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Abstract: This paper focuses on the fixed-time minimum-fuel rendezvous between close elliptic
orbits of an active spacecraft with a passive target spacecraft, assuming a linear impulsive
setting and a Keplerian relative motion. Following earlier works developed in the 1960s,
the original optimal control problem is transformed into a semi-infinite convex optimization
problem using a relaxation scheme and duality theory in normed linear spaces. A new numerical
convergent algorithm based on discretization methods is designed to solve this problem. Its
solution is then used in a general simple procedure dedicated to the computation of the
optimal velocity increments and optimal impulses locations. It is also shown that the semi-
infinite convex programming has an analytical solution for the out-of-plane rendezvous problem.
Different realistic numerical examples illustrate these results.
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1. INTRODUCTION

Since the first space missions (Gemini, Apollo, Vostok)
involving more than one vehicle, space rendezvous be-
tween two spacecraft has become a key technology raising
relevant open control issues. Formation flight (PRISMA),
on-orbit satellite servicing or supply missions to the Inter-
national Space Station (ISS) are all examples of projects
that require adequate rendezvous planning tools. A main
challenge is to achieve autonomous far range rendezvous
on elliptical orbits while preserving optimality in terms of
fuel consumption. In short, the far range rendezvous is an
orbital transfer between an active chaser spacecraft and
a passive target spacecraft, with specified initial and final
conditions, over a fixed or a free time period. Searching
for the guidance law that achieves the maneuver with
the lowest possible fuel consumption leads to define a
minimum-fuel optimal control problem.

In this article, the fixed-time linearized fuel-optimal im-
pulsive space rendezvous problem as defined in Carter and
Brient (1995), is studied assuming a linearized Keplerian
relative motion. The impulsive approximation for the
thrust means that instantaneous velocity increments are
applied to the chaser whereas its position is continuous.
Indirect approaches, based on the optimality conditions
derived from the Pontryagin’s maximum principle and
leading to the so-called primer vector theory (Lawden
(1963)), have been extensively studied. For a fixed number
of impulses, necessary and sufficient conditions can be
derived (Carter and Brient (1995)). However due to the
nonconvex and polynomial nature of these conditions, a
numerical solution is still difficult to compute and would
only be suboptimal for the original rendezvous problem

for which the number of possible maneuvers is free. In
Arzelier et al. (2013), a mixed iterative algorithm com-
bines variational tests with sophisticated numerical tools
from algebraic geometry to solve these polynomial neces-
sary and sufficient conditions of optimality and avoid the
local optimization step. However, this algorithm remains
heuristic with no proof of convergence in all cases and
may exhibit only suboptimal solutions on some instances.

Neustadt (1964) proposed an important theoretical con-
tribution for the optimal control problem: it is recast to
a semi-infinite optimization problem, using a relaxation
scheme and the duality theory in minimum-norm prob-
lems. Claeys et al. (2013) revisit his approach from the
angle of generalized moment problems, by formulating it
as a linear programming problem on measures. In this ap-
proach, the numerical solving is rather cumbersome since
one needs high degree polynomial approximations for
building hierarchies of linear-matrix inequalities (LMIs).
Also, they consider only the case of ungimbaled identical
thrusters, which gives a linear problem.

Following Neustadt (1964), we propose a new numerical
algorithm to solve the fixed-time impulsive linear ren-
dezvous without fixing a priori the number of impulses,
and whose convergence is rigorously shown. Firstly, we
focus on the moment problem formulation (Sec. 2) and
recall topological duality theory results from Luenberger
(1969) and Neustadt (1964), which allow for the moment
problem to be transformed into a Semi-Infinite Convex
Programming (SICP) Problem (Sec. 4). The novelty of
our approach is to use discretization methods Reemt-
sen and Rückman (1998) to solve the SICP problem.
A convergent numerical algorithm is designed in Sec. 4,



whose solution is the optimal primer vector of the original
rendezvous problem. An estimation of the numerical error
made on the optimal cost of the original problem, is also
provided. Then, the optimal impulses location and the
optimal velocity increments are retrieved via a simple pro-
cedure fully exploiting results stated in Neustadt (1964).
The efficiency of the proposed algorithm is illustrated with
two different realistic numerical examples.

