1, · · · , N : Impulses application times ;

- ∆vi: Impulse modulus atνi ;

- β(νi): Impulse direction vector atνi ;

B. Primer vector theory and Carter’s necessary and sufficient conditions for a fixed number of impulses

Applying the Maximum Principle on problem (3) for a fixed number of impulsesN as described in

Lawden [5] or a Lagrange multiplier rule for the equivalent problem (5) as in [21], one can derive necessary

conditions of optimality in terms of the co-state vector associated with the relative velocity and referred to as

the primer vector (see conditions (6) to (10) in theorem II.1below). Carter has shown that these conditions

are also sufficient in the case of linear relative motion withthe strengthening semi-infinite constraint (13)

that should be fulfilled on the continuum[ν1, νN ] and is expressed in terms of the transition matrixR(ν) =

φ#′

(ν)B(ν) = φ−1(ν)B(ν) of the primer vector denotedλv(ν) = R(ν)λ. These results are summarized in

the following theorem.

Theorem II.1 [8]

(ν1, ..., νN ,∆v1, ...,∆vN , β(ν1), ..., β(νN )) is the optimal solution of problem(5) if and only if there

exists a non-zero vectorλ ∈ R
m, m = dim(φ) that verifies the necessary and sufficient conditions:

∆vi = 0 or β(νi) = −R
′(νi)λ, ∀ i = 1, · · · , N = 2 + r (6)

∆vi = 0 or λ′R(νi)R(νi)
′λ = 1, ∀ i = 1, · · · , N (7)
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∆vki
= 0 or νki

= ν1 or νki
= νf or λ′ dR(νki

)

dν
R(νki

)′λ = 0, ∀ i = 2, · · · , N − 1 (8)

N
∑

i=1

[R(νi)R
′(νi)]λ∆vi = −uf (9)

∆vi ≥ 0, ∀ i = 1, · · · , N (10)

N
∑

i=1

∆vi = −u
′
fλ > 0 (11)

−u′
fλ is the minimum of the set defined as : {λ ∈ R

m : (6)− (11) are verified} (12)

‖λv(ν)‖ ≤ 1 ∀ ν ∈ [ν1, νf ] (13)

Note that conditions (11) and (12) may be easily derived fromthe previous ones.

Numerical solution of optimality conditions (6) to (13) in the unknownsλ ∈ R
m, {νi}i=1,··· ,N ,

{βi}i=1,··· ,N , {∆vi}i=1,··· ,N is still hard to find for a fixed number of impulsesN due to the nonconvex

and transcendental nature of these polynomial equalities and inequalities. A numerical procedure based on

polynomial optimization is now proposed to address this numerical issue and .

C. Numerical insights for the relaxed fixed-scenario optimal rendezvous

Despite the preceding simplifying assumptions, the fact that impulse dates are part of the vector of

decision variables implies the solution of transcendentalequations. This first difficulty may be overcome

thru the use of a gridding technique providing a numerical approximation of the optimal impulse dates. The

major drawback of gridding techniques is the definition of the resolution value (density) of grid points in

order to adequately handle hard equality constraints as defined in (8). Therefore, we propose a dynamic

gridding strategy to overcome the first drawback while equality constraints (8) are relaxed as:

−ǫ1 < λ′ dR(νki
)

dν
R(νki

)′λ < ǫ1, ∀ i = 2, · · · , N − 1 (14)

whereǫ1 > 0 is a small parameter representing the tolerance over equality constraints.

Furthermore, verifying (13) requires imposing the positivity of the quadratic polynomial1 −

λ′R(ν)R(ν)λ on the continuum of the whole rendezvous interval[ν1, νf ]. This inequality constraint is
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not as hard as the previous ones and may be roughly discretized over a static grid ofMd equidistant points

considering that a few number of points (typically 50) will be necessary to satisfy this constraint due to the

usual shape of the function‖λv‖. In every case, the primer vector trajectory will be propagated and checked

a posteriorion a finer grid of points.

Another issue is related to the poor scaled representation due to large differences between initial time

and positions and final ones. One can easily see that (7) is already in a Cholesky factorized form and

other conditions may be factorized usingλ and∆vi’s decision variables. Therefore, the problem could

be scaled using Schur decomposition. However, as the scaling matrix entries differ by several orders of

magnitude in this case, a different scaling strategy has been preferred. First, diagonal temporary scaling

matrices (STi
) are calculated for each impulse (i = 1, . . . , N ). The main purpose is to make diagonal

entries ofQSi
= STi

R(ti)R
′(ti)STi

matrix less than or equal to1. Second, entries of diagonal scaling

matrix (S) are defined using the corresponding entries of minimum value ofSTi
matrices.

Finally, the previous necessary and sufficient conditions show that the optimal directionsβ(νi) may

easily be obtained via (6) onceλ and∆vi have been computed.

For a given grid of impulse times, the optimization problem is then given by:

min
λ,∆vi

−u′
fλ

s.t.

