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Interconnected Positive Systems
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Abstract

This paper is concerned with the analysis and synthesis of interconnected systems constructed

from heterogeneous positive subsystems and a nonnegative interconnection matrix. We first show that

the interconnected system is positive and stable if and onlyif a Metzler matrix, which is built from

the coefficient matrices of the positive subsystems and the interconnection matrix, is Hurwitz stable.

By means of this key result, we further provide several results that characterize the positivity and

stability of interconnected systems in terms of the Frobenius eigenvalue of the interconnection matrix

and the weightedL1-induced norm of positive subsystems to be defined in this paper. Moreover, in the

case where every subsystem is SISO, we provide explicit conditions under which the interconnected

system has the property of persistence, i.e., the state of the interconnected system converges to a

unique strictly positive vector (that is known in advance upto a strictly positive constant multiplicative

factor) irrespective of nonnegative and nonzero initial states. We finally extend the persistence results

to formation control of multi-agent positive systems. Thisresult can be seen as a generalization of a

well-known consensus algorithm that has been basically applied to interconnected systems constructed

from integrators.
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I. I NTRODUCTION

Recently, systems of interest in the field of engineering, biology, economics, etc., have become

more complex and larger-scaled, and as such intensive research effort has been made for devel-

oping dedicated analysis and synthesis tools. The issue is how to derive sharpened analysis and

synthesis conditions exploiting the properties of subsystems and interconnection structure [16],

[23], [22], [12]. In this paper, we are particularly interested in the case where the subsystems

are positive. A dynamical system is said to be (internally) positive if its state and output are

nonnegative for any nonnegative initial state and nonnegative input [11], [19]. This property

can be seen naturally in biology, network communications, economics and probabilistic systems.

Moreover, simple dynamical systems such as integrator and first-order lag and their series/parallel

connections are all positive. Even though their dynamics are very simple, the behavior of inter-

connected systems constructed from them is complicated anddeserves investigation especially

in the study area of multi-agent systems [23], [22]. This fact also strongly motivates us to focus

on the interconnected positive systems. Nowadays the studyon linear positive system is active

and remarkable results have been obtained along with convexoptimization theory [28], [15],

[1], [25], [26], [29], [20], [4], [10]. Because of the positiveness, linear positive systems allow

special type of Lyapunov functions for the analysis and synthesis, such as co-positive functions

and quadratic in the state functions with diagonal Lyapunovmatrices [2], [29], [26].

This paper is concerned with the analysis and synthesis of interconnected systems constructed

from heterogeneous positive subsystems and a nonnegative interconnection matrix. We first show

that the interconnected system is positive† and stable if and only if a Metzler matrix, which is

built from the coefficient matrices of the positive subsystems and the interconnection matrix, is

Hurwitz stable. By means of this key result, we further provide several results that characterize

the positivity and stability of interconnected systems in terms of the Frobenius eigenvalue [17]

of the interconnection matrix and the weightedL1-induced norm of positive subsystems to be

defined in this paper. Moreover, in the case where every subsystem is SISO, we provide explicit

conditions under which the interconnected system has the property of persistence, i.e., the state

of the interconnected system converges to a unique strictlypositive vector (that is known in

advance up to a strictly positive constant multiplicative factor) irrespective of nonnegative and

†More precisely, we replace the positivity by admissibility, whose definition is given later.
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nonzero initial states. More precisely, we prove that the persistence is achieved if every positive

subsystem shares identical unweightedL1-induced normγ (which is nothing but the steady-state

gain) and if the interconnection matrix is irreducible [17]and has the Frobenius eigenvalue1/γ.

We finally extend the persistence results to formation control of multi-agent systems [13], [22],

[30], [31]. For multiple agents that move over a plane, the goal is to design a communication

scheme over the agents with respect to each agent’s positionso that prescribed formation can

be achieved. We show that such communication scheme synthesis is possible even if the agents

have different dynamics (and hence heterogeneous) as long as they are positive, stable and share

identical unweightedL1-induced norm (steady-state gain). As illustrated later, this result can be

seen as a generalization of a well-known consensus algorithm that has been basically applied

to interconnected systems constructed from integrators [22]. Our results essentially concerns

consensus-basedoutput control of interconnectedheterogeneous positive systems, and this is

in stark contrast with recent results [10] onstate consensus of interconnectedhomogeneous

positive systems where homogeneousness drastically facilitates the treatment. We finally note

that this paper assembles those results in [5], [9], [8] withexplicit proofs for technical lemmas

and theorems.

We use the following notations. For given two matricesA andB of the same size, we write

A > B (A ≥ B) if Aij > Bij (Aij ≥ Bij) holds for all (i, j), whereAij stands for the

(i, j)-entry of A. In relation to this notation, we also defineRn
++ := {x ∈ Rn : x > 0} and

Rn
+ := {x ∈ Rn : x ≥ 0}. We also defineRn×m

++ and R
n×m
+ with obvious modifications. In

addition, we denote byDn
++ the set of diagonal and strictly positive matrices of the size n. For

A ∈ Rn×n, we denote byσ(A) andρ(A) the set of the eigenvalues ofA and the spectral radius

of A, respectively. ForA ∈ R
n×n
+ , Theorem 8.3.1 in [17] states that there is an eigenvalue equal

to ρ(A). This eigenvalue is often called the Frobenius eigenvalue and denoted byλF(A) in this

paper. For given vectorx ∈ R
n we define its 1-norm by‖x‖1 :=

∑n

i=1 |xi|. In addition, for

s(t) : R+ → R
n, we define itsL1-norm by

‖s‖1 :=

∫ ∞

0

‖s(t)‖1dt.

Finally, we define the families of functionsLn
1 , Ln

1+ as follows:

Ln
1 := {s| s(t) : R+ → R

n, ‖s‖1 < ∞}, Ln
1+ := {s| s(t) : R+ → R

n
+, ‖s‖1 < ∞}.
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II. PRELIMINARIES

In this section, we gather basic definitions and fundamentalresults for positive systems.

Definition 1 (Metzler Martrix): [11] A matrix A ∈ R
n×n is said to beMetzler if its off-

diagonal entries are all nonnegative, i.e.,Aij ≥ 0 (i 6= j).

In the sequel, we denote byMn (Hn) the set of the Metzler (Hurwitz stable) matrices of the

size n. Under these notations, the next lemmas hold. The proof of Lemma 2 is given in the

appendix section, Subsection VII-A.

Lemma 1: [11], [19], [21] For givenA ∈ Mn, the following conditions are equivalent.

(i) The matrixA is Hurwitz stable, i.e.,A ∈ Hn.

(ii) The matrixA is nonsingular andA−1 ≤ 0.

(iii) There existsh ∈ R
n
++ such thathTA < 0.

(iv) For anyg ∈ R
n
+ \ {0}, the vectorAg has at least one strictly negative entry.

Lemma 2: For given P ∈ M
n1 , Q ∈ R

n1×n2
+ , R ∈ R

n2×n1
+ , and S ∈ M

n2 , the following

conditions are equivalent.

(i) Π :=


 P Q

R S


 ∈ Hn1+n2 .

(ii) P ∈ Hn1 , S −RP−1Q ∈ Hn2 .

(iii) S ∈ H
n2 , P −QS−1R ∈ H

n1 .

To move on to the definition of positive systems, consider thelinear systemG described by

G :





ẋ = Ax + Bw,

z = Cx + Dw
(1)

whereA ∈ R
n×n, B ∈ R

n×nw , C ∈ R
nz×n, andD ∈ R

nz×nw . The definition and a basic result

of positive systems are given in the following.

Definition 2 (Positive Linear System): [11] The linear system (1) is said to bepositive if its

state and output are both nonnegative for any nonnegative initial state and nonnegative input.

Remark 1: In literature, a system satisfying the condition in Definition 2 is often calledinter-

nally positive, to make a clear distinction fromexternally positive systems. Since we only deal

with internally positive systems in this paper, we simply denote it by positive as in Definition 2.

