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Abstract

This paper is concerned with the dominant pole analysis of asymptotically stable
time-delay positive systems (TDPSs). It is known that a TDPS is asymptotically stable
if and only if its corresponding delay-free system is asymptotically stable, and this
property holds irrespective of the length of delays. However, convergence performance
(decay rate) should degrade according to the increase of delays and this intuition
motivates us to analyze the dominant pole of TDPSs. As a preliminary result, in this
paper, we show that the dominant pole of a TDPS is always real. We also construct
a bisection search algorithm for the dominant pole computation, which readily follows
from recent results on α-exponential stability of asymptotically stable TDPSs. Then,
we next characterize a lower bound of the dominant pole as an explicit function of
delays. On the basis of the lower bound characterization, we finally show that the
dominant pole of an asymptotically stable TDPS is affected by delays if and only if
associated coefficient matrices satisfy eigenvalue-sensitivity condition to be defined in
this paper. Moreover, we clarify that the dominant pole goes to zero (from negative
side) as time-delay goes to infinity if and only if the coefficient matrices are eigenvalue-
sensitive.
Keywords: positive system, time-delay, dominant pole, decay-rate degradation.

1 Introduction

A linear time-invariant (LTI) system is said to be positive if its state and output are both
nonnegative for any nonnegative initial state and nonnegative input [10, 13]. This property
can be seen naturally in biology, network communications, economics and probabilistic sys-
tems. Moreover, simple dynamical systems such as integrator and first-order lag and their
series/parallel connections are all positive. Even though their dynamics are pretty simple,
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large-scale systems constructed from those subsystems exhibit complicated behavior and
deserve investigation in the area of multi-agent systems. Due to these reasons, intensive
research efforts have been made for positive system (PS) analysis and synthesis. Nowadays,
it is known that PSs admit extremely particular (strong) results for analysis and synthesis
that are not valid for general systems; see, e.g., [15, 16, 18, 4, 6, 7, 8].

This particularity still holds for time-delay positive systems (TDPSs) and interesting re-
sults are available, see, e.g., [5, 2, 1, 3, 14, 17, 19]. Among them, it is known that an LTI
TDPS is asymptotically stable if and only if its corresponding delay-free system is asymptot-
ically stable, and this property holds irrespective of the length of delays [5, 2]. This property
never holds for general systems, and ensure the robust stability of PSs against variations
on delays. However, convergence performance (decay rate) should degrade according to the
increase of delays and this intuition motivates us to analyze the dominant pole of TDPSs.

As a preliminary result, in this paper, we show that the dominant pole of TDPSs is
always real. We also construct a bisection search algorithm for the dominant pole computa-
tion. These results are not necessarily new and readily follow from α-exponential stability
analysis of TDPS in [19]. Still, time-domain discussion in this reference does not fully fit to
the dominant-pole-analysis and dominant-pole-computation. Due to this reason, we validate
those results rigorously via discussions in frequency-domain (s-domain). Then, we charac-
terize lower bounds of the dominant pole in terms of Frobenius eigenvalue of nonnegative
matrices associated with TDPSs. This enables us to derive an explicit lower bound of the
dominant pole as a function of delays. On the basis of the lower bound characterization,
we finally show that the dominant pole of an asymptotically stable TDPS is affected by
delays if and only if associated coefficient matrices satisfy an eigenvalue-sensitivity condi-
tion to be defined in this paper. Moreover, we clarify that the dominant pole goes to zero
(from negative side) as time-delay goes to infinity if and only if the coefficient matrices are
eigenvalue-sensitive. We thus come to the conclusion that convergence performance (decay
rate) of asymptotically stable PSs generically degrades due to time-delays.

We use the following notations. We denote by Z, R, C the set of integers, real, and com-
plex numbers, respectively. We also use Z+ (Z++), R+ (R++), C−− for the set of nonnegative
(strictly positive) integers, nonnegative (strictly positive) real numbers, and complex num-
bers with strictly negative real parts. For given two matrices A and B of the same size, we
write A > B (A ≥ B) if Aij > Bij (Aij ≥ Bij) holds for all (i, j), where Aij stands for the
(i, j)-entry of A. In relation to this notation, we also define Rn

++ := {x ∈ Rn : x > 0} and
Rn

+ := {x ∈ Rn : x ≥ 0}. We also define R
n×m
++ and R

n×m
+ with obvious modifications. For

A ∈ R
n×n, we denote by σ(A) and ρ(A) the set of the eigenvalues of A and the spectral radius

of A, respectively. For A ∈ R
n×n
+ , Theorem 8.3.1 in [12] states that there is an eigenvalue

equal to ρ(A). This eigenvalue is related to the Perron-Frobenius Theorem [12] and denoted
by λF(A) in this paper. It also happens to be the maximal real part of all eigenvalues of
A ∈ R

n×n
+ , i.e., λF(A) = ρ(A) = max{Re(λ) : λ ∈ σ(A)}. We finally define the set of

n-vector-valued continuous functions over [a, b] by C([a, b],Rn), and the set of nonnegative
n-vector-valued continuous functions over [a, b] by C([a, b],Rn

+).
A conference version of this paper will be presented in [9]. In this paper we include

detailed proofs for the technical lemmas and theorems in Sections 4 and 5. They are the core
to validate the results around lower-bound evaluation and eigenvalue-sensitivity condition.



2 Preliminaries

In this brief section, we gather basic definitions and fundamental results for positive system
(PS) analysis.

Definition 1 (Metzler Martrix) [10] A matrix A ∈ Rn×n is said to be Metzler if its off-
diagonal entries are all nonnegative, i.e., Aij ≥ 0 (i 6= j).

