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Abstract—We focus on the problem of satellite rendezvous
between two spacecraft in elliptic orbits. Using a linearized model
of the relative dynamics, we first propose a periodic similarity
transformation based on Floquet-Lyapunov theory, leading to a
set of coordinates under which the free motion is linear time-
invariant. Then we address the problem of impulsive control of
satellite rendezvous as a hybrid dynamical system, and we show
that the arising elegant representation enables designing impul-
sive control laws with different trade-offs between computational
complexity and fuel consumption. The adopted hybrid formalism
allows us to prove suitable stability properties induced by the
proposed controllers. The results are comparatively illustrated
on simulation examples.

I. INTRODUCTION

Considering the increasing need for satellite servicing in
space, the capability of operating an active spacecraft, the
follower denoted by F, in close proximity of a satellite, the
leader denoted by L, will be crucial for fulfilling complex safe
space missions objectives comprising inspection, repairing,
refueling, or monitoring [10]. The whole relative spacecraft
maneuvering process composes what is known as the ren-
dezvous and proximity operations, which mainly consists in
getting the follower from one orbit to a box near the leader
(close range rendezvous) [17], [8] and then in beginning the
proximity operations required by the mission objectives. When
dealing with the preliminary planning phase of space missions,
it is customary to approximate actual finite-thrust powered
phases of finite duration by impulsive maneuvers. The im-
pulsive approximation for the thrust means that instantaneous
velocity jumps are applied to the chaser when firing, whereas
its position is continuous. This assumption, made in this paper,
has proved to be very useful in reducing the complexity of
guidance and control design and has been widely used in
the literature dedicated to rendezvous (see [10], [7], [8] and
references therein).

In this article, we are mainly interested in the proximity
maneuver for which it is highly recommended to design safe
impulsive maneuvers guiding the follower, from one point to
a specified tolerance region in the proximity of the leader
where the relative motion of the follower will be periodic and
bounded. It is well known that, under Keplerian assumptions,
the relative nonlinear motion between spacecraft is globally
bounded [13] while the linearized relative motion equations
include a secular term leading the chaser to drift away from
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the follower. Different conditions for the periodicity of the
linearized equations of the nonlinear relative motion have
been given in the literature. For instance, the authors of [1]
state that the identity of the semi-major axis of the spacecraft
orbits is a necessary and sufficient condition for periodicity,
while Inalhan in [14] proposed a periodicity condition at
perigee, for the linearized relative motion and for arbitrary
eccentricity in a Cartesian and local framework. The well-
known energy-matching condition, given by Gurfil in [13],
involves a sixth degree polynomial equation. It is important to
notice that different parametrizations (Cartesian coordinates,
orbital elements) of the relative motion have been used in these
previous developments.

Here we consider the parametric expression for the relative
motion proposed in [7] and used to characterize in a simple
way box-constrained periodic relative motions [9]. Using
that parametric expression, any relative periodic trajectory is
defined, in a linearized context, by 5 constant parameters.
In particular, building on the result presented in [7], the
contribution of the present paper is twofold. First, we propose
a new coordinate transformation which leads to a simplified
characterization of periodic trajectories when applied to the
Tschauner-Hempel equations of the elliptic linearized relative
motion. Second, three different hybrid feedback-control laws
are designed by taking advantage of the particular formu-
lation of the rendezvous problem. The use of the hybrid
framework [12] for representing nonlinear hybrid dynamical
systems (whose solutions exhibit continuous evolution and
impulsive behavior) allows us to state and prove suitable
stability properties of the proposed impulsive control laws
(including, e.g., the one originally presented in [8]) when
applied to the linear time-varying dynamics of the closed-
loop system. This work fits well within some recent trends
witnessed by spacecraft applications benefiting from hybrid
systems approaches. As an example, we mention the recent
invited session “A Spacecraft Benchmark Problem for Analy-
sis & Control of Hybrid Systems” presented at the 2016 IEEE
Conference on Decision and Control, where several interesting
works have been presented. While none of them tackles the
specific impulsive elliptic control problem addressed here, the
ones most relevant with respect to our contribution are [18],
where the design of multiple hybrid controllers for different
phases of the rendezvous is conducted in the same hybrid
control framework, and [15], where the proposed spacecraft
benchmark problem could be easily extended to encompass
impulsive chemical thrust as a fourth control implementation
option.

Preliminary results in the directions of this work have been
published in [6]. Here we make several steps forward. First,
we introduce a tri-impulsive law that was not present in [6] and



which is capable of asymptotically stabilizing the desired orbit
via periodic transient motions. Second, we give statements
and proofs of our stability results (those were not included in
[6]). Third, we provide new and more convincing numerical
illustrations of the advantages arising from the proposed strate-
gies, which are validated on a numerical model taking into
account several nonlinear effects that are disregarded in the
design model. Recent efforts in a different research direction
are also reported in [11], which addresses a similar impulsive
control problem aiming at steering the chaser spacecraft to
a forward invariant tolerance box. In that work, the attention
is devoted to minimizing some cost function penalizing fuel
consumption, by way of an MPC strategy. The arising solution
is numerically more complex because it requires solving an
on-line optimization problem. Moreover, different from this
work, no stability or convergence guarantee is given in [11].

The paper is structured as follows. In Section II we propose
a convenient representation of the relative dynamics, that has
deep roots in the existing literature. In Section III we propose
a hybrid representation of the dynamics subject to impulsive
thrusts. In Section IV we propose three different control laws
for the stabilization of a desired periodic orbit. Finally, in
Section V we illustrate the proposed controllers on several
simulation studies also involving nonlinearities neglected in
the design phase. Finally, conclusions are drawn in Section VI.

Notation: a, e, ν and T are respectively the semi-major
axis, the eccentricity, the true anomaly and the period of
the leader’s orbit. µg = 398600.4415 × 109 m3/s2 is the
standard gravitational parameter for the Earth. f ′ represents
the differentiation of the function f with respect to the true
anomaly ν. In is the identity matrix of dimension n. For a set
S, S̄ denotes the closure of the set S.

II. LTI STATE-SPACE FOR THE LINEARISED RELATIVE
EQUATIONS OF MOTION

A. Hybrid form of the linearized relative equations of motion

The proximity operations between two spacecraft are char-
acterized by the use of relative navigation since the separation
between spacecraft is sufficiently small. In this framework,
the relative motion of the follower is described in the Local-
Vertical-Local-Horizontal (LVLH) frame attached to the leader
[17]. The origin of the coordinate frame is located at the center
of mass of the leader and the space is spanned by (x, y, z)
where the z axis is in the radial direction (R-bar) oriented
towards the center of the Earth, the y axis is perpendicular to
the leader orbital plane and pointing in the opposite direction
of the angular momentum (H-bar) while the x axis is chosen
such that x = y × z (V-bar, see Figure 1).

Under Keplerian assumptions (no orbital perturbations are
considered) and an elliptic reference orbit, the equations of
motion for the relative motion in the LVLH frame may be
linearized for close separation between the leader and the
follower [2, Chapter 5, Section 5.6.1]:

Ẋ = A(t)X free motion

X+ = X +

[
03×3

I3

] t+∫
t−

f(τ)

mF
dτ

when applying
impulsive thrusts,
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Fig. 1: LVLH frame for relative spacecraft dynamics.

where state X = (x, y, z, dx/dt, dy/dt, dz/dt) represents
positions and velocities in the three fundamental axes of the
LVLH frame, f(t) is the thrust vector, X+ is the state vector
right after the impulsive thrust, mF , the mass of the follower,
is assumed constant, and matrix A(t) is a suitable periodic
function of time t given by:

A(t) :=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

a1(t) 0 ν̈ 0 0 2ν̇
0 a2(t) 0 0 0 0
−ν̈ 0 a3(t) −2ν̇ 0 0

 , (2)

where
a1(t) := ν̇2 + 2k4ρ3(ν),
a2(t) := ν̇2 − k4ρ3(ν),
a3(t) := −k4ρ3(ν),

and where we recall that:

ν̇ :=
dν

dt
=

n

(1− e2)3/2
(1 + e cos ν︸ ︷︷ ︸

ρ(ν)

)2 =: k2ρ(ν)2, (3)

where n =

√
µg
a3

= 2π/T is the mean motion of the leader

orbit, satisfying for any fixed ν0, t0,

ν − ν0 = 2π ⇒ n(t− t0) = 2π. (4)

We may define the impulsive control input (essentially equiv-
alent to velocity jumps in the three axes) as:

∆v(tk) :=

t+k∫
t−k

1

mF

fx(t)
fy(t)
fz(t)

 dt, (5)

which is directly associated to the fuel consumption and where
tk is a generic firing time.