Notations: a, e, ν are respectively the semi-major axis,
the eccentricity and the true anomaly of the reference
orbit. N is the number of velocity increments while νi,
i = 1, · · · , N , define impulses application locations. The
velocity increment at νi will be denoted by ∆V (νi).
{bi}i=1,··· ,N is a sequence of variables bi, i = 1, · · · , N ,
and sgn(z) is the sign function of the variable z. The
prime denotes differentiation with respect to the true
anomaly ν. Op×m and 1m denote respectively the null
matrix of dimensions p × m and the identity matrix of
dimension m. Let r ∈ N∗ and (p, q) ∈ R2 such that:
1 ≤ p ≤ ∞ and 1

p + 1
q = 1. Classically, C([ν0, νf ],Rr) is

the Banach space of continuous functions f : [ν0, νf ]→ Rr
equipped with the norm ‖f‖q = sup

ν0≤ν≤νf
‖f(ν)‖q. Denote

by L1,p([ν0, νf ],Rr) the normed linear space of Lebesgue
integrable functions from [ν0, νf ] to Rr with the norm

given by: ‖u‖1,p =

∫ νf

ν0

‖u(ν)‖pdν. Let BV([ν0, νf ],Rr)

be the space of functions of bounded variation over the

interval [ν0, νf ] with the norm: ‖g‖tv,p = sup
Pκ

κ∑
i=1

‖g(νi)−

g(νi−1)‖p, where the supremum is taken over all finite
partitions Pκ = (νi)i=1,...,κ of [ν0, νf ]. For a symmetric
real matrix S ∈ Rn×n, the notation S � 0 (S � 0) stands
for the negative (positive) semi-definiteness of S. Finally,
χA is the indicator function of the set A.

2. PROBLEM STATEMENT AND PRELIMINARIES

This section first introduces and reviews notations and
assumptions for the minimum-fuel linearized fixed-time
rendezvous problem. Then, adopting the approach of
Neustadt (1964), the usual optimal control formulation
of the rendezvous problem is recast as a moment problem
defined on the functional space L1,p([ν0, νf ],Rr).

2.1 Optimal control formulation of the rendezvous problem

Typically, in a rendezvous situation, a spacecraft is in
sufficiently close proximity to allow for the linearization
of the relative equations of motion. Their validity is guar-
anteed when the distance between the target and the
chaser is assumed to be small compared to the radius of
the target vehicle orbit. The equations of relative motion
are written in a moving Local-Vertical-Local-Horizontal
(LVLH) frame located at the center of gravity of a passive
target and which rotates with its angular velocity. In this
frame, the state vector XT = [ px py pz vx vy vz ] is com-
posed of the positions and velocities of a chaser satellite in
the in-track, cross-track and radial axes, respectively. Un-
der the previous assumptions and using the true anomaly
of the target-vehicle orbit as the independent variable, a
system of linear differential equations with periodic coeffi-
cients is easily obtained and the considered minimum-fuel
linearized rendezvous problem may be reformulated as the
following optimal control problem:

Problem 1. (Optimal control problem)
Find ū ∈ L1,p([ν0, νf ],R3) solution of the optimal control
problem:

inf
u
‖u‖1,p = inf

u

∫ νf

ν0

‖u(ν)‖pdν

s.t. X ′(ν) = A(ν)X(ν) +B(ν)u(ν), ∀ ν ∈ [ν0, νf ]
X(ν0) = X0, X(νf ) = Xf ∈ R6, ν0, νf fixed,

(1)

where matrices A(ν) and B(ν) define the state-space
model of relative dynamics given by Tschauner (1967):

A(ν) =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2
0 −1 0 0 0 0
0 0 3/(1 + e cos(ν)) −2 0 0

 , B(ν) =

[
O3×3
13

1 + e cos(ν)

]
(2)

The form of these matrices shows that the equations
describing motion in the plane of the target-vehicle orbit
and those describing motion normal to the orbit plane
can be decoupled and handled separately. Therefore, the
out-of-plane and in-plane rendezvous can be dealt with
independently: the state vector dimension and the number
of inputs in (1) are denoted n and r, respectively with
n = 2, r = 1 for the out-of-plane case and n = 4, r = 2
for the in-plane case. Due to space limitations, this paper
focuses on the in-plane rendezvous.
Remark 1. In Problem 1, the 1-norm cost captures the
consumption of fuel used. In fact, the performance index
used in Problem 1 has been normalized to stick to the
usual characteristic velocity expressed in m/s.