In the sequel, we denote by M
n (Hn) the set of Metzler (Hurwitz stable) matrices of size

n. Under these notations, the next lemma holds.

Lemma 1 [10, 13] For given A ∈ Mn, the following conditions are equivalent.

(i) The matrix A is Hurwitz stable, i.e., A ∈ H
n.

(ii) The matrix A is nonsingular and A−1 ≤ 0.

We note that the condition (ii) is used repeatedly (but implicitly) in the following dis-
cussions.

By extending the Perron-Frobenius theorem [12] originally given for nonnegative matrices,
we can easily confirm that a matrix A ∈ Mn has an eigenvalue that is equal to max{Re(λ) :
λ ∈ σ(A)}. With a little abuse of notation, we also denote this eigenvalue for A ∈ M

n by
λF(A). The next lemma is an extension of Theorem 8.1.18 of [12] and shown also in [19].

Lemma 2 For given M1,M2 ∈ Mn, suppose M1 ≤ M2. Then, we have λF(M1) ≤ λF(M2).

To move on to the definition of finite-dimensional linear time-invariant (FDLTI) PSs,
consider

G :

{
ẋ(t) = Ax(t) + Bw(t),
z(t) = Cx(t) + Dw(t)

(1)

where A ∈ Rn×n, B ∈ Rn×nw , C ∈ Rnz×n, and D ∈ Rnz×nw . The definition and a basic result
of FDLTI PSs are given in the following.

Definition 2 (FDLTI Positive System) [10] FDLTI system (1) is said to be positive if
its state and output are both nonnegative for any nonnegative initial state and nonnegative
input.

Proposition 1 [10] FDLTI system (1) is positive if and only if A ∈ Mn, B ∈ R
n×nw

+ ,
C ∈ R

nz×n
+ , and D ∈ R

nz×nw

+ .

3 Dominant Pole of Stable Time-Delay

Positive Systems

3.1 Stability and Positivity of LTI Time-Delay Systems

For given A0 ∈ M
n, Ai ∈ R

n×n
+ and hi ∈ R++ (i = 1, · · · , N) with h := max

i=1,··· ,N
hi, define



Σ :





ẋ(t) = A0x(t) +

N∑

i=1

Aix(t− hi) (t ≥ 0),

x(θ) = φ(θ) (−h ≤ θ ≤ 0)

(2)

where φ ∈ C([−h, 0],Rn) is the function of initial condition. We first state definitions and
related results on positivity and stability of the (retarded) time-delay system (TDS) Σ given
by (2).

Definition 3 [5, 2] The TDS (2) is said to be positive if for every φ ∈ C([−h, 0],Rn
+) the

solution x satisfies x(t) ∈ Rn
+ for all t ≥ 0.

Proposition 2 [5, 2] The TDS (2) is positive if and only if A0 ∈ Mn and Ai ∈ R
n×n
+ (i =

1, · · · , N).

From this proposition and the underlying assumption we made on Ai (i = 0, · · · , N) in
Σ, it is valid to say that Σ is a (LTI) time-delay positive system (TDPS).

Definition 4 The TDPS (2) is said to be asymptotically stable if for every φ ∈ C([−h, 0],Rn)
the solution x satisfies ‖x(t)‖ → 0 (t → ∞).

Proposition 3 [5, 2] The TDPS (2) is asymptotically stable if and only if A :=
∑N

i=0 Ai ∈
Mn is Hurwitz stable.

Associated with the TDPS Σ, let us define an FDLTI PS by Σ0 : ξ̇(t) = Aξ(t). Then,
Proposition 3 says that TDPS Σ is stable if and only if the delay-free PS Σ0 is stable.

For the TDPS Σ represented by (2), its associated characteristic equation is given by

det

(
λI − A0 −

N∑

i=1

Aie
−λhi

)
= 0. (3)

We denote by ΛΣ ⊂ C the set of solutions of (3) (i.e., the set of poles of TDPS Σ). Note
that the set ΛΣ is infinite in general [11]. From general result for LTI-TDSs [11], we see that
Σ is asymptotically stable if and only if ΛΣ ⊂ C−−.

3.2 Dominant Pole Analysis

Our goal in this paper is to analyze the dominant pole of the TDPS Σ defined by

κ(Σ) := arg max
λ∈ΛΣ

Re(λ). (4)

Even though ΛΣ is infinite in general, we can confirm that maxλ∈ΛΣ
Re(λ) is achieved for

some λ ∈ ΛΣ (and therefore we can write “max” rather than “sup”); see, for example, p. 18
(Lemma 4.1) of [11]. The background and motivation for the dominant pole analysis is as
follows.



(i) For general LTI-TDSs (that are not necessarily positive), the exact computation of
the dominant pole is hard and hence studies on the stability analysis of LTI-TDSs
are still in progress. If we confine ourselves to PSs, however, it has been shown that
we can obtain novel (strong) results that cannot hold true for general LTI systems
[15, 16, 18, 4, 6, 7, 8]. We reveal that this is again true for the analysis of TDPSs
and show that exact (or more precisely, arbitrarily high accuracy) computation of the
dominant pole is indeed possible.

(ii) As we have seen in Proposition 3, TDPS Σ is stable if and only if delay-free PS Σ0

is stable and this result holds true irrespective of hi ∈ R++ (i = 1, · · · , N). This
ensures the robust stability of TDPSs against variations on the time-delays. However,
this qualitative result does not allow us to deduce how the performance (such as decay
rate) deteriorates due to the time-delays. In this paper, we prove that the dominant
pole κ(Σ) is always real and κ(Σ) → 0 as hi → ∞ holds (under the mild condition of
eigenvalue-sensitivity on the pair (A0, Ai) discussed in the following). It follows that
the convergence performance generically deteriorates as the time-delays increase.