In order to simplify the linearized equations (1) and (2),
classical derivations dating back to the seminal publications
of Lawden [16, Chapter 5] and Tschauner-Hempel [23] corre-
spond to first applying a change of independent variable from
time t to true anomaly ν, and then introducing the following
coordinate change which is indeed useful for simplifying the
expression of the dynamics:

T (ν) :=

[
ρ(ν)I3 03×3

ρ(ν)′I3 ρ(ν)I3

]
, (6)

where ρ(ν)′ := dρ(ν)/dν. This leads to the following hybrid



representation of the so-called Tschauner-Hempel (TH) equa-
tions with a new state X̃(ν) replacing X(t):

X̃ ′ = Ã(ν)X̃ free motion,

X̃+ = X̃ +
1

k4ρ(ν)3

[
03×3

I3

]
︸ ︷︷ ︸

=:B̃(ν)

u
when applying

impulsive thrusts, (7)

where u = ∆v represents the applied impulse, state X̃ =
(x̃, ỹ, z̃, dx̃/dν, dỹ/dν, dz̃/dν) represents positions and veloc-
ities with respect to ν, and

Ã(ν) :=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2
0 −1 0 0 0 0
0 0 3

ρ(ν) −2 0 0

 . (8)

B. A new fundamental solution to the TH equations

In this article, we propose the two following additional
transformations, the first one arising from similar observations
to those in [8], and the second one arising from a Floquet-
Lyapunov derivation. Although the state-space equation (7) is
linear time-varying, Ã(ν) is simple enough to allow for the
derivation of the autonomous solution of (7) via the compu-
tation of a fundamental matrix ϕν0(ν) and a transition matrix
Φ̃(ν, ν0). For instance, the so-called Yamanaka-Ankersen form
of this transition matrix has been proposed in [24]. Here, a new
fundamental matrix is proposed, corresponding to

ϕν0(ν) :=

0 0 ρ2 −c
(

1+ 1
ρ

)
s
(

1+ 1
ρ

)
ρ2J

c
ρ

s
ρ 0 0 0 0

0 0 −e s s c 2
3 −esJ

0 0 −2 e s 2s 2c−e 1−2esJ
− sρ c

ρ 0 0 0 0

0 0 −e s′ s′ c′ −e
(
s′J+ s

ρ2

)


(9)

where the following shortcuts are used (with a slight abuse of
notation):

ρ = ρ(ν), s = sin(ν)ρ(ν), c = cos(ν)ρ(ν), (10)

J = J(ν, ν0) :=

∫ ν

ν0

1

ρ(u)2
du =

n

(1− e2)3/2
(t− t0). (11)

The 6 columns of ϕν0(ν) form a basis spanning the 6-
dimensional vector space of autonomous solutions of (7), since
each column is indeed a solution of the autonomous equation
(7), and

det(ϕν0(ν)) =
e2 − 1

3
6= 0 , ∀ e ∈ [0, 1) . (12)

These solutions are periodic except for the secular drift term
J(ν, ν0), which is 0 only when ν = ν0. For this special case,
we may appreciate the usefulness of the fundamental matrix
in (9), which leads to defining the change of coordinates in
(15), inducing the simplified free motion dynamics in (17).
The state transition matrix of the LTV free motion in (7) is

then easily obtained as

Φ̃(ν, ν0) := ϕν0(ν)ϕν0(ν0)−1. (13)

The particular interest of considering the fundamental matrix
ϕν0(ν) instead of the one used in the reference [24] appears
clearly in the following, when trying to obtain the simplest
possible LTI expression for the relative dynamical equations
(7) via a Floquet-Lyapunov similarity transformation.

C. A periodic similarity transformation

Our first objective is to characterize the periodic au-
tonomous solutions associated to (9) by transforming Ã(ν)
into a convenient sparse dynamic matrix via a well chosen
similarity transformation as proposed in [7]. The similarity
transformation used in this paper is slightly different from the
one used in [7] and is given by:

ξ̄(ν) :=
[
ξ̄1(ν) · · · ξ̄6(ν)

]T
:= C(ν) X̃(ν),

(14)

where C(ν) := ϕν(ν)−1 can be computed explicitly and cor-
responds to

C(ν) =

0 cν 0 0 −sν 0
0 sν 0 0 cν 0

1 0 − 3esν(1+ρ)
ρ(e2−1)

esν(1+ρ)
e2−1 0 ρ2−ecν−3

e2−1

e 0 −3sν sν(1 + ρ) 0 cνρ

0 0 3(cν+e)
e2−1 − cν(1+ρ)+e

e2−1 0 sνρ
e2−1

0 0 − 3(3ecν+e2+2)
e2−1

3ρ2

e2−1 0 − 3esνρ
e2−1


,

(15)

where we used cν := cos(ν) and sν := sin(ν). We emphasize
that the states in (14) is one among the infinitely many possible
combinations of the constants appearing in the analytical
solutions of [16, Chapter 5] and [23]. Alternative combinations
have appeared in the literature, including those in [7] and
those in [21]. For instance, we get the following linear relation
between the set of constants used in the reference [21] (and
therein denoted by the symbol c) and the vector of constants
ξ̄ used herein.

ξ̄ =


0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 3J/(e2 − 1) 1 0 0
0 −1 0 e 0 0
−1 0 0 0 0 0
0 0 3/(e2 − 1) 0 0 0




c1
c2
c3
c4
c5
c6


(16)

Note that, based on the results of [21] and the develop-
ments in [20], relation (16) may then be used to give
the expression of the vector of differential orbital elements
(δa δe δi δΩ δω δM0) as a function of ξ̄. Applying the
periodic similarity transformation in (15) to the dynamic



matrix Ã(ν), we get:

Ā(ν) :=
[
C ′(ν)C−1(ν) + C(ν)Ã(ν)C−1(ν)

]
,

=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ρ(ν)−2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .
(17)

Note that the structure of C(ν) preserves the decoupling
between the motion in the leader’s orbital plane (x, z) and
the out-of-plane motion along y illustrated by the partitioning
indicated in (17). Periodic autonomous solutions associated to
(9) are characterized by constant solutions of ξ̄′ = Ā(ν)ξ̄.
From Ā(ν), it is then possible to deduce that the states ξ̄1, ξ̄2,
ξ̄4, ξ̄5 and ξ̄6 are constant solutions, while ξ̄3(ν) is a constant
solution if and only if ξ̄6(ν) = 0. This appears more clearly
when computing the new state transition matrix associated to
Ā(ν) as:

Φ̄(ν, ν0) := C(ν)Φ̃(ν, ν0)C(ν0)−1

=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 J(ν, ν0)
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
(18)

D. A Floquet-Lyapunov similarity transformation

Since the dynamic matrix Ā(ν) is periodic of period 2π,
the next step consists in the application of Floquet-Lyapunov
theory, as in [7] and [22], and to look for a periodic similarity
transformation matrix S(ν), transforming the original LTV
dynamical system into an equivalent LTI dynamical system,
namely:

ξ̂(ν) := S(ν)ξ̄(ν) , (19)

ξ̂ ′(ν) = Â ξ̂(ν) , (20)

where Â is a matrix independent of ν. We know that, given
S(ν), Â is given by:

Â := S′(ν)S−1(ν) + S(ν)Ā(ν)S−1(ν) . (21)

Via a right multiplication of (21) by S(ν), we obtain the
differential equation:

S′(ν) = ÂS(ν)− S(ν)Ā(ν) . (22)

Equation (22) represents a matrix differential equation whose
solution is given in equation (23) and comes from Floquet
Theory [4]. Therefore,

