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Measures and LMIs for Impulsive Nonlinear
Optimal Control

Mathieu Claeys, Denis Arzelier, Didier Henrion, Jean-Bernard Lasserre

Abstract—This note shows how to use semi-definite pro-
gramming to find lower bounds on a large class of nonlinear
optimal control problems with polynomial dynamics and convex
semialgebraic state constraints and an affine dependence on the
control. This is done by relaxing an optimal control problem
into a linear programming problem on measures, also known
as a generalized moment problem. The handling of measures
by their moments reduces the problem to a convergent series of
standard linear matrix inequality relaxations. When the optimal
control consists of a finite number of impulses, we can recover
simultaneously the actual impulse times and amplitudes by simple
linear algebra. Finally, our approach can be readily implemented
with standard software, as illustrated by a numerical example.

I. INTRODUCTION

Optimal control is still an active area of current research
despite the availability of powerful theoretical tools such
as Pontryagin’s maximum principle or the Hamilton-Jacobi-
Bellman approach. However, numerical methods based on
such optimality conditions rely on a certain number of assump-
tions that are often not met in practice, and state constraints
are particularly hard to handle in the maximum principle
framework.

On the other side, many numerical methods have been
developed that deliver suboptimal solutions by restricting the
search space and parametrizing it. However, the users of these
methods are often left to wonder if a better solution exists.
For example, in the particular case of impulsive controls, one
could assume purely impulsive solutions of at most n impulses
and obtain a static optimization problem with impulse times
and amplitudes as unknowns, but it is often not known if more
regular solutions could provide a better cost.

For a recent survey on impulsive control see e.g. [12] and
the references therein. See also [8] for a recent application and
more references. For historical works see e.g. [15], [16], [17]
and also [3].

In this note, we describe and test a numerical method
following ideas of [13], [10], but which addresses nonlinear
optimal control problems whose optimal solution may now
include impulsive controls. Our numerical scheme consists in
solving a hierarchy of semi-definite relaxations in the form
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of Linear Matrix Inequalities (LMIs), whose associated se-
quence of optimal values provides a monotone nondecreasing
sequence of lower bounds on the global minimum of affine-in-
the control optimal control problems. In particular, the method
may assert the global optimality of local solutions found by
other methods, and as importantly, can also provide numerical
certificates of infeasibility for ill-posed problems. Finally, in
some cases, it is also possible to generate the globally optimal
control law.

A. Contributions

The note improves the model presented in [13], [10] in
the following ways. First of all, the range of applications
is much larger as impulsive controls can now be taken into
account. Second, because controls are represented by measures
and not by variables, the size of semi-definite programming
(SDP) blocks composing the LMIs is significantly reduced.
This allows to handle larger problems in terms of number of
state variables as well as to reach higher LMI relaxations.
Finally, total variation of controls can be handled very easily,
as non-differentiable constraints or a cost to minimize.

Let us emphasize the fact that this note does not aim at
a comprehensive mathematical treatment of impulsive control
problems, in particular we do not investigate here the dual
Hamilton-Jacobi-Bellman partial differential equation satisfied
by the value function and its regularity properties. These
developments will be reported elsewhere. We believe that a
key contribution of our work is to provide a numerical method
based on standard interfaces and solvers, relying on sophis-
ticated, albeit by now relatively standard LMI formulations
for measure/moment linear programming problems. As far as
we know, this is the first time that a systematic, constructive
and reproducible numerical approach is proposed for such
constrained control problems. In non-trivial examples it has
permitted to validate some results obtained by other local
optimization methods and certify that the resulting solution
was globally optimal.

B. Nomenclature

Integration of a function f : Rn → R with respect to a
measure µ on a set X ⊂ Rn is written

∫
X
f(x) dµ(x) or some-

times
∫
X
f(x)µ(dx) when more convenient. The Lebesgue or

uniform measure on X is denoted by λX whereas the Dirac
measure concentrated at point x∗ is denoted by δx∗ . A measure
µ is a probability measure on the set X whenever

∫
X
dµ = 1.

