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The problem of designing a rendezvous guidance maneuver plan robust to thrusting errors is addressed in this

paper. The aim of this paper is to develop tractable and robust guidance algorithms. Solving the rendezvous guidance

problem via a direct approach leads to uncertain optimization problems while accounting for the guidance,

navigation, and control systems uncertainties and errors. A worst-case approach is considered in order to obtain

tractable robust counterparts. The robustness certificates derived from these guidance algorithms provide themeans

to analyze the effects of the considered errors on the rendezvous mission. Several types of missions tested in a linear

environment are used to illustrate the methodology.

Nomenclature

a = semi-major axis
e = eccentricity
Il = identity matrix of dimension l
N = number of velocity increments
T = tolerance set
u = disturbance variable
V = uncertainty set
X = relative motion state
ΔVi = velocity increment vector at νi
ΔVmax = actuators saturation in meter per second
μ = Earth gravitational constant
ν = true anomaly
νi = impulses application times, i � 1;: : : ;N
Γ = tolerance vector
Φ�vi; vj� = transition matrix of relative

motion from instant νj to νi
0l = null matrix of dimension l
1l = vector of length l where every entry is 1
j · j = absolute value function
k · k = l-norm of a vector

I. Introduction

A NYorbital operation involving at least two vehicles (satellite or
International Space Station servicing, debris removal, and

formation flight) includes a rendezvous process that consists of
bringing the actuated vehicle (chaser) into the proximity of the pas-
sive vehicle (target) via a series of elementary phases (phasing, far-
range rendezvous, and close range rendezvous). Each phase is
composed of orbital maneuvers that must be carefully planned to
reach their goal. This paper is particularly dedicated to the far-range
rendezvous operations, which begin when the separation between
the chaser and the target is sufficiently small to allow the relative
navigation between the two spacecraft.
From a mathematical point of view, the rendezvous guidance

problem consists of an impulsive fuel-optimal control problem when

the gas ejection thrust is assumed to be impulsive. This particular
optimal control problem can be solved using the so-called primer
vector theory that originates from the seminal work of Lawden [1].
This theoretical corpus relies on optimality conditions derived from
Pontryagin’s maximum principle. This indirect approach has been
the base for numerous studies addressing the orbital rendezvous
problem [1–6]. However, the algorithms from previously cited works
are, in general, tailored for offline computations and are not intended
to be part of the spaceborne guidance software. In this context,
numerical solutions based on direct methods [7] are particularly
appealing. In fact, direct methods consist of parameterizing the
original rendezvous guidance problem and converting it into a
programming problem for which efficient solvers are available.
These approaches are known to be particularly effective in the pres-
ence of state and input constraints even if they generally do not
provide the optimal solutions but only an approximation. The appli-
cation of direct methods to the rendezvous guidance problem was
initiated byWaespy [8] and later developed by Robertson et al. in the
late 1990s [9]. In these works, the constraints are usually discretized
in order to obtain a linear program. However, paper [10] recently
proved, by converting the rendezvous problem in an semi-definite
programming problem, that it is possible to satisfy the continuously
in timewithout discretization. Numerous papers addressing different
rendezvous control problems, ranging from coordination between
several spacecraft [11,12] to collision avoidance [13–15], often in
conjunction with the model predictive control (MPC) [11,12,16],
have been published since then. If impulsive thrust and linearized
dynamics are assumed in the previous cited paper [8–16], the direct
methodology also permits the assumption of a different type of thrust
model or nonlinear dynamics for the rendezvous problem. In the case
of continuous thrust, the solution of the constrained and nonlinear
optimal control problem was obtained in [17] by performing a
sequence of convex and linear constrained optimal control problems
solved by either a transcription or a shooting method. The advantage
of such a method is that the model can be augmented easily with
orbital disturbances without increasing its complexity. In [18], the
thrust is modelled by pulse, and the optimal control is obtained by
modulating the amplitude of the pulse addressing the fact that the
thrust time can be of few minutes width. In [19], the pulse width
modulation is considered, and the optimal control problem is
transformed in a two-step linear program.
Among the challenges that arise from the needs of more spacecraft

autonomy, the robustness of the control method to the uncertainties
inherent to guidance, navigation, and control (GNC) systems is a key
issue [20]. These uncertainties may originate from errors in the
navigation system and/or the propulsion devices. For example, in the
far-range rendezvous phase, the chaser relative position and velocity
provided by the navigation systemmaybe corrupted bymeasurement
noise. In addition, the thrusts delivered by the propulsion devices
may be inaccurately executed. These errors usually lead, in real
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implementation, to the fact that open-loop maneuvers might steer the
system far from the rendezvous objectives.
In the case of infinite control horizon, closed-loop schemes may

help to mitigate GNC system’s errors and ensure system stability. In
the literature, numerous works propose solutions to reject pertur-
bations and disturbances of various types. The case of impulsive
rendezvous has been addressed using the discrete linear quadratic
regulator (LQR) techniques [21] (see the review paper [22] and
references therein). Adaptive control techniques compose a family of
control laws that enables the rejection of propulsion errors in the
context of formation flight by exploiting Lyapunov stability criteria
as in [23]. The receding horizon MPC techniques (see, for instance,
[24–26]) have also been successful to tackle the problem of thrust
errors mitigation. However, when it comes to the finite horizon
rendezvous problem, it is much more complicated to get equivalent
closed-loop certificates of stability and performances (in terms of
precision) using these previously mentioned techniques. In [27], a
tube-MPC scheme has been tailored to compute feedback control
laws robust to navigation uncertainties while guaranteeing a given
precision at the end of the rendezvous mission. Note that the errors
addressed in [27] are different in nature from the propulsion errors
tackled in this paper. Indeed, navigation uncertainties are usually
treated, in the literature, as additive disturbances, while thrust errors
are addressed in the sequel as multiplicative disturbances (see [23]).
To the best of the authors’ knowledge, the generalization of tube-
MPC schemes to cope with multiplicative uncertainties like the ones
affecting propulsion system is a very difficult challenge.
In this paper, the rendezvous planning problem is solved using

linear programming problems arising from the application of a direct
methodology. To compute a robust maneuver plan that provides a
given level of rendezvous precision, the idea is to define an a priori
model of the uncertainties and errors affecting some data of the
program. It is therefore necessary to resort to specific techniques for
solving robust optimization problems. The usual way to address an
uncertain program is to introduce in the program the probabilistic
description of the uncertain data, considering them as random values.
Then, the techniques from the stochastic programming theory can be
applied [28]. This has been done in numerous papers in the case of
continuous thrust rendezvous (see [29] and references therein), but
few are those that treat the impulsive case. For instance, Luo et al. [30]
modelled the impulse execution error as a zero-mean white noise
process, leading to a multi-objective program that is solved using
genetic algorithms with no polynomial time convergence [30].
Other than the numerical complexity, this type of probabilistic
approach can only provide probabilistic guarantees for the
constraints satisfaction.
The other way to deal with the uncertain program consists of a