S(ν) = eÂ(ν−νf )S(νf )Φ̄(νf , ν) , (23)

where νf ∈ [0, 2π] (f stands for Floquet) is an arbitrary
parameter. Imposing the periodicity condition on S(ν) with
ν = νf + 2π in (23) gives:

S(νf + 2π) = S(νf ) = e2πÂS(νf )Φ̄(νf , νf + 2π). (24)

From (24) we get:

S(νf ) = e2πÂS(νf )Ψ̄(νf )−1 , (25)

where Ψ̄(νf ) = Φ̄(νf + 2π, νf ) is the monodromy matrix
(state transition matrix over one period) of Ā(ν). Denoting by
T the leader’s orbital period, we have:

J(νf + 2π, νf ) =
n

(1− e2)3/2
T =

2π

(1− e2)3/2
. (26)

Using (11) and (18), the monodromy matrix Ψ̄(νf ) is therefore
given by:

Ψ̄(νf ) =



1 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0
2π

(1− e2)3/2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (27)

In solving (23) under constraint (25), we look for a solution
having the same structure as Ā(ν) in (17), namely satisfying
Â2 = 0, which gives:

eÂν =

∞∑
k=1

νk

k!
Âk = I + νÂ. (28)

Equation (25) becomes:

S(νf )Ψ̄(νf ) = (I + 2πÂ)S(νf ) , (29)

or equivalently:

2πÂ = S(νf )Ψ̄(νf )S(νf )−1 − I , (30)

where S(νf ) is an arbitrary matrix parameter. Here we select
S(νf ) as the identity matrix, to get

Â =


0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 (1− e2)−3/2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (31)

The Floquet-Lyapunov similarity transformation is finally
computed from equation (23) as:

S(ν) =
(
I + (ν − νf )S(νf )Â

)
Φ̄(νf , ν)

=



1 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0
σ(ν)

(1− e2)3/2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (32)

where we introduced the function:

σ(ν) :=(ν − ν̃)− n(t− t̃)
=(ν − ν̃)− (M − M̃)

=∆ν −∆M, (33)

based on an arbitrary true anomaly value ν̃ (in our simulations
we select ν̃ = 0) corresponding to a specific time value t̃ (in



our simulations we select t̃ = 0). Function σ in (33) is clearly
periodic and bounded, due to the geometric dependence of ν
and M when the leader follows a Keplerian elliptic motion.

The following result establishes a first contribution of this
paper showing that dynamics (7) can be transformed to a
convenient linear time-invariant form by exploiting transfor-
mations (6), (15), and (32). The proof of the lemma is omitted
as it follows from the mathematical derivations discussed
above, and from periodicity of matrices C and S.

Lemma 1: Consider matrices in (15) and (32). Then the
following operation:

ξ̂ := R(ν)X̃ := S(ν)C(ν)X̃ , (34)

is a linear time-varying coordinate change, namely R(ν) is
invertible for all ν and R and R−1 are uniformly bounded.
Moreover, R is periodic and transforms Ã(ν) into the follow-
ing time-invariant form:

Â := R′(ν)R−1(ν) +R(ν)Ã(ν)R−1(ν)

=


0 0 | 0 0 0 0
0 0 | 0 0 0 0

0 0 | 0 0 0 (1−e2)−3/2

0 0 | 0 0 0 0
0 0 | 0 0 0 0
0 0 | 0 0 0 0

 . (35)

From the peculiar structure (quasi Jordan form) of the
dynamic matrix Â, the following result, that was already
noticed for a similar coordinate changes in [8], can be proven.

Lemma 2: A solution of the original dynamics (1) is peri-
odic during free motion if and only if it is transformed into a
constant state ξ̂ with the last component being zero.

Proof: If the last component of ξ̂ is zero, then matrix Â in
(35) clearly implies that ξ̂ remains constant during flow (free
motion). As a consequence, the free motion in the original
coordinates X of (1) is a linear combination of the first five
columns of the periodic transformation R(ν) followed by the
periodic time-scale change ν → t.

Conversely, assume that the last component of ξ̂ is nonzero.
Then during free motion that component remains constant (the
last row of Â is zero) and the third component of ξ̂ ramps
up to infinity due to the off diagonal term (1 − e2)−3/2 6= 0
appearing in Â. As a consequence |ξ̂| diverges and so does also
X̃ because R(ν) is bounded and has bounded inverse (from
Lemma 1). Also X must then diverge as t→∞ because the
time-scale change is periodic.

Based on Lemma 2, it is convenient to represent the system
in terms of the error with respect to a desired motion ξ̂ ref :

ξ̂ ref := [ξ̂ ref
1 ξ̂ ref

2 ξ̂ ref
3 ξ̂ ref

4 ξ̂ ref
5 0]T , (36)

so that one may analyze the dynamics of the mismatch vector:

ε̂ := ξ̂ − ξ̂ ref (37)

between the coordinate ξ̂ in (34) and a constant reference value
in (36), representing a desired target periodic motion.

III. IMPULSIVE CONTROL OF THE RELATIVE DYNAMICS

The coordinate transformation presented in Lemma 1 of the
previous section is a useful means for suitably designing an
impulsive control law assigning the firing times νk in (7) and

also the corresponding selections of u at time νk to stabilize
the periodic motions characterized in Lemma 2.

Problem 1: Given plant (1) and its equivalent form (7),
design a state feedback impulsive control law selecting the
firing instants νk, k ∈ N and the corresponding inputs u(νk)
such that for any selection of reference (36), a suitable set
wherein ξ̂ = ξ̂ ref is globally asymptotically stable for the
closed-loop dynamics.

To solve Problem 1, in this section we will propose hybrid
control laws relying on the presence of a timer τ in charge of
the sequencing of the impulsive control actions. Then, using
the hybrid systems notation in [12] and state ε̂ := ξ̂ − ξ̂ ref ,
we may write the following general dynamic description of
the closed loop, enjoying the desirable property that timers
ν and τ evolve in the compact set [0, 2π] and that the flow
equation for ε̂ is ε̂ ′ = Â ε̂, because Â ξ̂ ref = 0: ε̂ ′ = Â ε̂,

ν′ = 1,
τ ′ = −1,

(ε̂, ν, τ) ∈ C, (39a)

 ε̂+ = ε̂,
ν+ = 0,
τ+ = τ,

(ε̂, ν, τ) ∈ Dν , (39b)

 ε̂+ = ε̂+ B̂(ν)γu (ε̂, ν) ,
ν+ = ν,
τ+ = γτ (ε̂, ν) ,

(ε̂, ν, τ) ∈ Du. (39c)

In equation (39), the impulsive control law has been selected
as a feedback controller:

u = γu(ε̂, ν), τ+ = γτ (ε̂, ν). (40)

Moreover, according to the coordinate change given in (34),
and to the results of Lemma 1, matrix B̂(ν) = R(ν)B̃(ν), is
a periodic function of ν arising from combining the similarity
transformation in (34) with the input matrix in (7), and
corresponds to the matrix reported in (38) at the top of page 6.

Equation (39) is a compact representation of the impulsive
feedback control action as a set of dynamical constraints
that solutions should satisfy for their correct evolution. In
particular, using an overall state η = (ε̂, ν, τ), this dynamics
falls into the general class of systems studied in [12]:

η ∈ C, η̇ = F (η),
η ∈ D, η+ ∈ G(η).

(41)

For our model, the following selections are made:

Dν := R6 × {2π} × [0, 2π], (42a)
Du := R6 × [0, 2π]× {0}, (42b)
D := Dν ∪ Du, (42c)
C := (R6 × [0, 2π]× [0, 2π]) \ D, (42d)

which, due to (42c), is a choice that prioritizes jumps. In
particular, based on (39), functions F and G in (41) are
selected as:

F (η) =

Â ξ̂
1
−1

 ; G(η) =
⋃

i∈{u,ν} s.t. η∈Di
Gi(η); (43a)



B̂(ν) =
1

k2ρ2(1− e2)



0 −(1− e2)ρsν 0

0 (1− e2)ρcν 0

−e(1 + ρ)ρsν −
3σρ3

(1− e2)3/2
0

3σeρ2sν
(1− e2)3/2

− ρ3 + ρ2 + 2ρ

(1− e2)(1 + ρ)ρsν 0 (1− e2)ρ2cν

(1 + ρ)ρcν + eρ 0 −ρ2sν

−3ρ3 0 3eρ2sν


(38)

Gν(η) =

ε̂0
τ

 ; Gu(η) =

ε̂+ B̂(ν)γu (ε̂, ν)
ν

γτ (ε̂, ν)

 . (43b)

The proposed hybrid model (39), (42) (or its equivalent
compact form in (41), (42), (43)), corresponds to the following
intuitive behavior of our solutions.
• Timer ν is used as an additional state to keep track of

the periodic time-varying nature of the dynamics. Using
the jump set in (42a) ensures that the timer is reset to
zero each time it reaches the value 2π, thereby being
confined 1 to the compact set [0, 2π].

