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Nomenclature

- a = semi-major axis ;

e = eccentricity ;

- v =true anomaly ;

- ¢*' (1) = ¢~ (v) and¢(v) = fundamental matrix of relative motion ;
- ®(v,v1) = ¢(v)¢~ (1) = transition matrix of relative motion ;

- B(v) = input matrix of relative motion dynamical model ;

- R(v) = ¢"'(v)B(v) = ¢~ *(v)B(v) = primer vector evolution matrix ;
-up = ¢ (vp)Xs — ¢~ (v1) X1 # 0 = boundary conditions ;

- N = number of velocity increments ;

-y, Vi=1,---, N =impulses application times ;

- Av; =impulse modulus at; ;

- B(v;) = impulse direction vector af; ;

- AV (v;) = Av; 8(v;) = velocity increment vector af; ;

- R[z1, -, z,] stands for the algebra of polynomials in variables, - - - , z,,) with coefficients inR ;

I.  Introduction
The first space missions involving more than one vehicle (@gmpollo, Vostok) have highlighted
the fact that the space rendezvous between two spacecaaeig technology raising relevant open control
issues. Given the increasing need for satellite serviginguirent and future space programs developed in
conjunction with rendezvous missions for the Internati®@ace Station (ISS), the interest of most space
agencies in the Guidance Navigation and Control (GNC) systeas been rapidly rising. In particular, new
challenges have appeared relating to the synthesis of meedschemes capable of achieving autonomous

far range rendezvous on highly elliptical orbits while mnesng optimality in terms of fuel consumption.



Strictly speaking, the space rendezvous maneuver is atabttansfer between a passive target and an
actuated spacecraft called the chaser, within a fixed oiirfilpéine period. Since the rendezvous maneuver
can only be performed within a certain period of time whildizihg as little fuel as possible to extend the
chaser lifetime, we mainly focus on the so-called time-fifteal optimal rendezvous problem [1], [2], [3].

In this paper, far range rendezvous in a linearized grawitat field is viewed as a time-fixed minimum-
fuel impulsive orbital transfer between two known elligtiorbits. This issue may therefore be formulated
as a time-fixed impulsive optimal control problem. Becausthe constraints of on-board guidance algo-
rithms, numerical solutions based on linear relative motece particularly appealing. With respect to the
numerical solution, direct methods based on discretiZiegoriginal problem and converting it into a linear
programming problem may be used as in [4]. Indirect appreatiased on the solution of optimality con-
ditions derived from Pontryagin’s Maximum Principle, l&agito the development of the so-called primer
vector theory presented in [5], have also been an avenuesefreh in numerous studies [6], [7], [2], [8].
If they only focus on fixed number and location of impulsegsth approaches fail to optimize trajectory
planning in terms of the number of impulsive maneuvers. iNgitan they ensure the global optimality of
the result provided for a fixed number of impulses. To optertize number of impulses as well as their
specific application times, an iterative algorithm basedhencalculus of variations originally developed by
Lion and Handelsman [9] has been designed [10-12]. The nraintshck however is due to the possible
non smoothness and sub-optimality of the resultant trajgaf the primer vector norm. To overcome this
difficulty, a Davidon-Fletcher-Powell penalty minimizai step is proposed in order to move the impulses
and achieve a smooth trajectory as detailed in [11] or [1].

The paper’s contribution is twofold: First, by exploitiniget polynomial nature of the necessary and
sufficient conditions of optimality of the time-fixed impiys optimal control problem for a fixed number of
impulses, a new powerful algorithm can be designed. Basedaamt results on convex relaxations for non-
linear polynomial optimization [13], [14], the first rendems algorithm can be devised with the use of time
interval grid that helps find the optimal location of the intgive maneuvers. One of the key advantages is to
furnish a certificate of global optimality for the proposetigion. Secondly, the iterative algorithm based on
the calculus of variations is revisited and extended to #se ©f elliptic Keplerian orbits. In particular, this

new iterative algorithm combines the algebraic formulatid Carter's necessary and sufficient conditions,



supporting the use of powerful numerical tools from the bige& geometry field, and improving variational
tests as derived in [9]. This results in a mixed differentdtive strategy bypassing the local optimal search
step and cusp occurrence. An interesting feature of theeptessults is that both algorithms complement
each other and may be integrated into a single optimal t@jgplanning tool.

In the first section of this paper, the framework of the minimfuel fixed-time rendezvous problem is
presented and necessary and sufficient conditions of olitynraae recalled. Relative dynamics motion for
rendezvous are the well-known Tschauner-Hempel equalidijsand the transition matrix of Yamanaka-
Ankersen [16]. It is shown that, under mild classical asstimng, the rendezvous problem may be refor-
mulated as a polynomial optimization problem in which a fiestidezvous algorithm based on polynomial
optimization is designed for a number of impulses specifigtiori The results of [9] are recalled and the
mixed iterative algorithm is presented. For comparisoalses the efficiency of the proposed algorithms is
illustrated with four different numerical examples. Twademic examples taken from Carter’s reference [2]
are first studied. Also reviewed are two realistic scendrased on PRISMA which is a "technology in-orbit
testbed mission" demonstrating formation flight [17] anMBOL-X formation flying mission which is a

particular example of a high elliptical reference orbit][18

Il.  The time-fixed optimal rendezvous problem as a polynomikoptimization problem

A. Time-fixed optimal rendezvous problem in a linear setting

This paper focuses on transfers between closed non-airotlhéts for the fixed-time minimum-fuel
rendezvous of an active (actuated) spacecraft called thsechvith a passive target spacecraft assuming a
linear impulsive setting and an unperturbed Kepleriartikelanotion. The impulsive approximation for the
thrust means that instantaneous velocity increments auéedpio the chaser instead of finite-thrust powered

phases of finite duration. The thrust per unit mass vectdreissfore defined by:

N N
T(v)=> AV(W)s(v—v) =Y AviB(v;)d(v — vi) (1)
i=1 =1
where0 < 11 < --- < vy < T, N is the number of impulsive controls ardV (v;) the discontinuity
in the velocity vector due to a thrust impulsergt defined byd(v — v;). Note that the true anomaly has

been chosen as the independent variable since this changeialbles is widely used when dealing with