The support of measure µ on X is the largest closed set B such
that µ(X \ B) = 0, and is denoted by suppµ. The indicator
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function of set X (equal to one in X and zero outside) is
denoted by IX .
F (X) is the space of Borel measurable functions on X ,

whereas BV (X) is the space of functions of bounded variation
on X . M+(X) is the space of finite positive measures on X
whereasM(X) is the space of finite signed measures. R[x] is
the ring of polynomials in the variable x. B(X) denotes the
Borel σ-algebra associated with X .

If k ∈ Nn denotes a vector of indices then xk with x ∈ Rn
is the multi-index notation for

∏
xkii . The degree of the index

k is deg k =
∑
ki. Finally, Nnd is the set of all indices for

which deg k ≤ d, k ∈ Nn.

II. THE OPTIMAL CONTROL PROBLEM

This note deals with the following nonlinear optimal control
problem

V (x0) = inf
u(t)∈F ([0,T ])m

J(x0, u) (1)

= inf
u(t)

∫ T

0

(h(t, x(t)) +H(t)u(t)) dt+ hT (x(T ))

such that

ẋ(t) = f(t, x(t)) +G(t)u(t), a.a. t ∈ [0, T ] (2)
x(0) = x0, x(T ) ∈ XT ,

x(t) ∈ X ⊂ Rn,∀t ∈ [0, T ],

where the dot denotes differentiation with respect to time.
Criterion J(x0, u) is affine in the controls u, and V is called
the value function. It is assumed throughout this note that
all problem data are polynomials, meaning that all functions
are in R[t, x], and that all sets are compact basic semialge-
braic. Recall that such sets are those which may be written
as {x : pi(x) ≥ 0, i = 1, . . . , q} for some family {pi}qj=1,
pi ⊂ R[x]. A mild technical condition (implying compactness
of X) must be satisfied [14, Assumption 2.1]: There exists a r
in the quadratic module generated by the family {pi} such that
the level set {x ∈ Rn : r(x) ≥ 0} is compact. In practice, this
condition is often met, and adding a standard ball constraint∑
x2i ≤ r2 to the state constraints will enforce the condition.

The reason for making these assumptions will be apparent in
later sections. Finally, set X is assumed convex, such that the
construction proposed in §III is well defined.

Note that the hypotheses of polynomial dynamics, hence
Lipschitz continuous on compact sets, implies uniqueness of
the trajectory for a given pair (x0, u), given this trajectory
exists. This justifies the notation for J(x0, u).

Without additional assumptions, the infimum in problem
(1)-(2) is not attained in general because of possible concen-
tration (impulsive) effects [15]. A standard procedure to deal
with this fact is to embed the controls u(t) in the space of the
weak derivatives of functions of bounded variation w(t):

VR(x0) = inf
w(t)∈BV ([0,T ])m

JR(x0, w) (3)

= inf
w(t)

∫ T

0

h(t, x(t)) dt+

∫ T

0

H(t) dw(t) + hT (x(T ))

such that

dx(t) = f(t, x(t)) dt+G(t) dw(t), t ∈ [0, T ] (4)
x(0) = x0, x(T ) ∈ XT , x(t) ∈ X ⊂ Rn, (5)

where VR stands for the relaxed value function.
The relaxed controls above can be seen as a distribution

of the first order, identified with measures, and it is therefore
the (vector) distributional derivative dw(t) of some (vector)
function of bounded variation w(t) ∈ BV ([0, T ])m, see e.g.
[17], or [5, Prop. 8.3]. That is, for all compactly supported
smooth test functions v(t), it holds that

∫
v(t) dw(t) =

−
∫
w(t) v̇(t) dt. It can then be shown [17] that x(t) satisfies

(4) if and only if it is the solution of

x(t) = x0 +

∫ t

0

f(s, x(s)) ds+

∫ t

0

G(s)dw(s). (6)

Classic controls u(t) ∈ F ([0, T ])m are recovered as the
derivative of the absolutely continuous parts of w(t), whereas
impulses arise at discontinuity points of w(t). The possibility
of handling both continuous and impulsive controls in a unified
formalism is also a practical motivation for relaxation (3)-(4),
besides the mathematical need for a well-posed problem.