deterministic worst-case approach. Several works in the literature
have addressed the robustness of the maneuver plan in the context of
navigation errors. How and Tillerson described in [31] a multiple-
model robust approach, which consists of designing the input
sequence to simultaneously satisfy the constraints for several initial
conditions. It is stated in [11] that testing between 1 and 10 initial
conditions can lead to satisfying results. However, the authors do not
provide any certificate of robustness for this approach; they only
assert that such a choice is acceptable in practice thanks to properties
of the linear propagation of a convex hull. Aworst-case approach for
dealing with navigation uncertainties that provides a guaranteed
certificate is described in [15], where Mueller and Larsson modelled
the errors affecting the initial state as belonging to an ellipsoid and
then presented a algorithm based on linear programming that ensured
the collision avoidance on a discrete time horizon.
If stochastic programming takes advantage of the fact that

probability distributions governing the behavior of GNC systems
are usually available, the resolution technique has a high level of
numerical complexity. In addition, stochastic programming approach
will provide probabilistic guarantees for the constraints satisfaction
while most of constraints cannot be softened in the rendezvous
guidance problem. For these reasons, a deterministic worst-case
approach guaranteeing a priori robustness and with good tractability
is preferred in this paper.

The contribution of the present paper is to provide robust
rendezvous planning algorithms that guarantee the final rendezvous
conditions in the presence of GNC uncertainties and errors. Tech-
nically, the aim of the proposed guidance algorithm is to prevent the
spread of theseGNC systems errors byworking out the directmethod
algorithms through robust convex optimization [32]. The main
advantage is to provide the mission designer with constructive
numerical algorithms built on direct optimization schemes that also
give a certificate of robust optimality as a byproduct. This approach
makes it possible to analyze the worst possible effects of the GNC
errors on a specific mission. Note that uncertainties must be de-
scribed through their bounds to match the requirement of the robust
optimization contrary to the stochastic programming.
The proposed guidance algorithms are built based on a three-step

methodology. First, a deterministic modelling of the uncertainties
model is proposed. Then, the effects of these errors on the optimal
rendezvous guidance algorithm are exposed. Finally, a rendezvous
guidance algorithm robust to the previously mentioned uncer-
tainties that computes the best guaranteed precision performance is
proposed. Please note that the scope of this paper is limited to
propulsion devices errors (i.e., firing time and impulse execution
errors). In fact, the proposed approach is not relevant to preclude the
effects of the measurement noise. This issue is tackled separately by
the authors using different methods in [27].
This paper is organized as follows. Section II provides a de-

scription of the rendezvous guidance problem as it is usually
presented in the literature and proposes a polytopic relaxation of the
rendezvous condition. Section II.A presents the general guidance
problem for relaxed final conditions when uncertainties are con-
sidered along with the paradigms of the robust convex optimization.
Propulsion devices errors are treated in Secs. III and IV, and robust
guidance programs are presented. Finally, Sec. V presents the results
obtained for several mission examples in order to validate the
methodology, together with nonlinear simulations results.

II. Direct ResolutionMethods forRendezvousGuidance
Problem

After presenting the relative motion model and the guidance
problem, the rendezvous guidance problem is formulated as a linear
program using a direct approach. If the rendezvous condition is first
defined as an exact condition, it is then shown that the rendezvous
condition must be relaxed to handle errors and uncertainties in the
rendezvous guidance algorithm.

A. Rendezvous Guidance Problem

This paper concentrates on the homing phase of the spacecraft
rendezvous mission, which begins when the separation between
spacecraft is sufficiently small to allow the guidance of the chaser
spacecraft using relative navigation. In this framework, the spacecraft
relative motion can be characterized expressed in the local-vertical–
local-horizontal (LVLH) frame centered at the target spacecraft
position (see Fig. 1).
It is assumed that the chaser is moved using several ergol thrusters

rigidly mounted on the vehicle frame. Under this assumption, the
control can be modelled as impulsive signals that instantaneously
affect the velocity component of the chaser relative state, X ∈ R6, in
the LVLH frame. Under the impulsive control assumption, the
linearized spacecraft relative dynamics of the relative state (position
and velocity) X expressed with the true anomaly of the leader
spacecraft ν as the independent variable are given by

dX�ν�
dν

� AX�ν� � B
X
i

ΔV�νi� (1)

where A and B are the matrices corresponding to the Tshauner–
Hempel linearized and simplified dynamic equations [33]. The
control vectors ΔV�νi� are defined in the leader LVLH frame such
thatΔV�νi� � ΔViδ�ν − νi�where the vectorΔVi belongs toR

3 and
δ�ν − νi� denotes the Dirac impulse at time νi.
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The rendezvous guidance problem requires the computation of a
plan of N impulsive maneuvers fΔVigi�1; : : : ;N such that the finite-
time trajectory ν ↦ X�ν� satisfies the exact initial conditionX�ν1� �
X1, the final condition X�νf� � Xf (see Fig. 2), and the actuators
constraints, while minimizing a given cost (generally the ergol
consumption).
The spacecraft rendezvous guidance problem can be stated as

min
ΔV;νi

J�·� under

8<
:

dX�ν�
dν � AX�ν� � B

P
N
i�1 ΔViδ�ν − νi�

X�ν1� � X1; X�νf� � Xf

−ΔviI3 ≤ ΔVi ≤ ΔviI3; ∀ i � 1; · · · ; N

(2)

where Δvi denote the saturation bounds for the spacecraft thrusters.
Note that Δvi depend on the impulse time νi and on the actuators
limitation ΔVmax

Δvi �
������������������������
a3�1 − e2�3

μ

s
1

1� e cos νi
ΔVmax (3)

B. Direct Approach: Linear Programming

Direct shooting methods have shown their relevance for solving
the rendezvous guidance problem in the last decade [11,13,
15,34,35]. Their usage is handy since closed-form solutions of the
linearized dynamics (1) exist. For instance, Yamanaka and Ankersen
[36] developed a transitionmatrixΦya that enables the propagation of
the chaser spacecraft relative state starting from an initial stateX1�ν1�
under the action of N impulsive controls,