2.2 A minimum norm moment problem

Following the approach from Neustadt (1964), Problem
1 is now transformed into an equivalent problem of
moment by integrating equation (1). As A ∈ C(R,Rn×n),
the equation (1) has a unique solution that exists for
every X0 ∈ Rn and for all ν ∈ R and for u(ν) ∈
L1,p([ν0, νf ],Rr), (Antsaklis and Michel (2003)):

X(ν) = Φ(ν, ν0)X0 +

∫ ν

ν0

Φ(ν, σ)B(σ)u(σ)dσ, (3)

where Φ(ν, ν0) = ϕ(ν)ϕ−1(ν0) and ϕ(ν) are respec-
tively the transition and Yamanaka-Ankersen fundamen-
tal matrices of Keplerian relative motion Yamanaka and
Ankersen (2002). Let us define the matrix Y (ν) =

ϕ−1(ν)B = [ y1(ν) · · · yn(ν) ]
T ∈ Rn×r, then:

c = ϕ−1(νf )X(νf )− ϕ−1(ν0)X0

=

∫ νf

ν0

ϕ−1(σ)B(σ)u(σ)dσ =

∫ νf

ν0

Y (σ)u(σ)dσ.
(4)

It is important to notice for the remainder of the analysis
that for the specific matrices Y (ν) encountered in the ren-
dezvous problem, y1(ν) · · · yn(ν) are linearly independent
elements of C([ν0, νf ],Rr). This will be assumed in the
rest of the paper. It follows from (4) that Problem 1 can
be equivalently written as:
Problem 2. (Minimum norm moment problem) Find ū(t)
∈ L1,p([ν0, νf ],Rr) solution of the minimum norm mo-
ment problem:

inf
u
‖u‖1,p = inf

u

∫ νf

ν0

‖u(ν)‖pdν

s.t.

∫ νf

ν0

Y (σ)u(σ)dσ = c, ν0, νf fixed.
(5)

It is well-known that Problem 2 may not reach its optimal
solution due to concentration effects (see the reference



Roub́ıček (2006)). This is mainly due to the fact that the
functional space L1,p([ν0, νf ],Rr) in which the optimal
solution is sought, is not the topological dual of any other
functional space Luenberger (1969). It is then necessary
to resort to a relaxation scheme by embedding the space
L1,p([ν0, νf ],Rr) in the dual space C∗([ν0, νf ],Rr) of the
Banach space C([ν0, νf ],Rr).

3. A CLASSICAL APPROACH REVISITED

In this section, the theoretical framework used to trans-
form the original optimal control problem into a semi-
infinite optimization program is recalled.

3.1 Relaxation of the original problem

A so-called relaxed problem is considered, whose solutions
are thought of as generalized solutions of the original
Problem 2.

Problem 3. (Relaxed problem)
Determine ḡ ∈ BV([ν0, νf ],Rr) solution of the following
problem:

inf
g
‖g‖tv,p = inf

g
sup
Pκ

κ∑
i=1

‖g(νi)− g(νi−1)‖p,

s.t.

∫ νf

ν0

Y (ν)dg(ν) = c.

(6)

Pκ = {ν0 = ν1 < ν2, · · · , < νκ = νf} is any finite
partition of [ν0, νf ]. It is shown in Neustadt (1964) that
the infimum of Problem 3 is reached and that it is equal to
the infimum of Problem 2, denoted by η̄ in what follows.