Proposition 1: [11] The system (1) is positive if and only ifA ∈ Mn, B ∈ R
n×nw
+ , C ∈ R

nz×n
+ ,

andD ∈ R
nz×nw
+ .
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We next introduce the weightedL1-induced norm of positive systems. It turns out in the next

section that the weightedL1-induced norm plays an important role in characterizing thestability

of interconnected positive systems.

Definition 3: SupposeG given by (1) is positive andx(0) = 0. Then, its weightedL1-induced

norm associated with weighting vectorsqz ∈ R
nz

++ andqw ∈ R
nw

++ is defined by

‖Gqz ,qw‖1+ := sup
‖qTww‖1=1, w∈Lnw

1+

‖qTz z‖1. (2)

Remark 2: The standardL1-induced norm ofG given by (1) is defined as follows [14]:

‖G‖1 := sup
‖w‖1=1, w∈Lnw

1

‖z‖1. (3)

From the positivity ofG, we can easily confirm that the twoL1-induced norms given above can

be linked by

‖Gqz ,qw‖1+ = ‖QzGQ−1
w ‖1 (4)

whereQz := diag(qz,1, · · · , qz,nz
), Qw := diag(qw,1, · · · , qw,nw

). Namely, as the denomination

“weighted” L1-induced norm stands,‖Gqz ,qw‖1+ coincides with the standardL1-induced norm

with weightings (or scalings) on the input and output signals. The vector representation of

weightings as inqz and qw rather than the matrix representation as inQz andQw is useful in

characterizing the weightedL1-induced norm and the stability of interconnected positivesystems

by linear inequalities. This is firstly illustrated in the next theorem.

Theorem 1: SupposeG given by (1) is positive. Then, for givenqz ∈ R
nz
++, qw ∈ R

nw
++, and

γ > 0, the following conditions are equivalent.

(i) The matrixA ∈ Mn is Hurwitz stable and‖Gqz,qw‖1+ < γ.

(ii) There existsh ∈ Rn
++ such that[

hTA+ qTz C hTB + qTz D − γqTw

]
< 0. (5)

(iii) The matrix A ∈ Mn is Hurwitz stable and the following inequality holds:

qTz G(0) < γqTw . (6)

Here,G(s) is the transfer matrix of the systemG defined byG(s) := C(sI −A)−1B +D.

If we let qz = 1
nz and qw = 1

nw where1nz stands for the all-ones vector of sizenz, the

definition (2) essentially reduces to the standardL1-induced norm as we noted in (4). This

standardL1-induced norm is employed as a performance index in recent studies on switched

positive systems [32], [33]. Moreover, this standardL1-induced norm is used in [4] as a useful

tool for robust stability analysis of uncertain positive systems.
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Even though related discussions on the proof of Theorem 1 canbe found, for example, in

[25], [4], we give a detailed proof of Theorem 1 in the appendix section, Subsection VII-B, for

completeness. The next corollary directly follows from (iii) in Theorem 1.

Corollary 1: SupposeG given by (1) is positive and stable. Then, for givenqz ∈ R
nz

++, qw ∈

R
nw

++, the weightedL1-induced norm‖Gqz ,qw‖1+ is given by

‖Gqz ,qw‖1+ = min γ subject toqTz G(0) ≤ γqTw (7)

or equivalently,

‖Gqz ,qw‖1+ = max
i

(qTz G(0))i
qw,i

. (8)

This corollary implies that, ifG given by (1) is stable and SISO, we have‖G1,1‖1+ = G(0).

Namely, the unweightedL1-induced norm coincides with the steady-state gain.

III. STABILITY ANALYSIS OF INTERCONNECTEDPOSITIVE SYSTEMS

Let us consider the positive subsystemGi (i = 1, · · · , N) represented by

Gi :





ẋi = Aixi + Biwi,

zi = Cixi + Diwi,

Ai ∈ {Mni ∩H
ni}, Bi ∈ R

ni×nwi
+ , Ci ∈ R

nzi
×ni

+ , Di ∈ R
nzi

×nwi
+ .

(9)

As clearly shown in (9), we have assumed thatGi (i = 1, · · · , N) are all stable.

With these positive subsystems, let us define a positive and stable systemG by

G := diag(G1, · · · , G). (10)

The state space realization ofG is given by

G :





˙̂x = Ax̂ + Bŵ,

ẑ = Cx̂ + Dŵ
(11)

where

A := diag(A1, · · · , A), B := diag(B1, · · · , B),

C := diag(C1, · · · , C), D := diag(D1, · · · , D),
(12)
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x̂ :=
[
xT
1 · · · xT

N

]T
∈ R

nx̂ , nx̂ :=

N∑

i=1

ni,

ŵ :=
[
wT

1 · · · wT
N

]T
∈ R

nŵ , nŵ :=

N∑

i=1

nwi
,

ẑ :=
[
zT1 · · · zTN

]T
∈ R

nẑ , nẑ :=

N∑

i=1

nzi.

(13)

For a given interconnection matrixΩ ∈ R
nŵ×nẑ
+ , we are interested in the stability and the

performance of the interconnected systemG ⋆Ω defined by (11) and̂w = Ωẑ. In relation to the

well-posedness of this interconnection, we make the next definition.

Definition 4: The interconnected systemG ⋆ Ω is said to beadmissible if the Metzler matrix

DΩ− I is Hurwitz stable.

In the sequel, we require the admissibility of the interconnected systemG ⋆ Ω whenever we

analyze its stability and performance. The meaning of this presupposition, and its rationality as

well, can be explained as follows. Ifdet(DΩ− I) 6= 0, then the interconnection is well-posed,

and the state-space description of the interconnected system is represented by

˙̂x = Aclx̂, Acl := A+ BΩ(I −DΩ)−1C. (14)

Thus, if the admissibility is ensured, we see that

(i) the interconnectionG ⋆ Ω is well-posed;

(ii) the Metzler matrixDΩ−I is Hurwitz and hence(I−DΩ)−1 ≥ 0 holds from (ii) of Lemma 1.

Therefore the matrixAcl is Metzler. It follows that the positive nature of the subsystems

Gi (i = 1, · · · , N) is inherited to the interconnected system, i.e., the nonnegativity of

the statesxi (i = 1, · · · , N) for any nonnegative initial states is still preserved underthe

interconnection.

We also note that admissibility is out of issue ifD = 0, since in this case we haveAcl =

A+ BΩC ∈ M
nx̂ and henceG ⋆ Ω is always (well-posed and) positive.

For the admissibility and stability of the interconnected systemG ⋆Ω, we can obtain the next

lemma that plays an important role in this paper.

Lemma 3: The interconnected systemG ⋆Ω is admissible and stable if and only if the Metzler

matrix

October 16, 2014 DRAFT
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Π :=


 A BΩ

C DΩ− I


 (15)

is Hurwitz stable.

Proof of Lemma 3: From Definition 4, the interconnected systemG ⋆ Ω is admissible and

stable if and only if the Metzler matricesDΩ − I andAcl = A + BΩ(I − DΩ)−1C are both

Hurwitz stable. Thus the assertion readily follows from Lemma 2.

From this key lemma, we can obtain various conditions for theadmissibility and stability of

the interconnected system according to the properties of the subsystemsGi (i = 1, · · · , N) and

the interconnection matrixΩ. Typical examples are given in the following theorems. The first

theorem, Theorem 2, concerns the interconnected system shown in Fig. 1 for the caseN = 3.

-

w12

G1

z21

-

w13 z31

-

w21

G2

z12

-

w23 z32

-

w31

G3

z13

-

w32 z23

Fig. 1. Interconnected positive system (N = 3).
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w13
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z31 Q31

-Q−1
21

-

w21
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-

z12 Q12

-Q−1
23

-

w23
-

z32 Q32

-Q−1
31

-

w31

G3

-

z13 Q13

-Q−1
32

-

w32
-

z23 Q23

Fig. 2. Weightings on input and output signals.

Theorem 2: Let us consider the case where thei-th subsystemGi represented by (9) has the

following specific structure:

Gi :





ẋi = Aixi +
N∑

k=1,k 6=i

Bikwik,

zji = Cjixi +
N∑

k=1,k 6=i

Djikwik (j 6= i)

Ai ∈ {Mni ∩H
ni}, Bik ∈ R

ni×nwik

+ , Cji ∈ R
nzji

×ni

+ , Djik ∈ R
nzji

×nwik

+ .