Finally, also note that there may be a strict gap induced by
this relaxation (i.e. VR < V ) in some non-generic degenerate
cases. We therefore assume for the rest of this note that indeed,
VR = V .

III. THE LINEAR PROBLEM ON MEASURES

In this section, we formulate problem (3)-(4) as an equiv-
alent infinite-dimensional linear programming problem on
measures, a particular instance of the so-called generalized
moment problem (see [14] for an introduction on the subject).
This is a necessary intermediate step towards obtaining a
tractable SDP problem for our method.

Problem (3)-(4) is control-affine, but states enter non-
linearly in dynamics, costs and constraints. State trajectories
must also satisfy a differential equation, and further devel-
opment is therefore needed to obtain a linear problem on
measures. One way to work around this fact is to use so called
occupation measures to encode the graph of both admissible
trajectories and controls on measurable subsets of time and
space.

Both elements of an admissible pair (w(t), x(t)) are vector
of functions of bounded variation with respect to time, which
may be identified with measures of time. By Lebesgue’s
decomposition theorem [11, §33.3], the control w(dt) may be
split into two parts:

w(dt) = w̃(dt) + wj(dt) (7)

where, in keeping with the terminology of [1, Chap. 3], w̃ is
the diffuse part, the sum of an absolutely continuous and a
singular continuous (Cantor part) function, whereas wj(dt) is
the jump part, supported on at most countably many points
ti, i ∈ J . That is, w is continuous almost everywhere on
[0, T ], and wj may be written as wj(dt) =

∑
i∈J Ui δti(dt)

with jump amplitude vectors Ui ∈ Rm supported at impulsive
jump times ti, i ∈ J . Obviously, x(t) possesses the same
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decomposition, and has therefore left x(t−) and right x(t+)
continuous limits for every t in (0, T ). At jump points of x(t),
which by (4) are the same as for w(t), the following holds:

x(t+i )− x(t
−
i ) = G(ti)Ui, ∀ i ∈ J. (8)

To encode those discontinuous trajectories, define the
stochastic kernel ξ, also known as the conditional measure,
as:

ξ(B|t) =


IB(x(t)) =

∫
B

δx(t)(dx), ∀t ∈ [0, T ] \ J

λ([x(t−i ),x(t+i )]∩B)

λ([x(t−i ),x(t+i )])
, ∀ti ∈ J.

(9)

That is, ξ(· | t) is the Dirac measure concentrated at state
x(t) along continuous trajectory arcs, while during jumps,
it is uniformly distributed along the segment linking the
state before and after the jump. This is represented by the
Lebesgue measure defined on a line segment in X (not to
be confused with the Lebesgue measure on the n-dimensional
space X). The above denominator ensures that ξ(· | t) has unit
mass for all t and therefore remains a probability measure
during jumps. Readers familiar with the impulsive literature
will recognize, behind this construct, the canonical graph
completion introduced in [4]. Indeed, one can represent the
trajectory “during” a jump by parametrizing the line segment
[x(t−i ), x(t

+
i )] with s 7→ x(s) = x(t−i ) + s

(
x(t+i )− x(t

−
i )
)
,

s ∈ [0, 1], such that ξ(dx|ti) = ds. The fact that X is convex
guarantees the existence of such a canonical completion.