In addition, a unique association between the space
BV([ν0, νf ],Rr) and the dual C∗([ν0, νf ],Rr) of the space
C([ν0, νf ],Rr) is defined by the Riesz Representation
Theorem, Luenberger (1969). Defining the bilinear form
pairing C([ν0, νf ],Rr) and C∗([ν0, νf ],Rr) by the duality
bracket:

l(yi) = 〈yi(·), l〉 =

∫ νf

ν0

yi(ν)Tdg(ν), (7)

Problem 3 may equivalently rewritten as:

Problem 4. (Linear minimum norm problem)
Find a linear functional l̄ ∈ C∗([ν0, νf ],Rr) solution of the
linear minimum norm problem:

η̄ = inf
l
‖l‖ = inf

l
sup

‖y(·)‖q≤1

|l(y)|

s.t. l(yi) = 〈yi(·), l〉 = ci, ∀ i = 1, · · · , n.
(8)

Despite the fact that Problem 4 is an infinite-dimensional
optimization problem, it is particularly appealing due to
its simplicity and the possibility to use a duality principle
based on the extension form of the Hahn-Banach theorem.
This establishes the equivalence between two optimization
problems respectively defined in a Banach space and its
dual. The result is summarized in the next subsection.

3.2 A semi-infinite programming problem

The following seminal and important result has been
originally given in Neustadt (1964) in its complete form
and partially in Krasovskii (1957) for particular optimiza-
tion problems. Here, we follow the lines developed in the
textbook of (Luenberger, 1969, Chapter 5).

Theorem 1. (Luenberger (1969))

Let yi(·) ∈ C ([ν0, νf ],Rr), ∀ i = 1, · · · , n and suppose
that

D = {l ∈ C∗ : 〈yi(·), l〉 = ci, i = 1, · · · , n} 6= ∅, (9)

then
η̄ = min

l∈D
‖l‖ = max

‖Y T (ν)λ‖q≤1
cTλ. (10)

In addition, let l̄ and λ̄ be optimal solutions of (10),

λ̄ = Arg[ max
‖Y T (ν)λ‖q≤1

cTλ] and let ȳ(ν) =

n∑
i=1

λ̄iyi(ν) =

Y T (ν)λ̄ ∈ Rr. Then the optimal l̄ is aligned with the
optimal ȳ:〈

ȳ(·), l̄
〉

=

∫ νf

ν0

λ̄TY (ν)dḡ(ν) = ‖ȳ(·)‖q‖l̄‖

= sup
ν0≤ν≤νf

(‖ȳ(·)‖q) ‖ḡ‖tv,p
(11)

The two problems defined in eq. (10) may be considered
as dual through the equality of the optimal values of
their respective objectives and the relation between their
solutions thanks to the alignment condition in eq. (11).
This results in a significant simplification: The infinite-
dimensional optimization Problem 4 has been converted
to a search of an optimal vector λ̄ in a finite-dimensional
vector space submitted to a continuum of constraints,
yielding a semi-infinite convex problem (SICP):

Problem 5. (SICP problem) Find λ̄ ∈ Rn solution of

µ̄ = min
λ∈Rn

−cTλ
s.t. ‖Y T (ν)λ‖q ≤ 1.

(12)

Note that µ̄ = −η̄. An efficient numerical method for
solving Problem 5 is given in Sec. 4. Once its solution
is obtained, the alignment relation between the function
ȳ(·) element of the Banach space C([ν0, νf ],Rr) and the
functional l̄ belonging to its dual space C∗([ν0, νf ],Rr) is
particularly important to get back to the optimal bounded
variation solution of the relaxed Problem 3.