• Thrusters are fired according to (39c) whenever η ∈ Du,
namely when the timer τ crosses zero (see (42b)). Then,
at each time during the evolution of the dynamics, state
τ captures the information about how long we need to
wait until the next impulsive control action.

• Each time an impulsive control action is triggered, the
associated control law corresponds to the value of the
two functions

γu : R6 × [0, 2π]→ R3,
γτ : R6 × [0, 2π]→ [0, 2π],

(44)

the first one assigning the current selection of the im-
pulsive input û (based on (40)), and the second one
preassigning the time to wait until the next impulsive
input should be applied. Note that the range of γτ is
bounded so that solutions will only take values of τ in
the bounded set [0, 2π].

Within the proposed hybrid context, the stability goal for-
mulated in Problem 1 is well characterized in terms of the
stability properties of the bounded attractor

A := {0} × [0, 2π]× [0, 2π], (45)

which may be analyzed using the tools of [12, Chapter 7],
because selections (42), (43) satisfy the hybrid basic conditions
of [12, Assumption 6.5].

IV. CONTROL LAWS

In this section, we propose three different selections for
the impulsive control law (40) solving Problem 1. They are
comparatively illustrated on the example studies of Section V.

1To avoid situations where arbitrarily small noise may cause solutions to
stop because they exit C∪D, it may be useful to replace {2π} by [2π, 2π+δ]
for any positive δ in (42a).

A. Periodic norm-minimizing control law

While formulation (39), (40) is general enough to allow for
aperiodic optimized sampling, the simplest possible selection
of function γτ in (40) is given by periodic thrusters firing,
corresponding to a certain period ν̄ ∈ [0, 2π] fixed a priori.
For instance,

γτ (ε̂, ν) = ν̄, (46)

encodes the fact that each pair of consecutive jumps has a
fixed angular distance of ν̄.

Regarding the selection of the stabilizer γu, to be evaluated
periodically, we make here a conservative selection leading to
the useful feature that after each impulse, the state ε̂6 = ξ̂6 is
driven to zero. Then, in light of Lemma 2, in the absence
of noise the spacecraft evolves through periodic (therefore
bounded) motions. In particular, the following optimal selec-
tion is chosen:

u? = arg min
u∈R3

|ε̂+|2, subject to:

ε̂ + = ε̂+ B̂(ν)u, ε̂ +
6 = 0. (47)

Due to the specific structure of matrix function B̂(ν) in (38)
at the top of page 6, we may provide an explicit form of the
minimizer in (47) after defining the following quantities:

b̂6(ν) :=
1

k2

− 3ρ
1−e2
0

3e sin(ν)
1−e2

 , B̂⊥6 (ν) :=

e sin(ν) 0
0 1

ρ(ν) 0

 , (48a)

which clearly satisfy b̂6(ν)T B̂⊥6 (ν) = 0 because matrix
B̂⊥6 (ν) generates the orthogonal complement of b̂6(ν).

With these definitions in place, we may write the explicit
expression of the proposed control law as:

γu(ε̂, ν) = u6 − B̂⊥6 (ν)(B̂(ν)B̂⊥6 (ν))−L(ε̂+ B̂(ν) u6)

with u6 := − b̂6(ν)

|b̂6(ν)|2
ε̂6, (48b)

where M−L = (MTM)−1MT denotes the left pseudo-inverse
of matrix M . The effectiveness of selection (48b) is stated in
the next proposition.

Proposition 1: For any value of ν, the inverses in function
(48) always exist and selection (48) coincides with the mini-
mizer in (47), namely γu(ε̂, ν) = u?.

Proof: The existence of the inverses easily follows from



the fact that

det
(

(B̂(ν)B̂⊥6 (ν))T (B̂(ν)B̂⊥6 (ν))
)

(49)

= (1− e)2 + 2e(1 + cos(ν)) > 0 (50)

|b̂6(ν)|2 =
9ρ4(ρ2 + e2 sin(ν)2)

(1− e2)2
> 0, (51)

which clearly indicates that the left inverse in the first line of
(48b) and u6 in the second line of (48b) can be evaluated.
To show that (48) coincides with the minimizer in (47), first
notice that constraint ε̂ +

6 = 0 is automatically ensured by
b̂6(ν)T B̂⊥6 (ν) = 0, which implies ε̂ +

6 = b̂T6 (ν)u6 = 0.
Therefore, noting that B̂⊥6 (ν) is the orthogonal complement
of b̂6(ν), all possible inputs guaranteeing that ε̂ +

6 = 0 are
parametrized by v̂? in:

u = u6 + B̂⊥6 (ν) v?. (52)

Therefore, the solution to (47) corresponds to (52) with v̂?

being the solution to the following unconstrained least squares
problem:

v? = arg min
v̂
|ε̂+ B̂(ν)u6 + B̂(ν)B̂⊥6 (ν) v|2. (53)

Then, as is well known (see, e.g., [3, Ex.1 pg 92]), the
minimizer v? is given by:

v? = −(B̂(ν)B̂⊥6 (ν))−L(ε̂+ B̂(ν) u6), (54)

which, substituted in (52), gives (48b), as to be proven.
Remark 1: Based on Proposition 1, a desirable property

of control law (46), (48) is that, in light of Lemma 2, it
instantaneously minimizes the norm of ε̂ constrained to the
fact that the subsequent motion be periodic. Since the norm
of b̂6 in (48a) is never zero, then clearly, equation (48b) is
always well-posed and ensures that ε̂ +

6 = 0. In addition to
this, instantaneously minimizing the norm of ε̂ also ensures
the best possible decrease at the specific fixed instant of time
enforced by the periodic selection. With this logic in place, we
can guarantee stability of the closed-loop but not convergence.
Indeed, we can guarantee non-increase of |ε̂| across jumps but
there is no guarantee of obtaining a strict decrease. As a result,
we anticipate a slow convergence (if any) in our simulation
section when using this controller. Despite this fact, the choice
(46), (48) is still an interesting one because it ensures that
approaching between the two satellites is performed through
periodic (bounded) motions, leading to some degree of fault
tolerance (in case of malfunctioning, the satellite is on a stable
relative orbit). ◦

The following theorem certifies that the proposed controller
solves part of Problem 1.

Theorem 1: Given control law (46), (48), the attractor A in
(45) is uniformly globally stable for the arising closed-loop
dynamics with plant (39).

Proof: First notice that |(ε̂, ν, τ)|A = |ε̂|. Recall that a
generic solution (µ, j) 7→ ε̂(µ, j) to the hybrid dynamics has
a domain dom ε̂ parametrized by a flowing direction and by
a jumping direction j (see [12, Chap. 2] for details). Here
the flowing direction is represented by the amount µ of true
anomaly elapsed since the initial condition, as opposed to
continuous time t for a classical hybrid systems representation.

We first realize that before the first impulse, all solutions
evolve in free motion along the LTI flow dynamics in (39),
leading to:

|ε̂(µ, 0)| ≤ |e2πÂ||ε̂(0, 0)|. (55)

Notice now that Proposition 1 ensures that γu(ε̂, ν) = u?.
In particular, after the first jump the state ε̂6 remains at zero
for all (hybrid) times. Then during all subsequent flows, the
state ε̂ remains constant due to the structure of Â. Moreover,
across jumps, the control law is the minimizer of (47), clearly
satisfying |ε̂ +| ≤ |ε̂|. As a consequence, we get:

|ε̂(µ, j)| ≤ | exp(2πÂ)||ε̂(0, 0)|, (56)

for all (µ, j) ∈ dom ε̂, which establishes uniform global
stability.