−uf =

N
∑

i=1

R(νi)R
′(νi)Sλ∆vi

λ′SR(νi)R(νi)
′Sλ = 1, ∀ i = 1, · · ·N

∣

∣

∣

∣

λ′S
dR(ν)

dν
R(νi)

′Sλ

∣

∣

∣

∣

< ǫ, ∀ i = 2, · · · , N − 1

∆vi ≥ 0, ∀ i = 1, · · ·N

λ′SR(νj)R(νj)
′Sλ ≤ 1, ∀ j = 0, · · · ,Md

(15)

The problem (15) belongs to the class of polynomial nonconvex optimization problems with respect to the

variablesλ ∈ Rm and∆vi, i = 1, ..., N for which a hierarchy of convex relaxations has been proposed [13],

[14]. Given below in the next section are some basic facts about convex relaxations of nonconvex polynomial

optimization problems.
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D. Convex relaxations for polynomial optimization

The problem (15) can be written under the general form:

P : g⋆ = min g0(x)

s.t. gi(x) ≥ 0, i = 1, . . . , l

(16)

wheregi(x) ∈ R[x1, · · · , xn] : R
n → R. This class of optimization problems is known as NP-hard. The

quadratic non convex problems (0-1 problems) are particular cases of (16). The feasible set of (16) is noted:

K = {x ∈ R
n | gi ≥ 0, i = 1, . . . ,m} (17)

Computing the global optimum ofP is effected by findingg∗, whereg0(x) − g⋆ ≥ 0 is a globally positive

polynomial on the setK i.e. g0(x) − g⋆ ∈ Pd
n, the convex cone of semi definite positive polynomials (SDP)

in R
D having degree≤ d defined by:

Pd
n = {p ∈ R[x1, · · · , xn] | p(x) ≥ 0 ∀ x ∈ R

n} D =









n+ d

d









(18)

If Sdn is the convex cone of sum of squares polynomials (SOS) inR
D given by:

Sdn =

{

p ∈ R[x1, · · · , xn] | p(x) =

r
∑

i=1

qi(x)
2

}

(19)

then each element ofSdn can be characterized by a linear matrix inequality (LMI) formulation [14], [13],

[22]:

p(x) =
∑

α

pαx
α ∈ Sdn ⇔ ∃X : p(x) = z′Xz X � 0 (20)

wherez is the monomials of degrees≤ d array. For a feasible matrixX , Cholesky factorization gives:

X = Q′Q Q′ =

[

q1, · · · , qr

]

(21)

and

p(x) = z′Q′Qz = ‖Qz‖2 =

r
∑

i=1

(q′iz)
2 =

r
∑

i=1

q2i (x) (22)

where the number of squared terms isr = rang(X). By identifying the coefficients ofp(x) = z′Xz =

∑

α pαx
α ≥ 0, we obtain the following LMIs:

traceHαX = pα ∀ α

X � 0

(23)
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whereHα is a Hankel matrix. Determining whether a polynomial belongs toSdn is therefore equivalent to

solving an LMI problem where powerful solvers may be used [23]. Furthermore,Sdn ⊂ P
d
n: A lower bound

to the polynomial optimization problem (16) may be easily computed. Finding the multipliersqi(x) ∈ Sdn

such that:

p(x) = g0(x) − g∗ = q0(x) +

m
∑

i=1

gi(x)qi(x)⇒ g0(x)− g∗ ≥ 0 ∀ x ∈ K (24)

for a fixeddeg(qi(x)), is a semi-definite programming problem. Fordeg(p(x)) = 2k, thekth order convex

LMI relation stating thatp(x) = g0(x) − g∗ ∈ Sdn, ∀ x ∈ K is an LMI problem whose optimal solutionp⋆k

gives a lower bound to the global optimumg∗. Under some assumptions, it has been shown in [13] that a

hierarchy of monotone convex relaxations can be constructed which asymptotically converges to the global

optimum of the problem (16).

Theorem II.2 [13]

If P is compact and if there existsu(x) ∈ R[x1, · · · , xn] such that:

1− {u(x) ≥ 0} is compact

2− u(x) = u0(x) +
m
∑

i=1

gi(x)ui(x) ∀ x ∈ R
n where ui(x) ∈ S

l
n, i = 0, · · · ,m

thenp⋆k ≤ g⋆ with an asymptotical convergence guaranteelim
k→∞

p⋆k = g⋆.

Usually, convergence is fast andp⋆k tends to be extremely close tog⋆ for a low relaxation orderk. If p⋆k = g∗

for a given relaxation orderk, a certificate of global optimality may be provided [22].

III. Using a polynomial optimization algorithm to solve the rendezvous problem

In this section, the complete rendezvous algorithm is presented. It relies on the dynamic gridding strat-

egy and relaxations of the genuine polynomial optimizationproblem as detailed in the preceding section.

Algorithm input arguments are the initial state (position/velocity)X1, the final state vectorXf , the desired

resolution (resd) on the impulse times, dimension ofΘi sets (d), first impulse time (ν1), final impulse time

(νf ), number of impulses (N ), initial precision valueǫ1 for (14) and precision valueǫ2 on the norm of the

primer vector. The output arguments are the optimum impulsetimes (ν⋆2 , . . . , ν
⋆
N−1), optimal primer vector

λ∗, optimal impulses (optimal amplitude∆v∗i and optimal directionβ∗
i ) and the optimal fuel consumption

J∗.
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LetΘ2, . . . ,ΘN−1 be nonempty ordered sets given byΘi := {νi1 , . . . , νid}whereνi1 , . . . , νid represent

the possible candidates forith impulse time. The distances between sequential candidatesare equal and

represented by the current resolution value (res). In addition to theseN − 2 sets, it is necessary to define the

two singletonsΘ1 = {ν1} andΘN = {νf}.