Tschauner-Hempel equations [15] and Yamanaka-Ankerséaits transition matrix [16]. For a minimum-



fuel rendezvous, the cost function is defined by the totatadtaristic velocity:

VN N
J = /0 T(v)dv = ; Av; (2)

If the relative equations of motion of the chaser are supptisbe linear and under the previous assump-

tions, the considered rendezvous problem may be reforedita the following optimal control problem:

N
min J = g Av;
N,vi,Avi,B(vi) =1

N
s.t. X(v) = AW)X (v) + B(v) Z B(vs) Avid (v — v;) @)
[8(vi)ll =1
AUZ' 2 0

where matricesi(v) and B(v) define the state-space model of relative dynamics. Regatfia Keplerian

elliptic assumptions, the differential constraint in (8given by the Tschauner-Hempel (TH) equations [15]:

. or On I, or
X(t) = - (4)
o, A1(v) As(v) or
wheredr anddv are the relative position and velocity vectors respedtivel; (v) is a symmetric matrix
and A4, is a time-invariant antisymmetric matrits () = Ay = — Al while B = {0 1 ]/. The optimal
control problem (3) belongs to the class of impulsive linaartrol problems (see [19] and references therein)
for which a numerical solution is hard to construct. One @f tiain difficulties encountered with problem
(3) is that the number of impulsé€s is part of the optimization process. A highly classical xekion of
(3) consists of reviewing a fixed-scenario optimal rendesvior which the number of impulses is a
priori set and where the first and last impulses are applied at tharbeg and end of the rendezvous [6]
respectively. It should be pointed out that the number ofulegs N may be chosen equal to the upper-
bound on the optimal number of impulses according to Net§2ad (that is 2 for out-of-plane rendezvous,
4 for a coplanar rendezvous and 6 for the complete rendevdsreover, since a transition matrix may
be computed in closed form for the TH equations (see [16May be appropriate to replace the differential

constraint on dynamics by the equivalent algebraic comstiavolving this transition matrix. Assuming

boundedness conditions on relative position and velggitthlem (3) for a fixed number of impuls@s may



then be reformulated as the following optimization prob[&fn

N
min J = ZAvi
i=1

vi,Avi,B(vi)
N N
s.t. up = Z (b#,(Vi)B(Vi)Aviﬂ(Vi) = Z R(vi)Av; B(v;) 5)
i=1 i=1
18wl =1
AUZ' 2 0

where:¢# () = ¢~ 1(v) and¢(v) is the Yamanaka-Ankersen fundamental matrix for relatiedion. The

optimization decision variables are :
-y, Vi=1,---,N: Impulses application times ;
- Av;: Impulse modulus at; ;

- B(v;): Impulse direction vector at; ;

B. Primer vector theory and Carter's necessary and sufficiehconditions for a fixed number of impulses

Applying the Maximum Principle on problem (3) for a fixed nuentof impulsesN as described in
Lawden [5] or a Lagrange multiplier rule for the equivalertiglem (5) as in [21], one can derive necessary
conditions of optimality in terms of the co-state vectoraz$ated with the relative velocity and referred to as
the primer vector (see conditions (6) to (10) in theorem below). Carter has shown that these conditions
are also sufficient in the case of linear relative motion wiitd strengthening semi-infinite constraint (13)
that should be fulfilled on the continuupm,, vy] and is expressed in terms of the transition maRix) =
¢* (V)B(v) = ¢~ (v)B(v) of the primer vector denote¥, () = R(v)\. These results are summarized in

the following theorem.

Theorem I1.1 [8]
(V1 ey UN, Avy, oy Avuy, B(11), ..., B(vn)) is the optimal solution of problerd) if and only if there

exists a non-zero vector € R™, m = dim(¢) that verifies the necessary and sufficient conditions:

Avi=0or B(v;) = —R'(vj)\, Vi=1,--- ,N=2+r 6)

Av;=0or NR(v;))R(v;))\=1,Vi=1,--- ,N (7



R(Vkm)

Awvy, =0o0r vy, =1y or v, = Vs or /\/dTR(Vki)//\ =0,Vi=2,---,N—1 (8)
v
N
IR0 R (vi)] Awi = —uy ©)
i=1
Av; >0, ¥i=1,---,N (10)
N
> Avi = —ujA >0 (11)
i=1
—us A is the minimum of the set defined as : {\ € R™ : (6) — (11) are verified} (12)
M) <1 Vvev,vy (13)

Note that conditions (11) and (12) may be easily derived ftioeprevious ones.

Numerical solution of optimality conditions (6) to (13) ihe unknownsx € R™, {v;}i=1... N,
{Bi}ti=1,.. N, {Av;}i=1,... n is still hard to find for a fixed number of impulséé due to the nonconvex
and transcendental nature of these polynomial equalitidsreequalities. A numerical procedure based on

polynomial optimization is now proposed to address this erical issue and .

C. Numerical insights for the relaxed fixed-scenario optimarendezvous

Despite the preceding simplifying assumptions, the faat tmpulse dates are part of the vector of
decision variables implies the solution of transcendesadaiations. This first difficulty may be overcome
thru the use of a gridding technique providing a numericaragimation of the optimal impulse dates. The
major drawback of gridding techniques is the definition @& thsolution value (density) of grid points in
order to adequately handle hard equality constraints agetkfn (8). Therefore, we propose a dynamic

gridding strategy to overcome the first drawback while eitjpabnstraints (8) are relaxed as:

dR(Vki)

_ )\I
€1 < dv

R <e,Vi=2,--- N—-1 (14)

wheree; > 0 is a small parameter representing the tolerance over ¢ygoalistraints.
Furthermore, verifying (13) requires imposing the podyivof the quadratic polynomiall —

NR(v)R(v)A on the continuum of the whole rendezvous interial v/]. This inequality constraint is



not as hard as the previous ones and may be roughly disatetias a static grid ofi/; equidistant points
considering that a few number of points (typically 50) wi becessary to satisfy this constraint due to the
usual shape of the functidh\, ||. In every case, the primer vector trajectory will be progadand checked

a posteriorion a finer grid of points.