B. Two-step finite-time control law

A second selection that we propose for the controller in (40)
is once again periodic, thereby corresponding to selection (46)
for γτ . However, it corresponds to a wiser selection of γu (in
terms of envisioned fuel consumption), performed in similar
ways to what is proposed in [8], by focusing on the overall
effect on the state ε̂ of two impulses performed at a distance
of ν̄ from one another. In particular, using straightforward
computations, if two consecutive impulses u1 and u2 happen at
times µ1 and µ2 = µ1 + ν̄, we obtain, along the corresponding
solution:

Φ̂(−ν̄)ε̂(µ2, j2 + 1) = (57)

ε̂(µ1, j1) +
[
B̂(ν1) Φ̂(−ν̄)B̂(ν1 + ν̄)

]
︸ ︷︷ ︸

M(ν1,ν̄):=

[
u1

u2

]
,

where (µ1, j1) and (µ2, j2) denote the hybrid times be-
fore each one of the impulses, Φ̂(µ) = eÂµ = 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 µ(1−e2)−3/2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 is the state transition matrix of the

(LTI) flow dynamics in (39), and ν1 = ν(µ1, j1).
Based on relation (57), and to the end of selecting u1, u2

in such a way that ε̂(µ2, j2 + 1) be zero, it is important to
study the invertibility properties of matrix M(ν, ν̄), which is
done in the following conjecture. The result of the conjecture
restricts the set of possible selections of ν̄ in (46).

Conjecture 1: For any value of ν ∈ [0, 2π], matrix M(ν, ν̄)
in (57) is invertible if and only if ν̄ 6= kπ, k ∈ Z.

In support of the conjecture, we report in Figure 2 the
value of the determinant of M(ν, ν̄) for different values of
ν (represented by the color code) and ν̄ (represented by the
horizontal axis). The plot corresponds to the value e = 0.4 and
similar plots are experienced for any value of e < 1. Proving
Conjecture 1 is challenging from a mathematical viewpoint,
but is of little interest in light of the improved results reported
in Section IV-C.

If Conjecture 1 holds, for any selection ν̄ ∈ (0, 2π) \ {π},
Equation (57) can be inverted to compute the unique pair of
inputs u?1, u?2 ensuring ε̂(µ2, j2 + 1) = 0 (namely that the
state ε̂ is driven to zero after two impulses separated by ν̄



Fig. 2: Determinant of matrix M(ν, ν̄) with e = 0.4.

times). Following a receding horizon type of paradigm, we
may apply the first impulse and re-evaluate the control law
at the next impulse time. The above control design paradigm
leads to the following selection:

γu(ε̂, ν) := − [ I 0 ]M(ν, ν̄)−1ε̂, γτ (ε̂, ν) = ν̄. (58)

The overall control strategy (46), (58) guarantees convergence
to zero of the error ε̂ after two impulses, as established next.

Lemma 3: If M(ν, ν̄) is invertible for all ν ∈ [0, 2π], then
selection (46), (58) guarantees that all solutions to (39) have
the ε̂ component equal to zero after at most two jumps.

Proof: Consider two subsequent impulses associated to
the control selections uj = [ I 0 ]

[ uj,1
uj,2

]
= uj,1 and uj+1 =

[ I 0 ]
[ uj+1,1
uj+1,2

]
= uj+1,1. Then, due to the property that

[ uj,1
uj,2

]
brings the state to zero after two impulses, it follows that
selection

[ uj+1,1
uj+1,2

]
= [ uj,20 ] is a feasible one for the second

impulse. As a consequence of uniqueness, arising from relation
(57), this is the only possible solution and we must have ε̂ + =
0 after the second impulse.

Based on Lemma 3 we can now prove that our second
control law solves Problem 1 as established in the next
theorem.

Theorem 2: Given ν̄ ∈ (0, 2π) \ {π}, assume that matrix
M(ν, ν̄) is invertible for any value of ν ∈ [0, 2π].

Then, control law (46), (58) ensures that attractor A in (45)
is uniformly globally asymptotically stable along the arising
closed-loop dynamics with (39).

Proof: The proof is carried out by exploiting the follow-
ing global version of [12, Prop. 7.5] (its proof is straightfor-
ward, taking µ → ∞ in the semiglobal version of [12, Prop.
7.5], and is actually therein implicitly used for establishing the
result in [12, Ex. 7.6]).

Proposition 2: Given a nominally well-posed hybrid system
H, suppose that the compact set A in (45) is strongly forward
invariant and globally uniformly attractive for H. Then, it is
uniformly globally asymptotically stable for H.

To apply Proposition 2 to our case, we first notice that the
data of hybrid system (39), (46), (58) satisfies the hybrid basic
conditions in [12, As. 6.5], therefore, from [12, Thm 6.8],
it is nominally well-posed. Concerning forward invariance of
A (namely, all solutions starting in A remain in A for all
times), it follows from the fact that the flow dynamics of ε̂ is
linear (so the origin is an equilibrium) and the jumps guarantee
non-increase of ε̂ (see the proof of Theorem 1). Finally,
global uniform convergence is a straightforward consequence
of the stronger property of uniform finite-time convergence

established in Lemma 3.
Remark 2: A desirable feature of the established global

asymptotic stability of set A can be obtained by the robustness
characterization given in [12, Ch. 7], which holds under the
mild assumption that the hybrid dynamics satisfy the hybrid
basic conditions (these are easily checked for dynamics (39),
(46), (58)) and that the attractor is compact (this is easy to
verify as well for set A in (45)). Robustness of asymptotic
stability (established in [12, Thm 7.21]) allows to conclude
that there exists a sufficiently small, but nonzero perturbation
of the dynamics, for which the established nominal asymp-
totic stability is not destroyed. As a consequence, we expect
our control law to perform well also under the presence
of uncertainties, such as unmodeled dynamics, or external
perturbations, as long as they are sufficiently small, and they
are zero when the state belongs to the attractor (see, [12, Ch 7]
for details). For more general settings, another useful feature
arising from these robustness properties is that for stronger
perturbations we have a semiglobal practical robust stability
result, established in [12, Thm 7.20]. This result ensures that
perturbations not vanishing in A lead to a gradual deterioration
of the convergence properties, which is what one should expect
when persistent disturbances, such as atmospheric drag or
high solar activities or also measurement noise coming from
the GNC devices affect the closed-loop dynamics. All these
desirable properties are confirmed by our simulation results of
Section V. ◦

C. Three-step finite-time control law

The two controllers presented in the previous sections have
the following features:
• controller A is desirable because it forces the chaser to

evolve along periodic (therefore bounded) motions, but
does not lead to a convergence guarantee;

• controller B is desirable because it guarantees finite time
convergence, but these maneuvers are fragile since the
chaser evolves on divergent trajectory until it reaches its
goal. This can be unsafe in case of actuators failure.

In this section we combine the desirable features of the two
above laws in a single enhanced control law following again
a receding horizon paradigm, arising from the observation
that we can separate our control design in two completely
decoupled problems corresponding to the following partitions
of vectors u and ε̂:

u =

 0
uy
0

+

1 0
0 0
0 1

uxz, uy ∈ R, uxz ∈ R2, (59a)

ε̂ =

 ε̂yε̂xz
ε̂6

 , ε̂y ∈ R2, ε̂xz ∈ R3, ε̂6 ∈ R. (59b)

With this partition in mind, we may write the hybrid dynamics
of state component ε̂ in (39) as follows:

ε̂y
′ = 0

ε̂xz
′ = (1− e)3/2

[
1
0
0

]
ε̂6

ε̂6
′ = 0

(ε̂, ν, τ) ∈ C, (60a)



 ε̂+
y = ε̂y + B̂y(ν)uy[
ε̂+
xz

ε̂+
6

]
=

[
ε̂xz
ε̂6

]
+ B̂xz(ν)uxz

(ε̂, ν, τ) ∈ Du, (60b)

where

B̂y(ν) :=
1

k2ρ

[
−sν
cν

]
, B̂xz(ν) :=

1

k2ρ(1− e2)
−e(1 + ρ)sν − 3σρ2

(1−e2)3/2
3σeρsν

(1−e2)3/2
− ρ2 + ρ+ 2

(1− e2)(1 + ρ)sν (1− e2)ρcν
(1 + ρ)cν + e −ρsν
−3ρ2 3eρsν

 .