X�ν� � Φya�ν; ν1�X�ν1� �
XN
i�1

Φya�ν; νi�BΔVi

� Φya�ν; ν1�X�ν1� � BΔV (4)

where ν1 < ν2 < : : : < νN ≤ ν. ΔV denotes the stacked control
vector

ΔV � �ΔVT
1 ; : : : ;ΔVT

N �T (5)

and

B � �Φya�ν; ν1�B : : :Φya�ν; νN�B�; with B �
�
O3

I3

�
(6)

where O3 ∈ R3×3 is the null matrix and I3 ∈ R3×3 is the identity
matrix.
By using the closed-form solution provided by the transition

matrix, the dynamic program (2) can be transformed into the fol-
lowing static one:

min
ΔVi;νi

J�·� under

(Xf � Φya�νf; ν1�X�ν1� � BΔV
X�ν1� � X1; X�νf� � Xf

−ΔviI3 ≤ ΔVi ≤ ΔviI3; ∀ i � 1; · · · ; N

(7)

The previous optimal control problem can be recast into a linear
program by setting the impulse times fνigi�1; : : : ;N a priori and
electing an optimization criteria J�·� that is linear in the decision
variablesΔV � fΔVigTi�1; : : : ;N . Usually, in the rendezvous problem,
the criteria represent the fuel consumption. However, it will be
shown next that, in the presence of GNC system errors, the choice
of the optimization criteria is of importance and needs to be
made carefully in order to include the robustness requirements. The
nature of the objective and the description of the cost function are
discussed further in a dedicaded section after presenting the GNC
system errors and their impacts on the the rendezvous guidance
problem.

C. Effects of GNC Errors on Rendezvous Guidance Problem

As part of the GNC system, the performances of the guidance
algorithms are tightly related to the performances of the navi-
gation devices and propulsion equipment. Errors from these devices
and equipment can greatly deteriorate the guidance precision perfor-
mances.
The navigation errors affect the initial state X1 used for the

calculation of the guidance plan:

X1 ∈ Unav (8)

The uncertainty set Unav is directly related to the accuracy of the
sensors and to the performances of the navigation filter.
The impulses execution errors are twofold: errors on the firing

times νi and errors on the impulses execution. The spacecraft thrusts
have beenmodelled as pure impulsive control, but practical execution
of the maneuver makes the thrust profile looks like a continuous
function. To account for the modeling errors of the impulsive
assumption, the firing times νi can be considered as uncertain:

νi ∈ �νi; νi�; i � 1; : : : ; N (9)

The impulsesΔVi, are computed in the leader’s LVLH frame, but the
global effort is allocated on the different available gas thrusters. The

Fig. 1 Illustration of the LVLH frame.
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follower’s thrusters also need to be aligned before each impulse
execution bymeans of attitude slewmaneuvers. Hence, the precision
of the control execution depends on the precision of this alignment.
Thus, the thrust allocation and the alignment process introduce
uncertainties in the impulses execution:

ΔVi ∈ UΔVi
(10)

Previously, the rendezvous guidance problem was defined with strict
initial and final objectives [see Fig. 2 andEq. (7)]. However, when the
GNC uncertainties and errors (8–10) are integrated in the trajectory
propagation (4), the final relative stateX�νf� can no longer be exactly
computed;

X�νf� � Φya�νf; ν1�X�ν1� �
XN
i�1

Φya�νf; νi�BΔVi ∈ Xf;

( X1 ∈ Unav

νi ∈ �νi; νi�
ΔVi ∈ UΔVi

(11)

In this case, the final rendezvous condition must be relaxed to enable
some tolerances on the final objective. The rendezvous terminal
condition is replaced by a setmembership constraint on the spacecraft
final relative state for all the possible instances of the uncertainties:

Xf − X�νf� � Xf −Φya�νf; ν1�X1 −BΔV ∈ T ;( ∀ X1 ∈ Unav

∀ νi ∈ �νi; νi�
∀ ΔVi ∈ UΔVi

(12)

The set T defines an admissible tolerance around the original
rendezvous objective in the presence of GNC errors. The rendezvous
guidance problem (7) can be amended as the uncertain program,

min
ΔV J�·� under

(Xf −Φya�νf; ν1�X�ν1� −BΔV ∈ T
�X1; ν;ΔV� ∈ V;
−ΔviI3 ≤ ΔVi ≤ ΔviI3; ∀ i � 1; · · · ; N

(13)

where the set of uncertainties V is the direct product of the errors
from Eqs. (8–10). It should be outlined that the tolerance set T can
interpreted as an inclusion set of all possible instances of the final
state X�νf� under GNC device errors.
In the sequel, the proposed work is focused on the impulses

execution errors, i.e., uncertainties on impulses time ν and the
misrealization of the impulses ΔV.

D. Relaxed Polytopic Rendezvous Condition

In the proposed approach, T is chosen to be a polytopic set defined
by the matrices HT ∈ RnT ×6 and KT ∈ RnT . The spacecraft relative

state at the end of the rendezvous maneuver plan X�νf� is required to
satisfy the following matrix inequality:

HT X�νf� ≤ KT �Xf� ⇔ HT �BΔV �Φya�νf; ν1�X1� ≤ KT �Xf�
(14)

The KT vector is chosen such that the final set T is centered around
the original rendezvous objective Xf; see Fig. 3. Thus, the polytopic
version of the uncertain optimal control problem (13) is described by
the following program:

min
ΔV J�·� under

(HT �BΔV �Φya�νf; ν1�X1� ≤ KT �Xf�
�ν;ΔV� ∈ V;
−ΔviI3 ≤ ΔVi ≤ ΔviI3; ∀ i � 1; · · · ; N

(15)

Without loss of generality, the tolerance polytope T can be
specified as a parallelotope with the defining matrices HT and KT
given by

HT �
�

I6
−I6

�
; KT �

�
Γ� Xf

Γ − Xf

�
with R6 ∋ Γ > 0

(16)

Specifying a final tolerance in the form of Eq. (16) presents
computational advantages that will be exploited in what follows.
Among these advantages, it enables the reduction of the numbers of
the defining parameters (the vector Γ for instance). Moreover, the
definition (16) of HT and KT defines the set T as the inclusion set,
in the interval analysis sense, for the spread zone of the different
errors.