Theorem 2. (Neustadt (1964))

Let yi(·) ∈ C ([ν0, νf ],Rr), i = 1, . . . , n and λ̄ ∈
Rn be an optimal solution of Problem (12). Define
the sets Γs = {ν̂ ∈ [ν0, νf ] : |ȳs(ν̂)| = 1} and

Γ =

{
ν̂ ∈ [ν0, νf ], ‖ȳ(ν̂)‖q = max

ν0≤ν≤νf
‖ȳ(ν)‖q = 1

}
. Note

that Γ = ∪sΓs for p = 1. There is an optimal solution
ḡ(·) ∈ BV ([ν0, νf ],Rr) of the relaxed Problem 3, which
is a step function with at most n points of discontinuity
ν̂j ∈ Γ, j = 1, · · · , N ≤ n. Its jumps are given by:

ḡs(ν̂j)− ḡs(ν̂−j ) = αν̂j sgn(ȳs(ν̂j))χΓj , αν̂j > 0, p = 1, or

ḡs(ν̂j)− ḡs(ν̂−j ) = αν̂j |ȳs(ν̂j)|q−1sgn(ȳs(ν̂j)), 1 < p <∞,
(13)

for s = 1, · · · , r and αν̂j solutions of the linear system:

N∑
j=1

βi(ν̂j)αν̂j = ci, i = 1, · · · , n (14)

where βi(ν̂j) are given by:

βi(ν̂j) =

r∑
s=1

yi,s(ν̂j)sgn(ȳs(ν̂j)), p = 1, or

βi(ν̂j) =

r∑
s=1

yi,s(ν̂j)|ȳs(ν̂j)|q−1sgn(ȳs(ν̂j)), 1 < p <∞,

(15)
for all j = 1, · · · , N .



This theorem states important results that have been
known for a while in the aerospace community but whose
value has not been completely exploited to derive efficient
numerical algorithms for impulsive maneuvers design.
First, it says that the optimal controlled trajectory for
the minimum-fuel Keplerian linearized elliptic rendezvous
problem is purely impulsive and that the number of
impulses is upper-limited by n which is the dimension of
the fixed final conditions of the optimal control problem.

Remark 2. It is also shown in Neustadt (1964) that a
sequence of functions uε(·) ∈ L1,p([ν0, νf ],Rr) converges
to a linear combination of δ(·) functions corresponding to
the function ḡ(·) with equal norms. Let ∆V (ν̂j) = ḡ(ν̂j)−
ḡ(ν̂−j ), then roughly speaking, this may be described by:

ūε(ν) →
N∑
j=1

∆V (ν̂j)δ(ν̂j − ν), ε→ 0. (16)

Indeed, the initial optimal control problem amounts
to find the sequences of optimal impulse locations
{ν̂i}i=1,··· ,N and optimal impulse vectors {∆V (ν̂i)}i=1,··· ,N
verifying the boundary equation:

c =

N∑
i=1

Y (ν̂i)∆V (ν̂i). (17)

3.3 Primer-vector interpretation and relation with the
mixed algorithm in Arzelier et al. (2013)

The vector y(ν) = Y T (ν)λ involved in (12) is nothing
but the primer vector initially defined in the seminal
work of Lawden (Lawden (1963)). In this reference, the
primer vector y(ν) is defined as the velocity adjoint vector
arising from applying the Pontryagin Maximum Principle
to optimal trajectory problems or Lagrangian duality as
in Carter and Brient (1995) where the vector λ̄ is the
optimal Lagrange multiplier. For an optimal impulsive
trajectory, the primer vector y(ν) must satisfy the well-
known Lawden’s necessary and sufficient optimality con-
ditions recalled in Carter and Brient (1995) or in Arzelier
et al. (2013). In this last reference, a mixed iterative algo-
rithm aiming at converging to the minimum-fuel solution
over the number of impulses via an iterative process is
designed by taking advantage of the polynomial nature of
the underlying optimality conditions. Although efficient in
practice on some instances, this last algorithm suffers from
the lack of proof of convergence of the iterative procedure
based on simple heuristic rules. As will be shown in the
Section 5 dedicated to numerical examples, this algorithm
may fail and may only exhibit a suboptimal solution.
The next section proposes a new procedure based on
a discretization algorithm for the solution of the semi-
infinite programming Problem 5 whose convergence may
be rigorously established.