(61)

Once the dynamics has been separated in two components, we
may perform similar computations to (57) and obtain:

ε̂y(µ2, j2 + 1) = (62)

ε̂y(µ1, j1) +
[
B̂y(ν1) B̂y(ν1 + ν̄)

]︸ ︷︷ ︸
My(ν1,ν̄):=

[
uy(µ1, j1)
uy(µ2, j2)

]
,

which is simpler than (57) because ε̂y remains constant
along flowing solutions. The following result then parallels
Conjecture 1 and Lemma 3.

Lemma 4: Given any value of ν̄ 6= hπ, h ∈ Z, matrix
My(ν, ν̄) is nonsingular for all ν ∈ [0, 2π]. Moreover, for
any such value of ν̄, selection:

uy := − [ 1 0 ]My(ν, ν̄)−1ε̂y, γτ (ε̂y, ν) = ν̄, (63)

guarantees that all solutions to (39), (59), (60) have the ε̂y
component equal to zero after at most two jumps.

Proof: Let us first compute:

det(My(ν, ν̄)) =
1

k2

(
sin(ν) cos(ν + ν̄)

ρ(ν)ρ(ν + ν̄)
+

sin(ν + ν̄) cos(ν)

ρ(ν)ρ(ν + ν̄)

)
=

sin(ν̄)

k2ρ(ν)ρ(ν + ν̄)
,

which proves invertibility of My(ν, ν̄) for all ν̄ 6= hπ, and all
ν. The proof of finite-time convergence follows similar steps
to the proof of Lemma 3, based on uniqueness of the solution
of ε̂y(µ2, j2 + 1) = 0 in (62) and based on the fact that for
any solution ε̂y with two consecutive impulses at (µ1, j1) and
(µ2, j2), we have ε̂y(µ2, j2) = ε̂y(µ1, j1+1), due to the trivial
flow dynamics in (60a).

Consider now state
[
ε̂xz
ε̂6

]
and input uxz . To obtain periodic

motion, from the structure of (60a) and because of Lemma 2,
we want to select uxz in such a way that any impulse brings
the last component ε̂6 of ε̂ to zero. To this end, paralleling
(48a), and with reference to B̂xz in (61), define:

b̂4(ν) :=
3

k2(1− e2)

[
−ρ
esν

]
, B̂⊥4 (ν) :=

[esν
ρ
1

]
, (64a)

and notice that we may obtain ε̂+
6 = 0 with selection:

uxz := − b̂4(ν)

|b̂4(ν)|2
ε̂6 + B̂⊥4 (ν)vxz, (64b)

which mimics selection (48b), (52). The difference, as com-
pared to before, is that we will now select vxz in (64) following
the receding horizon paradigm, which is here simplified be-
cause after any impulse, we obtain ε̂+

6 = 0 and the solution ε̂xz

remains constant along flows (see (60a)). Let us then introduce
the reduced input matrix:

B̂rxz(ν) := [ I3 0 ] B̂xz(ν)B̂⊥4 (ν) (65)

=
1

k2ρ2

[
2 + ecν 2e+ cν(1 + e2) −sν

]>
, (66)

and notice that we need at least three impulses to drive ε̂xz
to zero. Let us use ε̂+

6 = 0 and the arising zero right-hand
side of (60a) to obtain that three consecutive impulses with
selection (64) lead to (compare to (62)):

ε̂xz(µ3, j3 + 1) = ε̂xz(µ1, j1)+ (67)

[
B̂rxz(ν1) B̂rxz(ν1 + ν̄1) B̂rxz(ν1 + ν̄1 + ν̄2)

]︸ ︷︷ ︸
Mxz(ν1,ν̄1,ν̄2):=

vxz(µ1, j1)
vxz(µ2, j2)
vxz(µ3, j3)

 ,
where ν̄1 = ν(µ2, j2) − ν(µ1, j1) and ν̄2 = ν(µ3, j3) −
ν(µ2, j2) are the free motions durations between each pair
of consecutive impulses. The following result then parallels
Lemma 4.

Lemma 5: Given any values of ν̄1, ν̄2 such that

ν̄1 6= 2hπ, ν̄2 6= 2hπ, ν̄1 + ν̄2 6= 2hπ, ∀h ∈ Z, (68)

matrix Mxz(ν, ν̄1, ν̄2) is nonsingular for all ν ∈ [0, 2π].
Moreover, selecting any value of ν̄1 = ν̄2 = ν̄, selection:

vxz := − [ 1 0 0 ]Mxz(ν, ν̄, ν̄)−1ε̂xz, γτ (ε̂xz, ν) = ν̄, (69)

guarantees that all solutions to (39), (59), (60), (64) have the
ε̂xz , ε̂6 components equal to zero after at most three jumps.

Proof: First consider the following expression that
emerges from direct computation:

dM : = det(Mxz(ν, ν̄1, ν̄2))

= 2
sin(ν1) + sin(ν2)− sin(ν1 + ν2)

ρ(ν)2ρ(ν + ν1)2ρ(ν + ν1 + ν2)2
.

(70)

since ρ never vanishes we may study the invertibility of Mxz

by only focusing on the numerator, which satisfies:

dnM = sin(ν1) + sin(ν2)− sin(ν1 + ν2)

= sin(ν1)(1− cos(ν2)) + sin(ν2)(1− cos(ν1))

= 4 sin

(
ν1

2

)
sin

(
ν2

2

)
sin

(
ν1

2
+
ν2

2

) (71)

and which clearly does not vanish if and only if (68) holds,
regardless the value of ν.

The fact that with controller (69) all solutions have ε̂xz ,
ε̂6 converge to zero in finite time follows similar steps to the
proof of Lemma 4, from uniqueness of vxz in (69).

The following result can be established by similar deriva-
tions to those in the proof of Theorem 2, relying on the
uniform finite-time convergence established in Lemmas 4
and 5. Its proof is omitted due to this similarity to that of
Theorem 2.

Theorem 3: Control law (59), (63), (64b), (69) ensures that
attractor A in (45) is uniformly globally asymptotically stable
along the closed-loop dynamics with (39).

Figure 3 shows the level sets of det(Mxz(ν, ν̄1, ν̄2)), which
clearly indicates that the determinant is maximized with ν̄1 =
ν̄2 = 120◦. Due to this fact and to reduce consumption, we
select this value for ν̄1 = ν̄2 in our simulation section.



Fig. 3: Level sets for det(Mxz(ν, ν̄1, ν̄2)).

Remark 3: The three control laws proposed in this section
require estimates of relative positions and velocities of the
follower. During proximity operations, far range and close
range rendezvous operations, relative measurements of po-
sitions and velocities between the leader and the follower
may be provided either by passive or active sensors data
processed by the navigation system of the follower (e.g.
vision-based relative pose estimation, filtered Carrier-phase
Differential GPS) [10]. Note that the impact of the sensors
noise and the robustness of the hybrid schemes are analyzed
numerically in the simulation section and are expected to be
non-damageful for the asymptotically stable closed loops in
light of the robustness results highlighted in Remark 2. ◦

V. SIMULATIONS

In this section, we present the simulation results obtained
with the control laws designed in Section IV and system
(39) (equivalently (41)–(43)) using a nonlinear simulator and
comparing the results with a linearized model in Matlab-
Simulink for the PRISMA mission [5].

A. Simulated context and performance metrics

The simulator is composed by two main blocks: the con-
troller and the dynamics. The controller recovers the current
state in LVLH coordinates and transforms it into state ξ̂ to
compute the mismatch (37). Afterwards, the control input u
is computed, to be applied to the dynamics block.