The next theorem gives a characterization of the dominant pole of TDPSs. We note that
this theorem readily follows from [19]. The relationship with the result in [19] will be given
after the theorem.

Theorem 1 Consider the TDPS Σ described by (2) and assume Σ is asymptotically stable,
i.e.,

A =
N∑

i=0

Ai ∈ M
n ∩H

n. (5)

Then, the dominant pole κ(Σ) defined by (4) is given by

κ(Σ) = −α⋆ < 0 (6)

where α⋆ ∈ R++ is a unique solution of

λF

(
α⋆I + A0 +

N∑

i=1

Aie
α⋆hi

)
= 0. (7)

Moreover, we have

κ(Σ) ≥ κ(Σ0) := λF(A) (8)

irrespective of hi ∈ R++ (i = 1, · · · , N).

The implications of this theorem are as follows.

(i) For the asymptotically stable TDPS Σ, its dominant pole κ(Σ) is real, and its com-
putation can be done by solving (7). In the latter part of this section, we build an
efficient bisection search algorithm so that we can solve (7) as accurately as desired.



(ii) The relation (8) reveals that the dominant pole of TDPS Σ is larger than or equal to
that of delay-free PS Σ0. Since dominant pole is a reasonable measure for the rate
of convergence, we could say that convergence performance of asymptotically stable
PSs deteriorates due to time-delays. More quantitative analysis on the deterioration
of the convergence performance (i.e., how fast the dominant pole increases due to the
increase of time-delays) is given in the next section.

We now discuss the relationship with the result in [19]. It is shown in [19] that if TDPS Σ

is α-exponentially stable (see [19] for its definition), then λF

(
αI + A0 +

∑N

i=1 Aie
αhi

)
≤ 0.

On the other hand, if λF

(
αI + A0 +

∑N

i=1Aie
αhi

)
< 0, then TDPS Σ is α-exponentially

stable. From these results, it is almost obvious that (6) and (7) hold. Still, since the
discussion in [19] has been done in time-domain, it does not fully fit to the dominant-pole-
analysis and dominant-pole-computation. Due to this reason, we will give a rigorous proof for
Theorem 1 in frequency-domain (s-domain), and construct an explicit computation method
of κ(Σ) based on the proof.
Proof of Theorem 1: We first prove that α⋆ ∈ R++ satisfying (7) is unique. To this end,
define

A(α) := αI + A0 +
N∑

i=1

Aie
αhi. (9)

Then, since A(α) ∈ Mn holds irrespective of α ∈ R+, we can define λF(A(α)) over α ∈ R+.
It is obvious that λF(A(α)) is strictly monotonically increasing over α ∈ R+ because for
0 ≤ α1 < α2 we have

λF(A(α1)) = λF(α1I + A0 +

N∑

i=1

Aie
α1hi)

= λF(A0 +

N∑

i=1

Aie
α1hi) + α1

≤ λF(A0 +
N∑

i=1

Aie
α2hi) + α1

< λF(A0 +

N∑

i=1

Aie
α2hi) + α2

= λF(α2I + A0 +
N∑

i=1

Aie
α2hi)

= λF(A(α2))

where we have used Lemma 2 to validate the third nonstrict inequality. From this strictly
monotonically increasing property, the continuity of λF(A(α)) with respect to α ∈ R+,
λF(A(0)) = λF(A) < 0 that follows from A ∈ Mn ∩Hn, and λF(A(α)) → ∞ (α → ∞), it is
clear that there exists a unique α⋆ ∈ R++ such that λF(A(α⋆)) = 0.

We next move on to the proof of (6). In view of the characteristic equation (3), it is
obvious that −α⋆ ∈ ΛΣ since



det

(
−α⋆I − A0 −

N∑

i=1

Aie
α⋆hi

)
= 0.

To prove κ(Σ) = −α⋆ by contradiction, suppose there exist α ∈ R++ and ω ∈ R such that

−α+ jω ∈ ΛΣ, α < α⋆.

Then, from −α + jω ∈ ΛΣ, we have

det

(
(−α+ jω)I − A0 −

N∑

i=1

Aie
−(−α+jω)hi

)
= 0.

This can be rewritten equivalently as

det

(
jωI − A0,α −

N∑

i=1

Ai,αe
−jωhi

)
= 0 (10)

where A0,α := αI + A0, Ai,α := Aie
αhi (i = 1, · · · , N). From α < α⋆ and the strictly

monotonically increasing property of λF(A(α)) with respect to α ∈ R+, we have

λF

(
A0,α +

N∑

i=1

Ai,α

)
= λF(A(α)) < λF(A(α⋆)) = 0.

Therefore, from Proposition 3, the TDPS Σα described by

Σα : ẋ(t) = A0,αx(t) +
N∑

i=1

Ai,αx(t− hi) (t ≥ 0)

is asymptotically stable and hence its associated characteristic equation described by

det

(
λI − A0,α −

N∑

i=1

Ai,αe
−λhi

)
= 0

has no solution on jR. This contradicts (10).
The proof for (8) directly follows from the (strictly) monotonically increasing property

of λF(A(α)) if we note

λF (A(−λF(A)))

= λF

(
−λF(A)I + A0 +

N∑

i=1

Aie
−λF(A)hi

)

≥ λF

(
−λF(A)I + A0 +

N∑

i=1

Ai

)

= λF (−λF(A)I + A)
= 0
= λF(A(α⋆)).



This clearly shows that −λF(A) ≥ α⋆. Therefore κ(Σ0) = λF(A) ≤ −α⋆ = κ(Σ). This
completes the proof.