The stochastic kernel ξ possesses by construction the fol-
lowing properties, for any continuously differentiable function
v : [0, T ]× Rn → R and ∀t ∈ [0, T ] \ J :

v(x(t)) =

∫
X

v ξ(dx|t), (10)

whereas, ∀t ∈ J ,

v(x(t+))− v(x(t−)) =
∫ 1

0

∂v

∂x
·
(
x(t+)− x(t−)

)
ds (11)

=

∫
X

∂v

∂x
·
(
x(t+)− x(t−)

)
ξ(dx|t).

(12)

These properties allow to rigorously define the various oc-
cupation measures that will be the decision variables of a
generalized problem of moments. For this purpose, the time
occupation measure, measuring the occupation of A × B by
the pair (t, x(t)) all along the trajectory, is defined as:

µ[x0, w(t)](A×B) =

∫
A

ξ(B | t) dt (13)

∀A ∈ B([0, T ]), ∀B ∈ B(X). In particular, µ[x0, w(t)](A,B)
is the time spent by the trajectory x(t) on set A × B
(whence the name “occupation measure”). Note that we write
µ[x0, w(t)] to emphasize the dependence of µ on initial
state x0 and relaxed control w(t). However, for notational
simplicity, we may use the notation µ.

The control occupation measure can then be defined as:

ω[x0, w(t)](A×B) =

∫
A

ξ(B | t) dw(t) (14)

∀A ∈ B([0, T ]) and ∀B ∈ B(X), and with ξ(· | t) defined as
in (9). In the same way as for the time occupation measure,
ω(A,B) measures the amount of control delivered by the
trajectory x(t) on set A×B.

Finally, the final state occupation measure is defined as

µT [x0, w(t)](B) = IB(x(T )), ∀B ∈ B(X). (15)

By construction, for any continuous function v : Rn → R, the
following holds :∫

XT

v dµT [x0, w(t)](x) = v(x(T )). (16)

The next theorem show how these measures are related:

Theorem 1. If w(t) is an admissible relaxed control for a
trajectory starting at x0 and satisfying relaxed dynamics (4)
on [0, T ] × X , then its corresponding occupation measure
µ[x0, w(t)], final state measure µT [x0, w(t)] and control mea-
sure ω[x0, w(t)] satisfy the linear equation∫

XT

v(T, x) dµT (x)− v(0, x0) =∫
[0,T ]×X

(
∂v

∂t
+
∂v

∂x
f

)
dµ+

∫
[0,T ]×X

∂v

∂x
Gdω

(17)

for all continuously differentiable test functions v(t, x) on
[0, T ]×X .

Proof: Evaluating such a test function along an admissible
trajectory yields, by the chain rule on BV functions [1, Th.
3.96]:

v(T, x(T+))− v(0, x(0−)) =
∫ T

0

dv(t, x(t)) =

=

∫ T

0

∂v

∂t
dt︸ ︷︷ ︸

A1

+

∫ T

0

∂v

∂x
dx̃︸ ︷︷ ︸

A2

+
∑
i∈J

v(ti, x(t
+
i ))− v(ti, x(t

−
i ))︸ ︷︷ ︸

A3

.

(18)
The aim is to express the above temporal integration as
a spatial integration with respect to the previously defined
occupation measures.

Given (16), the left hand side of (17) is equal to the left
hand side of (18). For the right-hand side, observe that by
(10) and (13):

A1 =

∫ T

0

∫
X

∂v

∂t
ξ(dx|t) dt =

∫
[0,T ]×X

∂v

∂t
dµ(t, x). (19)

Using (4) and the fact that x(t) is diffuse when w(t) is, A2

is given by

A2 =

∫ T

0

∂v

∂x
f(t, x(t)) dt+

∫ T

0

∂v

∂x
(t, x(t))Gdw̃(t) (20)

=

∫
[0,T ]×X

∂v

∂x
f(t, x) dµ+

∫ T

0

∫
X

∂v

∂x
Gdξ(x|t) dw̃(t), (21)
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where the last relation uses again (10) and the definitions (13)
and (14). Finally, injecting (12) in A3 gives

A3 =
∑
i∈J

∫
X

∂v

∂x

(
x(t+i )− x(t

−
i )
)
ξ(dx|ti) (22)

=
∑
i∈J

∫ T

0

∫
X

∂v

∂x
G(t) ξ(dx|t) Uiδti(dt)︸ ︷︷ ︸

=dwj(t)

, (23)

where the last relation uses (8). Since w(dt) = w̃(dt)+wj(dt),
using (14) leads to the desired result.