Another issue is related to the poor scaled representatieriallarge differences between initial time
and positions and final ones. One can easily see that (7)dadyrin a Cholesky factorized form and
other conditions may be factorized usingand Av;’s decision variables. Therefore, the problem could
be scaled using Schur decomposition. However, as the gcalatrix entries differ by several orders of
magnitude in this case, a different scaling strategy has Ipeeferred. First, diagonal temporary scaling
matrices ;) are calculated for each impulse (= 1,..., N ). The main purpose is to make diagonal
entries ofQs, = St, R(t;)R'(t;)S, matrix less than or equal tb. Second, entries of diagonal scaling
matrix (S) are defined using the corresponding entries of minimumevafiy, matrices.

Finally, the previous necessary and sufficient conditidisasthat the optimal direction§(v;) may
easily be obtained via (6) onceandAwv; have been computed.

For a given grid of impulse times, the optimization problenthien given by:

min —u}»)\
>\,AU¢

s.t.

N
—uy = Z R(v;) R (vi) SAAv;
i=1

NSRu)RwYSA=1,Yi=1,---N (15)
dR
A/S%R(W)'SA‘ <eVi=2,---,N-1
v

Av; >0,Vi=1,---N

NSR(v)R(v;)/SA<1,¥j=0,---, My
The problem (15) belongs to the class of polynomial noncemyeimization problems with respect to the
variables\ € R™ andAw;, ¢ = 1, ..., N for which a hierarchy of convex relaxations has been proghfis#,
[14]. Given below in the next section are some basic factsiedumvex relaxations of nonconvex polynomial

optimization problems.



D. Convex relaxations for polynomial optimization

The problem (15) can be written under the general form:

P: ¢g* = min go(x)
(16)
st. gi(x) >0,i=1,...,1
whereg;(z) € Rlzy, -+ ,2,] : R™ — R. This class of optimization problems is known as NP-hardce Th

guadratic non convex problems (0-1 problems) are particalses of (16). The feasible set of (16) is noted:
K={zxeR"|¢g;>0,i=1,...,m} a7)

Computing the global optimum d is effected by finding;*, wherego(z) — g* > 0 is a globally positive
polynomial on the seK i.e. go(z) — g* € PY, the convex cone of semi definite positive polynomials (SDP)

in RP having degree< d defined by:

n+d
Pl ={pecR[xy, -,z |plx) >0V R} D= (18)
d
If S¢ is the convex cone of sum of squares polynomials (SO®)irgiven by:
Sy = {p € Rlzy, -+ an] [ p(z) = Zqi(x)g} (19)
=1

then each element &8¢ can be characterized by a linear matrix inequality (LMI)rfadation [14], [13],

[22]:
p(a:):Zpaxo‘GSg < 3X pla)y=2ZXz X =0 (20)
wherez is the monomials of degreesd array. For a feasible matriX, Cholesky factorization gives:

X=QQ Q’:[qh... 7qr] (21)

and

T

plx) = ZQ'Qz=Qzlla=> (¢i2)* = ¢} (x) (22)
1=1

=1
where the number of squared terms-is rang(X). By identifying the coefficients op(z) = 2/ Xz =

> o Paz® > 0, we obtain the following LMIs:

trace Ho X = p, Ya
(23)

X=0



whereH,, is a Hankel matrix. Determining whether a polynomial beltwS? is therefore equivalent to
solving an LMI problem where powerful solvers may be used.[E8rthermoreS? C P4: A lower bound
to the polynomial optimization problem (16) may be easilynputed. Finding the multiplierg;(z) € S?

such that:
p@) = go() —g" = qo(x) + Y gi()qi(x) = go(z) —g* >0 Yz €K (24)
=1

for a fixeddeg(q;(x)), is a semi-definite programming problem. Feg(p(z)) = 2k, thek'" order convex
LMI relation stating thap(z) = go(z) — g* € S, ¥V 2 € K is an LMI problem whose optimal solutigs,
gives a lower bound to the global optimwh. Under some assumptions, it has been shown in [13] that a
hierarchy of monotone convex relaxations can be constiugtéch asymptotically converges to the global

optimum of the problem (16).

Theorem 11.2 [13]

If P is compact and if there exist§x) € Rz, - -- ,z,] such that:

1 — {u(z) > 0} is compact

m
2 — u(x) = uop(x) + Zgl(:zr)ul(x) Vx € R" where u;(z) € S, i=0,--- ,m
=1
thenp; < g* with an asymptotical convergence guaran}gh‘:m Pi=g".
—00

Usually, convergence is fast apfl tends to be extremely close g0 for a low relaxation ordek. If p; = g*

for a given relaxation ordek, a certificate of global optimality may be provided [22].

Ill.  Using a polynomial optimization algorithm to solve the rendezvous problem

In this section, the complete rendezvous algorithm is prtesk It relies on the dynamic gridding strat-
egy and relaxations of the genuine polynomial optimizappooblem as detailed in the preceding section.
Algorithm input arguments are the initial state (positi@ibcity) X, the final state vectak ¢, the desired
resolution ¢esg) on the impulse times, dimension 6f; sets ), first impulse time #,), final impulse time
(v¢), number of impulsesk), initial precision value:; for (14) and precision value, on the norm of the
primer vector. The output arguments are the optimum imptiises ¢3, ..., vx_;), optimal primer vector
A*, optimal impulses (optimal amplitud&v; and optimal directiorg;) and the optimal fuel consumption

J*.

10



LetO,,...,0ON_1 be nonempty ordered sets given®y:= {v;,,...,v;, } wherey,,, ..., v;, represent
the possible candidates fof* impulse time. The distances between sequential candidatesqual and
represented by the current resolution valuss). In addition to theséV — 2 sets, it is necessary to define the

two singleton®; = {v1} andOy = {v,}.