4. A CONVERGENT DISCRETIZATION APPROACH

4.1 General solving procedure

Based on Problem 5 and Theorem 2, a convergent nu-
merical method is presented. Firstly, the SICP Problem 5
is solved using Algorithm 1 given in Section 4.2 together
with its convergence proof. Algorithm 1 provides a numer-
ical value for the optimal cost. Secondly, one identifies
the impulse locations and velocity increments based on
Theorem 2 in Algorithm 2 in Section 4.3.

4.2 Convergent discretization algorithms for SICP

Consider the general formulation of Problem 5 as a semi-
infinite programming problem P(Θ):

Minimize f(λ)
subject to g(λ, ν) ≤ 0, ν ∈ Θ (18)

Note that in our case f is a linear function of λ, g(·, ν), ν ∈
Θ is convex and Θ is a compact set (a closed interval). Effi-
cient discretization methods have been developed for such
problems (Reemtsen and Rückman, 1998, Chap.7). They
consider a sequence of finite subsets Θi ⊆ Θ and solve
P(Θi) respectively. Let M(Θi) be the set of feasible points
for problem P(Θi): M(Θi) = {λ : g(λ, ν) ≤ 0, ν ∈ Θi} .
The advantage is that for finite programs P(Θi), feasibil-
ity can usually be checked easily and accurately.

Under certain conditions, one chooses an initial set Θ0,
and obtains an initial solution λ0 of P(Θ0). Then Θi

is chosen as: Θi = Θi−1 ∪
{

arg

[
max
ν∈Θ

g(λi−1, ν)

]}
. One

has to ensure that the sequence of solutions of P(Θi)
converges to the solution of P(Θ). In the following, we
summarize results from (Reemtsen and Rückman, 1998,
Lemma 2.4, Chap.7, Theorem 2.8, Chap.7, Corollary 2.9,
Chap.7), which prove that this procedure is convergent.
Algorithm 1 details the implementation for our particular
case.

For each feasible point λΘ ∈ M(Θ) (if such point exists)
and Θi ⊆ Θ, define the level set

L(λΘ,Θi) = M(Θi) ∩ {λ : f(λ) ≤ f(λΘ)} . (19)

Theorem 3. (Reemtsen and Rückman, 1998, Chap.7) Let
f and g(., ν), ν ∈ Θ, be convex. Let a sequence of
compact sets (Θi)i∈N s.t. Θ0 is finite, Θi ⊆ Θi+1 ⊆ Θ and
lim
i→∞

dist(Θi,Θ) = 0 where dist is the classical Hausdorff

distance.

(Assumption A1.) Suppose there exists λΘ ∈ M(Θ) s.t.
L(λΘ,Θ0) is bounded.

Then the set of solutions of P(Θi) is nonempty and com-
pact. Algorithm 1 generates an infinite sequence λi such
that λi has an accumulation point and each such point
solves P(Θ). Moreover the sequence inf

λ∈M(Θi)
f(λ) con-

verges monotonically increasingly to inf
λ∈M(Θ)

f(λ) when

i→∞.

In what follows, we consider two cases which arise in
practice and which specify the norms for Problem 5:
– for a gimbaled single thruster one has p = q = 2, which
gives a semi-infinite positive semi-definite (SDP) problem:

inf
λ∈Rn

−cTλ

s.t.

[
−1 λTY (ν)

Y T (ν)λ −1

]
� 0, ∀ ν ∈ [ν0, νf ];

(20)

– for 6 ungimbaled identical thrusters, one has p = 1, q =
∞ which gives a semi-infinite linear programing (LP)
problem:

inf
λ∈Rn

− cTλ

s.t.

∣∣∣∣∣
n∑
i=1

λiyi,s(ν)

∣∣∣∣∣ ≤ 1,∀ ν ∈ [ν0, νf ], s = 1, . . . , r.
(21)

Both problems defined by (21) and (20) are particular
instances of P(Θ) for which discretized versions can be



efficiently numerically solved. For the convergence proof,
Assumption A1 in Theorem 3 is verified in what follows.

Lemma 1. Let Θ0 = {θ0, θ1} ⊆ [ν0, νf ], θ1−θ0 6= kπ, k ∈
N. Assumption A1 holds for both Problems in eqs. (20)
and (21) for L(0,Θ0).