The following obvious lemma provides a characterization
of infeasible impulsive optimal control problems:

Lemma 1. If no triplet of arbitrary finite measures
(µ, µT , ω) ∈ (M+,M+,M) satisfies (17), neither original
problem (1)-(2) or relaxed problem (3)-(4) are feasible.

Turning now to feasible problems, the standard measure
relaxation that is the topic of this section consists in enlarging
the search among all triplets of measure satisfying (17), instead
of only considering the occupation measures as defined above:

Lemma 2 (Measure relaxation). Consider the minimization
problem on arbitrary finite measures:

VM (x0) = inf
µ,µT∈M+, ω∈M

JM (x0, µ, µT , ω)

= inf
µ,µT ,ω

∫
[0,T ]×X

h dµ+

∫
[0,T ]×X

H dω +

∫
XT

hT dµT
(24)

under constraints (17). Then V (x0) ≥ VR(x0) ≥ VM (x0).

Proof: First, by construction, problem (3)-(4) is a relax-
ation of problem (1)-(2), since we optimize over derivatives
of functions of bounded variations, i.e. measures, instead of
measurable functions. This proves the first inequality.

Secondly, by Theorem 1, every admissible trajectory for
problem (24) generates an occupation and control measure
satisfying (17). This proves the second inequality.

It should be noted that for a well-posed control problem
(3)-(4), one expects that in fact VM (x0) = VR(x0) and
that an optimal solution of the relaxed problem will be a
triplet of occupation measures corresponding to an optimal
trajectory of relaxed problem (3)-(4) with given initial state
x0 and relaxed control w(t). However, this will be proved
in subsequent works. Note that for the standard polynomial
optimal control problem (1)-(2), without impulsive controls,
and under additional convexity assumptions, it has been proved
in [13] that indeed VM (x0) = VR(x0) = V (x0). See also [7].

We provide now a few extensions of our canonical problem
that are easily captured by the occupation measure formalism.

A. Free initial state

We consider now the case where x0 is itself a decision
variable of our optimization problem instead of being given,
taking its values in the compact set X0. This initial state incurs
an additional initial cost of h0(x0) to the total cost. This can
be handled by introducing the initial state occupation measure
µ0 as

µ0[x0, w(t)](B) = IB (x0) , ∀B ∈ B(X) (25)

which is the obvious analogue of the final-state occupation
measure µT . Measure µ0 can be seen as an unknown probabil-
ity measure on X0. The appropriate modifications for problem
(24) can then easily be deduced by analogy with µT . It is
however necessary to add the constraint that one of the end-
point measures is a probability measure, i.e.

∫
dµ0 = 1, to

avoid trivial solutions.

B. Decomposition of control measures and handling of total
variation

All measures in problem (24) are positive measures, except
for the signed measures ω which deserve special treatment.
In fact, in the next section and in the rest of the note, only
positive measures will be considered. One way to proceed is
to relax u(t) = u+(t) − u−(t) in original problem (1)-(2),
with u+(t) and u−(t) both positive functions, and embedding
this new problem into measure relaxations as above. This
leads in problem (24) to substitute ω by ω+ − ω−, with
those signed control-state occupation measure associated to
respectively u+(t) and u−(t). It should be kept in mind that
this decomposition is not unique; Adding an arbitrary finite
positive measure ν to both ω+ and ω− yields the same ω.