A. PRDV algorithm
1 Lety;, :==uvq, v, :=tyforalli=2,--- N -1
2 Generate alb; setsforal =2,..., N — 1.
3 Generate the sé&t consisting of all the grid vectors of impulses dates:
t

S:_{|:I/1 To 0 IN_1 Vf GRN:IiGGi, $i<$i+1,Vi:2,...,N—1} (25)

4 Compute the global optimal solutian,, k = 1, - - - , card(S), if it exists, of the polynomial optimiza-

tion problem (15) for every grid vector ifi.
5 If there exists no global solutiam;, lete; < ¢; + 5 and go to previous step.

6 Find the best solution* = min «; and its argument (optimal grid vectpr, z3,..., 2% _;, ] in
K3

S set, optimal amplitudeAwv;, i = 1,--- , N, optimal costate vector*) w.r.t. fuel consumption.

7 Definel; .= {x; € ©; : z; < xf} andu; := {z; € ©; : x; >z} setsforalk =2,..., N — 1.

8 Calculate the resolution valuees = vo, — v3,).

9 Ifthel; setis nonempty then assign < max(l;) elsev;, < 7.
10 If theu, setis nonempty then assign, «+ min(u;) elsey;, « z.
11 If the resolution value is greater thaes,, lete; < 5 and go to Steg else go to step 12.
12 Check the primer vector witth\*, (Av})i=1,... N, (V] )i=1,... .N)

IR WAll2 — 1 < ez (26)

13 If the previous test is positive, compute the directiams$ amplitude of the optimal impulses:

B*(vF) = =R\ AV*(uF) = B*(vF)Avs (27)

3 3 K2

11



Some additional comments are now given for a greater clafigach step.

e Polynomial optimization is achieved under MATLA®, using the free academic Gloptipoly software

developed at LAAS [22]. This software package requires geeaf YALMIP [24] and SeDuMi [23].

e The 12" step is carried out by propagating the primer vector init@idition \* over the rendezvous

time duration using the Yamanaka-Ankersen transition imatr

e Each optimal solution obtained &t* step for each grid point is certified to be global if it exists.

B. Numerical illustration

Consider the first example presented by Carter in [2]. It md&®f a coplanar four-impulse circle-to-

circle rendezvous. The rendezvous maneuver must be cadplebne orbital period. Initial and final state

vectors are given in table 1.

Eccentricity e=0

0 Orad

Xs=I[Rsv]| [100 0]

v 2w rad

X;=[R5vil|lo 0 0 0.427]

Nmaz‘ 4

Table 1: Data for Carter’s first example

Running the PRDV algorithm withes; := 5.1906 x 10~% rad (0.5 s)d := 18 ande; := 5 x 1074, the
global optimal solution can be found with an acceptablerémlee valued; = 4.4349 - 10~7). For the sake

of comparison, the results are shown in Table 2 (absolu@gioa less than 0.01 for the dates of application

of velocity increments) alongside those of reference [2].

12



Carter [2] PRDV Algorithm

i —9.8201-1072 1T —6.5876 - 1072 ]
\ —5.2929 - 1072 —6.4727 - 1071
1.8228 - 107! 2.53-107*
| —4.3629 - 107t || | —6-2193- 107! |
Vint, (rad) T~ 157 1.7077
Vint, (rad) 3%~ 4.7124 4.5859
AV (x)" [ -0.0273 0.0344 ]| [ —0.02655 0.0329 ]

AV (1)t [0.0897 0.0119 ] | [0.0917 0.004614 ]

AV (r2)"  |[ —0.0897 0.0119 ]|[ —0.09011 0.00434 ]

AV (vy)* [0.0273 0.0344] | [0.0259 0.0322 ]
Fuel-costC; m/s 0.3230 0.3091
Fuel-costC, m/s 0.2688 0.2667

Table 2: Result comparison for Carter’s first example

Interestingly, the results are not so different due to Carfearticularly smarta priori choice of the
impulsive dates. Nevertheless, Carter’s results arelglaat optimal.

More details about Carter’s solution and PRDV solution avemgin the plot of the in-plane trajectories
of both solutions shown in Fig. 1 where red stars depict thstioms of the application of the velocity
increments. If these solutions lead to almost similar tt@ees and consumption, only the one obtained
with the PRDV algorithm is guaranteed to be optimal for thedixumber of impulsed’ = 4.

The main shortcoming here is that, the velocity increment number is considered fixed and celn@o
optimized except by running PRDV algorithm for each diffégreaseN = 3, N = 4, --- up to the theoreti-
cal maximum defined by the Neustadt bound. An alternativlisogridding approach allowing optimization
over the number of impulses dates back to the sixties wittsémeinal results of Lion-Handelsman [9] and
the extensions reported in [12], [10], [25], [11]. This appch is now revisited and a new mixed iterative
algorithm relying on the calculus of variations of Lion-Hiaisman and on the polynomial solution of some

part of the optimality conditions as formulated by Cartepusit.

13



Figure 1: Detailed trajectories for solutions: PRDV algfum (blue), Carter’s solution (green)

IV. Optimizing over the number of impulses

A. Lion & Handelsman [9] results revisited

In [9], a method is proposed to take advantage of the primetovéheory developed by Lawden in order
to improve nonoptimal trajectories by adding or shiftingpimses. The calculus of variations is used to find
conditions on the norm of the primer vector for an additiangdulse and on the derivative of this norm for
initial and/or final coastings. The method is mainly basedlerivation of the so-calledariational adjoint
equatiorresulting from the variation of the cost function. Laterzéski [12], [10], [25], [11] developed
a numerical algorithm combining Lion-Handelsman'’s coiodié with a modified gradient search approach
in a linear model setting. The additional local optimizatigrocedure is used to find the optimal position
and modulus of the additional impulse so as to avoid a reguttusp for the norm of the primer vector as
reported in [10]. In this section, these results are redaéigtended to the Tschauner-Hempel [15] dynamical
relative model for elliptical reference orbit and a sligtdifferent iterative procedure avoiding local optimal

search step and cusp occurrence is proposed.