A. PRDV algorithm

1 Letνi1 := ν1, νid := tf for all i = 2, · · · , N − 1.

2 Generate allΘi sets for alli = 2, . . . , N − 1.

3 Generate the setS consisting of all the grid vectors of impulses dates:

S :=

{

[

ν1 x2 · · · xN−1 νf

]t

∈ RN : xi ∈ Θi, xi < xi+1, ∀i = 2, . . . , N − 1} (25)

4 Compute the global optimal solutionαk, k = 1, · · · , card(S), if it exists, of the polynomial optimiza-

tion problem (15) for every grid vector inS.

5 If there exists no global solutionαi, let ǫ1 ← ǫ1 +
ǫ1
2 and go to previous step.

6 Find the best solutionα∗ = min
i

αi and its argument (optimal grid vector[ν1, x⋆
2, . . . , x

⋆
N−1, νf ]

t in

S set, optimal amplitudes∆v∗i , i = 1, · · · , N , optimal costate vectorλ∗) w.r.t. fuel consumption.

7 Defineli := {xi ∈ Θi : xi < x⋆
i } andui := {xi ∈ Θi : xi > x⋆

i } sets for alli = 2, . . . , N − 1.

8 Calculate the resolution value (res = ν22 − ν21 ).

9 If the li set is nonempty then assignνi1 ← max(li) elseνi1 ← x⋆
i .

10 If theui set is nonempty then assignνid ← min(ui) elseνid ← x⋆
i .

11 If the resolution value is greater thanresd, let ǫ1 ← ǫ1
2 and go to Step2 else go to step 12.

12 Check the primer vector with(λ∗, (∆v∗i )i=1,··· ,N , (ν∗i )i=1,··· ,N )

‖R′(ν)λ‖2 − 1 ≤ ǫ2 (26)

13 If the previous test is positive, compute the directions and amplitude of the optimal impulses:

β∗(ν∗i ) = −R(ν∗i )
′λ∗ ∆V ∗(ν∗i ) = β∗(ν∗i )∆v∗i (27)
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Some additional comments are now given for a greater clarityof each step.

• Polynomial optimization is achieved under MATLABc©, using the free academic Gloptipoly software

developed at LAAS [22]. This software package requires the use of YALMIP [24] and SeDuMi [23].

• The12th step is carried out by propagating the primer vector initialconditionλ∗ over the rendezvous

time duration using the Yamanaka-Ankersen transition matrix.

• Each optimal solution obtained at4th step for each grid point is certified to be global if it exists.

B. Numerical illustration

Consider the first example presented by Carter in [2]. It consists of a coplanar four-impulse circle-to-

circle rendezvous. The rendezvous maneuver must be completed in one orbital period. Initial and final state

vectors are given in table 1.

Eccentricity e = 0

ν0 0 rad

Xt
0 = [Rt

0 vt0] [ 1 0 0 0 ]

νf 2π rad

Xt
f = [Rt

f vtf ] [ 0 0 0 0.427 ]

Nmax 4

Table 1: Data for Carter’s first example

Running the PRDV algorithm withresd := 5.1906× 10−4 rad (0.5 s),d := 18 andǫ1 := 5× 10−4, the

global optimal solution can be found with an acceptable tolerance value (ǫ1 = 4.4349 · 10−7). For the sake

of comparison, the results are shown in Table 2 (absolute precision less than 0.01 for the dates of application

of velocity increments) alongside those of reference [2].
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Carter [2] PRDV Algorithm

λ∗























−9.8201 · 10−2

−5.2929 · 10−2

1.8228 · 10−1

−4.3629 · 10−1













































−6.5876 · 10−2

−6.4727 · 10−1

2.53 · 10−4

−6.2193 · 10−1























νint1 (rad) π
2
≃ 1.57 1.7077

νint2 (rad) 3π
2

≃ 4.7124 4.5859

∆V (ν0)
t [ −0.0273 0.0344 ] [ −0.02655 0.0329 ]

∆V (ν1)
t [ 0.0897 0.0119 ] [ 0.0917 0.004614 ]

∆V (ν2)
t [ −0.0897 0.0119 ] [ −0.09011 0.00434 ]

∆V (νf )
t [ 0.0273 0.0344 ] [ 0.0259 0.0322 ]

Fuel-costL1 m/s 0.3230 0.3091

Fuel-costL2 m/s 0.2688 0.2667

Table 2: Result comparison for Carter’s first example

Interestingly, the results are not so different due to Carter’s particularly smarta priori choice of the

impulsive dates. Nevertheless, Carter’s results are clearly not optimal.

More details about Carter’s solution and PRDV solution are given in the plot of the in-plane trajectories

of both solutions shown in Fig. 1 where red stars depict the positions of the application of the velocity

increments. If these solutions lead to almost similar trajectories and consumption, only the one obtained

with the PRDV algorithm is guaranteed to be optimal for the fixed number of impulsesN = 4.