One obvious advantage of this decomposition is that prob-
lems of minimization of the L1 norm of the original controls
u(t), such as those taken from the orbital rendezvous literature,
can now be handled. Indeed, consider the new problem

V = inf
u(t)

∑
i

∫ T

0

|ui(t)| dt. (26)

under dynamical constraints (2). Its occupation measure relax-
tion then reads

VM = inf
ω

∑
i

∫
[0,T ]×X

d|ωi| = inf
ω

∑
i

∫
[0,T ]×X

d
(
ω+
i + ω−i

)
. (27)

Non-unicity of the decomposition is not an issue here, as
the cost to be minimized is the sum of masses of positive
measures. Hence, the solutions ω+ and ω− will naturally tend
to the standard Hahn-Jordan decomposition of measure ω,
which is unique except on sets of null Lebesgue measure [2].

IV. THE ASSOCIATED MOMENT PROBLEM

So far, the hypothesis of polynomial data has not been used,
but this crucial assumption is necessary for this section, where
measures are manipulated through their moments. This leads
to a semi-definite programming (SDP) problem with countably
many linear constraints.

Define the moments of a measure µ(dz) on Z ⊂ Rn as

yµk =

∫
Z

zk dµ(z) :=

∫
Z

zk11 · · · zknn dµ(z). (28)

Then, with a sequence y = (yk), k ∈ Nn, let Ly : R[z] → R
be the (Riesz) linear functional of f =

∑
k fkz

k

f 7→ Ly(f) =
∑
k

fkyk, f ∈ R[z]. (29)
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Define the moment matrix of order d ∈ N associated with y as
the real symmetric matrix Md (y) whose (i, j)th entry reads

Md(y)[i, j] = Ly
(
zi+j

)
= yi+j , ∀i, j ∈ Nnd . (30)

Similarly, define the localizing matrix of order d associated
with y and h ∈ R[z] as the real symmetric matrix Md(h y)
whose (i, j)th entry reads

Md(h y)[i, j] = Ly
(
h(z) zi+j

)
(31)

=
∑
k

hk yi+j+k, ∀i, j ∈ Nnd . (32)

As a last definition, a sequence yµ = (yµk ) is said to have a
representing measure if there exists a finite Borel measure µ
on X , such that relation (28) holds for every k ∈ Nn.

The construction of the SDP program associated with gen-
eralized moment problem (24) can now be stated. Its decision
variable is the sequence of moments y, the aggregate of
sequences yµ, yω

±
and yµT . As cost (24) is polynomial, it

can be rewritten as the scalar product b′y, with b identified
term-by-term by:

b′y = Lµy (h) + Lµ
+

y (H)− Lµ
−

y (H) + LµTy (hT ). (33)

That is, b is the coefficients of polynomials h, H and hT
expressed in monomial basis (28).

Similarly, constraint (17) needs only be verified for the
countably many polynomial test functions v ∈ R[t, x] , since
the measures are supported on compact subsets of R1+n.
Therefore, for the k-th such test function vk, (17) defines a
linear constraint between moments of the form a′ky = ck.
Scalar ck and sequence ak can be deduced by identification
with

a′ky − ck = LµTy (vk(T, ·))− vk(0, x(0))
−Lµy (∂vk∂t + ∂vk

∂x f)

−Lµ+

y (∂vk∂x G) + Lµ
−

y (∂vk∂x G)

. (34)

Finally, the only nonlinear constraints are the convex SDP
constraints for measure representativeness. Indeed, it follows
from [14, Theorem 3.8] that a sequence of moments yµ has a
representing measure defined on an Archimedean, basic semi-
algebraic set Xµ = {x : pµi (x) ≥ 0, i = 1, 2, . . .} if and only
if Md(y

µ) � 0, ∀ d ∈ N and Md(p
µ
i y

µ) � 0, ∀ d ∈ N and
∀pµi defining set Xµ.