E. Objective Function J�·�
The typical objective for a rendezvous guidance algorithm is the

minimization of the fuel cost of the computed plan [20]. Assuming
that the chaser spacecraft is equipped with six identical thrusters
rigidlymounted in its axes, the total fuel consumption cost is given by
[37]

J � kΔVk1 (17)

This piecewise linear cost function can be linearized by introducing
slack variables Z ∈ R3N in the guidance problems (7) and (15) such
that

ΔVi ≤ Zi

−ΔVi ≤ Zi
; ∀ i � 1; · · · ; 3N (18)

and setting J � P
3N
i�1 Zi. The reader will note that

min
ΔV

kΔVk1 ⇔ min
ΔV;Z

X3N
i�1

Zi (19)

On the other hand, in the presence ofGNCerrors, besidesminimizing
the fuel cost, certifying the best rendezvous precision is of great

Fig. 3 Relaxed rendezvous illustration: polytopic tolerance arrival set.Fig. 2 Deterministic rendezvous illustration.
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interest. This precision objective can be described in terms of the
dimensions of the tolerance set T , which contains all the possible
final states for the considered uncertainties. By considering the
tolerance vector Γ as a decision variable, the dimensions of the final
inclusion set can be minimized while maintaining the linear structure
of the cost function. In this case, the cost function can be chosen as

J �
X6
i

Γi (20)

By choosing the cost function (20), the objective becomes able to
compute the maneuver plan ΔV that is the least sensitive to the
considered errors. Once computed, the tolerance set T gives a
certified prediction of the spread zone for all the possible trajectories.
It is also interesting to notice that the tolerance set has not to be set a
priori but its size is minimized during the process.
Fuel is a critical ressource for the spacecraft applications, and even

when it is not explicitly included in the objective function, one must
ensure that the total consumption does not exceed the allocated
budget. For a given fuel budget MΔV , the robust plan must be such
that

kΔVk1 ≤
X3N
i�1

Zi ≤ MΔV (21)

The cost function (20) will be used in the robust algorithm presented
in the next section along with the budget constraint (21) in order to
achieve the best rendezvous precision while respecting the required
limitations even in the presence of errors.
The aim of this work is to obtain a tractable robust counterpart of

the uncertain program (13) by using robust optimization concepts (cf.
Appendix A). The uncertainties on impulse time and the errors
affecting the impulses execution are considered separately, and for
each case, a linear program is obtained.

III. Rendezvous Guidance Algorithm Robust to
Uncertainties on Impulses Application Time

A. Modeling Impulses Firing Time Uncertainties Using Interval
Analysis

In this section, the maneuver plan will be affected by some
uncertainties on the maneuver firing time. The uncertainties are
defined as

νi � ν0i � uiδνi; i � 1; : : : ; N (22)

where ν0i is the nominal firing time, δνi is the maximal disturbance,
and the perturbation vector u ∈ RN belongs to the normalized
interval �−1; 1�. The entries of u are supposed to be independent from
each other.
Uncertainties on the impulses times have two consequences on the

linearized relative motion. First, since the transition matrix Φya

depends on the true anomaly, the propagation of the relative trajectory
will be affected. Second, the bounds on the control amplitudes Δv
also become uncertain since they depend on the position of the target
spacecraft on its orbit [cf. Eq. (3)]. The present study does not address
the uncertainties on the impulses bounds as their effect can be
neglected since δνi is relatively small with respect to the orbital
period.
To build the robust counterpart that accounts for the impulses time

uncertainties, it is necessary to evaluate themaximum variation of the
elements of the Yamanaka–Ankersen transition matrix on a given
impulse time interval. Such information can be obtained through the
computation of the interval inclusion function. Let a interval, denoted
�x�, be a connected and finite set of R defined by

�x� � �x−; x�� � fx ∈ Rjx− ≤ x ≤ x�g (23)

Letmid��x�� denote themiddle of the interval �x� and IR denote the set
of all intervals of R.

Definition 1: Consider a function f from Rn to Rm. The interval
function �f� from IRn to IRm is an inclusion function for f if

∀ �x� ∈ IRn; f��x�� ⊂ �f���x�� (24)

The inclusion function can be computed using several methods, such
as the natural inclusion function, the centered inclusion function, or
the Taylor inclusion function [38]. To reduce the conservatism of the
inclusion function, the centred inclusion functionmethod is chosen to
estimate the transition matrix inclusion denoted �Φya��νf; �νi��.

B. Polytopic Rendezvous Robust Counterpart

The final rendezvous condition is relaxed to the polytopic final set
to account for the presence of the impulse firing time uncertainties
(see Fig. 4).
Under impulse firing time uncertainties, the polytopic rendezvous

constraint (14) becomes uncertain since thematrixB is unknown and
belongs to the interval matrix �B� such that

�B� � � �Φya��νf; �ν1��B : : : �Φya��νf; �νN ��B � (25)

Thus, the uncertain polytopic rendezvous condition is given by

HT

�
Φya�νf; ν1�X�ν1� �

XN
i�1

Φya�νf; νi�BΔVi

�
≤ KT (26)

where

�Φya��νf; �νi�� ∋ Φya�νf; νi� � Φ̂0
ya�νf; νi� � δΦya�νf; νi� (27)

The matrix Φ0
ya�νf; νi� is the center matrix of the inclusion matrix

�Φya��νf; �νi��. The matrix Φ0
ya�νf; νi� is generally different from

the nominal transition matrix, Φya�νf; νi�. The perturbation matrix

δΦya�νf; νi� belongs to the interval matrix [−δΦi, δΦi], δΦi, being
the radius matrix of the inclusionmatrix �Φya��νf; �νi��. The uncertain
set V can be then expressed as

V � fΦ̂ya�νf; νi�jΦ̂ya�νf; νi� � Φ0
ya�νf; νi� � uiδΦi; juij ≤ 1; i

� 1; : : : ; Ng
(28)

According to [39], the robust counterpart of the uncertain rendezvous
condition (26) can be written as

HT

�
Φya�νf;ν1�X�ν1��

XN
i�1

Φ0
ya�νf;νi�BΔVi�max

ui
fuiδΦiBΔVig

�
≤KT

(29)

which is equivalent to

Fig. 4 Polytopic rendezvous condition under impulse firing time
uncertainties.
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HT Φya�νf; ν1�X�ν1� �
XN
i�1

HT Φ0
ya�νf; νi�BΔVi �HT jδΦiBΔVij

≤ KT

(30)

By observing that the slack variables Zi, such that
jδΦiBΔVij ≤ jδΦiBjjΔVij ≤ jδΦijZi, the previous inequality can
be linearized to obtain the robust program to uncertain impulse times:

min
ΔV;Γ;Z

X6
i�1

Γi under

8>>><
>>>:
HT Φya�νf;ν1�X�ν1��HT

P
N
i�1Φ0

ya�νf;νi�BΔVi�jδΦiBjZi≤KT
ΔVi≤Zi

−ΔVi≤ZiP
3N
i�1Zi≤MΔV

�Z3i�1;Z3i�2;Z3i�3�T≤Δvi�1I3;∀i�0; ···;N−1
(31)

Note that Eq. (31) has a linear structure.