Seemingly, for the computation of α⋆ ∈ R++ satisfying (7), we need to solve a tran-
scendental equation. However, from the proof of Theorem 1, we see that α⋆ ∈ R++ can
be characterized by λF(A(α⋆)) = 0, i.e., the unique value that renders A(α) ∈ M

n on the
stability boundary. In view of this fact, we can build an efficient bisection search algorithm
for the computation of κ(Σ) = −α⋆.
Bisection Search Algorithm for the Computation of κ(Σ)

Step 0: Define α = −λF(A) > 0 and α = 0 and choose α ∈ [α, α].
Step 1: Compute λF(A(α)). If λF(A(α)) > 0, then let α := α and α := (α + α)/2. Else if

λF(A(α)) ≤ 0, then let α := α and α := (α+ α)/2. Go to Step 2.
Step 2: If α− α < ε, then let κ(Σ) = −α and exit. Else, go to Step 1.

By specifying ε > 0 sufficiently small in this algorithm, we can compute α⋆ as accurately
as desired. The value resulting from the bisection is ensured to be an upper bound of κ(Σ)
since we exit by specifying κ(Σ) = −α in Step 2.

3.3 Monotonicity of κ(Σ)

Consider asymptotically stable TDPSs Σ[1] and Σ[2] described by (2) with coefficient matrices
and time-delays given by

Σ[1] : Ai = A
[1]
i (i = 0, · · · , N), hi = h

[1]
i (i = 1, · · · , N)

Σ[2] : Ai = A
[2]
i (i = 0, · · · , N), hi = h

[2]
i (i = 1, · · · , N).

(11)

For α ∈ R+, let

AΣ[1](α) = αI + A
[1]
0 +

N∑

i=1

A
[1]
i eαh

[1]
i ∈ M

n,

AΣ[2](α) = αI + A
[2]
0 +

N∑

i=1

A
[2]
i eαh

[2]
i ∈ M

n.

Then, if A
[1]
i ≤ A

[2]
i (i = 0, · · · , N) and h

[1]
i ≤ h

[2]
i (i = 1, · · · , N), it is obvious that

AΣ[1](α) ≤ AΣ[2](α) and hence λF(AΣ[1](α)) ≤ λF(AΣ[2](α)) (∀α ∈ R+). Since the dominant
pole of TDPS Σ is given by κ(Σ) = −α⋆ and α⋆ is characterized by λF(A(α⋆)) = 0, and
since λF(A(α)) is (strictly) monotonically increasing over α ∈ R+, we can readily obtain the
next result.

Theorem 2 Consider asymptotically stable TDPSs Σ[1] and Σ[2] described by (2) with co-

efficient matrices and time-delays given by (11). Suppose A
[1]
i ≤ A

[2]
i (i = 0, · · · , N) and

h
[1]
i ≤ h

[2]
i (i = 1, · · · , N) hold. Then, we have

κ(Σ[1]) ≤ κ(Σ[2]). (12)

This theorem implies that the dominant pole of TDPS Σ is monotonically non-decreasing
with respect to the increase of Ai (i = 0, · · · , N) and hi (i = 1, · · · , N).



3.4 Numerical Examples

Consider the case where N = 1 in (2). As for the matrices A0 and A1, we consider the
following two cases:
Case I

A0 =



−3.5 0.2 0.9
0.3 −3.9 0.5
0.5 0.5 −3.3


 , A1 =



0.2 0.1 0.1
0.8 0.3 0.1
0.2 0.3 0.3




Case II

A0 =



−3.9 0.1 0.0
0.8 −3.9 0.8
0.1 0.1 −4.0


 , A1 =



0.3 0.1 0.3
0.7 0.0 0.7
0.2 0.8 0.9




We denote by ΣI and ΣII the corresponding TDPSs.
By letting ε = 10−8, we carried out the bisection search algorithm for each h1 ∈

{0.2, 0.4, 0.6, 0.8, 1.0} and obtained the results shown in Table 1. As we have shown in The-
orem 2, we see from Table 1 that κ(ΣI) and κ(ΣII) monotonically increase as h1 increases.
In this example, the dominant poles of delay-free PSs ΣI,0 and ΣII,0 are κ(ΣI,0) = −1.7731
and κ(ΣII,0) = −2.0378, respectively, and hence κ(ΣI,0) > κ(ΣII,0). However, the dominant
poles of TDPSs denoted by κ(ΣI) and κ(ΣII) happen to coincide numerically at h1 = 0.2
and become κ(ΣI) < κ(ΣII) for h1 > 0.2. This result leads to the natural consequence that
the convergence performance of a TDPS is not necessarily relevant to the corresponding
delay-free PS.

Table 1: Computation Results of κ(Σ) for Cases I and II.
h1 κ(ΣI) κ(ΣII)

0 -1.7731 -2.0378
0.2 -1.5162 -1.5162
0.4 -1.2860 -1.1646
0.6 -1.0983 -0.9333
0.8 -0.9502 -0.7748
1.0 -0.8334 -0.6608

4 Explicit Lower Bounds for κ(Σ)

In the preceding section, we showed an efficient bisection search algorithm for the compu-
tation of the dominant pole of asymptotically stable TDPSs. In spite of this achievement,
in this section, we analyze lower bounds of the dominant pole. The lower bound analysis is
well motivated due to the following reasons.

(i) The bisection algorithm and the underlying result, Theorem 1, do not allow us to see
clearly the relationship between κ(Σ) and the time-delays hi (i = 1, · · · , N). Intu-
itively, it is expected that κ(Σ) increases (and hence convergence performance deteri-
orates) as hi (i = 1, · · · , N) increase and this is indeed proved in Theorem 2. Still, we



have not obtained any definite quantitative results on this issue (i.e., how fast κ(Σ)
increases as hi (i = 1, · · · , N) increase).