This leads to the problem:

V∞M = inf
y
b′y (35)

such that
Ay = c,

∀d ∈ N : Md(y
µ) � 0, Md(p

µ
i y

µ) � 0,

Md(y
ω±

) � 0, Md(p
ω±

i yω
±
) � 0,

Md(y
µT ) � 0, Md(p

µT
i yµT ) � 0,

(36)

where operator A and sequence c are built from (34).
We have proved the following result:

Theorem 2. Relaxed problem on measures (24) and the
infinite-dimensional SDP moment problem (35) share the same
optimum:

VM = V∞M . (37)

For the rest of the note, we will therefore use VM to denote
the cost of the Measure LP problem (24) or Moment SDP
problem (35) indifferently.

V. LMI RELAXATIONS

The final step to reach a tractable problem is relatively
obvious: We simply truncate the problem to its first few
moments. Let d0 ∈ N be the smallest integer such that all
criterion, dynamics and constraint monomials belong to Nn+1

2d0
.

This is the degree of the so called first relaxation. For each
relaxation, we get a standard LMI problem that can be solved
numerically by off-the-shelf software by simply truncating in
problem (35) to involve only moments in Nn+1

2d , with d ≥ d1
the relaxation order.

Theorem 3. Let us denote by V d0+iM the optimum obtained by
solving the finite-dimensional truncation to moments of degree
up to 2(d0 + i) of SDP problem (35), for i = 0, 1, . . . Then

V d0M ≤ V
d0+1
M ≤ · · ·V∞M = VM . (38)

Proof: By construction, observe that j > i ⇒
V d0+jM ≥ V d0+iM , i.e. the sequence V d0+iM is monotonically
non-decreasing. Asymptotic convergence to VM follows from
[14, Theorem 3.8] as in the proof of Theorem 2.

Therefore, by solving the truncated problem for ever
greater relaxation orders, we will obtain a monotonically non-
decreasing sequence of lower bounds to the true optimal cost.
In the example below, we will see that in practice, the optimal
cost is usually reached after a few relaxations.

Remark 1. The GloptiPoly software [9] completely automates
the construction of truncated moment problems from high level
definitions such as those defining problem (24)–(17). This is
why sections IV-V have been kept to a bare minimum. See
[14] for more details.

VI. EXAMPLE

In this section, a basic example is worked out to illustrate
how the method works. The example uses GloptiPoly [9] for
building the truncated LMI moment problems and SeDuMi
[18] for its numerical solution. For other examples, see [6].

Consider

V = inf
u(t)

∫ 2

0

x2(t) dt (39)

such that
ẋ(t) = u(t),
x(0) = 1, x(2) = 1

2 ,
x2(t) ≤ 1.

(40)

The optimal solution for this problem consists in reaching the
turnpike x(t) = 0 by an impulse at initial time t = 0, and
likewise, departing from it by an impulse at final time t =
T = 2.

By injecting h = x2, f = 0 and G = 1 in (24)-(17), and
using the fact that the fixed-end problem has µT = δ 1

2
, the

associated problem on measure reads:

VM = inf
µ,ω+,ω−∈M+

∫
K

x2 dµ (41)
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such that, ∀ v ∈ R[t, x] ,

v(2,
1

2
)− v(0, 1) =

∫
K

∂v

∂t
dµ+

∫
K

∂v

∂x
d
(
ω+ − ω−

)
, (42)

K =

{
(t, x) ∈ R× R :

1− x2 ≥ 0
t(2− t) ≥ 0

}
. (43)

The last equation defining K is one possible choice for a
semialgebraic representation of t ∈ [0, 2].