1. \Variational adjoint equation
Recall the relative motion equation given by (4). The Hamnmilan associated with the optimal control

problem (3) is defined by the relation:
H = M\.or + \Loo (28)

14



A
where| | is the costate vector. Using Pontryagin’s maximum prirecgoid writing down the canonical

Ay
Hamiltonian equations, one can add to (4) the dynamicaltezjutor the costate vector:

t

)\r On In )\r On —Al AT
_ — (29)
AU Al A2 )\'u _In A2 )\’U
From Egs. (29) and (4), one gets:
Mo = A1)y + Ao\, (30)
or = A16r + Aydv (31)
(30)xdrt— (31)x \! yields:
A or —orth, = 0 (32)
Adding and subtractiné;i&v, the following relation is obtained:
L Lo . d (., .
Nobr+ Moo =o'k, = idv = 0 & = {/\Udv - szsr} -0 (33)
In other words:
A ov—ALor = constant (34)

Equation (34) is known as theariational adjoint equatiof26]. Lion-Handelsman’s idea is to compute
variations of the cost function and to derive different ctinds on the primer vector that will lead to a
reduction of the cost thanks to the variational adjoint ¢igma The complete derivation of these conditions
based on the calculus of variations may be found in [10] ($s@[27] for more recent information) in the
case of variations related to the addition of (i) an inteiopulse for a two-impulse reference trajectory and

(i) an initial and/or final coasting period. These condiare now recalled for the different cases.

2. Additional interior impulse condition
Perturbing a reference initial two-impulse trajectory adding an interior impulse a&,, the differential

cost can be expressed as:
6J = Avp(1 = Ay (vm)!B(vm)) (35)

15



From (35), it is easy to conclude th&f < 0 when|\,(v,,)| > 1 and that a maximum decrease in cost is

obtained when:

Vm = arg max |\, (v)] (36)
velvr,vy]

3. Additional coasting period conditions

For an additional initial coasting period of duratidm, the cost variation is given by:

6J = —Avih, (1) Ny (v1)diy (37)

This condition means that adding an initial coasting aralaf > 0 duration may improve the cost if

Ao(11)tAy (1) > 0 i.e., the right derivative of the primer vector norm:atis positive. Similarly, for a

final coasting arc of duratiod;, we get:

6T = —Avph, (vp)t A\ (vy)dvs (38)

Afinal coast ofdv; < 0 duration will improve the cost when the left derivative oéthrimer vector at; is
negative.

These conditions may be used jointly to reduce the cost deaaece nonoptimal two-impulse trajectory
but can also be generalized to multi-impulse trajectof@&ssider the four-impulse trajectory of figure 2. For
example, overall cost can be reduced by considering thdingasc|v;, v;+1], shown in Fig. 2 in different

ways:
e Adding a new impulse at,,,
e Adding an initial coasting arc by shifting towardv,,, if %(WH) >0,
e Adding a final coasting arc by shifting, ; towarduv,,, if %(WH) <0,

e Replacingy; andv; 1 by v, if %(mﬂ) >0 and%(yiﬂ) < 0. This is equivalent to adding an

initial and a final coasting arc dm;, ;1] and an impulse at,,.
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A

Vit+1 vy oy

Figure 2: Adding or moving impulses on a multi-impulse tcagey

As noted in [10] and in [26], computation of the mid-impulsght nevertheless result in a nonoptimal
trajectory not verifying the optimality conditions of Laerd and condition (13), particularly in the case of
occurrence of a cusp at,, as illustrated in Fig. 3. A particular strategy combiningghiHandelsman’s
conditions and local direct optimization based on the Dawiéletcher-Powell penalty method in [11] or

based on BFGS method in [26] is generally used to optimizedbelting three-impulse trajectory.

Aol

V1 VUm Vy v

Figure 3: Nonoptimal primer vector norm with a cusp at the-migulse

The objective of this section is to propose an alternativhitoprocedure by developing a mixed iterative

algorithm taking advantage of the algebraic formulatiorCafter's optimality conditions and of the Lion-

Handelsman'’s conditions.

B. A mixed iterative algorithm

Consider the following assumptions:

e The maximum number of impulses allowed is at the most equaktdNeustadt boundy; (number of
fixed state-variables in the rendezvous problem) [20]. Héis bound is equal td on the planar case

and6 for the complete rendezvous problem.
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e There is an impulse at initial; and terminal/; dates of the fixed-time rendezvous that cannot be

shifted or removed.

Based on these assumptions, improving fuel-cost will béeaeld when the primer vector norm magnitude

exceedd atv,, by:
e Adding impulse at,, if the impulse number does not exceed the upper bavgd
e Moving impulses, if an impulse cannot be added.

The different steps of the proposed mixed algorithm are fiesailed for a coplanar rendezvoisy = 4
(they can easily be generalized for the general rendezvaldgm Ny = 6) and a synoptic presentation of
the algorithm is then given.

Let us first define the initialization step:

Initialization step:
a- Solve the two-impulse problem:

This problem can be solved by inverting the system of eqoatio

Rf (I)ll(Vf,l/l) (I>12(Vf,1/1) Rl 0 0
= + + (39)

vy ®o1 (vy,v1) Poa(vy,v1) V1 AV (vy) AV (vy)

Both impulses are then given by:

AV(1n) = @5 (vf,11) [Rf — P11 (vy,v1) Ry — P1a(vy, v1)v1] (40)

AV(Vf) = ’Uf — (I)Ql(Vf, Vl)Rl — (I)QQ(Vf, 1/1)1)1 — (I)QQ(I/f, Vl)AV(Vl) (41)
Initialize T}, = {v1, vy}, whereT;,,, is the discrete set of impulses application times.

b- Compute the associated primer vector trajectory using tiadbary conditions:

M) = AXE}T) (42)
M) = S (@3)

The primer vector evolution is described by:
M) = O ()5 vy, 1) [Aalvr) = (g, )M ()] + @R (v )N (1) (44)
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c- Compute primer vector's maximum magnitude:

Am = max |[A,(v)]
velvy,vy]

Iterative procedure:

1. Definey,, = arg max A, (v).
VG[Vl'er]
2. Findv,, vy € Timp SO thaty, < vy, < vy,

3. Add a new impulse at,,:

Timp = nmp U {Vm}

4. if dim(T;mp) > Nn then updatd’;,,, according to the following cases:

(a) If % A(ve) > 0and

Mt}\(l/b) <0,

(@) if v, # v1 then movey, to v,,:
Timp = T%mp - {Va}
(ii) if vy # vy then movey, to vy,

T%mp = nmp - {Vb}

t
(b) If % Avg) < 0or
d\(vg)"

dv

d\(vp)"
v )\(l/b) >0,

(i) if Ava) > 0 andy, # v, then movey, to v,,:
Timp = T%mp - {Va}

t
(i) if %Ub) A(y) < 0 andy, # vy then movey, to vy,
v

/Timp = /Timp - {Vb}

5. Solve the polynomial multi-impulse problem using Cdsteonditions on\, Awv;:

)\tR(Vi)R(Vi)t)\ =1 Vy € T%mp

Z [R(vs)R' (vi)] MAv; = —uy

Vi €Timp
A’Ui Z 0

19

(45)

(46)

(47)

(48)

(49)

(50)



6. Evaluate the new primer vector trajectory:
Ao(v) = RYv)A v € v, vy (51)

7. Find primer vector's maximum magnitude:
Am = x| Ao (V)] (52)

Repeat "lterative procedure” until A, <1

Stepb requires solving a system of polynomial equations with eespo A and Av;. Note that regular
algebraic tools for finding all real solutions of multivaggpolynomial equations based on formal Grébner
basis computation may fail due to highly complex equatiddsre, homotopy continuation methods have
been used [28]. In particular, the free software packageMd& developed by Jan Verschelde [29], [31] is
used to solve the system of polynomial equations at eadtiberat stefd. The systematic convergence of
the algorithm for any rendezvous is not analytically prolsatino such case has been reported in the different

numerical tests performed so far. The algorithm is depiotédg. 4 flow chart.
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Initialisation
Solve 2-impulse problemAwv;, Avy
Evaluate primer vector\, (v)
Timp = {v1,v5}
Compute primer vector maximum magnitude;,
Find \,,, location: v,

Iterative procedure

No
Am >17 END

Yes

Findvg, vy € Timp SO thatve < vm < v

Tirmp updateb"

add impulse at,
Timp = Timp U {Vm}

Yes No
dim{Timp} > Nn?
No No
Yes Yes
No movev, t0 v, movew, to vy,
Timp = Tim,p - {Va} Timp = Timp - {Vb}
Yes
movev, to v, movev, to vy,
Timp = 71'i'rnp - {Va} Ti'rnp = Ti'rnp - {Vb}

Ao (v), Av; determination

‘ Solve Carter’s equations f@F;,., on A, Awv;

;

‘ Evaluate the new primer vector trajectory(v) = R (v)A

l

Compute primer vector maximum magnitude;,
Find A, location: v,

Figure 4: Iteratigi algorithm flowchart




V. Applications and numerical examples

In this section, numerical results obtained from the mixedhtive algorithm are compared with previous
ones published in the literature [2] while global optimalii certified via the PRDV algorithm. When the
mixed iterative algorithm converges to af), solution, then the PRDV algorithm certifies optimality ofsth
solution for this fixed number of impulses while checkingtttteere is no alternative solutions fof =
2, 3, 4andN # N;. Recall that the PRDV algorithm may be used to get a certdfichunfeasibility for
a fixed number of impulses. Only coplanar elliptic rendeavproblems based on the Yamanaka-Ankersen
transition matrix [16] are considered for numerical ilhagion of the results proposed. Under Keplerian
assumptions and for an elliptic rendezvous, the completdazsous problem may be decoupled between
the out-of-plane rendezvous problem for which an analygocéution may be found [7] and the coplanar
problem. For the latter problem, the bound of Neustadt [20the optimal humber of impulses is 4 and
thereforeN,,... = 4 in the following. Note that the first two particular cases inigh eccentricitye = 0, the
Yamanaka-Ankersen transition matrix reduces to the Hitlh@ssy-Wiltshire transition matrix [30]. Finally,
all numerical examples are processed using PHCpack 2.3132[R8], GloptiPoly 3.5.1 [22] and SeDuMi

1.1R3 [23] under Matlab 2008 running on a Pentium D 3.4GHz system with 1GB ram.

A. Case study 1

Consider the numerical example given in subsection 111 B lamdowed from [2]. The mixed algorithm
produces a four-impulse trajectory (as Cartargiorisolution and PRDV solution) which reduces the overall
fuel consumption by finding the optimal interior impulse hpation times with a resolution 05.0436 s
(0.005236 rad.). The iterative algorithm reaches the optimum withinseconds and 8 iterations. Primer
vector trajectory and impulse vectors are shown in Fig. hi&{A,., A, ). Note that in this particular case,
the upper bound on the impulse number is reached. The refit#izred are compared to those presented by

Carter [2] in Table 3.
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Carter [2] Iterative Algorithm

Vint, (rad) 7 ~ 1.57 1.7017

Vint, (rad) 3T~ 4.7124 4.5867

AV (v0)" |[—0.0273 0.0344 ]|[ —0.02691 0.0334 ]

AV ()" [0.0897 0.0119] | [0.092 0.0046 |

AV (r2)"  |[ —0.0897 0.0119 ]| [ —0.0907 0.0043 ]

AV (vp) [0.0273 0.0344] | [0.0257 0.0318 ]
Fuel-costZ; m/s 0.3230 0.3094
Fuel-costCs m/s 0.2688 0.2669

Table 3: Result comparison for case study 1

T T
Unit circle
Ao(t)
0.5 B(t:) i
—0.5 4
-15 —-1.0 —0.5 0 0.5 1.0 1.5
A’UI

Figure 5: Primer vector in-plane trajectory for case study 1

The evolution of the primer vector norm during the iteratiwvecess is plotted in Fig. 6 where iterations

associated with numerical refinements of the differenttsmis have been omitted.
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primer vector norm

7 4 iterations

Figure 6: Norm of Primer vector during the iterative processase study 1

The minor differences between the solutions of the iteeagilgorithm and that of the PRDV algorithm
are mainly due to the numerical resolution chosen for bajbrithms. Tighter results could be obtained at

the expense of more complex numerical computations.