(16)

We assume that the size ofwij andzij are identical, andN subsystems are interconnected by

wij = zij (i, j = 1, · · · , N, i 6= j). (17)
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Then, the interconnected system is admissible and stable ifand only if there exist weighting

vectorsqij ∈ R
nwij

++ (i, j = 1, · · · , N, i 6= j) such that

‖Gi,qz,i,qw,i
‖1+ < 1,

qz,i =
[
qT1,i · · · qTi−1,i qTi+1,i · · · qTN,i

]T
,

qw,i =
[
qTi,1 · · · qTi,i−1 qTi,i+1 · · · qTi,N

]T
(i = 1, · · · , N).

(18)

As noted, the interconnection structure assumed in Theorem2 is illustrated in Fig. 1 for the

caseN = 3. The subscripts(i, j) of wij andzij indicate that these are the signals that flow from

the subsystemj to the subsystemi. By defining

zi =
[
zT1,i · · · zTi−1,i zTi+1,i · · · zTN,i

]T
,

wi =
[
wT

i,1 · · · wT
i,i−1 wT

i,i+1 · · · wT
i,N

]T
(i = 1, · · · , N)

(19)

and by representing the interconnection (17) byŵ = Ωẑ, we can see that the interconnected

system can be represented byG ⋆ Ω. For N = 3, the interconnection matrix can be given by

Ω =




0 0 Inw12
0 0 0

0 0 0 0 Inw13
0

Inw21
0 0 0 0 0

0 0 0 0 0 Inw23

0 Inw31
0 0 0 0

0 0 0 Inw32
0 0




. (20)

By applying Lemma 3 to the resulting interconnected systemG ⋆Ω, we can obtain Theorem 2.

The complete proof is given in the appendix section, Subsection VII-C.

The implication of the theorem is that the interconnected systemG ⋆Ω is admissible and stable

if and only if there exists a set of weighting vectors that renders the weightedL1-induced norm of

each positive subsystem less than unity. Namely, the condition for the admissibility and stability

is separated into theL1-induced norm conditions of each subsystem. In this sense, we could

say that the weighting vectors work asseparators that have played important roles for stability

analysis of general linear systems [18], [27], [24]. Another interpretation is, as we usually do for

separators as well, that weighting vectors serve as scalings for input and output signals. Indeed,

from the link (4), we see thatG⋆Ω is admissible and stable if and only if the standardL1-induced

norm of scaled systems (i.e., the systems encircled by dashed line in Fig. 2) are less than unity,
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whereQij = diag(qij). What is interesting here is that such scaling-based stability condition is

necessary and sufficient, which is hardly achievable for interconnected systems constructed from

general (non-positive) linear systems.

In the case whereN = 3, the condition (18) can be written concretely as

‖G1,[qT21 qT31]
T ,[qT12 qT13]

T ‖1+ < 1,

‖G2,[qT12 qT32]
T ,[qT21 qT23]

T ‖1+ < 1,

‖G3,[qT13 qT23]
T ,[qT31 qT32]

T ‖1+ < 1.

(21)

As clearly shown in (21), theL1-induced norm conditions are coupled with each other through

weighting vectors. However, under the mild assumption thateach subsystem provides exactly

the same scalar output to the rest of subsystems, we can somehow decouple the condition and

hence the admissibility and the stability can be determinedby means of decoupled weightedL1-

induced norms of subsystems. This result leads to decentralized stabilizing controller synthesis

for interconnected positive systems where the controller synthesis can be done in a distributed

manner. See [7], [6] for details.

The results in Theorem 2 are valid for MIMO positive subsystems. On the other hand, in the

case where every subsystem is SISO, conditions for the admissibility and the stability for the

interconnected systemG ⋆ Ω can be drastically simplified as we see in the next two theorems.

Theorem 3: Let us consider the case where the subsystemsGi (i = 1, · · · , N) represented by

(9) are all SISO. Then, for givenΩ ∈ R
N×N
+ , the interconnected systemG ⋆ Ω is admissible

and stable if and only if the Metzler matrixΨΩ − I is Hurwitz stable whereΨ ∈ R
N×N
+ is

constructed from the unweightedL1-induced norm (i.e., the steady-state gain) of each subsystem

as inΨ := diag(‖G1,1,1‖1+, · · · , ‖GN,1,1‖1+) = diag(G1(0), · · · , GN(0)).

Proof of Theorem 3: From Lemma 3, the interconnected systemG ⋆Ω is admissible and stable

if and only if the Metzler matrixΠ defined by (15) is Hurwitz stable. From Lemma 2 and the

fact that‖Gi,1,1‖1+ = Gi(0) = −CiA
−1
i Bi+Di (i = 1, · · · , N), this condition holds if and only

if both of the Metzler matricesA andDΩ− I − CA−1BΩ = ΨΩ− I are Hurwitz stable. Thus

the assertion readily follows sinceA is Hurwitz stable from the assumptionAi ∈ {Mni ∩Hni}.

Theorem 4: Let us consider the case where the subsystemsGi (i = 1, · · · , N) represented by

(9) are all SISO and share identical steady-state gainγ > 0, i.e., G1(0) = · · · = GN(0) = γ.
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Then, for givenΩ ∈ R
N×N
+ , the interconnected systemG ⋆Ω is admissible and stable if and only

if γλF(Ω) < 1.

Proof of Theorem 4: From Theorem 3, we see that the interconnected systemG ⋆ Ω is

admissible and stable if and only ifγΩ − I ∈ MN is Hurwitz stable. This condition can be

restated equivalently as inγλF(Ω) < 1. This completes the proof.

These three theorems clearly show that the admissibility and stability of interconnected positive

systems can be fully characterized in terms of weightedL1-induced norms of subsystems.

Moreover, if all subsystems are SISO and share identical steady-state gainγ > 0, we see from

Theorem 4 that the interconnected systemG ⋆ Ω is on the stability boundary ifγλF(Ω) = 1.

This idea leads us to the persistence analysis ofG ⋆ Ω as detailed in the next section.

IV. PERSISTENCEANALYSIS OF INTERCONNECTEDPOSITIVE SYSTEMS

In this section, we are interested in thepersistence of the interconnected systemG ⋆Ω. After

giving our main results on the persistence ofG ⋆Ω, we show that the persistence results can be

applied to formation control of multi-agent systems.

A. Persistence Analysis

We first give the precise definition of what we call persistence.

Definition 5: For given positive subsystemsGi (i ∈ ZN) represented by (9) and interconnection

matrix Ω ∈ R
nŵ×nẑ

+ , consider the interconnected systemG ⋆Ω. Then, the interconnected system

G ⋆Ω is said to have the property ofpersistence if it is admissible and if there existξ0, ξ∞ ∈ R
nx̂

++

such that

lim
t→∞

x̂(t) = (ξT0 x̂(0))ξ∞ (22)

for any initial statex̂(0) ∈ Rnx̂ .

This definition requires that the statêx of G ⋆Ω converges to a strictly positive scalar multiple

of a strictly positive vector as long aŝx(0) ∈ R
nx̂
+ \ {0}, i.e., all the stateŝxi (i = 1, · · · , nx̂)

become strictly positive and hence “excited” eventually. This is the reason why we call the

property persistence. It is also clear that persistence requires that the interconnected system

G ⋆ Ω is on the stability boundary.

To state our main result on the persistence ofG ⋆ Ω, we first need to review the definition

and related results onirreducible matrices. Similarly to [10], it turns out that the irreducibility

of interconnection matrix plays a crucial role in achievingpersistence.
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Definition 6: [Reducible Matrix [17] (p. 360)] A matrixM ∈ R
n×n is said to bereducible if

either

(a) n = 1 andM = 0 or

(b) n ≥ 2 and there exist a permutation matrixP ∈ Rn×n andr with 1 ≤ r ≤ n− 1 such that

P TMP =


 Q R

0n−r,r S


 , Q ∈ R

r×r, S ∈ R
(n−r)×(n−r).