IV. Rendezvous Guidance Algorithm Robust to Errors
in Impulses Execution

A. Modeling Uncertainties

The performances of the thrust devices are described here in terms
of amplitude and orientation precision (see Fig. 5),

ΔVi � �1� λi�MciΔV0
i (32)

where the coefficient λi represents the amplitude error and is such that

λi ∈ �−ε; ε� (33)

and the Cardan rotation matrix Mci�ψ i; θi;ϕi� represent the
orientation error (see Fig. 6).
As long as the Cardan angles ψ , ϕ, θ remain small, the Cardan

rotation matrix can be approximated by

Mci �
2
4 1 −ψ i θi

ψ i 1 −ϕi

−θi ϕi 1

3
5 (34)

where the Cardan angles are bounded by β, the maximal error angle

jψ ij ≤ β; θij ≤ β; ϕij ≤ β (35)

Let Mi denote the perturbation matrix such that

Mi � �1� λi�Mci

�

2
664

1� λi −�1� λi�ψ i �1� λi�θi
�1� λi�ψ i 1� λi −�1� λi�ϕi

−�1� λi�θi �1� λi�ϕi 1� λi

3
775 (36)

Note that Mi is composed by four independent elements; thus, four
perturbation variables uij are required to describe the affine
uncertainty set V,

V �
�
MijMi � I3 �

X4
j�1

uijM
j; uijj ≤ 1; i � 1; : : : ; N

�
(37)

where

M1 �

2
664
ε 0 0

0 ε 0

0 0 ε

3
775;

M2 �

2
664

0 −�1� ε�β 0

�1� ε�β 0 0

0 0 0

3
775;

M3 �

2
664

0 0 �1� ε�β
0 0 0

−�1� ε�β 0 0

3
775;

M4 �

2
664
0 0 0

0 0 −�1� ε�β
0 �1� ε�β 0

3
775 (38)

B. Polytopic Rendezvous Robust Counterpart

The rendezvous mission under errors on the impulse execution
with a relaxed polytopic arrival set is illustrated in Fig. 7. The
uncertainties on the impulses execution can be translated into
uncertainties on the transition matrix by using the description of the
uncertainty set (37). In this case, the uncertain polytopic rendezvous
condition can be written as

HT Φya�νf; ν1�X�ν1� �HT BM�u��ΔV ≤ KT (39)Fig. 5 Impulse execution errors description.

a) First rotation b) Second rotation c) Third rotation
Fig. 6 Cardan angles: rotation frome frame (x0, y0, z0) to (x3, y3, z3).
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where

M�u� � diag�fM1; : : : ;MNg�

� I3N �

2
664
P

4
j u1jM

j

. .
. P

4
j uNjM

j

3
775

|																												{z																												}
M
� �u�

;

kuk∞ ≤ 1

(40)

and the perturbation variable u ∈ R4N is norm bounded such
that kuk∞ ≤ 1.
A robust counterpart can be formulated by applying the results

from [40]:

HT Φya�νf; ν1�X�ν1� �HT BΔV � max
kuk∞≤1

fHT BM
� �u�ΔVg ≤ KT

(41)

Then, it comes that

max
kuk∞≤1

fHT BM
� �u�ΔVg

� max
kuk∞≤1

�XN
i�1

HT Φya�νf; νi�B
�X4

j

uijM
j

�
ΔVi

�
(42)

�
XN
i�1

X4
j

max
kuk∞≤1

fHT Φya�νf; νi�BMjΔViuijg (43)

�
XN
i�1

X4
j�1

jHT Φya�νf; νi�BMjΔVij (44)

The robust counterpart to the relaxed guidance problem (13) under
uncertainties on impulses execution (32) is finally obtained:

min
ΔV;Γ

X6
i�1

Γi under

8>><
>>:
Φya�νf;ν1�X�ν1��HT BΔV�P

N
i�1

P
4
j�1 jHT Φya�νf;νi�BMjΔVij≤KT

X�ν1��X1

kΔVk1≤MΔV
−ΔviI3I3≤ΔVi≤ΔviI3;∀i�1;···;N

(45)

By using the slack variables Z defined by Eq. (18) and the variables
Y ∈ R4N such that

−Yij ≤ HT Φya�νf; νi�BMjΔVi ≤ Yij; i � 1; : : : ; N;

j � 1; : : : ; 4
(46)

the problem (45) can be reformulated as the following linear
program:

min
ΔV;Γ;Z;Y

X6
i�1

Γiunder8>>>>>>>><
>>>>>>>>:

Φya�νf;ν1�X�ν1��HT BΔV�P
N
i�1

P
4
j�1Yij≤KT

−Yij≤HT Φya�νf;νi�BMjΔVi≤Yij

−Zi≤ΔVi≤ZiP
3N
i�1Zi≤MΔV

�Z3i�1;Z3i�2;Z3i�3�T≤ �Δvi�1I3; ∀ i�0; ···;N−1

; i�1; :::;N; j�1; :::;4

(47)

V. Numerical Examples

The optimal deterministic guidance algorithm (7) minimizing
the ΔV-consumption objective (17) on one hand and the robust
algorithms (31) and (45) on the other hand are compared on the
benchmark missions from Table 1. The proposed rendezvous
missionswere chosen to cover low-and high-eccentricity target orbits
and a large range of mission durations. The missions from Table 1
were simulated in a Keplerian and linear environment first. Then,
simulationswere run in a nonlinear environment for a specific Prisma
type mission to validate the approach described in this paper.

Most of the results are obtained considering a number of impulsesN
set to 50, equally distributed on themission time horizon. Note that the
influence of the number of impulses is also studied. It should be noted
that all the simulations presented here are run in an open-loop fashion.
For the robust algorithms (31) and (45), the allocated ΔV budget

MΔV is calculated with respect to J�ΔV , the optimal ΔV consumption
obtained by solving Eq. (7) along with the cost function (17):

MΔV � αJ�δV (48)

Fig. 7 Rendezvous affected by impulses execution errors with polytopic
arrival set.