The main shortcoming here is thatN , the velocity increment number is considered fixed and cannot be

optimized except by running PRDV algorithm for each different caseN = 3, N = 4, · · · up to the theoreti-

cal maximum defined by the Neustadt bound. An alternative to this gridding approach allowing optimization

over the number of impulses dates back to the sixties with theseminal results of Lion-Handelsman [9] and

the extensions reported in [12], [10], [25], [11]. This approach is now revisited and a new mixed iterative

algorithm relying on the calculus of variations of Lion-Handelsman and on the polynomial solution of some

part of the optimality conditions as formulated by Carter isbuilt.
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Figure 1: Detailed trajectories for solutions: PRDV algorithm (blue), Carter’s solution (green)

IV. Optimizing over the number of impulses

A. Lion & Handelsman [9] results revisited

In [9], a method is proposed to take advantage of the primer vector theory developed by Lawden in order

to improve nonoptimal trajectories by adding or shifting impulses. The calculus of variations is used to find

conditions on the norm of the primer vector for an additionalimpulse and on the derivative of this norm for

initial and/or final coastings. The method is mainly based onderivation of the so-calledvariational adjoint

equationresulting from the variation of the cost function. Later, Jezewski [12], [10], [25], [11] developed

a numerical algorithm combining Lion-Handelsman’s conditions with a modified gradient search approach

in a linear model setting. The additional local optimization procedure is used to find the optimal position

and modulus of the additional impulse so as to avoid a resulting cusp for the norm of the primer vector as

reported in [10]. In this section, these results are recalled, extended to the Tschauner-Hempel [15] dynamical

relative model for elliptical reference orbit and a slightly different iterative procedure avoiding local optimal

search step and cusp occurrence is proposed.

1. Variational adjoint equation

Recall the relative motion equation given by (4). The Hamiltonian associated with the optimal control

problem (3) is defined by the relation:

H = λt
rδṙ + λt

vδv̇ (28)
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where









λr

λv









is the costate vector. Using Pontryagin’s maximum principle and writing down the canonical

Hamiltonian equations, one can add to (4) the dynamical equation for the costate vector:









λ̇r

λ̇v









= −









0n In

A1 A2









t 







λr

λv









=









0n −A1

−In A2

















λr

λv









(29)

From Eqs. (29) and (4), one gets:

λ̈v = A1λv +A2λ̇v (30)

δ̈r = A1δr +A2δv (31)

(30)×δrt− (31)×λt
v yields:

λt
v δ̈r − δrtλ̈v = 0 (32)

Adding and subtractinġλt
vδv, the following relation is obtained:

λt
v δ̈r + λ̇t

vδv − δrtλ̈v − λ̇t
vδv = 0 ⇔

d

dt

{

λt
vδv − λ̇t

vδr
}

= 0 (33)

In other words:

λt
vδv − λ̇t

vδr = constant (34)

Equation (34) is known as thevariational adjoint equation[26]. Lion-Handelsman’s idea is to compute

variations of the cost function and to derive different conditions on the primer vector that will lead to a

reduction of the cost thanks to the variational adjoint equation. The complete derivation of these conditions

based on the calculus of variations may be found in [10] (see also [27] for more recent information) in the

case of variations related to the addition of (i) an interiorimpulse for a two-impulse reference trajectory and

(ii) an initial and/or final coasting period. These conditions are now recalled for the different cases.

2. Additional interior impulse condition

Perturbing a reference initial two-impulse trajectory andadding an interior impulse attm, the differential

cost can be expressed as:

δJ = ∆vm(1− λv(νm)tβ(νm)) (35)
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From (35), it is easy to conclude thatδJ < 0 when|λv(νm)| > 1 and that a maximum decrease in cost is

obtained when:

νm = arg max
ν∈[ν1,νf ]

|λv(ν)| (36)

3. Additional coasting period conditions

For an additional initial coasting period of durationdν1, the cost variation is given by:

δJ = −∆v1λ̇v(ν1)
tλv(ν1)dν1 (37)

This condition means that adding an initial coasting arc ofdt1 > 0 duration may improve the cost if

λ̇v(ν1)
tλv(ν1) > 0 i.e., the right derivative of the primer vector norm atν1 is positive. Similarly, for a

final coasting arc of durationdνf , we get:

δJ = −∆vf λ̇v(νf )
tλv(νf )dνf (38)

A final coast ofdνf < 0 duration will improve the cost when the left derivative of the primer vector atνf is

negative.