B. Case study 2
The second numerical illustration is a coplanar circleitale rendezvous that should be completed
within one orbital period and that is given in reference [Bhe chaser is one unit above the target with the

same initial velocity. All characteristics are summarizedable 4.
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Eccentricity e=0

Vo Orad

Xo=[Rowl|lo 10 0]

vy 2mrad

X;=[Rs %[0 00 0]

Nmaz 4

Table 4: Carter’'s second example characteristics

The resulting optimal trajectory computed with the mixeatative algorithm is a three-impulse ren-
dezvous as conjectured by Carter. The primer vector t@jgpiot depicted in Fig. 7 confirms the optimality

of the solution for a fixed number of impulses equalMo= 3.

T T T

Unit circle

Ao (t)
B(t:)

-15 —1.0 —05 0 05 1.0 15
)\77.'1,'

Figure 7: Primer vector in-plane trajectory for case study 2

The optimization process requirgg iterations durin@5 s. These ten steps are detailed in Figs. 8 thru
11, where each iteration is associated with one partidlay update case (see algorithm description). Note
that at each step of the iterative procedure, the resuldipg)| function remains smooth thereby overcom-
ing the main drawback of the usual iterative procedure pailly proposed by Lion-Handelsman [9] and

developed lately in [12] and [11].
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Primer vector magnitude

Primer vector magnitude

2-impulse configuration 3-impulse configuration 4-impulse configuration
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(a) lter 1: Add impulse ar = 3.146 (b) lter 2: Add impulse ar = 1.950 (c) Iter 3: Case (a)(i+ii)
Figure 8: Details of iterations 1-3 for case study 2
3-impulse configuration 4-impulse configuration 3-impulse configuration
1.2t 1.2¢ 1.2
3 8
X ¢ 2 X o 2 X H
N B p\_/g 5 \/g
0.8 £ 08 £ 08
o g
0.6 3 0.6 3 0.6
> >
@ @
0.4 E 04 E 04
o o
0.2 0.2 0.2
0 ; i - - - - 0 - L ; . L 0 , L i - - -
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
True anomaly (rad) True anomaly (rad) True anomaly (rad)
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Figure 9: Details of iterations 4-6 for case study 2
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4~impulse configuration 3-impulse configuration 4-impulse configuration
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Figure 10: Details of iterations 7-9 for case study 2
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(a) Iter 10: Convergence

Figure 11: Details of iterations for case study 2

The results presented in [2] are clearly not optimal withpees to the choice of the date of application
of the interior velocity increment. In [2], this location $iaeen chosea prioriand it obviously results in
a nonoptimal consumption as summarized in Table 5 whereethdts of the mixed iterative algorithm are
compared to those presented by Carter in [2] w2k fuel consumption improvement. Additionally, Table

5 lists the optimality certification furnished by the mixeerative algorithm.
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Carter [2] Mixed iterative Algorithm PRDV alorithm
Vint (rad) T~ 1.5708 2.4119 2.4085
AV (vo)* [1.62904 —0.6667 ] | [1.7775 —0.3828 ] [1.7771 —0.38449 ]
AV (11)* [0.3901 0.0964 ] [0.2896 —0.0165] | [0.28995 —0.015971 ]
Av(vg)' [ -0.0633 —0.0259 ]| [—0.0672 —0.0143] [[ —0.06706 —0.014384 ]
Fuel-costZ; m/s 2.8721 2.5479 2.549
Fuel-costZs m/s 2.2307 2.1770 2.1772

Table 5: Results from [2], mixed iterative and PRDV algamithfor case study 2

Figure 12 shows the in-plane trajectory of the chaser fote€arsolution (green) and mixed iterative
algorithm (blue). Interestingly, the simulation of Caldenaneuver planning as proposed in [2] leads to an

error at the final point of the rendezvous even with the Hi#@ssy-Wiltshire state-transition matrix.

0.8

0.6

041

0.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 14

Figure 12: In-plane trajectory and impulse dates for Cartcond example: Mixed iterative algorithm

(blue) and Carter’s solution (green)

C. Case study 3
Following the first two academic numerical examples, a megdistic illustration based on PRISMA

[17] is now presented. PRISMA programme is a cooperativereffetween the Swedish National Space
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Board (SNSB), the French Centre National d’'Etudes Spati@&ES), the German Deutsche Zentrum fiir
Luft- und Raumfahrt (DLR) and the Danish Danmarks Tekniske/ersitet (DTU) [4]. Launched on June 15,
2010 Yasny (Russia), it was intended to test in-orbit nevdgnce schemes (particularly autonomous orbit
control) for formation flying and rendezvous technologi€his mission includes the FFIORD experiment
led by CNES which features a rendezvous maneuver (formatignisition). The orbital elements of the

target orbit as well as initial and final rendezvous condgiare listed in Table 6.

Semi-major axis a = 7011 km
Inclination i = 98 deg.
Argument of Perigee w = 0 deg.

Right Ascension of the Ascending Node  © = 190 deg.

Eccentricity e = 0.004
True Anomaly vo = Orad.
to 0s
X6 = [Ro v [—10 0 0 0]km-km/s
ty 64620 s
Xj = [Rj vf] [~100 0 0 0] m-m/s
Nz 4

Table 6: PRISMA rendezvous characteristics

To save fuel and allow for in-flight testing throughout thd ®RD experiment, the rendezvous maneuver
must last several orbits. Duration of the rendezvous is@pprately 12 hours for an expected average cost
of 20 cm/s [17].

The iterative algorithm achieves optimization withi seconds and within 3 iterations with a chosen
tolerance ofl0~* and a resolution 0#.8685 s (0.0052781 rad.). Global optimality of this three-impulse

solution may be confirmed by running the PDRV algorithm.
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PRDV Algorithm Iterative Algorithm
tint (S) 3189.3 3198.6
Vint (rad) 3.4285 3.4377
AV (o) [ —0.04911 0.002152 ] | [ —0.04911 0.001933 ]
AV ()" |[ -0.002038 0.0000099 ]|[ —0.002039 0.0000112 ]
AV (vy)* [0.051315 0.001423 ] | [0.051316 0.001404 ]
Fuel-costZ; m/s 0.10585 0.10582
Fuel-costZs m/s 0.102525 0.10252

Table 7: Results of the mixed iterative algorithm for the BRIA case study

Figure 13 shows primer vector magnitude during transfer.