Table 1 Rendezvous missions repertory

Missions parameters ATV 1 ATV 2 PROBA 3

Semi-major axis, a, km 6763 6763 37039.887
Eccentricity 0.0052 0.0052 0.80621
Inclination, deg 52 52 60.15
Argument of perigee, deg 0 0 180.6
Right ascension of the ascending
node, deg

0 0 173

Saturation, m∕s 5 5 0.8
Initial anomaly, deg 0 0 0
Mission duration, s 2767 7200 141888

Initial relative state, m;m∕s

2
666664

−30000
0

5000

8.154

0

0

3
777775

2
666664

−30000
0

5000

8.154

0

0

3
777775

2
666664

−5000
0

0

0

0

0

3
777775

Final relative state, m;m∕s

2
666664

−1000
0

0

0

0

0

3
777775

2
666664

−1000
0

0

0

0

0

3
777775

2
666664

−20
0

0

0

0

0

3
777775
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The aim of the comparison is twofold. First, the numerical simulation
must validate that the computed inclusion set T contains the spread
the of errors included in the defined uncertainty sets. The second aim
of this numerical study is to ascertain the gain of the robust open-loop
approach with respect to the deterministic algorithm (7) in terms of
errors propagation by deterministic and robustmaneuver plans and in
terms of ΔV consumption. To carry out this study, for each case of
uncertainties for a tested mission, several graphics are proposed. On
one hand Figs. 8, 10, 13, 15, 18, and 19 propose four plots. Two plots
present the fuel-optimal and the robust maneuver plans along the
Xlvlh and Zlvlh axes. Two plots depict the results of Monte Carlo
simulations: the spread of the final relative states obtained by the
propagation of the different errors by the fuel-optimal plan and the
unrestricted-budget-robust plan is exposed.OnFigs. 9, 11, 12, 14, 16,
and 17, bar diagrams are presented. On this bar diagram, the level of
guaranteed tolerance and spread are exposed for different fuel budget.
For the tolerance, this level corresponds to the robust cost (20). For
the errors spread bars, it is the sum of the widths of the spread along
each axis. Errors spread bars can only be estimated from the
Monte Carlo runs contrary to the computed minimal tolerances. For
the sake of comparison, two pieces of information are added to the bar
graphics: the level of errors spread for the fuel-optimal plan is
indicated through the light gray line, and the consumed ΔV is given
by the black line.

A. Uncertainties Affecting Impulse Firing Time: Numerical Examples

To illustrate the efficiency of the algorithm (31), simulations are
run considering random disturbances on each nominal firing
location. Those disturbances are bounded within δνi such that it cor-
responds to 1 s errors.
In the case of the automated transport vehicle (ATV) 2 mission

(Fig. 8), the fuel-optimal plan consists of 4 impulses out of the
possible 50, and the robust plans are also of 4 impulses. The research
of the robustness with respect to firing location errors is achieved by

shifting the two first impulses to the left. In the robust plan the second
and third impulses consumemost part the fuelwhile the first and third
ones are the most demanding for the fuel-optimal plan. One can also
note that the impulses are only onXlvlh axis thrusts for the three plans.
In Fig. 8, one can observe that the precision of the mission is

improved by the robust algorithm as expected after the computation
of the optimal tolerance. The improvements are mainly on the Zlvlh

axis on position and Xlvlh axis on velocity. The bar graphic in Fig. 9
exposed the level of guaranteed tolerance and the errors spread for
difference budgets. Different facts can be observed from Fig. 9. First,
a budget of 100% of the fuel-optimal consumption is needed to
guarantee a better precision than the spread by the fuel-optimal plan
of the firing time errors. In fact, the level of spread of errors by the
nonrobust plan is 10% larger than the guaranteed tolerance, while the
actual level of spread by the robust plan is 10% smaller. Moreover,
when the budget is not restricted, it can be seen that the consumption
is very similar to the minimal fuel cost J�ΔV . This fact infers that the
robustness does not necessarily imply an increase of the ΔV
consumption, but it is also a matter of the impulsive thrusts location.
The advantages of using the robust algorithm are more obvious in

the case of the PROBA 3 mission. Figure 10 show that the final states
obtained by the propagating of the optimal plan are largely spread
over 1800m on theZ axis and 5 m∕s on theVx axis while the optimal
certified precision is about of 1 m along Xlvlh and 7 m along Zlvlh in
position and 20 and 1 mm∕s in velocity. These results are obtained at
the price of a 200% increase of the ΔV consumption.
However, for this difficult mission, improvement, with respect to

the spread of the fuel-optimal plan, can be obtained with less than the
fuel-optimal cost. In fact, it can be seen on Fig. 11 that only 90% of
the nominal optimal consumption J�ΔV is needed to certify a much
better inclusion set and to greatly reduce the spread of the final
disturbed states. Note that the level line of the nonrobust spread does
not appear in Fig. 11 since the level of the spread is much larger than
theworst computed tolerance. This fact is symbolized by the triangle.
With a budget of 200% of the optimal consumption, the guaranteed

Fig. 8 Mission ATV 2: rendezvous under uncertain impulses time.
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Fig. 9 Mission ATV 2: rendezvous under uncertain impulses time.

Fig. 10 Mission PROBA 3: rendezvous under uncertain impulses time.
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tolerance dimension are improved by 35%. Beyond a ΔV budget of
200% of the optimal consumption, the guaranteed tolerance is not
improved significantly even if more ΔV consumption permits to
tightenmore the spread of errors. For bothmissions, one can note that
the gap between the guaranteed tolerance and the actual spread of the

errors is about 10 percentage points for budget greater than 100% of
the optimal fuel consumption.
For the previous numerical experiments, the number of possible

impulses is fixed to 50. To evaluate the influence ofN, we reproduce
the experiments for different numbers of impulses, ranging from10 to

Fig. 11 Mission PROBA 3: rendezvous under uncertain impulses time.

ATV 2 PROBA 3

Fig. 12 Rendezvous under uncertain impulses time with varying number of impulses N.
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200with an unrestricted budget (see Fig. 12). In the case of theATV2
mission, increasing the number of impulses only brings small
improvements of the guaranteed tolerance and errors spreadwhile the
consumption remains unchanged. On the contrary, in the case of the
PROBA 3 mission, the number of impulses has a stronger influence.
The guaranteed tolerance and the spread improve as N increases but
at the price of more consumption.

B. Rendezvous Maneuver Plan Robust to Impulses Execution Errors:

Numerical Examples

To illustrate the properties of the robust guidance algorithm (45),
amplitude errors ε � 0.001 i.e., 0.1%, and orientation errors β �
1 deg are considered on each executed impulsive maneuver. To
simulate execution errors on each impulse, the angles ψ i, θi, and ϕi

and amplitude coefficient λi are chosen randomly within their bound;
then the computed ΔVi is perturbed according to Eq. (32). The
results only present the in-plane propagation. However, one must
keep in mind that misexecution errors are spread over the three
directions.
In the case of the ATV 1 mission, Fig. 13 shows that the minimal

certified tolerances ensure much better precision in position than can
be expected with the ΔV optimal plan. Moreover, the spread of the
errors is much more contained with the robust plan.
In Fig. 13, the optimal four-impulses plan takes advantage of a long

coasting period between the second and third impulses to reduce
consumption of the ATV 1 mission. The unrestricted-budget-robust
maneuver plan is composed of 4 impulses. The most consuming
impulsion of this robust plan is the second one that is placed halfway
to the end of the mission. When limiting the budget, the robust
strategy is slightly different: the halfway impulse is replaced by two
impulses on the Xlvlh axis. However, it can be noticed that, when the
robustness is sought, it is preferable to thrust at midway to the end of
the mission than having a coasting period.