These conditions may be used jointly to reduce the cost of a reference nonoptimal two-impulse trajectory

but can also be generalized to multi-impulse trajectories.Consider the four-impulse trajectory of figure 2. For

example, overall cost can be reduced by considering the coasting arc[νi, νi+1], shown in Fig. 2 in different

ways:

• Adding a new impulse atνm,

• Adding an initial coasting arc by shiftingνi towardνm, if d|λ|
dν

(νi+1) > 0,

• Adding a final coasting arc by shiftingνi+1 towardνm, if d|λ|
dν

(νi+1) < 0,

• Replacingνi andνi+1 by νm, if d|λ|
dν

(νi+1) > 0 and d|λ|
dν

(νi+1) < 0. This is equivalent to adding an

initial and a final coasting arc on[νi, νi+1] and an impulse atνm.
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|λv|

νν1 νi νi+1 νfνm

1

Figure 2: Adding or moving impulses on a multi-impulse trajectory

As noted in [10] and in [26], computation of the mid-impulse might nevertheless result in a nonoptimal

trajectory not verifying the optimality conditions of Lawden and condition (13), particularly in the case of

occurrence of a cusp atνm as illustrated in Fig. 3. A particular strategy combining Lion-Handelsman’s

conditions and local direct optimization based on the Davidon-Fletcher-Powell penalty method in [11] or

based on BFGS method in [26] is generally used to optimize theresulting three-impulse trajectory.

|λv|

νν1 νfνm

1

Figure 3: Nonoptimal primer vector norm with a cusp at the mid-impulse

The objective of this section is to propose an alternative tothis procedure by developing a mixed iterative

algorithm taking advantage of the algebraic formulation ofCarter’s optimality conditions and of the Lion-

Handelsman’s conditions.

B. A mixed iterative algorithm

Consider the following assumptions:

• The maximum number of impulses allowed is at the most equal tothe Neustadt boundNN (number of

fixed state-variables in the rendezvous problem) [20]. Here, this bound is equal to4 on the planar case

and6 for the complete rendezvous problem.
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• There is an impulse at initialν1 and terminalνf dates of the fixed-time rendezvous that cannot be

shifted or removed.

Based on these assumptions, improving fuel-cost will be achieved when the primer vector norm magnitude

exceeds1 atνm by:

• Adding impulse atνm if the impulse number does not exceed the upper boundNN

• Moving impulses, if an impulse cannot be added.

The different steps of the proposed mixed algorithm are firstdetailed for a coplanar rendezvousNN = 4

(they can easily be generalized for the general rendezvous problemNN = 6) and a synoptic presentation of

the algorithm is then given.

Let us first define the initialization step:

Initialization step:

a- Solve the two-impulse problem:

This problem can be solved by inverting the system of equations:








Rf

vf









=









Φ11(νf , ν1) Φ12(νf , ν1)

Φ21(νf , ν1) Φ22(νf , ν1)

























R1

v1









+









0

∆V (ν1)

















+









0

∆V (νf )









(39)

Both impulses are then given by:

∆V (ν1) = Φ−1
12 (νf , ν1) [Rf − Φ11(νf , ν1)R1 − Φ12(νf , ν1)v1] (40)

∆V (νf ) = vf − Φ21(νf , ν1)R1 − Φ22(νf , ν1)v1 − Φ22(νf , ν1)∆V (ν1) (41)

InitializeTimp = {ν1, νf}, whereTimp is the discrete set of impulses application times.

b- Compute the associated primer vector trajectory using the boundary conditions:

λv(ν1) =
∆V (ν1)

∆v1
(42)

λv(νf ) =
∆V (νf )

∆vf
(43)

The primer vector evolution is described by:

λv(ν) = Φ#
21(ν, ν1)Φ

#−1
21 (νf , ν1)

[

λv(νf )− Φ#
22(νf , ν1)λv(ν1)

]

+Φ#
22(ν, ν1)λv(ν1) (44)
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c- Compute primer vector’s maximum magnitude:

λm = max
ν∈[ν1,νf ]

|λv(ν)| (45)

Iterative procedure:

1. Defineνm = arg max
ν∈[ν1,νf ]

λv(ν).

2. Findνa, νb ∈ Timp so thatνa < νm < νb.

3. Add a new impulse atνm:

Timp = Timp ∪ {νm} (46)

4. if dim(Timp) > NN then updateTimp according to the following cases:

(a) If
dλ(νa)

dν

t

λ(νa) > 0 and
dλ(νb)

dν

t

λ(νb) < 0,

(i) if νa 6= ν1 then moveνa to νm:

Timp = Timp − {νa} (47)

(ii) if νb 6= νf then moveνb to νm:

Timp = Timp − {νb} (48)

(b) If
dλ(νa)

dν

t

λ(νa) < 0 or
dλ(νb)

dν

t

λ(νb) > 0,

(i) if
dλ(νa)

dν

t

λ(νa) > 0 andνa 6= ν1 then moveνa to νm:

Timp = Timp − {νa} (49)

(ii) if
dλ(νb)

dν

t

λ(νb) < 0 andνb 6= νf then moveνb to νm:

Timp = Timp − {νb} (50)

5. Solve the polynomial multi-impulse problem using Carter’s conditions onλ,∆vi:

λtR(νi)R(νi)
tλ = 1 ∀ νi ∈ Timp

∑

νi∈Timp

[

R(νi)R
t(νi)

]

λ∆vi = −uf

∆vi ≥ 0
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6. Evaluate the new primer vector trajectory:

λv(ν) = Rt(ν)λ ν ∈ [ν1, νf ] (51)

7. Find primer vector’s maximum magnitude:

λm = max
ν∈[ν1,νf ]

|λv(ν)| (52)

