

TD 1 du cours Introduction aux E.D.P. Classification des EDP d'ordre 2 et modélisation.

Exercice I: Donner le type des E.D.P. suivantes:

$$1. \ \frac{\partial^2 u}{\partial x^2}(x,y) - 3 \frac{\partial^2 u}{\partial x \partial y}(x,y) + 4 \frac{\partial^2 u}{\partial y^2}(x,y) + \frac{\partial u}{\partial x}(x,y) - \frac{\partial u}{\partial y}(x,y) = 0;$$

2.
$$4\frac{\partial^2 u}{\partial x^2}(x,y) + 5\frac{\partial^2 u}{\partial x \partial y}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) + \frac{\partial u}{\partial x}(x,y) + \frac{\partial u}{\partial y}(x,y) = 2;$$

3.
$$(x - |x|)\frac{\partial^2 u}{\partial x^2}(x, y) + \frac{\partial^2 u}{\partial y^2}(x, y) - \frac{\partial u}{\partial x}(x, y) = 0;$$

4. Ecrire l'EDP suivante sous forme matricielle et déterminer son type.

$$\frac{\partial^2 u}{\partial x^2}(x,y) + x \frac{\partial^2 u}{\partial y^2}(x,y) = 0.$$

$$5. \ e^x \frac{\partial^2 u}{\partial x^2}(x,y) + x \frac{\partial^2 u}{\partial x \partial y}(x,y) - \frac{\partial^2 u}{\partial y^2}(x,y) + 5y \frac{\partial u}{\partial x}(x,y) = e^x.$$

6. Ecrire l'EDP suivante sous forme matricielle et déterminer son type en l'indiquant dans le plan (x, y).

$$\frac{\partial^2 u}{\partial x^2}(x,y) - 5\frac{\partial^2 u}{\partial x \partial y}(x,y) - (x+y)\frac{\partial^2 u}{\partial y^2}(x,y) + 4\frac{\partial u}{\partial x}(x,y) - x\frac{\partial u}{\partial y}(x,y) = \sin(x)$$

7. Ecrire l'EDP suivante sous forme matricielle et déterminer son type en l'indiquant dans le plan (x, y).

$$x\frac{\partial^2 u}{\partial x^2}(x,y) - xy\frac{\partial^2 u}{\partial x \partial y}(x,y) + y^2\frac{\partial^2 u}{\partial y^2}(x,y) - 3\frac{\partial u}{\partial x}(x,y) = 0$$

Exercice II : Equations de l'élastodynamique linéaire

On considère un solide de volume fermé V, de frontière ∂V soumis à des forces de volume de densité \vec{f} et à des forces de surface définies par un vecteur contrainte \vec{T}_n (force par unité de surface en un point du solide). La masse volumique du solide est notée $\rho(x)$ et le vecteur déplacement d'un point matériel x du solide est noté $\vec{u}(t,x)$.

- 1. En supposant la conservation de la masse du solide, écrire le principe fondamental de la dynamique dans un référentiel fixe dans l'espace et le temps, de base $(\vec{e_1}, \vec{e_2}, \vec{e_3})$.
- 2. En exprimant le vecteur \vec{T}_n en fonction du tenseur des contraintes $[\sigma_{ij}]$ et du vecteur normal à la surface \vec{n} et en appliquant le théorème de la divergence à l'équation du principe fondamental de la dynamique, écrire les équations aux dérivées partielles sur les trois composantes.
- 3. On suppose que le matériau du solide est linéaire isotrope. La loi de comportement de ce matériau est donc la loi de Hooke liant le tenseur des contraintes $[\sigma_{ij}]$, le champ de déplacement $\vec{u}(t,x)$ et le tenseur (linéarisé) des déformations $[\epsilon_{ij}]$ avec $\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)$:

$$\sigma_{ij}(\vec{u}) = \lambda(x) \operatorname{div}(\vec{u}) \delta_{ij} + 2\mu(x) \epsilon_{ij}(\vec{u}).$$

 λ et μ sont les constantes de Lamé et $\delta_{ij}=1$ si i=j ou $\delta_{ij}=0$ si $i\neq j$ est le symbole de Kronecker. Ecrire la formulation en déplacements de l'équation de la dynamique.

- 4. En supposant que le matériau est homogène $(\rho(x) = \rho, \lambda(x) = \lambda \text{ et } \mu(x) = \mu)$, simplifier l'écriture de l'équation dynamique précédente. On donnera également la forme vectorielle de l'EDP.
- 5. Transformer l'équation précédente en utilisant la formule $\vec{rot}(\vec{rot}) = \vec{grad}(\vec{div}) \vec{\Delta}$.
- 6. Identifier les solutions de cette équation telles que $\vec{rot}(\vec{u}(t,x)) = \vec{0}$ et $\vec{f} = \vec{0}$.
- 7. Identifier les solutions de cette équation telles que $\operatorname{div}(\vec{u}(t,x)) = 0$ et $\vec{f} = \vec{0}$.
- 8. Ecrire les conditions aux limites exprimant i) un encastrement sur la frontière du domaine ∂V , ii) une surface libre.