Definition 7: [Irreducible Matrix [17] (p. 361)] A matrixM ∈ Rn×n is said to beirreducible

if it is not reducible.

Definition 8: [Directed Graph of Matrices [17] (p. 357)] The directed graph of M ∈ Rn×n,

denoted byΓ(M), is the directed graph onn nodesP1, P2, · · · , Pn such that there is a

directed arc inΓ(M) from Pi to Pj if and only if Mij 6= 0 or equivalently,In(M)ij 6= 0. Here,

In(M) stands for the indicator matrix ofM .

Definition 9: [Strongly Connected Graph [17] (p. 358)] A directed graphΓ is said to bestrongly

connected if between every pair of distinct nodesPi, Pj in Γ there is a directed path of finite

length that begins atPi and ends atPj.

Under these definitions, it is known that the next results hold.

Proposition 2: [17] (p. 362) For givenM ∈ Rn×n, the following conditions are equivalent.

(a) M is irreducible.

(b) (In + In(M))n−1 > 0.

(c) Γ(M) is strongly connected.

Proposition 3: [17] (p. 508) SupposeM ∈ R
n×n
+ is irreducible. Then the following conditions

hold.

(i) ρ(M) > 0 andρ(M) is an eigenvalue ofM .

(ii) There is a vectorv∈Rn
++ such thatMv = ρ(M)v.

(iii) ρ(M) is an algebraically (and hence geometrically) simple eigenvalue ofM .

The next corollary directly follows from Proposition 3, where (iii) is particularly important.

Corollary 2: SupposeM ∈ Mn is irreducible. Then the following conditions hold whereα :=

maxλ∈σ(M)Re(λ).

(i) α ∈ R is an algebraically (and hence geometrically) simple eigenvalue ofM .

(ii) There is a vectorv ∈ Rn
++ such thatMv = αv.

(iii) Re(λ) < α (∀λ ∈ σ(M) \ {α}).
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We are now ready to state our main result on the persistence ofG ⋆ Ω and give its proof.

Theorem 5: Let us consider the case where every subsystemGi represented by (9) is SISO .

SupposeGi (i = 1, · · · , N) and a given interconnection matrixΩ ∈ R
N×N
+ satisfy the following

conditions.

(i) (Ai, Bi) is controllable and(Ai, Ci) is observable for alli = 1, · · · , N .

(ii) G1(0) = · · · = GN (0) =: γ(> 0) holds.

(iii) The interconnection matrixΩ ∈ R
N×N
+ is irreducible, i.e., the directed graphΓ(Ω) is strongly

connected.

(iv) λF(Ω) = 1/γ holds.

Then, for the interconnected systemG ⋆ Ω, the next results hold.

(I) The interconnected systemG ⋆Ω is admissible, i.e., the Metzler matrixDΩ− I is Hurwitz

stable.

(II) The matrixAcl given by (14) satisfiesσ(Acl) ⊂ C−, i.e.,Re(λ) ≤ 0 (∀λ ∈ σ(Acl)).

(III) If we denote the right and left eigenvectors ofΩ associated with the Frobenius eigenvalue

λF(Ω) by vR ∈ RN
++ andvL ∈ RN

++, respectively, we haveAclξR = 0 andξTLAcl = 0 where

ξR = −A−1BvR ∈ R
nx̂
++, ξL = −A−TCT vL ∈ R

nx̂
++, ξTL ξR = 1. (23)

Here the eigenvectorsvR, vL ∈ RN
++ are appropriately scaled so thatξTL ξR = 1 is satisfied.

(IV) The matrix Acl has eigenvalue0 that is algebraically (and hence geometrically) simple.

Moreover, we haveRe(λ) < 0 (∀λ ∈ σ(Acl) \ {0}).

(V) We have

lim
t→∞

x̂(t) = f(x̂(0))ξR, f(x̂(0)) = ξTL x̂(0) (24)

for any initial statex̂(0) ∈ Rnx̂ .

The results (I), (III) and (V) of Theorem 5 clearly show that,under the conditions (i)-(iv), the

interconnected systemG ⋆Ω has the property of persistence, and (22) in Definition 5 is satisfied

with ξ0 = ξL ∈ R
nx̂

++ andξ∞ = ξR ∈ R
nx̂

++.

We need the following lemma for the proof of Theorem 5. The proof of this lemma is given

in the appendix section, Subsection VII-D.

Lemma 4: For givenA ∈ {Mn∩Hn}, B ∈ R
n×1
+ , andC ∈ R

1×n
+ , we haveA−1B < 0 if (A,B)

is controllable. Similarly, we haveCA−1 < 0 if (A,C) is observable.
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Proof of Theorem 5:

Proof of (I): From (i) and Lemma 4, it is clear that−CiA
−1
i Bi > 0 (i = 1, · · · , N). If we

defineS := diag(−C1A
−1
1 B1, · · · ,−CNA

−1
N BN) ∈ DN

++, we haveD = γI − S from (ii). On

the other hand, from (iii) and Proposition 3, we see that there existsvR ∈ RN
++ such that

ΩvR = λF(Ω)vR. This implies(γΩ− I)vR = 0 since (iv) holds. Therefore we have(DΩ− I)vR

= ((γI − S)Ω− I) vR = −SΩvR = −λF(Ω)SvR < 0. It follows from (the dual version of) (iii)

of Lemma 1 thatDΩ− I is Hurwitz stable.

Proof of (II): From Theorem 4, we see thatσ(Acl) ⊂ C− if and only if γλF(Ω) < 1. Since at

presentγλF(Ω) = 1 holds from (iv), we see thatσ(Acl) ⊂ C− holds from the continuity of the

eigenvalue ofAcl with respect to perturbations on it.

Proof of (III): By definingΩD := Ω(I −DΩ)−1, we readily see

AclξR = − (A+ BΩDC)A
−1BvR

= −BvR − BΩDCA
−1BvR

= −BvR − BΩD(D − γI)vR

= −B
(
I + Ω(I −DΩ)−1(D − γI)

)
vR

= −B
(
I + (I − ΩD)−1Ω(D − γI)

)
vR

= −B(I − ΩD)−1 (I − γΩ) vR

= −B(I − ΩD)−1 (1− γλF(Ω)) vR

= 0.

The equalityξTLAcl = 0 follows similarly. On the other hand, since(Ai, Bi) is controllable and

(Ai, Ci) is observable, we see−A−1
i Bi > 0 and−CiA

−1
i > 0 (i = 1, · · · , N) from Lemma 4.

Moreover, sinceΩ is irreducible, we havevR > 0 andvL > 0 from Proposition 3. Therefore we

haveξR = −A−1BvR ∈ R
nx̂

++ andξL = −A−TCT vL ∈ R
nx̂

++.

Proof of (IV): We can prove thatAcl is irreducible and hence the assertion readily follows from

(II), (III) and Corollary 2. The proof for the irreducibility of Acl, which is indeed the core of

the proof of Theorem 5, is given in the appendix section, Subsection VII-E.

Proof of (V): Since (IV) holds and and sinceξR ∈ R
nx̂
++ is the right eigenvector ofAcl cor-

responding to the eigenvalue0, it is an elementary fact that the statex̂ of the interconnected

systemG ⋆ Ω converges tof(x̂(0))ξR for some linear functionf : Rnx̂ → R. Furthermore,

for the dynamics of the interconnected system represented by ˙̂x = Aclx̂, we can readily see
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that ξTL ˙̂x = 0. Therefore we haveξTL x̂(0) = f(x̂(0))ξTL ξR. SinceξTL ξR = 1 from (III), we have

f(x̂(0)) = ξTL x̂(0). This completes the proof.

We have a strong prospect that the persistence result in Theorem 5 has a wide range of

applications. The scope includes analysis of coexistence of competitive species in systems

biology, dynamic resource allocation in social system design, and analysis and synthesis of

multi-agent systems. The last issue is pursued in the next section, Section V, after giving several

preliminary results in the next subsections.