Repeat "Iterative procedure" until λm ≤ 1

Step5 requires solving a system of polynomial equations with respect toλ and∆vi. Note that regular

algebraic tools for finding all real solutions of multivariate polynomial equations based on formal Gröbner

basis computation may fail due to highly complex equations.Here, homotopy continuation methods have

been used [28]. In particular, the free software package PHCPack developed by Jan Verschelde [29], [31] is

used to solve the system of polynomial equations at each iteration at step5. The systematic convergence of

the algorithm for any rendezvous is not analytically provedbut no such case has been reported in the different

numerical tests performed so far. The algorithm is depictedin Fig. 4 flow chart.
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Figure 4: Iterative algorithm flowchart
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V. Applications and numerical examples

In this section, numerical results obtained from the mixed iterative algorithm are compared with previous

ones published in the literature [2] while global optimality is certified via the PRDV algorithm. When the

mixed iterative algorithm converges to anNit solution, then the PRDV algorithm certifies optimality of this

solution for this fixed number of impulses while checking that there is no alternative solutions forN =

2, 3, 4 andN 6= Nit. Recall that the PRDV algorithm may be used to get a certificate of unfeasibility for

a fixed number of impulses. Only coplanar elliptic rendezvous problems based on the Yamanaka-Ankersen

transition matrix [16] are considered for numerical illustration of the results proposed. Under Keplerian

assumptions and for an elliptic rendezvous, the complete rendezvous problem may be decoupled between

the out-of-plane rendezvous problem for which an analytical solution may be found [7] and the coplanar

problem. For the latter problem, the bound of Neustadt [20] on the optimal number of impulses is 4 and

thereforeNmax = 4 in the following. Note that the first two particular cases in which eccentricitye = 0, the

Yamanaka-Ankersen transition matrix reduces to the Hill-Clohessy-Wiltshire transition matrix [30]. Finally,

all numerical examples are processed using PHCpack 2.3.52 [31], [28], GloptiPoly 3.5.1 [22] and SeDuMi

1.1R3 [23] under Matlab 2008bc© running on a Pentium D 3.4GHz system with 1GB ram.

A. Case study 1

Consider the numerical example given in subsection III B andborrowed from [2]. The mixed algorithm

produces a four-impulse trajectory (as Carter’sa priorisolution and PRDV solution) which reduces the overall

fuel consumption by finding the optimal interior impulse application times with a resolution of5.0436 s

(0.005236 rad.). The iterative algorithm reaches the optimum within16 seconds and 8 iterations. Primer

vector trajectory and impulse vectors are shown in Fig. 5 in the(λvx, λvy). Note that in this particular case,

the upper bound on the impulse number is reached. The resultsobtained are compared to those presented by

Carter [2] in Table 3.
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Carter [2] Iterative Algorithm

νint1 (rad) π
2
≃ 1.57 1.7017

νint2 (rad) 3π
2

≃ 4.7124 4.5867

∆V (ν0)
t [ −0.0273 0.0344 ] [ −0.02691 0.0334 ]

∆V (ν1)
t [ 0.0897 0.0119 ] [ 0.092 0.0046 ]

∆V (ν2)
t [ −0.0897 0.0119 ] [ −0.0907 0.0043 ]

∆V (νf )
t [ 0.0273 0.0344 ] [ 0.0257 0.0318 ]

Fuel-costL1 m/s 0.3230 0.3094

Fuel-costL2 m/s 0.2688 0.2669

Table 3: Result comparison for case study 1
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Figure 5: Primer vector in-plane trajectory for case study 1

The evolution of the primer vector norm during the iterativeprocess is plotted in Fig. 6 where iterations

associated with numerical refinements of the different solutions have been omitted.
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Figure 6: Norm of Primer vector during the iterative processfor case study 1

The minor differences between the solutions of the iterative algorithm and that of the PRDV algorithm

are mainly due to the numerical resolution chosen for both algorithms. Tighter results could be obtained at

the expense of more complex numerical computations.

B. Case study 2

The second numerical illustration is a coplanar circle-to-circle rendezvous that should be completed

within one orbital period and that is given in reference [2].The chaser is one unit above the target with the

same initial velocity. All characteristics are summarizedin Table 4.
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Eccentricity e = 0

ν0 0 rad

X ′

0 = [R′

0 v′0] [ 0 1 0 0 ]

νf 2π rad

X ′

f = [R′

f v′f ] [ 0 0 0 0 ]

Nmax 4

Table 4: Carter’s second example characteristics

The resulting optimal trajectory computed with the mixed iterative algorithm is a three-impulse ren-

dezvous as conjectured by Carter. The primer vector trajectory plot depicted in Fig. 7 confirms the optimality

of the solution for a fixed number of impulses equal toN = 3.
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Figure 7: Primer vector in-plane trajectory for case study 2

The optimization process requires10 iterations during25 s. These ten steps are detailed in Figs. 8 thru

11, where each iteration is associated with one particularTimp update case (see algorithm description). Note

that at each step of the iterative procedure, the resulting|λv(t)| function remains smooth thereby overcom-

ing the main drawback of the usual iterative procedure originally proposed by Lion-Handelsman [9] and

developed lately in [12] and [11].
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(b) Iter 2: Add impulse atν = 1.950
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(c) Iter 3: Case (a)(i+ii)