Some information can be deduced from Fig. 14. First, the level of
guaranteed tolerance is larger than the nonrobust plan spread of the
errors, and some improvement can be certified on given directions
(for instance, for the position). However, the spread is significantly
smaller for the robust plan than for the optimal fuel plan, even if it
cannot be certified for this particular mission. This fact is explained
by the conservatismobserved in Fig. 13 and can also be highlighted in
bar graph of Fig. 14 since for every budget there is a large gap
between the guaranteed tolerance and the errors spread. This gap is
between 65 and 35 percentage points for a budget greater than 100%
of the fuel-optimal consumption.
Figures 15 and 16 present more spectacular results for the PROBA 3

mission since the fuel-optimal plan spread the impulses execution
errors over nearly 30 km along the Xlvlh axis while the robust plan
certify tolerance width of 750 m and limit the actual spread of the
errors to about 320mon the same axis. The same phenomenon can be
observed on the velocity where the fuel-optimal plan spread over
17 m∕s along theZ axiswhile the certified tolerance is about 0.5 m∕s
and the errors are spread on 20 mm∕s. Observing Fig. 15, one can
note that specific thrust instants are to be preferredwhen robustness is
sought for this particular mission. In addition, these robust thrust
locations are independent from the allocated budget.
Remembering that the triangle in Fig. 16 means that the nonrobust

spread is much larger than the certified tolerances, the robust plans
permits a significant reduction of the maneuver plan sensitivity with
respect to impulse execution errors. However, the dimension of the
minimal tolerance dimension shows large conservatism. The gap
between the level guaranteed tolerance and the actual spread is
between 90 and 40% for the presented budgets.
Finally, the influence of the impulse number is analyzed.

The previous experiments are reproduced assuming different
numbers of impulses and with an unrestricted budget. For each
Monte Carlo simulations run, the guaranteed tolerance, the
spread of the errors, and the consumption are represented

Fig. 13 Mission ATV 1: rendezvous under impulses execution errors.
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Fig. 14 Mission ATV 1: rendezvous under impulses execution errors.

Fig. 15 Mission PROBA 3: rendezvous under impulses execution errors.
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in Fig. 17. On the other hand, in the case of errors on im-
pulse firing time, increasing the number of impulses, for the ATV 1
mission case, permits the improvement of the tolerance and

the errors spread. Moreover, it also slightly improves the
robust consumption through a better selection of impulses
locations.

Fig. 16 Mission PROBA 3: rendezvous under impulses execution errors.

ATV 1 PROBA 3

Fig. 17 Rendezvous under impulses execution errors with varying number of impulses N.
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C. Results Analysis

Both tested algorithms show the advantage of significantly
reducing the spread of the errors compared to the fuel-optimal plan. If
this improvement can be certified a priori in the case of errors on
firing time, this is not always the case for impulses misexecution
errors. In fact, for the firing time error case, the computed tolerance
sets are a pretty good inclusion set of the spread of the firing time
errors by the robust plans. This fact is due to the fact that the
computation of the transition inclusionmatrix [Φya�νf; �νi��] is pretty
accurate using the centered inclusion function [38] for errors
corresponding to 1 s (δν is about few milliradians). On the contrary,
the propagation of the misexecution errors, represented by matrixM
through the transition matrices Φya�νf; νi�, imply wrapping effects.
The wrapping effect corresponds here to the artificial enlargement of
the inclusion that includes the image of an interval vector through
matrix multiplication [38]. This effect is represented in Eq. (46), in
which the slack variablesY represent the inclusion set of the spread of
errors. These effects imply that the robust algorithm will seek to
certify the rendezvous precision for larger errors than needed.

D. Nonlinear Simulations

The previously presented results have been obtained for the
linearized spacecraft relative dynamics propagated using the
Yamanaka–Ankersen transition matrix. This section illustrates
the performances of the robust algorithms when nonlinear dynamics
are simulated instead.
The nonlinear simulator relies on the nonlinear propagation

through Gauss equation integration of each spacecraft and on the
evaluation of the relative motion. This is illustrated for a PRISMA 3
mission that is detailed in Table 2.
A short mission duration has been chosen in order to be able to

simulate the nonlinear dynamics and orbital disturbances (the J2 term
and atmospheric drag mainly) while maintaining the difference
between linear and nonlinear propagation within acceptable bounds.
If the computed plans are implemented in an open-loop structure for
this study, it has to be noted that for longer missions a closed-loop
control law has to be implemented to alleviate the modeling errors
and external disturbances. For each type of uncertainty, the robust and
the deterministic maneuver plans are tested by means of Monte
Carlo nonlinear simulations runs. The impulse time errors is
equivalent to 1 s, and the control execution errors are given by ε �
0.1%, β � 1 deg.
The results obtained for the guidance algorithm robust to impulse

trigger time uncertainties when using the nonlinear dynamics are
presented in Fig. 18. The robust certificates provided by the
rendezvous algorithm are validated also in a nonlinear environment,
while the nonrobust plan transgresses the certified tolerance bound.
The robust plan has also the advantages of only consuming 0.25%
more than the optimal plan.
It can be observed in Fig. 19 that the maneuver plan robust to

execution errors respects the arrival tolerance set even in the presence
of environmental perturbations, while the nonrobust plan violates the
tolerance box in position. The price of the certified robustness here is
a increase of 8% of the ΔV consumption.

Fig. 18 Mission PRISMA 3: rendezvous under uncertain impulsion times.

Table 2 Mission of PRISMA 3 type

Semi-axis a, km 7011
Eccentricity e 0.004
Inclination, deg 98
Right ascension of the ascending node, deg 190
Argument of perigee, deg 0
Initial target anomaly, deg 0
Saturation, N 0.26
Mission duration, s 1500
Initial relative state [m;m∕s] [300, 0, 0, 0, 0, 0]
Final relative state [m;m∕s] [20, 0, 0, 0, 0, 0]

14 LOUEMBET, ARZELIER, AND DEACONU



VI. Conclusions

In this paper, the design of robust algorithms for the rendezvous
guidance problem under uncertainties due to propulsion system
errors is addressed. Tractable algorithms are developed on the
theoretical foundation of the convex robust optimization. In fact, the
polytopic tolerance arrival set and interval descriptions of these errors
lead to a linear description of the robust counterpart for the optimal
guidance problem. Numerical examples demonstrate the ability of
the robust algorithm to preclude the spread of the errors from

propulsion systems even under fuel budget constraint. Numerical
simulations of several missions have been conducted in linear and
nonlinear propagators. The computed tolerance and the actual spread
have been analyzed with respect to the ΔV consumption budget. It
has been observed that minimizing the arrival tolerance set clearly
changes the structure of the maneuver plans. Optimizing the
guaranteed precision generally implies an increase of the ΔV cost.
Most results show that, for the same level of consumption, a robust
structure permits the mitigation of the spread of the errors in
comparison with the nonrobust optimal plan. Moreover, in some
cases, the robust rendezvous algorithms are able to certify a better
precision with a ΔV budget equivalent to the one obtained with the
nominal plan.
A limitation of the proposed method comes from the fact that the

affine description of the uncertainty sets, on which the algorithms
rely, are obtained using a rather crude interval analysis, generating a
possible high level of conservatism of the description. Thus, applying
the proposed methodology to the case in which the thrust errors are
combined leads to poor results that are too conservative. The
computed tolerance boxes are unsound with respect to the
rendezvous objectives. Futureworks will focus on developing tighter

Fig. 19 Mission PRISMA 3: rendezvous under impulsion execution errors.