B. Analysis of Steady-State Output

The next result concerns the steady state output ofG ⋆ Ω. This is a direct consequence of

Theorem 5 and illustrates its usefulness in the applicationto formation control of multi-agent

systems with positive dynamics.

Corollary 3: Consider the case where every subsystemGi represented by (9) is SISO and

satisfies conditions (i) and (ii) in Theorem 5. Then, for given vobj ∈ RN
++, the output of

interconnected systemG ⋆ Ω satisfies

lim
t→∞

ẑ(t) = γf(x̂(0))vobj(= γ(ξTL x̂(0))vobj) (25)

if Ω ∈ R
N×N
+ has the following property in addition to (iii) of Theorem 5:

(iv’) Ωvobj = (1/γ)vobj holds.

Namely, for any initial statêx(0) ∈ R
nx̂

+ \ {0}, we can achieve the convergence of the output

ẑ(t) = [ z1(t) · · · zN(t) ]T to γf(x̂(0))vobj ∈ RN
++ by the interconnection withΩ ∈ R

N×N
+

having properties (iii) and (iv’).

This corollary implies that, for givenvobj ∈ RN
++ that represents the output position of each

agent in a “desired formation,” we can achieve the convergence (25) as long as we designΩ

satisfying (iii) and (iv’). This is the basic idea to use the results in Theorem 5 and Corollary 3

for the formation control of multi-agent systems.

A brief sketch of the proof of Corollary 3 is as follows. SinceΩ ∈ R
N×N
+ satisfiesΩvobj =

(1/γ)vobj for vobj ∈ R
N
++, we can see from Corollary 8.1.30 of [17] thatλF(Ω) = 1/γ. Namely,

a matrix Ω satisfying the condition (iv’) satisfies the condition (iv)in Theorem 5 as well. It

follows from Theorem 5 that̂x∞ = −f(x̂(0))A−1Bvobj where x̂∞ := limt→∞ x̂(t). Therefore,

for ẑ∞ := limt→∞ ẑ(t), we obtain
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ẑ∞ = (I −DΩ)−1Cx̂∞

= −f(x̂(0))(I −DΩ)−1CA−1Bvobj

= −f(x̂(0))(I −DΩ)−1(D − γI)vobj

= −
f(x̂(0))

λF(Ω)
(I −DΩ)−1(λF(Ω)D − γλF(Ω)I)vobj

= −
f(x̂(0))

λF(Ω)
(I −DΩ)−1(DΩ− I)vobj

= γf(x̂(0))vobj.

This validates the assertion in Corollary 3.

C. Relationship with the f -Consensus Protocol [22], [13]

Theorem 5 and Corollary 3 are closely related to (and meaningful extensions of) the results

already obtained in the study area of multi-agent systems [13], [22], [30], [31]. In this section,

we show that thef -consensus protocol shown in [22], [13] can readily be obtained along with

Theorem 5.

The communication over multi-agents in [22], [13] is determined by the directed graphG(I, E)

with the set of nodesI := {1, · · · , N} and edgesE ⊆ I × I. The dynamics of the agents are

assumed to be identical integrator as in

Pi : ẋi(t) = wi(t), xi(t) ∈ R. (26)

The goal is to determine the inputwi (i = 1, · · · , N) by the communication with other agents

over network so that we can achieve

lim
t→∞

x̂(t) = f(x̂(0))1N , x̂ := [ x1, · · · , xN ]T ∈ R
N . (27)

If (27) is achieved for somef : RN → R, we say thatf -consensus is achieved. In order to

achieve anf -consensus, the following protocol is presented in [22], [13]:

wi(t) =
∑

j∈Ni

(xj(t)− xi(t)). (28)

Here,Ni is the neighbors of the nodei defined byNi := {j ∈ I : (j, i) ∈ E}. The interconnected

system constructed from (26) and (28) can be represented by

˙̂x(t) = −Lx̂(t), L = D − A (29)
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whereL ∈ R
N×N is the graph Laplacian ofG defined by

L := D − A,

D := diag(d1, · · · , dN), di = |Ni|,

A := [Ai,j], Ai,j = 1 (j ∈ Ni), Ai,j = 0 (j /∈ Ni).

(30)

It is easy to see thatL1N = 0 holds (i.e.,1N ∈ RN
++ is the right-eigenvector ofL with respect

to the eigenvalue0). It is shown in [22], [13] that, if the graphG(I, E) is strongly connected,

an f -consensus is achieved by (28) as in

lim
t→∞

x̂(t) = f(x̂(0))1N , f(x̂(0)) = ξT0 x̂(0). (31)

Here,ξ0 ∈ RN is the left-eigenvector ofL with respect to the eigenvalue0 satisfyingξT0 1
N = 1.

In the following, we will show that (31) follows directly from Theorem 5. To this end, we

first note that that (29) is a positive system since−L ∈ MN . Moreover, (29) can be rewritten as

˙̂x(t) = −Dx̂(t) + ŵ(t), ẑ(t) := Dx̂(t), ŵ(t) = AD−1ẑ(t). (32)

From this expression, we can regard (29) as an interconnected system constructed fromN

positive, SISO and stable subsystemsGi (i = 1, · · · , N) given by

Gi :





ẋi(t) = −dixi(t) + wi(t),

zi(t) = dixi(t)
(33)

and the interconnection matrix

Ω = AD−1 ∈ R
N×N
+ . (34)

It is clear thatGi (i = 1, · · · , N) in the form of (33) satisfies (i) and (ii) of Theorem 5 with

γ = 1. On the other hand, the interconnection matrixΩ ∈ R
N×N
+ given in (34) is irreducible if

(and only if) the graphG(I, E) is strongly connected, and its Frobenius eigenvalue is1 with

the right-eigenvectorvR = D1
N ∈ RN

++ and the left-eigenvectorvL = ξ0. ThereforeΩ ∈ R
N×N
+

satisfies the condition (iii) and (iv) of Theorem 5 withγ = 1. Moreover, it is easy to see from

(23) thatξR = 1
N and ξL = ξ0 in this case. It follows that (24) in Theorem 5 coincides with

(31).

To summarize, Theorem 5 turns out to be an intriguing extension of f -consensus protocol

shown in [22], [13]. Theorem 5 shows that, under certain conditions, we can achievef -consensus
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(with respect to the output of each subsystem) even if we generalize the dynamics of each agent

from integrators to positive systems, and interconnectionmatrix from graph-Laplacian matrices

to nonnegative matrices.

D. Parametrization of Interconnection Matrices

For the preparation of the formation control of multi-agentsystems based on Theorem 5 and

Corollary 3, it is meaningful to show a concrete way to construct a desiredΩ ∈ R
N×N
+ that

satisfiesΩvobj = (1/γ)vobj andΓ(Ω) = Γ for prescribedvobj ∈ RN
++ and graph structureΓ. For

illustration, consider the cases whereΓ is schematically shown in Figs.3 and 4 forN = 3.

G3

G1

G2

Fig. 3. Graph structureΓA.

G1 G2 G3

Fig. 4. Graph structureΓB.

For graph structureΓA, any interconnection matrixΩ ∈ R
N×N
+ satisfyingΩvobj = (1/γ)vobj

andΓ(Ω) = ΓA can be parametrized by

Ω =
1

γ
Ω(vobj, p) ∈ R

N×N
++ (35)

where

Ω(vobj, p)i,j =





(1− p1)
vobj,1
vobj,N

(i, j) = 1, N,

pi
vobj,i
vobj,j

(1 ≤ i ≤ N, j = i+ 1),

(1− pi)
vobj,i
vobj,j

(1 ≤ i ≤ N, j = i− 1),

pN
vobj,N
vobj,1

(i, j) = (N, 1),

0 otherwise.

(36)

Here, parameterp ∈ RN
++ can be chosen arbitrarily among0 < p < 1

N . On the other hand,

for graph structureΓB, any interconnection matrixΩ ∈ R
N×N
+ satisfyingΩvobj = (1/γ)vobj and

Γ(Ω) = ΓB can be parametrized again by (35) and (36) where parameterp ∈ RN
++ can be chosen

such thatp1 = 1, pN = 0, and0 < pi < 1 (i ∈ ZN \ {1, N}). In both cases, we can confirm that
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resulting interconnection matrixΩ is irreducible (sinceΓA andΓB are both strongly connected).