1.0 T
09F — | A (t)] |
0.8 | Am, tm ]

0.7\ © Av .

0.6 |- i
0.5 B
0.4 i

0.3 b

Primer vector magnitude

02 ' : o

0.1f : : .

L L
0 10 20 30 40 50 60 70
True anomaly (rad)

Figure 13: Primer vector magnitude during PRISMA mission

Note the low magnitude of the second impul8#(2 m/s) with respect to the initial and final velocity
increments.0492 m/s and).0513 m/s) but these velocity increments play a significant rokh@optimality
of the result. In particular, they provide the right chaseemtation for the long drift§1400 s) between the
second impulse and the final one. Indeed, the designer ceutdrbpted to remove this interior impulse
and resort to the suboptimal two-impulse strategy. Thelatlution proves to be strongly suboptimal since
its Lo cost is27 % greater than the optimal solutiof.(4506 m/s). The long drifting period 061400 s of

the optimal solution is clearly illustrated in Fig. 14 whéehe in-plane trajectory and impulse positions are
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represented.
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Figure 14: In-plane trajectory and impulse positions * f&IBMA mission

Finally, note that the optimal cost is half the expected agercost 020 cm/s [17].

D. Case study 4

In order to validate both PRDV and mixed iterative algorithfar a highly elliptical reference case,
the SIMBOL-X mission is now studied. SIMBOL-X is a collabtiva effort between CNES (France) and
ASI (ltaly). It consists in a two-part high energy X-ray tetepe, relying on two spacecraft. The main
spacecraft orbit is highly ellipticalk(= 0.8) with a period of 4 days. For a comprehensive description of
this mission, the interested reader may consult referet®le The main feature of the rendezvous problem
is that it is composed of two successive rendezvous mangseparated by a hold point. Here, we focus on
the first rendezvous maneuver designed to reduce the disbam30 km to 500 m between both satellites.
The characteristics of this rendezvous are described ife Batvhere the coordinates of the initial and final

relative positions and velocities are converted into theH\frame.

31



Semi-major axis a = 106246.9753 km
Inclination 1 = 5.2 deg.
Argument of Perigee w = 180 deg.
Right Ascension of the Ascending Node Q =90 deg.
Eccentricity e = 0.798788
True Anomaly vo = 135 rad.
to 7s
Xo = [Rf vo] [ —18309.5 23764.7 0.0542 0.0418 | m-m/s
ty 50002 s
Xj = [R} vf] [ —335.12 371.1 —0.00155 —0.00140 | M -m/s
Nz 4

Table 8: SIMBOL-X rendezvous characteristics

Rendezvous duration #9995 s, that is, much shorter than the orbital period. This diffeom PRISMA
mission where the rendezvous lasts ab@uperiods. The iterative algorithm achieves optimizatiothini 2

seconds and 1 iteration. The final solution is a two-impuisedfer as described in Table 9.

{tl tfw (s) {7 50002}

{m uf} (rad) {2.3562 2.7859}

Ay (r1)* _ 0.6193 —0.5061

Av(vy)* _ —0.1748 0.4912 _
CostLy m/s 1.7914
CostLz: m/s 1.3212

Table 9: SIMBOL-X results

As shown in Fig. 15, cost cannot be improved by adding intémipulses since the primer vector norm

does not exceetlon [to, ¢ 7].
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Figure 15: Primer vector magnitude for SIMBOL-X mission

Figure 16 shows the in-plane trajectory for the first rendeswf the SIMBOL-X mission resulting in a

direct transfer between chaser and target.
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Figure 16: In-plane trajectory for the SIMBOL-X mission

The optimality of these results is also certified by running PRDV algorithm for the 3-impulse and
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4-impulse scenarios for which a certificate of unfeasipistobtained.

VI. Conclusion

Two numerical algorithms based on polynomial optimizatwr tools from algebraic geometry have
been proposed to address the issue of time-fixed optimaéemods in a linear setting. The first algorithm
relying on polynomial optimization provides a guarantegytubal optimality for its solution for a fixed
number of impulses. The second algorithm is a mixed itegadigorithm optimizing over the number of
impulses but with no guarantee of global optimality of itdusion. As proposed here, both algorithms can
be used jointly to get a complete solution as the first algoritertifies the solution obtained with the mixed
iterative algorithm.

Despite the good numerical results presented, some impraecan still be expected if more sophis-
ticated transition matrices including orbital perturbateffects are used. Another avenue of research deals

with the extension of previous algorithms for optimal tigey planning with collision avoidance constraints.

Appendix

A- LVLH reference frame

Figure 17: LVLH reference frame

The Local Vertical-Local Horizontal (LVLH) coordinate free is a local satellite frame. It is defined as

follows:

e Origin O: Target satellite center of mass
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e 7 axis (R-bar): Radial direction (Nadir-Target), oriented towards tkeeter of the earth.
e Y axis H-bar): Perpendicular to the orbital plane, points opposite tiguéar momentum.

e X axis (V-bar): Chosen such thaf, = uy A u%

B- Yamanaka-Ankersen transition matrix [16]
This matrix describes the in-plane relative motion of thassr satellite, with respect to the target satel-

lite. Assuming small distances between spacecraft andeiepl environment, the matrix is given in LVLH

reference frame:

x(t) x(to)
2(t) z(to)
= U, 10,0, 10, (53)
Um(t) Vg (tO)
v (t) v:(to)
where:
p=1+ecosv, k* = h/p?, J =kt —to)
s = psinv, Cc= pcosv
s =cosv+ecos2u, ¢ = —(sinv + esin 2v)
1 —c(141/p) s(1+1/p) 3p%J
0 s c 2 — 3esJ plaxa O2x2
®, = v, =
0 2s 2c—e 3(1 —2esJ) —esinvlaxs (1/k%p)Iaxa
0 s ¢ —3e(s J + s/p?)
) 7 (54)
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