Fig. B1 Image of a box by a vector function f and two of its inclusion functions �f � and �f��; �f�� is minimal.

Fig. B2 Interpretation of the centered inclusion function.
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affine descriptions of the uncertainty set, thus minimizing the
possible conservatism of the planning algorithm.

Appendix A: Robust Convex Optimization

In the optimization framework, an uncertain program (A1) can be
defined as [40]

min
x

f0�x� under fi�x;Θi�ui�� ≤ 0; ∀ Θi ∈ Vi;

i � 1; : : : ; m
(A1)

where x ∈ Rn denotes the vector of decision variables. The structure
of the program is supposed to be fixed and described by the cost
function f0 and the constraints applications fi. The data of the
problemΘ ∈ Rm are uncertain and depend on a disturbance variable
u such that each entry Θi evolves in uncertainty set Vi:

Vi � fΘijΘi � Π�ui�; ui ∈ U i ⊂ Rmig (A2)

The set V is the image of the disturbance set U through application
Π�·�. The paradigm of the robust convex optimization is based on the
following statements [32]. First, xmust be obtained by solving (A1)
without the exact knowledge of the data Θi. Second, the results are
valid for anyΘi ∈ Vi. Third, for a given robust feasible solution x, the
constraints fi�x;Θi�ui�� ≤ 0 are not violated for all Θi ∈ Vi. This
leads to the definition of a robust feasible solution to the uncertain
program (A1).Definition 2: The decision variable x is said to be
robustly feasible if and only if fi�x;Θi� ≤ 0 for allΘ instances inside
V.Definition 3: Let x be a given robustly feasible solution. The
guaranteed cost for the robust feasible solution x in a worst-case cost
sense is obtained by solving the maximization problem

max
Θi

ff0�x�: Θi ∈ U i; ∀ ig (A3)

Thus, the optimal solution of the uncertain problem (A1) is
obtained by solving a min–max problem, the so-called robust
counterpart:

min
x

max
Θi∈Vi

f0�x� under fi�x;Θi�ui�� ≤ 0; ∀ Θi ∈ U i;

i � 1; : : : ; m

(A4)

Robust convex programming aims at achieving a tractable de-
scription of the robust counterpart (A4) [32]. In the specific case of
linear programming,

min
x

max
�A;b�∈U

γTx under Ax ≤ b; ∀ �A; b� ∈ U

the convexity along with the tractability of the robust counterparts
(A4) is ensured by considering only uncertainty sets affine in the
disturbance variable

V �
�
�A;b� � �A0; b0� �

Xk
j�1

uj�Aj; bj�; u ∈ V ⊂ Rk

�
(A5)

Thus, the nature of V is completely described by the geometry of the
U set. Convex robust counterparts have been developed for specific
disturbance sets U. One case of particular interest for this work is the
interval case kuk∞ ≤ 1 for which the robust counterpart is also a
linear program [39].

Appendix B: Inclusion Functions

Consider a function f from Rn to Rm. The interval function �f�
from IRn to IRm is an inclusion function for f if

∀ �x� ∈ IRn; f��x�� ⊂ �f���x��

To illustrate the notion of the inclusion function, consider a functionf
fromR2 toR2, with variables x1 and x2 that vary within intervals �x1�
and �x2�. As illustrated in Fig. B1, the interval vector �f���x�� is an
inclusion function �f� of f since it is guaranteed to contain f��x��. An
inclusion function is not unique and its minimality depends on the
computation technique.

B1 Natural Inclusion Functions

To build an inclusion function, consider a function

f: Rn ↦ R; �x1; : : : ; xn� ↦ f�x1; : : : ; xn�

expressed as a finite composition of the operators �, −, �, ∕ and
elementary functions (sin, cos, exp, sqrt, ...), An inclusionmonotonic
and thin inclusion function �f�: IRn → IR for f is obtained by
replacing each real variable xi by an interval variable �xi� and each
operator or function by its interval counterpart. This function is called
the natural inclusion function of f. If f involves only continuous
operators and continuous elementary functions, then �f� is
convergent. If, moreover, each of the variables �x1; : : : ; xi� occurs
at most once in the formal expression of f then �f� is minimal.
Natural inclusion functions are not minimal in general because of

the dependency and wrapping effects. The accuracy of the resulting
interval strongly depends on the expression of f.

B2 Centered Inclusion Functions

Let f: Rn → R be a scalar function of a vector x � �x1; : : : ; xn�T.
Assume that f is differentiable over the domain given by the interval
vector �x�, and denote mid��x�� by m. The mean-value theorem then
implies that

∀ x ∈ �x�; ∃z ∈ �x� such that f�x� � f�m� � gT�z��x −m�

where g is the gradient of f. Thus,

∀ x ∈ �x�; f�x� � f�m� � �gT ���x���x −m�

where �gT � is an inclusion function for gT, so

f��x�� ⊆ f�m� � �gT ��x���x� −m�

Therefore, the interval function

�fc��x�Δ � f�m� � �gT ���x����x� −m�

is an inclusion function for f, which shall be called the centered
inclusion function. To illustrate the interest of this function in the one-
dimensional case, consider the function �fc��x� fromR to IR, defined
by

�fc��x� ≜ f�m� � �f 0���x���x −m�

for any given �x�. This function can be viewed as affine in x with an
uncertain slope belonging to �f 0���x��. The graph of �fc��x� can be
represented by a cone with center �m; f�m�� as illustrated in the
Fig. B2. It can be noticed that the smaller thewidthw��x�� is, the better
the cone approximates the function.
When thewidth of �x� is small, the effect of the pessimism possibly

resulting from the interval evaluation of �g���x�� is reduced by the
scalar product with �x� −m, which is a small interval centred on zero.
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