WhenN = 3, the matrixΩ(vobj, p) can be respectively illustrated forΓA andΓB as follows:

Γ(Ω) = ΓA

Ω(vobj, p) =




0 p1
vobj,1
vobj,2

(1− p1)
vobj,1
vobj,3

(1− p2)
vobj,2
vobj,1

0 p2
vobj,2
vobj,3

p3
vobj,3
vobj,1

(1− p3)
vobj,3
vobj,2

0



,

Γ(Ω) = ΓB

Ω(vobj, p) =




0
vobj,1
vobj,2

0

(1− p2)
vobj,2
vobj,1

0 p2
vobj,2
vobj,3

0
vobj,3
vobj,2

0



.

V. FORMATION CONTROL OFMULTI -AGENT POSITIVE SYSTEMS

In this section, we apply the results in Section IV to formation control of multi-agent systems.

A. Problem Setting and Consensus-based Formation Control

Let us consider a multi-agent system withN agents, where thei-th agent(i = 1, · · · , N) can

move on the(x, y)-plane. We denote by(zi,x(t), zi,y(t)) the position of agenti. Furthermore, we

define ẑj := [z1,j · · · zN,j]
T (j = x, y) by stacking the coordinates of the agents.

We assume that agenti has independent dynamics along thex- andy-axes, denoted byPi,x(s)

andPi,y(s), respectively, and independent control inputsui,x(t) andui,y(t). We further assume

that, as typical dynamics of moving agents,Pi,j(s) are given by

Zi,j(s) = Pi,j(s)Ui,j(s), Pi,j(s) =
ki,j

s(s+ ai,j)
, ki,j > 0, ai,j > 0 (i = 1, · · · , N, j = x, y).

SincePi,j(s) is not stable (or say, on the stability boundary), we cannot apply directly the results

in Theorem 5. To get around this difficulty, we apply a minor feedback as in

ui,j(t) = −fi,j(zi,j(t)− wi,j(t)) (i ∈ ZN , j = x, y)

with 0 < fi,j ≤ a2i,j/4ki,j, wherewi,j (i ∈ ZN , j = x, y) is the exogenous input kept for the

interconnection. Then we have
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Zi,j(s) = Gi,j(s)Wi,j(s),

Gi,j(s) =




−bi,j 1 0

0 −ci,j bi,jci,j

1 0 0


 , bi,j + ci,j = ai,j , bi,jci,j = fi,jki,j.

(37)

It follows from Proposition 1 thatGi,j (i = 1, · · · , N, j = x, y) are positive (with respect to the

minimal realizations (37)), SISO, and stable systems withGi,j(0) = 1 (i = 1, · · · , N, j = x, y).

The last property is a natural consequence from the fact thateach open-loop transfer function

Pi,j(s) (i = 1, · · · , N, j = x, y) includes an integrator. We emphasize that the properties of

Gi,j(s) mentioned above robustly hold against “small” perturbations on the plant parameters and

the minor-feedback gains. For description simplicity, we defineŵj := [w1,j · · · wN,j ]
T (j = x, y).

We assume thatN -agents independently communicate theirx andy positions each other. Our

goal here is to design interconnection matricesΩx andΩy such that, under the interconnection

with Ωx andΩy for (ẑx, ŵx) and(ẑy, ŵy), respectively, the following formation can be achieved:

lim
t→∞

[ ẑx(t) ẑy(t)) ] = [ fx(x̂x(0))vobj,x fy(x̂y(0))vobj,y ]. (38)

Here,vobj,j ∈ R
N
++ (j = x, y) are given vectors that specify the desired formation, andx̂j(0) (j =

x, y) stand for the initial states of the corresponding interconnected systems. On the other hand,

fj : R
2N → R (j = x, y) stand for the scaling factors that depend upon the initial states. It is

obvious that we can readily solve this problem by following Theorem 5 and Corollary 3.

Remark 3: Since the synthesis method of interconnection matrices proposed in Theorem 5 and

Corollary 3 are based on the idea of consensus, and since we donot allow to incorporate any

external signals to the interconnected systems, we cannot exclude the effect of initial states at

the limits of the outputs. The problem setting (38) has been done along with this fact. Similar

problem setting can be found, for example, in [10].

Remark 4: To illustrate our results in Theorem 5 and Corollary 3 in a realistic situation, we

assume typical second-order dynamics of moving agents (i.e., integrator plus first-order lag) and

showed that we can make them satisfy the conditions (i) and (ii) in Theorem 5 by applying

minor-feedbacks. It is of course possible to apply the results in Theorem 5 and Corollary 3 to

the agents with other dynamics as long as they satisfy (i) and(ii) of Theorem 5.
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B. Numerical Examples

Along with the basic problem settings stated in Subsection V-A, we generatedai,j and ki,j

randomly over the closed interval[10 20] and [1 2], respectively, and then letfi,j as fi,j =

0.8 × a2i,j/4ki,j. We thus constructedGi,j (i = 1, · · · , N, j = x, y). We let [vobj,x vobj,y]i =

[2 + cos(2πi/N) 2 + sin(2πi/N)] so that the agents can form a (scaled) circle.

As for the graph structures of the interconnection matrices, we consider the two casesΓA

andΓB (see Figs. 3, 4). Namely, we designed two sets of interconnection matrices(Ω[A]
x ,Ω

[A]
y )

and (Ω
[B]
x ,Ω

[B]
y ) with Γ(Ω

[k]
j ) = Γk (j = x, y, k = A,B) following the parametrizations shown

in (36). Here, by using the freedom of parameterp in (36), we designed(Ω[A]
x ,Ω

[B]
x ) so that

they share identical left-eigenvectorvL,x with respect to the Frobenius eigenvalue1. Similarly

for (Ω
[A]
y ,Ω

[B]
y ). From (25) and (23), these allow us to have identical scalingfactors alongx-

andy-axes between the interconnection with(Ω[A]
x ,Ω

[A]
y ) and (Ω[B]

x ,Ω
[B]
y ). Therefore formations

to be achieved are exactly the same as long as the initial states are the same. The synthesis

of interconnection matrices can be done by solving linear equalities as detailed in [8]. We thus

carried out simulation for the caseN = 20, under the same initial conditions.

Figs 5-8 are the simulation results for the case(Ω
[A]
x ,Ω

[A]
y ), and Figs 9-12 are the simulation

results for the case(Ω[B]
x ,Ω

[B]
y ). In both cases, we see that the agents gradually form a (scaled)

circle and converge to the position shown by blue dot which iscomputed in advance from (25).

The convergence is rather slow for the graph structureΓB in comparison with the graph structure

ΓA, and this slower convergence is often observed in other simulations. This would be partially

because the graph structureΓB is more sparse thanΓA.

VI. CONCLUSION

In this paper, we presented several novel results on the stability and persistence of inter-

connected heterogeneous positive systems. We showed that the stability and persistence can be

characterized completely in terms of the (weighted)L1-induced norm of each positive subsystem

and the Frobenius eigenvalue of the interconnection matrix. We illustrated the usefulness of the

persistence results by applying them to formation control of multi-agent systems. By noting the

fact that typical dynamics of moving agents are positive, weshowed that efficient synthesis of

communication scheme over the agents can be done as long as the dynamics of the agents are

all positive, stable, SISO and and share an identical steady-state gain.
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y ). (t = 0 [sec]).
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Fig. 10. Agent position under(Ω[B]
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y ). (t = 10 [sec]).
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Fig. 12. Agent position under(Ω[B]
x ,Ω

[B]
y ). (t = 30 [sec]).
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VII. A PPENDICES

A. Proof of Lemma 2

Proof of Lemma 2: We will prove the equivalence of (i) and (ii). The equivalence of (i) and

(iii) follows similarly.

