Robust control theory for flow control via reduced order models D. Arzelier LAAS-CNRS

Reduced Order Models (ROM) For Flow Control

- A Procedure 1 [Kasnakoglu 2007]
 - NSNL \xrightarrow{Lin} NSL \xrightarrow{Red} Linear synthesis on LROM
 - NSNL $\xrightarrow{Red.}$ NLROM $\xrightarrow{Lin.}$ Linear synthesis on LROM
 - ✓ Proper Orthogonal Decomposition (POD modes + actuation mode)
 - ✓ Snapshots
 - ✓ Galerkin Projection (GP)
- The nonlinear ROM:

$$\dot{x}(t) = C + Lx(t) + x^T Q x + \hat{C}u(t) + \hat{L}x(t)u(t) + \hat{Q}u^2(t)$$
$$y(t) = Cx(t) + Du(t)$$

where $x(t) \in \mathbb{R}^{6}$, $y(t) \in \mathbb{R}^{6}$ and $u(t) \in \mathbb{R}$

Linearization around an equilibrium state x_{eq} (or not) to get the LTI ROM:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$
 where $x \in \mathbb{R}^6$, $y \in \mathbb{R}^6$ and $u = f(x, t) \in \mathbb{R}$?

- ➡ Closed-form solutions ≠ Numerical solutions (LAAS-CNRS + S. Boyd 1990-1995)
 Control pb. = Mathematical programming pb. + efficient numerical method
- Weak results \neq Strong results

Complexity : P = NP ? and global proof : convexity

- LMI formalism emerging (Willems 1971)
- Developments of theoretical and numerical SDP tools: Interior points [Nesterov et Nemirovskii 1994] and cutting planes [Kelley 1960]
 - "Easy" problems: numerical alternative to usual closed-form solutions
 - "Tough" problems: convex relaxations

$$\min_{x \in \mathbb{R}^m} \sum_{i=1}^m c_i x_i = c' x \qquad A' P + P A \prec$$

sous $F_0 + \sum_{i=1}^m F_i x_i \succ \mathbf{0} \qquad P \succ \mathbf{0}$

Nonconvexity and/or nonpolynomial complexity obstruction

- Convex relaxations (Lagrangian duality)
- Algorithmic Approach (nonsmooth optimization)
- ✓ Take advantage of the theoretical and practical structure of the system in the algorithm
- Large scale and reliability (guaranteed computations) are still open problems for SDP (sensitivity theory)

Given the model:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^r$ and $u \in \mathbb{R}^m$
 $y(t) = Cx(t)$

Problem 1 : SOF

Find $K \in \mathbb{R}^{r \times m}$ s.t. A + BKC asymptotically stable (closed-loop spectrum in \mathbb{C}^-) Given the uncertain model :

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad M = \begin{bmatrix} A & B & C \end{bmatrix} \in \Omega$$

$$y(t) = Cx(t) \qquad \qquad = \operatorname{co}\left\{ \begin{bmatrix} A^{1} & B^{1} & C^{1} \end{bmatrix}, \cdots, \begin{bmatrix} A^{N} & B^{N} & C^{N} \end{bmatrix} \right\}$$

$$M(\boldsymbol{\xi}) = \begin{bmatrix} A(\boldsymbol{\xi}) & B(\boldsymbol{\xi}) & C(\boldsymbol{\xi}) \end{bmatrix} = \sum_{i=1}^{N} \boldsymbol{\xi}_{i} \begin{bmatrix} A^{i} & B^{i} & C^{i} \end{bmatrix}, \ \boldsymbol{\xi} \in \Xi = \left\{ \boldsymbol{\xi} = \sum_{i=1}^{N} \boldsymbol{\xi}_{i} = 1 \quad \boldsymbol{\xi}_{i} \ge 0 \right\}$$

Problem 2 : Robust SOF

Find a robustly stabilizing SOF u(t) = Ky(t) i.e. find a single matrix $K \in \mathbb{R}^{r \times m}$ s.t.