We consider now the construction of the first LMI relaxation
of (41)-(42)-(43), defining moments by

yµij =

∫
tixj dµ i, j ∈ N. (44)

This relaxation will involve moments yij such that i+ j ≤ 2
since cost (41) and constraints (43) are quadratic. Given (44),
cost (41) is simply: ∫

K

x2 dµ = yµ02. (45)

For dynamical constraints (42), we need to consider polyno-
mial test functions of the form v(t, x) = tixj with i+ j ≤ 2.
For instance, for the fifth test function in graded lexicographic
order v5 = tx, (42) reduces to

2 · 1
2
− 0 · 1 =

∫
K

x dµ+

∫
K

t d
(
ω+−ω−

)
, (46)

hence to moment constraint

1 = yµ01 + yω
+

10 − yω
−

10 . (47)

Finally, the representativeness constraint for each moment
sequence associated with measure τ = {µ, ω+, ω−} are as
follows. Moment matrix M1(y

τ ), whose lines and columns
are referenced by multi-indexes {00, 10, 01}, is constructed
from (30) to give the SDP constraint:yτ00 yτ10 yτ01

yτ10 yτ20 yτ11
yτ01 yτ11 yτ02

 � 0. (48)

Localizing matrices M0(p
τ
i y
τ ) associated with each constraint

pτi defining set (43) are simply scalars for the first relaxation.
Using (31) thus yields the positivity constraints:

M0((1− x2)yτ )[00, 00] = Lyτ ((1− x2)t0x0)
= yτ00 − yτ02 ≥ 0

(49)

for the constraint 1− x2 ≥ 0, and likewise for t(2− t) ≥ 0,

M0(t(2− t)yτ ) = 2yτ10 − yτ02 ≥ 0. (50)

Solving the LMI problem just constructed yields V 1
M = 0,

the true cost to (39)-(40). In addition, using the extraction
routine defined in [14] at the second relaxation, the optimal
control and trajectory can be recovered from the value of the
optimal measures:

µ(dt, dx) = λ[0,2](dt) δ0(dx) (51)
ω(dt, dx) = −δ0(dt)λ[0,1](dx) + δ2(dt)λ[0, 12 ](dx). (52)

VII. CONCLUSION

The focus of this work is on actual computation of op-
timal impulsive controls for systems described by ordinary
differential equations with polynomial dynamics and polyno-
mial (semi-algebraic) constraints on the state. State trajectory
and controls are captured by measures which are linearly
constrained, resulting in an infinite-dimensional Linear Pro-
gramming (LP) problem consistent with the formalism of
our GloptiPoly software [9]. This LP problem on measures
can then be solved numerically via a hierarchy of Linear
Matrix Inequality (LMI) relaxations, for which off-the-shelf
Semi-Definite Programming (SDP) solvers can be used. If the
solution is purely impulsive, the optimal impulse sequence can
then be retrieved by simple linear algebra, and the tightness
of the bounds obtained with our approach can be assessed by
a posteriori simulation or comparison with suboptimal control
sequences computed by alternative techniques.

REFERENCES

[1] Ambrosio L., Fusco N., Pallara D., Functions of bounded variation and
free discontinuity problems. Oxford Science Publications, Oxford, UK,
2000.

[2] Ash R. B., Real analysis and probability, Academic Press, San Diego,
1972

[3] Bensoussan A., Lions J.-L., Contrôle impulsionnel et inéquations vari-
ationnelles, Gauthier-Villars, Paris, 1982.

[4] Bressan A., Rampazzo F., On differential systems with vector-valued
impulsive controls, Boll. Un. Matematica Italiana 2-B:641-656, 1988.

[5] Brezis H., Functional analysis, Sobolev spaces and partial differential
equations, Springer, Berlin, 2011.

[6] Claeys M., Arzelier D., Henrion D., Lasserre J.-B., Measures and LMIs
for optimal impulsive control with application to space rendezvous
problems, Proc. 2012 American Control Conf., Montreal, Canada, Jun.
2012.

[7] Gaitsgory V., Quincampoix M., Linear programming approach to de-
terministic infinite horizon optimal control problems with discounting,
SIAM J. Control Optim. 48(4):2480-2512, 2009.

[8] Gajardo P., Ramı́rez C. H., Rapaport A., Minimal time sequential batch
reactors with bounded and impulse controls for one or more species,
SIAM J. Control Optim. 47(6):2827-2856, 2008.
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