Figure 8: Details of iterations 1-3 for case study 2
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(b) Iter 5: Case (a)(i+ii)
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(c) Iter 6: Add impulse atν = 2.475

Figure 9: Details of iterations 4-6 for case study 2
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(b) Iter 8: Add impulse atν = 2.370
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(c) Iter 9: Case (a)(i+ii)

Figure 10: Details of iterations 7-9 for case study 2
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Figure 11: Details of iterations for case study 2

The results presented in [2] are clearly not optimal with respect to the choice of the date of application

of the interior velocity increment. In [2], this location has been chosena priori and it obviously results in

a nonoptimal consumption as summarized in Table 5 where the results of the mixed iterative algorithm are

compared to those presented by Carter in [2] with12% fuel consumption improvement. Additionally, Table

5 lists the optimality certification furnished by the mixed iterative algorithm.
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Carter [2] Mixed iterative Algorithm PRDV alorithm

νint (rad) π
2
≃ 1.5708 2.4119 2.4085

∆V (ν0)
t [ 1.6294 −0.6667 ] [ 1.7775 −0.3828 ] [ 1.7771 −0.38449 ]

∆V (ν1)
t [ 0.3901 0.0964 ] [ 0.2896 −0.0165 ] [ 0.28995 −0.015971 ]

∆v(νf )
t [ −0.0633 −0.0259 ] [ −0.0672 −0.0143 ] [ −0.06706 −0.014384 ]

Fuel-costL1 m/s 2.8721 2.5479 2.549

Fuel-costL2 m/s 2.2307 2.1770 2.1772

Table 5: Results from [2], mixed iterative and PRDV algorithms for case study 2

Figure 12 shows the in-plane trajectory of the chaser for Carter’s solution (green) and mixed iterative

algorithm (blue). Interestingly, the simulation of Carter’s maneuver planning as proposed in [2] leads to an

error at the final point of the rendezvous even with the Hill-Clohessy-Wiltshire state-transition matrix.
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Figure 12: In-plane trajectory and impulse dates for Carter’s second example: Mixed iterative algorithm

(blue) and Carter’s solution (green)

C. Case study 3

Following the first two academic numerical examples, a more realistic illustration based on PRISMA

[17] is now presented. PRISMA programme is a cooperative effort between the Swedish National Space
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Board (SNSB), the French Centre National d’Etudes Spatiales (CNES), the German Deutsche Zentrum für

Luft- und Raumfahrt (DLR) and the Danish Danmarks Tekniske Universitet (DTU) [4]. Launched on June 15,

2010 Yasny (Russia), it was intended to test in-orbit new guidance schemes (particularly autonomous orbit

control) for formation flying and rendezvous technologies.This mission includes the FFIORD experiment

led by CNES which features a rendezvous maneuver (formationacquisition). The orbital elements of the

target orbit as well as initial and final rendezvous conditions are listed in Table 6.

Semi-major axis a = 7011 km

Inclination i = 98 deg.

Argument of Perigee ω = 0 deg.

Right Ascension of the Ascending Node Ω = 190 deg.

Eccentricity e = 0.004

True Anomaly ν0 = 0 rad.

t0 0 s

Xt
0 = [Rt

0 vt0] [ −10 0 0 0 ] km -km/s

tf 64620 s

Xt
f = [Rt

f vtf ] [ −100 0 0 0 ] m -m/s

Nmax 4

Table 6: PRISMA rendezvous characteristics

To save fuel and allow for in-flight testing throughout the FFIORD experiment, the rendezvous maneuver

must last several orbits. Duration of the rendezvous is approximately 12 hours for an expected average cost

of 20 cm/s [17].

The iterative algorithm achieves optimization within13 seconds and within 3 iterations with a chosen

tolerance of10−4 and a resolution of4.8685 s (0.0052781 rad.). Global optimality of this three-impulse

solution may be confirmed by running the PDRV algorithm.
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PRDV Algorithm Iterative Algorithm

tint (s) 3189.3 3198.6

νint (rad) 3.4285 3.4377

∆V (ν0)
t [ −0.04911 0.002152 ] [ −0.04911 0.001933 ]

∆V (ν1)
t [ −0.002038 0.0000099 ] [ −0.002039 0.0000112 ]

∆V (νf )
t [ 0.051315 0.001423 ] [ 0.051316 0.001404 ]

Fuel-costL1 m/s 0.10585 0.10582

Fuel-costL2 m/s 0.102525 0.10252

Table 7: Results of the mixed iterative algorithm for the PRISMA case study

Figure 13 shows primer vector magnitude during transfer.
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Figure 13: Primer vector magnitude during PRISMA mission

Note the low magnitude of the second impulse (0.002 m/s) with respect to the initial and final velocity

increments (0.0492m/s and0.0513m/s) but these velocity increments play a significant role inthe optimality

of the result. In particular, they provide the right chaser orientation for the long drift (61400 s) between the

second impulse and the final one. Indeed, the designer could be tempted to remove this interior impulse

and resort to the suboptimal two-impulse strategy. The latter solution proves to be strongly suboptimal since

its L2 cost is27 % greater than the optimal solution (0.14506 m/s). The long drifting period of61400 s of

the optimal solution is clearly illustrated in Fig. 14 wherethe in-plane trajectory and impulse positions are
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represented.
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Figure 14: In-plane trajectory and impulse positions * for PRISMA mission

Finally, note that the optimal cost is half the expected average cost of20 cm/s [17].