$$\Omega_{bf} = \operatorname{co}\left\{A^1 + B^1 K C, \cdots, A^N + B^N K C\right\}$$

is asymptotically stable $\forall \ \xi \in \Xi$

LAAS-CNRS

Robust control in flow Control

- Existence problem is a decidable (algorithmic) problem [Anderson 1975]
- Different approaches based on Lyapunov theory
 - ✔ Quantifier elimination procedure of Tarski-Seidenberg [Anderson 1975]
 - ✓ Nonlinear Programming methods [Levine-Athans 1970], [Overton 2000]
 - ✓ \mathcal{BMI} approaches

 $P > \mathbf{0} \qquad (A + BKC)'P + P(A + BKC) < \mathbf{0}$

 $\checkmark \ \mathcal{LMI}$ optimization with rank constraint:

$$B^{\perp}(AX + XA')B^{\perp'} < \mathbf{0} \quad X = Y^{-1} \text{ or rank} \begin{bmatrix} X & \mathbf{1} \\ \mathbf{1} & Y \end{bmatrix} = n$$
$$C^{\prime \perp}(A'Y + YA)C^{\prime \perp'} < \mathbf{0}$$

✓ Lagrangian relaxations + coordinate descent-type algorithm

The triplet (A, B, C) is stabilizable via SOF iff

$$\exists X \in \mathbb{S}_n^+$$
, $K_{sf} \in \mathbb{R}^{m imes n}$, $Z \in \mathbb{R}^{m imes r}$, $F \in \mathbb{R}^{m imes m}$ s.t.:

$$\mathcal{L}(A, B, C) = \begin{bmatrix} A & B \\ 1 & 0 \end{bmatrix}' \begin{bmatrix} 0 & X \\ X & 0 \end{bmatrix} \begin{bmatrix} A & B \\ 1 & 0 \end{bmatrix} + \operatorname{sym} \left\{ \begin{bmatrix} K_{sf}' \\ -1 \end{bmatrix} \begin{bmatrix} ZC & F \end{bmatrix} \right\} < 0$$
$$K = -F^{-1}Z$$

- First part of $\mathcal{L}(A,B,C)$ reminds us of KYP lemma
- Additional variables F, Z, allow a decoupling between the computation of the Lyapunov certificate X and of the SOF K
- The additional variable K_{sf} is necessarily a stabilizing SF for (A, B) (application of elimination lemma)

- Testing stability of a polytope of matrices is an *NP*-hard problem [Coxson and DeMarco 1999])
- Quadratic stabilizability framework: $\exists X \in \mathbb{S}_n^+$, and $\exists K \in \mathbb{R}^{r \times n}$

$$\begin{bmatrix} \mathbf{1} \\ \mathbf{K}C \end{bmatrix}' \begin{bmatrix} A(\xi) & B(\xi) \\ \mathbf{1} & \mathbf{0} \end{bmatrix}' \begin{bmatrix} \mathbf{0} & \mathbf{X} \\ \mathbf{X} & \mathbf{0} \end{bmatrix} \begin{bmatrix} A(\xi) & B(\xi) \\ \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{K}C \end{bmatrix} < \mathbf{0} \quad \forall \xi \in \Xi$$

- Robust stabilizability: For each $M = \begin{bmatrix} A & B \end{bmatrix} \in \Omega$, $\exists X \in \mathbb{S}_n^+$ and $\exists K \in \mathbb{R}^{r \times m}$ s.t.:

$$\begin{bmatrix} \mathbf{1} \\ \mathbf{K}C \end{bmatrix}' \begin{bmatrix} A(\xi) & B(\xi) \\ \mathbf{1} & \mathbf{0} \end{bmatrix}' \begin{bmatrix} \mathbf{0} & X(\xi) \\ X(\xi) & \mathbf{0} \end{bmatrix} \begin{bmatrix} A(\xi) & B(\xi) \\ \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{K}C \end{bmatrix} < \mathbf{0}$$

Quadratic stabilizability \Rightarrow robust stabilizability

- Internal stability (Lyapunov)
- Heterogeneous performances (time and frequency responses)

✓ Modern linear framework

- **Standard** model = central artefact [Doyle 1983]
- Robust stability and performance
- Optimality

$\label{eq:constructive} \textbf{CONSTRUCTIVE} \text{ approach for } C/S$

- Lyapunov theory
 - Optimization (Duality)

Some Preliminary Results

0.8 r

Robust control in flow Control