(i) ⇒ (ii) Suppose (i) holds. Then, from (iii) of Lemma 1, there existh1 ∈ R
n1
++ andh2 ∈ R

n2
++

such that

hT
1 P + hT

2R < 0, hT
1Q+ hT

2 S < 0. (39)

The first inequality clearly shows thatP is Hurwitz stable again from (iii) of Lemma 1. Since

P is Metzler and Hurwitz and henceP−1 ≤ 0 holds from (ii) of Lemma 1, the first inequality

in (39) implieshT
1 > −hT

2RP−1. From this and the second inequality, we have

hT
2 (S −RP−1Q) < 0. (40)

It is obvious thatS−RP−1Q is Metzler sinceP−1 ≤ 0 and hence, again from (iii) of Lemma 1,

we conclude thatS −RP−1Q is Hurwitz stable.

(ii) ⇒ (i) Suppose (ii) holds. Then, from (iii) of Lemma 1, there existsh2 ∈ R
n2
++ such that (40)

holds. It follows that there existsε > 0 such that

hT
2 S − (hT

2R + ε1n1T )P−1Q < 0

where1n1 ∈ R
n1 stands for the all-ones vector. If we defineh1 := −((hT

2R+ ε1n1T )P−1)T , we

haveh1 > 0 sinceP is Hurwitz and henceP−1 ≤ 0. In addition, we readily obtain

hT
1Q+ hT

2 S < 0, hT
1 P + hT

2R = −ε1n1T < 0.

Again, from (iii) of Lemma 1, this shows that the Metzler matrix Π in (i) is Hurwitz stable.

B. Proof of Theorem 1

Proof of Theorem 1: (ii)⇒(i) Suppose (ii) holds for someh > 0. ThenA ∈ Mn is obviously

Hurwitz from (iii) of Lemma 1. In addition, there existsε > 0 such that

[
hTA+ qTz C hTB + qTz D − (γ − ε)qTw

]
< 0.
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It follows that, for anyx ∈ R
n andw ∈ R

nw satisfying[ xT wT ]T ≥ 0, we have

[
hTA+ qTz C hTB + qTz D − (γ − ε)qTw

]

 x

w


 ≤ 0. (41)

SinceG is positive, we note thatx(t) ≥ 0 ∀t ∈ [0,∞) holds for any input signalw ∈ Lnw

1+ and

x(0) = 0. From this fact and (41), we see that along the trajectory of the systemG the following

relation holds:

hT ẋ(t) + qTz z(t)− (γ − ε)qTww(t) ≤ 0 ∀t ∈ [0,∞) ∀w ∈ Lnw

1+. (42)

By integrating the above inequality over[0, T ], we have

hTx(T ) +

∫ T

0

qTz z(t)dt− (γ − ε)

∫ T

0

qTww(t)dt ≤ 0 ∀w ∈ Lnw

1+.

By noting hTx(T ) ≥ 0, it is obvious that
∫ T

0

qTz z(t)dt− (γ − ε)

∫ T

0

qTww(t)dt ≤ 0 ∀w ∈ Lnw

1+.

Moreover, by restrictingw to those such that‖qTww‖1 = 1 and lettingT → ∞, we see that
∫ ∞

0

qTz z(t)dt− (γ − ε) ≤ 0

holds for allw ∈ Lnw

1+ such that‖qTww‖1 = 1. It follows that (i) is satisfied.

(i)⇒(ii) To prove the assertion by contradiction, suppose (ii) does not hold for anyh > 0. Then

only the following two cases are possible:

(a) A is not Hurwitz stable.

(b) A is Hurwitz stable but (5) does not hold for anyh > 0.

Since (a) clearly contradicts (i), we only consider the case(b). Then, from the strong alternative

for linear inequalities [3, Section 5.8], there existg1 ∈ Rn
+ and g2 ∈ R

nw
+ , not simultaneously

zero, such that

Ag1 + Bg2 ≥ 0, qTz Cg1 + (qTz D − γqTw)g2 ≥ 0.

If g2 = 0, we haveg1 6= 0, g1 ≥ 0, andAg1 ≥ 0, which contradicts the Hurwitz stability ofA

(see (iv) of Lemma 1). Therefore it suffices to consider the case whereA is Hurwitz stable and

g2 6= 0. With this in mind, let us note that the first inequality aboveimplies g1 ≤ −A−1Bg2
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sinceA−1 ≤ 0 from (ii) of Lemma 1. By substituting this into the second inequality, we obtain

(qTz G(0) − γqTw)g2 ≥ 0. Moreover, sinceg2 ≥ 0 and g2 6= 0 as noted above, the following

inequality must hold for at least one indexj⋆ (1 ≤ j⋆ ≤ nw):

(qTz G(0))j⋆ − γqw,j⋆ ≥ 0. (43)

In the following, we assumeqw,j⋆ = 1 without loss of generality. For a givenT > 0, we also

define a linear operatorIT as follows:

IT ζ :=





ζ(t) (0 ≤ t ≤ T )

0 (T < t)
.

Now we move on to the final stage of the proof. To this end, let usdefine a constant input

signalwst(t) := ej⋆ ∈ R
nw
+ , whereei is the i-th standard basis ofRnw . We also denote byzst(t)

the response of the systemG for the inputwst(t). Then, in view of the steady-state output, we

see that for anyε > 0 satisfyingγ − ε > 0, there existsTε > 0 such that

qTz zst(t)− qTz G(0)wst(t) > −
ε

2
∀t > Tε.

From (43), this implies

qTz zst(t)− γ > −
ε

2
∀t > Tε

or equivalently,

qTz zst(t) > γ −
ε

2
> 0 ∀t > Tε.

If we define another input signalw⋆
T (t) := ITwst for a givenT (> Tε) and denote byz⋆T (t) the

corresponding output signal, then we have||qTww
⋆
T ||1 = T , z⋆T (t) = zst(t) (0 ≤ t ≤ T ) and hence

‖qTz z
⋆
T‖1

‖qTww
⋆
T‖1

=
1

T

(∫ Tε

0

qTz z
⋆
T (t)dt +

∫ T

Tε

qTz z
⋆
T (t)dt+

∫ ∞

T

qTz z
⋆
T (t)dt

)

≥
1

T

∫ T

Tε

qTz z
⋆
T (t)dt

≥
(γ −

ε

2
)(T − Tε)

T

≥ γ −
ε

2
− (γ −

ε

2
)
Tε

T
.

Therefore, for the particular choice of
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T >
γ −

ε

2
ε

2

Tε =
2γ − ε

ε
Tε(> Tε),

we have

‖qTz z
⋆
T‖1

‖qTww
⋆
T‖1

> γ − ε.

Sinceε > 0 can be taken arbitrarily small, this implies‖Gqz,qw‖1+ ≥ γ, which contradicts (i).

(ii)⇒(iii) The linear inequality (5) impliesA ∈ Hn and

hT > −qTz CA−1, hTB + qTz D < γqTw

since we haveA−1 ≤ 0 from (ii) of Lemma 1. By substituting the former into the latter, we

obtain (6).

(iii)⇒(ii) Let us fix v ∈ Rn
++ such thatvTA < 0. Then, the condition (6) implies that there

existsε > 0 such that

qTz D + (−qTz CA−1 + εvT )B < γqTw .

If we defineh := (−qTz CA−1 + εvT )T > 0, we readily obtain

hTA+ qTz C = εvTA < 0, hTB + qTz D − γqTw < 0.

This clearly shows that (5) holds.

C. Proof of Theorem 2

Proof of Theorem 2: For each subsystem, let us define

Bi := [ Bi,1 · · · Bi,i−1 Bi,i+1 · · ·Bi,N ],

Ci :=




C1,i

...

Ci−1,i

Ci+1,i

...

CN,i




, Di :=




D1,i,1 · · · D1,i,i−1 D1,i,i+1 · · · D1,i,N

...
...

...
...

Di−1,i,1 · · · Di−1,i,i−1 Di−1,i,i+1 · · · Di−1,i,N

Di+1,i,1 · · · Di+1,i,i−1 Di+1,i,i+1 · · · Di+i,i,N

...
...

...
...