(ii) If we can obtain good lower bounds by relatively cheap computation, we can use them
in place of λF(A) in Step 0 of the bisection algorithm so that we can accelerate its
convergence.

In this section, we characterize lower bounds of κ(Σ) by means of Frobenius eigenvalues
of nonnegative matrices associated with TDPS Σ. This enables us to derive an explicit lower
bound of κ(Σ) as a function of hi (i = 1, · · · , N). The lower bound computation is also
motivated from theoretical interest on how the treatment by Taylor-series expansion and
finite-degree truncation of exponential functions work fine in dealing with TDPSs.

4.1 Lower Bound Analysis of κ(Σ)

Let us revisit A(α) defined by (9). From the strictly monotonically increasing property of
λF(A(α)) with respect to α ∈ R+, the following alternative representation of α⋆ can be
obtained:

α⋆ := minα, α := {α ∈ R+ : det(A(α)) = 0} . (13)

For the lower bound evaluation of the dominant pole given by κ(Σ) = −α⋆, we consider
upper bounds of α⋆. To this end, we apply Taylor-series expansion of degree K ∈ Z+ to
exponential functions eαhi (i = 1, · · · , N) in A(α) and define

A[K](α) := αI + A0 +

N∑

i=1

Ai

K∑

j=0

(αhi)
j

j!
.

Note that A[0](α) = αI + A and for K ∈ Z++ we have

A[K](α) =
K∑

j=0

Ajα
j

where

A0 = A ∈ M
n ∩H

n, A1 = I +
N∑

i=1

hiAi ∈ R
n×n
+ , Aj =

N∑

i=1

hj
i

j!
Ai ∈ R

n×n
+ (j = 2, · · · , K).

Obviously A[K](α) ∈ Mn holds irrespective of K ∈ Z+ and α ∈ R+. Moreover, for each
K ∈ Z+, it is easy to confirm that λF(A

[K](0)) = λF(A) < 0 and λF(A
[K](α)) is strictly

monotonically increasing with respect to α ∈ R+. It is also true that λF(A
[K](α)) → ∞ as

α → ∞. Therefore, we can uniquely define α⋆
K ∈ R++ by

λF(A
[K](α⋆

K)) = 0. (14)

Again, α⋆
K has an alternative representation of the form

α⋆
K := minαK , αK :=

{
α ∈ R+ : det(A[K](α)) = 0

}
. (15)



Since λF(A
[K1](α)) ≤ λF(A

[K2](α)) holds for all α ∈ R+ if K1 ≤ K2 and λF(A
[K](α)) ≤

λF(A(α)) holds for all α ∈ R+ and K ∈ Z+, we see that

α⋆
K1

≥ α⋆
K2

(K1 ≤ K2), α⋆
K ≥ α⋆ (∀K ∈ Z+). (16)

Moreover, it is obvious that α⋆
K → α⋆ (K → ∞). It follows that {α⋆

K} (K ∈ Z+) is a
sequence of monotonically non-increasing upper bounds that converges to α⋆. This can be
restated equivalently that {−α⋆

K} (K ∈ Z+) is a sequence of monotonically non-decreasing
lower bounds that converges to κ(Σ)(= −α⋆). In the following theorem, we show that
α⋆
K (K ∈ Z++) can be characterized by the Frobenius eigenvalue of a nonnegative matrix of

size Kn×Kn.

Theorem 3 Consider the TDPS Σ described by (2) and assume Σ is asymptotically stable,
i.e., (5) holds. Define α⋆

K (K ∈ Z+) by (14). Then, we have

α⋆
0 = −λF(A) (17)

and

α⋆
K =

(
λF

(
A[K]

aug

))−1
(K ∈ Z++) (18)

where

A[K]
aug =




−A−1
0 A1 −A−1

0 A2 · · · · · · · · · −A−1
0 AK

I 0 · · · · · · · · · 0

0 I
. . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 · · · · · · 0 I 0




. (19)

Proof of Theorem 3: It is obvious that (17) holds true and hence we prove (18). To this
end, we first note that A[K](α) can be rewritten equivalently as

A[K](α) = A0 + BD(α)−1C(α), B :=
[
A1 · · · · · · · · · AK

]
,

C(α) :=




αI
0
...
...
0



, D(α) :=




I 0 · · · · · · 0

−αI I
. . .

...

0
. . . . . . . . .

...
...

. . . . . . I 0
0 · · · 0 −αI I



.

Therefore we can obtain the following sequence of equivalent reformulations:



det
(
A[K](α)

)
= 0

⇔ det

([
A0 B

−C(α) D(α)

])
= 0

⇔ det




I − α




−A−1
0 A1 −A−1

0 A2 · · · · · · · · · −A−1
0 AK

I 0 · · · · · · · · · 0

0 I
. . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 · · · · · · 0 I 0







= 0

⇔ det
(
I − αA[K]

aug

)
= 0.

From A
[K]
aug ∈ R

Kn×Kn
+ and the representation of α⋆

K given by (15), we can easily confirm that

α⋆
K is given by (18). It should be noted that λF(A

[K]
aug) > 0 (∀K ∈ Z++) since we have from

Lemma 2 that λF(A
[K]
aug) ≥ λF(A

[1]
aug) (∀K ∈ Z++) and again from Lemma 2 that

λF

(
A[1]

aug

)
= λF

(
−A−1

0 A1

)

= λF

(
−A−1

0

(
I +

N∑

i=1

hiAi

))

≥ λF

(
−A−1

0

)

= λF

(
−A−1

)

= −λF (A)
−1

> 0

holds. This completes the proof.
As a byproduct of Theorem 3, we can represent a lower bound of κ(Σ) as a function of

hi ∈ R++ (i = 1, · · · , N). Just for simplicity consider the case where N = 1. Then, under
the assumption that λF(−A−1A1) > 0 that becomes a very important issue in the sequel, we
see that α⋆

1 given by (18) satisfies

α⋆
1 = λF

(
−A−1

0 A1

)
−1

= λF

(
−A−1(I + h1A1)

)
−1

≤ λF

(
−h1A

−1A1

)
−1

=
1

h1

λF

(
−A−1A1

)
−1

.