For a given orbital rendezvous scenario, the output of the
nonlinear simulator is the history of the relative position and
velocity between the two spacecrafts, obtained by simulating
their inertial trajectories in the Earth-centered frame via the
integration of the Gauss equations. The simulator accounts
for the disturbances provoked by the Earths oblatness (so-
called J2-effect) and the atmospheric drag. Moreover, uncer-
tainties that originate from GNC devices (measurement noise
and chemical thrusters limitations) are also simulated. For
instance, the measured relative state is affected by a white
noise characterised by the following standard deviation on the
relative position and velocity: dp = 10−2 m, dv = 10−5 m/s

(see Remark 3). Then, the applied control u is obtained from
the computed control u∗ through the thrusters saturation and
dead-zone filter along each axis independently:

ui =


u∗i if u∗i ∈ [−∆vmax −∆vmin] ∪ [∆vmin ∆vmax],
0 if u∗i ∈ [−∆vmin ∆vmin],
u∗i
|u∗i |

∆vmax if u∗i ∈ (−∞ −∆vmax] ∪ [∆vmax ∞),

(72)
with ∆vmax = 0.5 m/s and ∆vmin = 5 · 10−4 m/s. This
simulation set-up is a simple way to check the robustness
properties of hybrid schemes mentioned in Remark 2. Aside, a
linearized dynamics with no environment disturbances nor de-
vices uncertainties is also propagated along with the different
controllers for the sake of comparison.

Within the PRISMA mission, the leader vehicle evolves on a
given orbit with a semi-major axis of 7011 km, an eccentricity
of e = 0.004 and an inclination of i = 98 deg. The performed
simulations are run from the initial true anomaly ν0 = 0 up to
a final true anomaly νf = ν0 +20π, namely ten orbital periods
later. The chaser satellite begins the rendezvous maneuver at
initial state X0 at ν0 = 0. The simulations aim at stabilizing
the chaser in a periodic trajectory specified by a suitable
selection of ξ̂ ref in (36):

ξ̂ ref =
[
7.68 17.68 87.78 33.04 −15.77 0

]T
(73)

where we emphasize that the last element is zero (a necessary
and sufficient condition for periodic motion, as established
in Lemma 2). The reference periodic trajectory ξ̂ ref is free
to evolve inside a tolerance box B, centered at point XB =
[100 0 0]T m (expressed in the target’s position frame used in
(1)) and has positive and negative widths Xtol = [50 25 25]T

m in the three LVLH directions.The different control thrusts
are separated by an angular distance ν̄ = 120◦ from one to
another along the whole duration of the rendezvous. This value
of ν̄ has been selected in order to maximize the norm of the
determinant of matrix M either from (57) or (67) depending
on the selected control law (see Figures 2 and 3). Doing this,
the consumption is expected to be reduced as the control input
is computed through the inversion of M .

For each one of the three control laws in Section IV, four
different initial conditions X0i, i = 1, · · · , 4 for state X(t)
in (1) have been used, which are chosen at four different
distances from the target satellite located at the origin of the
LVLH frame:

|X01| ≈ 500, m |X02| ≈ 750, m
|X03| ≈ 2000, m |X04| ≈ 5200 m.

The initial conditions are selected as:

X01 =
[
400 300 −40 0 0 0

]T
,

X02 =
[
600 400 200 0 0 0

]T
,

X03 =
[
−1500 1300 150 0 0 0

]T
,

X04 =
[
5000 1300 500 0 0 0

]T
,

(74)

where the first three components are meters and the last three
are meters per second. Let us denote by ξ̂0i the image of
the initial states X0i through R(ν) defined in (34). The initial



relative velocity has been selected to be zero to account for the
fact that the starting point of our trajectory may be a holding
point arising from a previous station keeping along the space
mission.

Two performance indexes are considered: the fuel consump-
tion J , and the convergence time Tc, both described next.

The fuel consumption is characterized in [19] when firing
is achieved by 6 identical thrusters rigidly mounted to the
satellite, and corresponds to the cost function:

J :=
∑
νk∈V

‖u(νk)‖1, (75)

where u = ∆ν has been introduced in (5), (7), V is the
set of firing instants, and | · |1 denotes the 1-norm, so that
‖∆v(νk)‖1 = |∆vx(νk)| + |∆vy(νk)| + |∆vz(νk)|. The con-
vergence is evaluated by means of the mismatch ratio η given
by

η(ν) =
‖ε̂(ν)‖2
‖ε̂(ν0)‖2

=
‖ξ̂(ν)− ξ̂ ref‖2
‖ξ̂(ν0)− ξ̂ ref‖2

(76)

The convergence time Tc is defined as the smallest time after
which the solution remains in the δ vicinity of the reference
point, namely:

η(ν) ≤ δ, ∀ ν ≥ Tc (77)

where δ is set to 5%.

B. Comparative simulation results

Different simulations have been performed for each one of
the three control laws in Section IV, and for each one of
the initial conditions in (74). The trajectories concerning the
initial condition X01 for the three controllers are represented in
Figures 4, 5 and 6. The applied impulses and the convergence
profile are represented in Figures 7, 8 and 9. The trajectories
from the other initial conditions have not been included for
sake of brevity.

In the following study, we first address the results of the
linear simulations in order to analyze the nominal behavior
of the different controllers. Then, we focus on the nonlinear
simulation to assess their robustness with respect to modeling
errors, navigation uncertainties and input saturation. Finally,
for the sake of comparison, we report on the simulation results
obtained with the MPC controller proposed in [11].

Linear simulations. Figures 7, 8 and 9 reveal how the
different control strategies steer the chaser to the tolerance
box along different paths in a linear environment. Con-
troller IV-A makes the chaser inch to the tolerance box while
controllers IV-B and IV-C have more “straight” paths. These
facts are corroborated by the impulsive control plan on the
upper graphs of Figures 7, 8 and 9. Controllers IV-B and IV-C
concentrate most of their consumption on the two first controls
while the 7 first controls have a relative importance for
controller IV-A.

The differences among the control strategies can also be
observed on the evolution of η the mismatch ratio (lower
graphs of Figures 7, 8 and 9). Thanks to the safe orbit
transfer philosophy (maintaining ξ̂6 to zero which ensures, by
Lemma 2, intermediate periodic motions), the controllers IV-A

and IV-C make the tracking trajectory jump from a periodic
orbit to another so that ξ̂ and ε̂ remain constant between
control impulses. On the contrary, controller IV-B allows to
follow a path possibly with a high divergence coefficient ξ̂6, so
that the error norm can possibly evolve fast (either diverging
or converging) between successive firing times. Indeed, in
the linear simulation, controller IV-B provides faster conver-
gence time, compared to controllers IV-A and IV-C, with an
equivalent consumption. In fact, in an ideal context, only two
impulses are needed to bring the chaser to the steady state,
while IV-A and IV-C need at least four impulsive controls.
On the other hand, if controller IV-A is the slowest in the
linear simulator, it is generally the less demanding in terms of
consumption among the hybrid controllers, as expected.

Nonlinear simulations. Addressing the nonlinear simula-
tions, two cases can be distinguished depending on how close
to the target relative orbit the chaser starts. For the close
range control maneuvers (starting from initial conditions X01)
illustrated in Figures from 4 to 9, the difference between the
linear and nonlinear simulations are slight: the consumption
and the convergence time are equivalent, as one can notice
from the first rows of Tables I and II.It can also be observed on
figures 7, 8 and 12 that no controls are saturated: the feedback
control is properly executed in close range in the nonlinear
simulation. However, the trajectories have small differences
that can be imputed to the dynamics linearization process and
navigation uncertainties. Analyzing the simulations starting
from the initial states X02, the same kind of conclusions can
be drawn. Note that for controllers IV-A and IV-C, the control
inputs are slightly saturated but not enough to degrade the
performances in terms of convergence time.