DN,i,1 · · · DN,i,i−1 DN,i,i+1 · · · DN,i,N



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and zi, wi (i = 1, · · · , N) by (19). Then, the systemG defined by (10) can be written in the

form of (11) with (12) and (13). Therefore the interconnection of subsystemsGi with (17) can

be seen as an interconnection withG and a matrixΩ precisely given in the following. From

(17) and (19), we see that the interconnection matrixΩ of this case is nothing but a permutation

matrix that permuteszij andzji in ẑ, i.e.,

Ω




...

zij
...

zji
...




=




...

zji
...

zij
...




. (44)

A concrete example ofΩ is given in (20). SinceΩ is a permutation matrix, we see thatΩ ≥ 0.

It follows from Lemma 3 that the interconnected system is admissible and stable if and only if

the Metzler matrix

 A BΩ

C DΩ− I




is Hurwitz stable. This can be restated equivalently that there existshi ∈ R
ni
++ and qij ∈

R
nwij

++ (i, j = 1, · · · , N, i 6= j) such that

 ĥ

q̂z



T 
 A BΩ

C DΩ− I


 < 0, ĥ :=

[
hT
1 · · · hT

N

]T
, q̂z :=

[
qTz,1 · · · qTz,N

]T
. (45)

Here,qz,i (i = 1, · · · , N) are given by (18). SinceΩ is a permutation matrix, we see that (45)

holds if and only if

 ĥ

q̂z



T 
 A B

C D − ΩT


 < 0 (46)

Moreover, we see from the property ofΩ represented by (44) that

q̂Tz Ω
T = (Ωq̂z)

T = q̂Tw , q̂w :=
[
qTw,1 · · · qTw,N

]T
.

Here,qw,i (i = 1, · · · , N) are given by (18). It follows that (46) can be divided intoN inequalities

as in
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[
hT
i Ai + qTz,iCi hT

i Bi + qTz,iDi − qTw,i

]
< 0 (i = 1, · · · , N). (47)

From Theorem 1, the inequalities above hold if and only if

‖Gi,qz,i,qw,i
‖1+ < 1 (i = 1, · · · , N).

This completes the proof.

D. Proof of Lemma 4

Proof of Lemma 4: We give the proof for the controllability only. The result for the observability

readily follows from the system duality. For contradiction, supposev := A−1B < 0 does not

hold. From the underlying assumptionsA ∈ {Mn ∩ Hn} and B ∈ Rn
+, we see thatv ≤ 0

definitely holds sinceA−1 ≤ 0. Therefore there exists a nonempty index setI ⊂ {1, · · · , n}

such that

vi = 0 (i ∈ I), vi < 0 (i ∈ Ic)

whereIc is the complement ofI. Again fromB(= Av) ∈ Rn
+, it follows that

Av ≥ 0, vi = 0 (i ∈ I), vi < 0 (i ∈ Ic). (48)

SinceA ∈ M
n, the above conditions implyAij = 0 (i ∈ I, j ∈ Ic). Therefore we have(Av)i =

0 (i ∈ I). Repeating the same argument, we obtain(Akv)i = 0 (i ∈ I, k = 0, 1, · · · , n − 1).

Then, if we denote byUc the controllability matrix for the pair(A,B), we have

rank(Uc) = rank([B AB · · ·An−1B ])

= rank([Av A2v · · ·Anv ])

= rank([v Av · · ·An−1v ])

≤ n− |I|

where|I| stands for the cardinality of the index setI. This implies that(A,B) is not controllable

and hence the proof is completed.

E. Proof of (IV) in Theorem 5

For the proof, we need the next lemma.

October 16, 2014 DRAFT



31

Lemma 5: For givenA ∈ M
n, B ∈ R

n×1
+ , andC ∈ R

1×n
+ , suppose(A,B) is controllable and

(A,C) is observable. Then, for a givenα ∈ R such thatαI+A ∈ R
n×n
+ , we haveC(αI+A)iB >

0 for at least one indexi ∈ {0, · · · , n− 1}.

Proof of Lemma 5: Since (A,B) is controllable and(A,C) is observable,(αI + A,B) is

controllable and(αI + A,C) is observable. Therefore we see thatU := Uo,αUc,α ∈ R
n×n
+ is

nonsingular whereUc,α andUo,α stand for the controllability and observability matrices for the

pairs (αI + A,B) and (αI + A,C), respectively. The first row ofU given by [ CB C(αI +

A)B · · ·C(αI + A)n−1B] is nonzero sinceU is nonsingular from the controllability and ob-

servability assumption. Therefore the assertion readily follows.

Proof of (IV) in Theorem 5: Let us defineΩD := Ω(I −DΩ)−1 as in the proof of (III). Then,

from the assertion (I) already validated, the matrixDΩ − I is Hurwitz and henceρ(DΩ) =

λF(DΩ) < 1. It follows that

ΩD = Ω(I −DΩ)−1 = Ω
∞∑

i=0

(DΩ)i ≥ Ω ≥ 0.

SinceΩ is irreducible from (iii), the above inequality impliesΩD is also irreducible andΩD ∈

R
N×N
+ .

With this in mind, supposeAcl is reducible for contradiction. Then, forα > 0 such that

αI +A ≥ 0, there exists a permutation matrixP such that

P T (αI +A+ BΩDC)P ∈ W+,

W :=



W =


 Q R

0nx̂−r,r S


 : Q ∈ R

r×r, S ∈ R
(nx̂−r)×(nx̂−r), 1 ≤ r ≤ nx̂ − 1.



 ,

W+ := W ∩ R
nx̂×nx̂

+ .

SinceαI +A andBΩDC are both nonnegative, the above condition implies

YA := P T (αI +A)P ∈ W+, (49)

YBC := P TBΩDCP ∈ W+. (50)

To proceed, let us define

nmax := max
i=1,··· ,N

nxi
, U :=

nmax−1∑

i=0

(P T (αI +A)P )i ∈ W+.
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Then, from Lemma 5, we have

X := CPUP TB ∈ D
N
++. (51)

With the matrixU ∈ W+ defined above, we also have

YBC = P TBΩDCP ∈ W+,

YBCUYBC = P TBΩDXΩDCP ∈ W+,

YBC(UYBC)
2 = P TBΩD(XΩD)

2CP ∈ W+,
...

YBC(UYBC)
N−1 = P TBΩD(XΩD)

N−1CP ∈ W+.

It follows that

P TBZCP ∈ W+, Z := ΩD

N−1∑

i=0

(XΩD)
i. (52)

SinceΩD is irreducible andX ∈ DN
++, it is obvious thatXΩD is irreducible. Moreover, since

XΩD ∈ R
N×N
+ , we see from (b) of Proposition 2 that

∑N−1
i=0 (XΩD)

i ∈ R
N×N
++ . SinceΩD is

irreducible andΩD ∈ R
N×N
+ , this further indicates thatZ ∈ R

N×N
++ .

Now we move onto the final stage of the proof. To this end, let usdefine

AP := P TAP, BP := P TB, CP := CP

and partitionBP andCP as follows:

BP =:


 BP,1

BP,2


 , BP,1 ∈ R

r×N
+ , BP,2 ∈ R

(nx̂−r)×N
+ ,

CP =:
[
CP,1 CP,2

]
, CP,1 ∈ R

N×r
+ , CP,2 ∈ R

N×(nx̂−r)
+ .

Then, from (49) and (52), we have

AP ∈ W, (53)

BPZCP ∈ W+, Z ∈ R
N×N
++ . (54)

Here, in relation to (54), supposeBP,2 6= 0. Then, from (54), we haveCP,1 = 0. On the other

hand, supposeCP,1 6= 0. Then, again from (54), we haveBP,2 = 0. It follows that BP,2 = 0

or CP,1 = 0 holds. From the form ofAP given by (53), the former case implies(AP ,BP ) is
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not controllable, and the latter case implies(AP , CP ) is not observable. This contradicts to the

assumption that(Ai, Bi) is controllable and(Ai, Ci) is observable fori = 1, · · · , N (and hence

(A,B) and (A, C) are controllable and observable, respectively). This completes the proof.
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