Thus, Algorithm 1 is initialized based on Lemma 1 and
an initial λ(0) (and primer vector Y T (ν)λ(0)) is computed
by solving eq. (17) for ν ∈ {θ0, θ1}.

Input: interval Θ = [ν0, νf ], matrix Y (ν), initial
condition c, accuracy ε

Output: µ(i) and λ(i) numerical solution of Pb. 5
Init:
i← 0;
Θ0 ← {θ0; θ1} ⊂ Θ s.t. θ0 − θ1 6= kπ;
Solve eq. (17) for ∆V0 and ∆V1;
Solve for λ(0) the system Y T (θk)λ(0) = ∆Vk/‖∆Vk‖q,
k = 0, 1.
while max

θ∈Θ
‖Y (θ)Tλ(i)‖q − 1 > ε do

i← i+ 1; Θi ← Θi−1 ∪
{

arg

[
max
θ∈Θ
‖Y T (θ)λ(i)‖q

]}
;

Find λ(i) solution of discretized problem:

µ(i) = inf
λ∈Rn

−cTλ
s.t. ‖Y T (θk)λ‖q ≤ 1 for all θk ∈ Θi

end

return µ(i), λ(i).
Algorithm 1: Numerical procedure for solving Problem 5

We give in what follows an estimation of the accuracy
of the obtained numerical value µ(i) with respect to
the optimal cost η in Problem 4. The discretization
method produces outer approximations of a solution of
the SIP problem, i.e. the approximate solutions of P(Θi)
are not feasible for P(Θ), but provide increasing lower
bounds for its solution. A global solution λ̄(i) of P(Θi)

which is feasible for P(Θ), solves P(Θ), since: f(λ̄(i)) =

inf
λ∈M(Θi)

f(λ) ≤ inf
λ∈M(Θ)

f(λ) ≤ f(λ̄(i)).

Thus, if the discretized problem P(Θi) is accurately

solved, one has: µ(i) ≤ inf
λ∈M(Θ)

f(λ). This gives an upper

bound for η̄, using equation (10):

η̄ = max
‖Y T (ν)λ‖q≤1

cTλ = − min
‖Y T (ν)λ‖q≤1

−cTλ ≤ −µ(i).

(22)
A lower bound can also be obtained.

Lemma 2. Suppose one can rigorously check that when
Algorithm 1 stops,

max
θ∈Θ
‖Y (θ)Tλ(i)‖q ≤ 1 + ε,

where ε is a user defined input parameter. Then

−µ(i)

1 + ε
≤ η̄. (23)

Thus, given ε, the output µ(i), λ(i) of Algorithm 1 provides
a good numerical approximation for the optimal cost
of the original problem, η̄. The impulse locations and
impulse vectors are recovered as follows.

4.3 Reconstruction of the solution

The impulse locations can be identified based on Theo-
rem 2 i.e., by finding Γ = {ν̂k ∈ [ν0, νf ] : ‖Y (ν̂k)Tλ(i)‖q =
1}. This is done numerically on a grid of [ν0, νf ]. Then one
solves the system given in eq. (17). This is always possible,
since, according to Neustadt, the following holds: if at
most n locations are found in Γ, the system is underde-
termined/determined and it has at least one solution; if
more than n locations are found in Γ, one can select n
among them such that the system has a solution. The
detailed numerical procedure is given in Algorithm 2.

Input: interval Θ = [ν0, νf ], matrix Y (ν), initial
condition c, accuracy ε, numerical solution
λ(i) ∈ Rn of Pb. 5

Output: impulse locations and impulse vectors
Γimp, {∆Vi}

Γd ← discretized grid of [ν0, νf ]

Γ← {ν̂k ∈ Γd : ‖Y (ν̂k)Tλ(i)‖q − 1 ∈ [−ε, ε]}
N ← size(Γ)
if (N ≤ n) then

Γimp ← Γ
Solve for ∆Vi, i = 1, . . . , N , the linear system

c =
∑

ν̂i∈Γimp

Y (ν̂i)∆Vi.