On the contrary the simulations from the initial states
X03 and X04 expose different behaviors. Due to the larger
distance from the box, every controllers demand for a first
large impulsive control action. However, it can be observed
on Figures 10, 11 and 12 that all these first impulses are
saturated in the nonlinear simulator. Each controller reacts in
a different manner to such a drawback. Controller IV-B fails
to stabilize the chaser in the presence of saturations for initial
states X03 and X04. In fact, the size of input u = ∆v (see
(5) and (7)) demanded by the controller is largely beyond the
thrusters capabilities, while such an amount is supposed to
steer the chaser to the box after two impulses. Instead, since
the impulsive controls are truncated, the chaser is brought
on a random orbit with no particular interest and obviously
divergent (see Figure 11). On the contrary, for controllers IV-A
and IV-C, a part of the control is dedicated to guiding the
chaser to the set of periodic orbits. Thus, even if this control
is truncated, the chaser is steered to states with gradually
decreasing divergence parameter ξ̂6. This fact can be observed
on Figures 10 and 12, where the slope of the error norm
decreases after each impulsive control and tends to zero. Both
controllers expose two phases: first stabilizing ξ̂6 and then
steering states ξ1 to ξ5 to ξref . The consequence is that the
convergence time is degraded for both controllers. Naturally,
the presence of saturation limits the consumption for both
controllers, as compared to the linear simulations. Indeed
controllers IV-A and IV-C show some robustness abilities with



respect to saturation at the price of a slower convergence time.
Comparison with MPC strategy. Parallel simulations

have been performed with the MPC-based method recently
presented in [11], which directly addresses the minimization
of J and accounts for saturation. This controller has been
benchmarked using the nonlinear simulator. For the sake of
comparison, we report on the controlled trajectory for the
initial condition X01, shown in Figure 13, and the applied
impulses as well as the profile of η, shown in Figures 14
and 15 for the initial conditions X01 and X04. Note that in
the MPC framework η refers to the relative distance from the
set of the relative periodic orbits included in the tolerance box
(see [9] for a rigorous description of this set) including the
relative orbit ξref .

For the close range initial conditions (X01 and X02), the
hybrid controllers ensure faster convergence of the chaser as
compared to the MPC controller. This can be explained by two
facts. First, it has been mentioned earlier that, for those initial
conditions, the behavior of the hybrid controllers is equivalent
between the nonlinear and the linear simulator, probably
due to the fact that saturation does not play a dominant
role. Second, the convergence and stability properties of the
hybrid controllers probably justifies the faster convergence as
compared to the MPC controller from [11], which lacks a
guarantee of asymptotic stability.

For the initial conditions X03 and X04, the performance of
the hybrid controllers are degraded probably because of the
saturations. Conversely the MPC controller, which explicitly
takes into account the presence of saturations, exhibits a better
behavior for far range initial conditions. Finally, using the
MPC controller leads to smaller consumption at the price
of a significantly higher numerical complexity (a numerical
optimization must be solved at each firing instant).

VI. CONCLUSIONS

In this article, a new model, based on Floquet-Lyapunov
theory, is developed in order to obtain a linear time-invariant
free motion representation of the rendezvous problem. This
problem is then recast as a stabilization problem for a periodic
trajectory in a hybrid dynamical system framework. Two new
control laws have been proposed and compared to a control
scheme given in [8], which is re-interpreted in this hybrid
context.

The new controllers take the advantage of steering the
satellite motion along periodic (therefore bounded) transient
relative orbits. The use of the hybrid formalism allows us to
prove asymptotic stability of the desired motion, in addition to
robustness to perturbations. Such a robustness is confirmed by
suitable simulation results showing desirable responses also in
the presence of unmodeled nonlinear phenomena and external
disturbances affecting the satellite motion.

Initial Control A Control B Control C MPC
condition LIN NL LIN NL LIN NL NL
X01 1.00 1.10 0.86 1.10 0.93 1.02 0.57
X02 1.92 1.92 2.18 2.19 2.85 2.40 1.37
X03 4.50 3.77 4.44 ××× 4.00 4.12 2.17
X04 9.05 8.96 9.23 ××× 9.35 8.16 7.11

TABLE I: Consumption J (m/s).

Initial Control A Control B Control C MPC
condition LIN NL LIN NL LIN NL NL
X01 2.91 2.86 0.34 0.34 0.98 0.97 1.63
X02 2.59 2.59 0.34 0.34 0.98 0.98 1.34
X03 3.55 2.91 0.34 ××× 0.98 1.94 1.64
X04 3.87 5.48 0.33 ××× 0.98 4.20 2.97

TABLE II: Convergence time Tc (nb. orbits).
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constrained spacecraft relative trajectories for proximity operations.
Journal of Guidance, Control, and Dynamics, 38(7):1208–1217, 2015.

[10] W. Fehse, editor. Automated rendezvous and docking of spacecraft.
Cambridge Aerospace Series. Cambridge University Press, Cambridge,
UK, 2003.

[11] Paulo Ricardo Arantes Gilz, Mioara Joldes, Christophe Louembet,
and Frdric Camps. Model predictive control for rendezvous hovering
phases based on a novel description of constrained trajectories. IFAC-
PapersOnLine, 50(1), 2017. 20th IFAC World Congress.

[12] R. Goebel, R.G. Sanfelice, and A.R. Teel. Hybrid Dynamical Systems:
modeling, stability, and robustness. Princeton University Press, 2012.

[13] P. Gurfil. Relative motion between elliptic orbits: Generalized bound-
edness conditions and optimal formationkeeping. Journal of Guidance,
Control and Dynamics, 28(4):761–767, July 2005.

[14] G. Inalhan, M. Tillerson, and J.P. How. Relative dynamics and control of
spacecraft formations in eccentric orbits. Journal of Guidance, Control
and Dynamics, 25(1):48–59, January-February 2002.

[15] C. Jewison and R.S. Erwin. A spacecraft benchmark problem for hybrid
control and estimation. In Decision and Control (CDC), 2012 IEEE 51st
Annual Conference on, Las Vegas, Nevada, USA, Dec 2016.

[16] D.F. Lawden. Optimal trajectories for space navigation. Butterworth,
London, England, 1963.

[17] C. Louembet, D. Arzelier, and G. Deaconu. Robust rendezvous planning
under maneuver execution errors. Journal of Guidance, Control, and
Dynamics, 2015.

[18] B.P. Malladi, R.G. Sanfelice, E. Butcher, and J. Wang. Robust hybrid
supervisory control for rendezvous and docking of a spacecraft. In
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on,
Las Vegas, Nevada, USA, Dec 2016.

[19] I.M. Ross. 6 space trajectory optimization and l 1-optimal control
problems. Elsevier Astrodynamics Series, 1:155–VIII, 2007.

[20] H. Schaub. Relative orbit geometry through classical orbit element
differences. Journal of Guidance, Control, and Dynamics, 2004.

[21] P. Sengupta and S.R. Vadali. Relative motion and the geometry of
formations in keplerian elliptic orbits. Journal of Guidance, Control,
and Dynamics, 2007.

[22] R.E. Sherill, A.J. Sinclair, T.A. Lovell, and S.C. Sinha. Lyapunov-floquet
transformation of satellite relative motion in elliptic orbits. Celestial
Mechanics and Dynamical Astronomy, 119:55–73, 2014.

[23] J. Tschauner. The elliptic orbit rendezvous. In AIAA 4th Aerospace
Sciences Meeting, Los Angeles, Californie, USA, Juin 1966.

[24] K. Yamanaka and F. Ankersen. New state transition matrix for relative
motion on an arbitrary elliptical orbit. Journal of Guidance, Control,
and Dynamics, 25(1):60–66, January 2002.



−200 −150 −100 −50 0 50 100 150 200 250 300 350 400 −200

0

200

400

−150

−100

−50

0

50

100

150

x (m)
y (m)

z
(m

)
Linear sim
Nonlinear sim
Target satellite
Reference orbit

Fig. 4: Trajectories for controller A
when starting from X01.
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Fig. 5: Trajectories for controller B
when starting from X01.
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Fig. 6: Trajectories for controller C
when starting from X01.
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Fig. 7: Impulses and convergence from
X01 for controller A.
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Fig. 8: Impulses and convergence from
X01 for controller B.
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Fig. 9: Impulses and convergence from
X01 for controller C.
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Fig. 10: Impulses and convergence from
X04 for controller A.
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Fig. 11: Impulses and convergence from
X04 for controller B.
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Fig. 12: Impulses and convergence from
X04 for controller C.
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Fig. 13: Trajectory for the MPC con-
troller when starting from X01.
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Fig. 14: Impulses and convergence from
X01 for the MPC controller.
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Fig. 15: Impulses and convergence from
X04 for the MPC controller.