It follows that κ(Σ) ≥ −α⋆
1 ≥ − 1

h1
λF (−A−1A1)

−1
. We thus obtain the next theorem.

Theorem 4 Consider the TDPS Σ described by (2) and assume Σ is asymptotically sta-
ble, i.e., (5) holds. We further assume that for a subset J ⊂ {1, · · · , N} the condition
λF(−A−1Aj) > 0 (j ∈ J) holds and define

κj(hj) = −
1

hj

λF

(
−A−1Aj

)
−1

.



Then we have κ(Σ) ≥ κj(hj) (∀j ∈ J). In particular, κ(Σ) → 0 as hj → ∞ for each j ∈ J .

This theorem shows that κ(Σ) goes to 0 faster (no later) than the order of 1/hj provided
that λF(−A−1Aj) > 0.

4.2 Numerical Examples

Consider the asymptotically stable TDPS ΣI dealt with in Subsection 3.4. For this TDPS,
we first computed −α⋆

K (K = 1, 3, 5), the lower bounds of κ(ΣI), by means of Theorem 3.
The results are shown in Table 2. In this example, the convergence of the sequence {αK} is
rather fast and we see that the lower bound −α⋆

5 almost coincides with κ(ΣI) in all tested
cases.

In principal, we can accelerate the convergence of the bisection algorithm for the com-
putation of κ(ΣI) by letting α = α⋆

5 in Step 0. However, the effect was insignificant in this
(rather small size) example since the bisection algorithm with α = −λF(A) in Step 0 already
runs very fast.

Table 2: Results for Lower Bounds Computation of κ(ΣI).
h1 −α⋆

1 −α⋆
3 −α⋆

5 κ(ΣI)

0.2 -1.5484 -1.5164 -1.5162 -1.5162
0.4 -1.3747 -1.2876 -1.2860 -1.2860
0.6 -1.2361 -1.1019 -1.0984 -1.0983
0.8 -1.1231 -0.9556 -0.9503 -0.9502
1.0 -1.0290 -0.8401 -0.8335 -0.8334

In this numerical example, λF(−A−1A1) ≈ 0.4057 > 0 and hence we can apply the results
in Theorem 4. In Fig. 1, we show the plots of κ(Σ) and κ1(h1) for h1 ∈ [1 20]. As we have
shown in Theorem 4, we can confirm that κ(Σ) goes to 0 faster than κ1(h1) as h1 increases.

2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

 

 

dominant pole

lower bound

Figure 1: Plots of κ(Σ) for Cases I and II.



Now we return to the assumption we made in Theorem 4. Again, just for simplicity,
consider the case N = 1. Theorem 4 says that, if λF(−A−1A1) = λF(−(A0 + A1)

−1A1) > 0,
then ΛΣ is sensitive to time-delay h1 and in particular κ(Σ) → 0 (h1 → ∞) holds. This
result asks a simple question: if λF(−(A0 + A1)

−1A1) = 0, what will happen?
In relation to this question, consider the case where

A0 =

[
−1 0
0 −2

]
, A1 =

[
0 1
0 0

]
. (20)

In this case, the condition λF(−(A0 + A1)
−1A1) = 0 surely holds. On the other hand,

the characteristic equation (3) associated with the corresponding TDPS is nothing but the
algebraic equation given by (λ+1)(λ+2) = 0 and hence ΛΣ = {−1,−2} = σ(A0) irrespective
of h1 ∈ R++. Namely, ΛΣ is insensitive to h1 ∈ R++.

These observations motivate us to reveal the relationship between the insensitivity of
ΛΣ to h1 ∈ R++ and the Frobenius eigenvalue λF(−(A0 + A1)

−1A1). This topic is pursued
in the next section, where we clarify that ΛΣ is insensitive to h1 ∈ R++ if and only if
λF(−A−1

0 A1) = 0.

5 Pole-Sensitivity on Time-Delay

For given two matrices M0,M1 ∈ R
n×n, we first make the definition of eigenvalue-sensitivity

(insensitivity) of M0 relative to M1.

Definition 5 For given M0,M1 ∈ Rn×n, M0 is said to be eigenvalue-insensitive relative to
M1 if

σ(M0 + νM1) = σ(M0) ∀ν ∈ C. (21)

Definition 6 For given M0,M1 ∈ Rn×n, M0 is said to be eigenvalue-sensitive relative to M1

if M0 is not eigenvalue-insensitive relative to M1.

These definitions play a crucial role to describe clearly under what condition ΛΣ = ΛΣ0 =
σ(A0) holds irrespective of time-delays. On the other hand, the next lemma concerns the
condition under which λF(M) = 0 holds for M ∈ R

n×n
+ .

Lemma 3 For given M ∈ R
n×n
+ , the following conditions are equivalent:

(i) λF(M) = 0.
(ii) There exists a permutation matrix P ∈ Rn×n such that P TMP ∈ U+ where U+ is a

set of nonnegative and strictly upper triangular matrices defined by
U

n
+ :=

{
U ∈ R

n×n
+ : Ui,j = 0 (i ≥ j)

}
.