D. Case study 4

In order to validate both PRDV and mixed iterative algorithms for a highly elliptical reference case,

the SIMBOL-X mission is now studied. SIMBOL-X is a collaborative effort between CNES (France) and

ASI (Italy). It consists in a two-part high energy X-ray telescope, relying on two spacecraft. The main

spacecraft orbit is highly elliptical (e = 0.8) with a period of 4 days. For a comprehensive description of

this mission, the interested reader may consult reference [18]. The main feature of the rendezvous problem

is that it is composed of two successive rendezvous maneuvers separated by a hold point. Here, we focus on

the first rendezvous maneuver designed to reduce the distance from30 km to500 m between both satellites.

The characteristics of this rendezvous are described in Table 8 where the coordinates of the initial and final

relative positions and velocities are converted into the LVLH frame.
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Semi-major axis a = 106246.9753 km

Inclination i = 5.2 deg.

Argument of Perigee ω = 180 deg.

Right Ascension of the Ascending Node Ω = 90 deg.

Eccentricity e = 0.798788

True Anomaly ν0 = 135 rad.

t0 7 s

Xt
0 = [Rt

0 vt0] [ −18309.5 23764.7 0.0542 0.0418 ] m -m/s

tf 50002 s

Xt
f = [Rt

f vtf ] [ −335.12 371.1 −0.00155 −0.00140 ] m -m/s

Nmax 4

Table 8: SIMBOL-X rendezvous characteristics

Rendezvous duration is49995 s, that is, much shorter than the orbital period. This differs from PRISMA

mission where the rendezvous lasts about12 periods. The iterative algorithm achieves optimization within 2

seconds and 1 iteration. The final solution is a two-impulse transfer as described in Table 9.

[

t1 tf

]

(s)

[

7 50002

]

[

ν1 νf

]

(rad)

[

2.3562 2.7859

]

∆V (ν1)
t

[

0.6193 −0.5061

]

∆V (νf )
t

[

−0.1748 0.4912

]

CostL1 m/s 1.7914

CostL2 m/s 1.3212

Table 9: SIMBOL-X results

As shown in Fig. 15, cost cannot be improved by adding interior impulses since the primer vector norm

does not exceed1 on [t0, tf ].
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Figure 15: Primer vector magnitude for SIMBOL-X mission

Figure 16 shows the in-plane trajectory for the first rendezvous of the SIMBOL-X mission resulting in a

direct transfer between chaser and target.
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Figure 16: In-plane trajectory for the SIMBOL-X mission

The optimality of these results is also certified by running the PRDV algorithm for the 3-impulse and
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4-impulse scenarios for which a certificate of unfeasibility is obtained.

VI. Conclusion

Two numerical algorithms based on polynomial optimizationand tools from algebraic geometry have

been proposed to address the issue of time-fixed optimal rendezvous in a linear setting. The first algorithm

relying on polynomial optimization provides a guarantee ofglobal optimality for its solution for a fixed

number of impulses. The second algorithm is a mixed iterative algorithm optimizing over the number of

impulses but with no guarantee of global optimality of its solution. As proposed here, both algorithms can

be used jointly to get a complete solution as the first algorithm certifies the solution obtained with the mixed

iterative algorithm.

Despite the good numerical results presented, some improvement can still be expected if more sophis-

ticated transition matrices including orbital perturbation effects are used. Another avenue of research deals

with the extension of previous algorithms for optimal trajectory planning with collision avoidance constraints.

Appendix

A- LVLH reference frame

Figure 17: LVLH reference frame

The Local Vertical-Local Horizontal (LVLH) coordinate frame is a local satellite frame. It is defined as

follows:

• OriginO: Target satellite center of mass
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• Z axis (R-bar): Radial direction (Nadir-Target), oriented towards the center of the earth.

• Y axis (H-bar ): Perpendicular to the orbital plane, points opposite the angular momentum.

• X axis (V-bar ): Chosen such that~ux = ~uy ∧ ~uz

B- Yamanaka-Ankersen transition matrix [16]

This matrix describes the in-plane relative motion of the chaser satellite, with respect to the target satel-

lite. Assuming small distances between spacecraft and Keplerian environment, the matrix is given in LVLH

reference frame:

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
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








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−1
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
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







(53)

where:

ρ = 1 + e cos ν, k2 = h/p2, J = k2(t− t0)

s = ρ sin ν, c = ρ cos ν

s
′

= cos ν + e cos 2ν, c
′

= −(sin ν + e sin 2ν)

Φν =

























1 −c(1 + 1/ρ) s(1 + 1/ρ) 3ρ2J

0 s c 2− 3esJ

0 2s 2c− e 3(1− 2esJ)

0 s
′

c
′

−3e(s
′

J + s/ρ2)

























ν

Ψν =









ρI2×2 O2×2

−e sin νI2×2 (1/k2ρ)I2×2









ν

(54)
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