else
Γimp ← Choose n points in Γ s.t. the linear system

c =
∑

ν̂i∈Γimp

Y (ν̂i)∆Vi has a solution.

end
return Γimp, {∆Vi}.
Algorithm 2: Numerical Reconstruction of impulse lo-
cations and vectors

5. NUMERICAL EXAMPLE

The algorithms were implemented in C language and
the discretized SDP problems are solved with SDPA
developed by Yamashita et al. (2011). The numerical
example is dedicated to the in-plane motion case and
based on some example of the Automated Transfer Vehicle
(ATV) setup, (Labourdette et al. (2008)). The parameters
of the rendezvous are given in Table 1.

Semi-major axis a = 6763 km.
Inclination i=52 deg.

Argument of perigee ω=0 deg.
R.A. of node Ω= 0 deg.
Eccentricity e = 0.0052
Initial time ν0 = 0 rad.

XT
0 [-30 0.5 8.514 0] km. - m/s.

Final anomaly νf = 8.1832 rad.
Duration tf − t0 = 7200 s. (1.3 orbits)
XT

f [-100 0 0 0] m. - m/s.

Table 1. Parameters of the ATV example

For the in-plane rendezvous, two different examples are
studied: I- a single gimbaled thruster using L1,2 norm and
II- 6 ungimbaled thrusters with L1,1 norm.

I: L1,2 norm For ε = 10−4, Algorithm 1 gives the op-

timal solution λ̄ = [−1.177 1.132 − 1.571 14.36]
T
.10−4

after 6 iterations (Fig. 1, 2 and 3 show the initialization
step, the first and the last iterations). Algorithm 2 builds
a 4-impulse minimum-fuel solution with an optimal cost



of 10.7989 m/s. The optimal impulse locations are given
by Γimp = {0, 1.3872, 6.6639, 8.1832} [rad]. The optimal
trajectory in the plane (x, z) is depicted by Fig. 4. It is
important to remark that the mixed algorithm proposed
in Arzelier et al. (2013) fails to converge to the optimal
solution on this particular instance and stops at a 4-
impulse suboptimal solution whose consumption is given
by 11.01 m/s.
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tialization.

8 [rad]
0 2 4 6 8

ky
(8

)k

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Primer vector norm: First
iteration.
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Fig. 3. Primer vector norm:
Final iteration.
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Fig. 4. Optimal trajectory in
(x, z) plane.

II: L1,1 norm The L1,1 case is run considering a tol-
erance parameter ε = 10−4. The optimal solution λ̄ =
[0.1041 −0.1083 0.1373 1.2679]T is obtained after 5 itera-
tions of Algorithm 1. Then, the optimal impulse locations
are given by Γimp = {0, 1.3352, 6.7087, 8.1832} [rad].
The total fuel-consumption for this in-plane maneuver is
of 10.8415 m/s. The norm of the primer vector history is
proposed after the two-impulse initialization of Algorithm
1 on Fig. 5 while the second and the final iterations are on
Fig. 6 and 7. Finally, the optimal trajectory is exposed on
Fig. 8. The comparisons of L1,2 and L1,1 fuel-minimum
solutions show a minor difference with respect to the
optimal locations and overall consumption.
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Fig. 5. Primer vector norm: Ini-
tialization.
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Fig. 6. Primer vector norm: First
iteration.

8 [rad]
0 2 4 6 8

ky
(8

)k

0

0.2

0.4

0.6

0.8

1

Fig. 7. Primer vector norm: Final
iteration.
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Fig. 8. Optimal trajectory in
(x, z) plane.

6. CONCLUSIONS

A new convergent numerical algorithm has been proposed
to solve the linearized impulsive fixed-time fuel-optimal
space rendezvous problem. Beside its convergence proof,
the algorithm features simplicity, speed and reliability:
it makes use of state of the art linear/SDP solvers; on
classical rendezvous mission examples, for accuracies of
ε = 10−4, no more than 10 iterations are necessary, which
accounts for few milliseconds on a modern computer; the
numerical error bounds provide guarantees that the input
accuracy ε is met at algorithm’s output.
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