Proof of Lemma 3: (ii) ⇒ (i) is obvious and hence we prove (i) ⇒ (ii). Since λF(M) = 0,
there exists v ∈ Rn

+ \ {0} such that Mv = 0 (see Theorem 8.3.1 of [12]). Since v ∈ Rn
+ \ {0},

there exists a permutation matrix P1 ∈ Rn×n such that (P T
1 v)1 > 0. Moreover, we have



Mv = 0 ⇔ (P T
1 MP1)P

T
1 v = 0 ⇒ P T

1 MP1 =

[
0 M11

0n−1 M12

]

where M12 ∈ R
(n−1)×(n−1)
+ and λF(M12) = 0. Repeating the same procedure for M12 ∈

R
(n−1)×(n−1)
+ , we see that there exists a permutation matrix P2,s ∈ R(n−1)×(n−1) such that

P T
2,sM12P2,s =

[
0 M21

0n−2 M22

]

where M22 ∈ R
(n−2)×(n−2)
+ and λF(M22) = 0. This implies that

P T
2 P

T
1 MP1P2 =




0 M11,1 M11,2

0 0 M21

0n−2 0n−2 M22


 ,

P2 :=

[
1 0
0 P2,s

]
.

Repeating the same procedure for the rest up to n − 3 times, we arrive at the desired
conclusion that there exists a permutation matrix P ∈ Rn×n such that P TMP ∈ U+.

By means of Lemma 3, we can obtain the next lemma saying that A0 ∈ M
n ∩ H

n is
eigenvalue-insensitive relative to A1 ∈ R

n×n
+ if and only if λF(−A−1

0 A1) = 0.

Lemma 4 For given A0 ∈ Mn∩Hn and A1 ∈ R
n×n
+ , the following conditions are equivalent:

(i) A0 is eigenvalue-insensitive relative to A1.
(ii) λF(−A−1

0 A1) = 0.

This lemma gives a concrete way to check the eigenvalue-insensitivity of A0 relative to
A1, which is by no means obvious from Definition 5. The proof of this lemma is rather
involved and hence given in the appendix.

Now we are ready to state the main result of this section.

Theorem 5 Consider the TDPS described by (2) where N = 1 and assume Σ is asymptot-
ically stable, i.e., (5) holds. Then, the following conditions are equivalent:

(i) ΛΣ = σ(A0), ∀h1 ∈ R+.
(ii) A0 is eigenvalue-insensitive relative to A1.
(iii) λF(−A−1

0 A1) = 0.

Proof of Theorem 5: We have shown in Lemma 4 that (ii) ⇔ (iii) holds. Therefore, to
complete the proof, it suffices to show that (i) ⇒ (iii) and (i) ⇐ (ii).
(i) ⇒ (iii): By contradiction, suppose λF(−A−1

0 A1) > 0. Since A = A0 + A1 ≥ A0 and

A,A0 ∈ Mn ∩ Hn, we can easily confirm from (ii) of Lemma 1 that −A−1 ≥ −A−1
0 ≥

0 and hence −A−1A1 ≥ −A−1
0 A1 ≥ 0. It follows from Lemma 2 that λF(−A−1A1) ≥

λF(−A−1
0 A1) > 0. Therefore from Theorem 4 we have κ(Σ) → 0 as h1 → ∞. This shows

that ΛΣ 6= σ(A0) under the variation of h1 ∈ R+.
(i)⇐(ii): Suppose A0 is eigenvalue-insensitive relative to A1. Then by definition (21) we

have σ(A0 + νA1) = σ(A0) (∀ν ∈ C). It follows that det
(
λI − A0 − A1e

−λh1
)
= 0 holds if

and only if λ ∈ σ(A0) irrespective of h1 ∈ R+. This clearly shows that (i) holds.



The next corollary is a direct consequence of Theorem 5.

Corollary 1 Consider the TDPS described by (2) where N = 1 and assume Σ is asymp-
totically stable, i.e., (5) holds. Then, κ(Σ) → 0 as h1 → ∞ if and only if A0 is eigenvalue-
sensitive relative to A1.

Proof of Corollary 1: “if” part: Suppose A0 is eigenvalue-sensitive relative to A1. Then
we have already shown in the proof of Theorem 5 that κ(Σ) → 0 as h1 → ∞.
“only if” part: By contradiction, suppose A0 is eigenvalue-insensitive relative to A1. Then,
again from Theorem 5, we see that ΛΣ = σ(A0) (∀h1 ∈ R+) and hence κ(Σ) = λF(A0) (∀h1 ∈
R+). Therefore κ(Σ) → 0 never happens by letting h1 → ∞.

Before closing this section, we summarize important results we have obtained in sections
4 and 5 for the asymptotically stable TDPS (2) with N = 1.

• A0 ∈ Mn∩Hn is eigenvalue insensitive relative to A1 ∈ R
n×n
+ if and only if λF(−A−1

0 A1) =
0 (Lemma 4).

• ΛΣ = σ(A0) (∀h1 ∈ R+) holds if and only if A0 is eigenvalue insensitive relative to A1,
i.e., λF(−A−1

0 A1) = 0 (Theorem 5).
• As for the dominant pole, κ(Σ) → 0 as h1 → ∞ if and only if A0 is eigenvalue sensitive
relative to A1, i.e., λF(−A−1

0 A1) > 0 (Corollary 1). In particular, if λF(−A−1
0 A1) > 0

then λF(−A−1A1) > 0 holds and we have κ(Σ) ≥ − 1
h1
λF (−A−1A1)

−1
(Theorem 4).

Since λF(−A−1
0 A1) > 0 generically holds, we thus conclude that convergence performance of

asymptotically stable PSs generically deteriorates by the introduction of time-delays.

6 Conclusion

In this paper, we analyzed dominant pole of asymptotically stable time-delay positive sys-
tems. Even though a time-delay positive system is stable if and only if its corresponding
delay-free system is stable, we have shown that the dominant pole is (or poles as a whole are)
affected by delays if and only if associated coefficient matrices satisfy eigenvalue-sensitivity
condition. Moreover, we clarified that the dominant pole goes to zero as time-delay goes
to infinity if and only if the coefficient matrices are eigenvalue-sensitive. We thus obtained
solid quantitative evaluation on the dominant pole of time-delay positive systems in terms
of delays.

In the future work, it is interesting to extend Theorem 5 and Corollary 1 to multiple delay
cases. The behaviour of poles might be complicated if multiple delays vary independently.
This topic is currently under investigation.
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Appendix

Proof of Lemma 4: (i)⇒(ii): By contradiction, suppose λF(−A−1
0 A1) > 0. Then we see

that

det(A0 + νA1) = det(A0) det(I + νA−1
0 A1) = 0

holds for ν = λF(−A−1
0 A1)

−1 > 0. It follows that 0 ∈ σ(A0 + νA1) whereas 0 /∈ σ(A0) and
hence A0 is eigenvalue-sensitive relative to A1 by definition. This contradicts (i).
(i)⇐(ii): Suppose λF(−A−1

0 A1) = 0. Then, from Lemma 3, there exists a permutation

matrix P ∈ Rn×n and U ∈ U+ such that

−Ã−1
0 Ã1 = U, Ã0 := P TA0P, Ã1 := P TA1P.

Since Ã0 ∈ Mn ∩ Hn and Ã1 ∈ R
n×n
+ , we can assume without generality that −A−1

0 A1 = U
holds for some U ∈ U+ from the outset. Then we have

−A0U = A1, U ∈ U+. (22)

Note that U ∈ U+ has the structure of the form

U =:
[
u1 · · · un

]
, ui =

[
ui,sub

0n−i+1,1

]
, ui,sub ∈ R

i−1
+ . (23)

In particular, u1 = 0. If U = 0, then (22) implies A1 = 0 and hence (i) trivially holds.
Therefore we assume U 6= 0 in the sequel.

For m1 such that 1 ≤ m1 ≤ n− 1, suppose uk = 0 (k = 1, · · · ,m1) and um1+1 6= 0. Then
we have

U =
[
0n,m1 um1+1 · · · un

]
∈ U+,

A1 =
[
0n,m1 am1+1 · · · an

]
∈ R

n×n
+ .

Assume the number of strictly positive elements of um1+1 is µ1 (1 ≤ µ1 ≤ m1). Then, there
exists a permutation matrix P [1] ∈ R

n×n of the form

P [1] =

[
P

[1]
sub 0
0 In−m1

]
, P

[1]
sub ∈ R

m1×m1

such that



U [1] := P [1]TUP [1]

=

[
0µ1,m1 ûm1 ∗
0n−µ1,m1 0 ∗

]
∈ U+

(24)

where ûm1 ∈ R
µ1
++. We note that, by slightly loosening the structure shown above, we can

write U [1] in the following form as well since µ1 ≤ m1:

U [1] =

[
0µ1,µ1 U

[1]
12

0n−µ1,µ1 U [2]

]
∈ U+. (25)

If we define A
[1]
0 := P [1]TA0P

[1] and A
[1]
1 := P [1]TA1P

[1], we see that these have the structure
of the form

A
[1]
0 =

[
A

[1]
0,11 A

[1]
0,12

0n−µ1,µ1 A
[2]
0

]
, A

[2]
0 ∈ M

n−µ1 ,

A
[1]
1 =

[
0µ1,µ1 A

[1]
1,12

0 A
[2]
1

]
, A

[2]
1 ∈ R

(n−µ1)×(n−µ1)
+ .

The structure of A
[1]
0 stems from A

[1]
0 ∈ Mn, −A

[1]
0 U [1] = A

[1]
1 ≥ 0, and the structure of U [1]

given in (24). The above result tells us that

σ(A0 + νA1) = σ(A
[1]
0 + νA

[1]
1 )

= σ(A
[1]
0,11) ∪ σ(A

[2]
0 + νA

[2]
1 ).

We note that

(a) A
[1]
0,11 ∈ Mµ1 and A

[2]
0 ∈ Mn−µ1 are submatrices of A

[1]
0 = P [1]TA0P

[1] and hence

σ(A
[1]
0,11) ∪ σ(A

[2]
0 ) = σ(A0),

(b) the size of A
[2]
0 and A

[2]
1 are n − µ1 and has been reduced from those of A0 and A1 at

least µ1 ≥ 1,
(c) the matrix pair (A

[2]
0 , A

[2]
1 ) satisfies exactly the same condition as that of (A0, A1), i.e.,

A
[2]
0 ∈ Mn−µ1 ∩Hn−µ1 , A

[2]
1 ∈ R

(n−µ1)×(n−µ1)
+ , and λF

(
−(A

[2]
0 )−1A

[2]
1

)
= 0.

Therefore, by repeating the same procedure detailed above, we see that there exists µ2 ≥ 1
(unless A

[2]
1 is 0 since in this case the proof is done) such that

σ(A
[2]
0 + νA

[2]
1 ) = σ(A

[2]
0,11) ∪ σ(A

[3]
0 + νA

[3]
1 )

where A
[2]
0,11 ∈ Mµ2, A

[3]
0 ∈ Mn−µ1−µ2 , A

[3]
1 ∈ R

(n−µ1−µ2)×(n−µ1−µ2)
+ , and λF

(
−(A

[3]
0 )−1A

[3]
1

)
=

0. By repeating this procedure L times such that A
[L+1]
1 = 0 where it is clear that L ≤ n−1,

we arrive at the desired conclusion that σ(A0 + νA1) = σ(A0) irrespective of ν ∈ C. This
completes the proof.


