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Abstract

This paper is concerned with the analysis and synthesis tefconnected systems constructed
from heterogeneous positive subsystems and a nonnegatereannection matrix. We first show that
the interconnected system is positive and stable if and drdyMetzler matrix, which is built from
the coefficient matrices of the positive subsystems and rterdonnection matrix, is Hurwitz stable.
By means of this key result, we further provide several testiat characterize the positivity and
stability of interconnected systems in terms of the Frobgmigenvalue of the interconnection matrix
and the weighted.;-induced norm of positive subsystems to be defined in thigpaporeover, in the
case where every subsystem is SISO, we provide explicititonsl under which the interconnected
system has the property of persistence, i.e., the state eofinierconnected system converges to a
unique strictly positive vector (that is known in advancetom strictly positive constant multiplicative
factor) irrespective of nonnegative and nonzero initiatest. We finally extend the persistence results
to formation control of multi-agent positive systems. Thesult can be seen as a generalization of a
well-known consensus algorithm that has been basicallfieappo interconnected systems constructed

from integrators.
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. INTRODUCTION

Recently, systems of interest in the field of engineeringldgy, economics, etc., have become
more complex and larger-scaled, and as such intensiverobsetiort has been made for devel-
oping dedicated analysis and synthesis tools. The issuewstd derive sharpened analysis and
synthesis conditions exploiting the properties of suleyst and interconnection structure [16],
[23], [22], [12]. In this paper, we are particularly inteted in the case where the subsystems
are positive. A dynamical system is said to be (internallg}ipive if its state and output are
nonnegative for any nonnegative initial state and nonmeganput [11], [19]. This property
naturally in biology, network communicationsnemics and probabilistic systems.
Moreover, simple dynamical systems such as integrator estebfider lag and their series/parallel
connections are all positive. Even though their dynamiesvary simple, the behavior of inter-
connected systems constructed from them is complicateddasdrves investigation especially
in the study area of multi-agent systems [23], [22]. Thid fso strongly motivates us to focus
on the interconnected positive systems. Nowadays the siodinear positive system is active
and remarkable results have been obtaith cooptrization theory [28], [15],
[1], [25], [26], [29], [20], [4], [10]. Because of the posigness, linear positive systems allow
special type of Lyapunov functions for the analysis and Isgsis, such as co-positive functions
and quadratic in the state functions with diagonal Lyapumatrices [2], [29], [26].

This paper is concerned with the analysis and synthesig@ftonnected systems constructed
from heterogeneous positive subsystems and a nonnegati&reaonnection matrix. We first show
that the interconnected system is positiaad stable if and only if a Metzler matrix, which is
built from the coefficient matrices of the positive subsysteand the interconnection matrix, is
Hurwitz stable. By means of this key result, we further pdevseveral results that characterize
the positivity and stability of interconnected systemsamts of the Frobenius eigenvalue [17]
of the interconnection matrix and the weightég-induced norm of positive subsystems to be
defined in this paper. Moreover, in the case where every stdrsyis SISO, we provide explicit
conditions under which the interconnected system has thgepty of persistence, i.e., the state
of the interconnected system converges to a unique stixiBitive vector (that is known in

advance up to a strictly positive constant multiplicatieetbr) irrespective of nonnegative and

TMore precisely, we replace the positivity by admissibjlishose definition is given later.
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nonzero initial states. More precisely, we prove that thesispeence is achieved if every positive
subsystem shares identical unweightgdinduced normy (which is nothing but the steady-state
gain) and if the interconnection matrix is irreducible [If]d has the Frobenius eigenvalye,.
We finally extend the persistence results to formation @brtf multi-agent systems [13], [22],
[30], [31]. For multiple agents that move over a plane, thalge to design a communication
scheme over the agents with respect to each agent’s posiidhat prescribed formation can
be achieved. We show that such communication scheme sysibg®ossible even if the agents
have different dynamics (and hence heterogeneous) as fotigegp are positive, stable and share
identical unweighted.;-induced norm (steady-state gain). As illustrated lates tesult can be
seen as a generalization of a well-known consensus algotitiat has been basically applied
to interconnected systems constructed from integrato2$ [Qur results essentially conce@
consensus-basealitput control of interconnectecheterogeneous positive systems, and this is
in stark contrast with recent results [10] atate consensus of interconnectechomogeneous
positive systems where homogeneousness drasticallytdéed the treatment. We finally note
that this paperassembles-those results in [5], [9], [8] weiblicit proofs for technical lemmas
and theorems.

We use the following notations. For given two matricésand B of the same size, we write
A > B (A > B)if A; > B;; (Ai; > By;) holds for all (4, j), where A;; stands for the
(i, 7)-entry of A. In relation to this notation, we also defil}, := {zx € R": z > 0} and
R? = {zr € R": z > 0}. We also defineR’}}"™ and R}*™ with obvious modifications. In
addition, we denote b{" | the set of diagonal and strictly positive matrices-ef the sizFor
A e R, we denote by (A) andp(A) the set of the eigenvalues df and the spectral radius
of A, respectively. Ford € R7*", Theorem 8.3.1 in [17] states that there is an eigenvalualequ
to p(A). This eigenvalue is often called the Frobenius eigenvahtedenoted by\r(A) in this
paper. For given vector € R” we define its 1-norm by|z||; := > ., |2;|. In addition, for

s(t) : Ry — R", we define itsL;-norm by

lslly = / Is(0)lldt.

Finally, we define the families of functions}, L}, as follows:

LY :={s| s(t): Ry = R",|s]; < oo}, L7, :={s]s(t): Ry =R, [s|li < oo}
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[I. PRELIMINARIES

In this section, we gather basic definitions and fundameetallts for positive systems.
Definition 1 (Metzler Martrix): [11] A matrix A € R™" is said to beMetzer if its off-
diagonal entries are all nonnegative, i.8;; > 0 (i # j).

In the sequel, we denote " (H") the set of the Metzler (Hurwitz stable) matrices-ef the
size n. Under these notations, the next lemmas hold. The proof ofirha 2 is given in the
appendix section, Subsection VII-A.

Lemma 1: [11], [19], [21] For,givenA € M", the following conditions are equivalent.
() The matrix A is Hurwitz stable, i.e.A € H".
(i) The matrix A is nonsingular andi~! < 0.
(i) There existsh € R such thath’ A < 0.
(iv) Foranyg e R" \ {0}, the vectorAg has at least one strictly negative entry.
Lemma 2: For givenP € M™, Q € R}"*™, R € R, and S € M", the following

conditions are equivalent.

P
() = O\ emmm
R

S
(i) PecH™, S— RP'Q € H™.
(i) S €H™, P—QS'R € H™.

To move on to the definition of positive systems, considerlithear system described by

r = Ar 4+ Buw,
G : Q)
z = Cx + Duw

whereA € R™", B € R™"™ (C € R™*", and D € R"*". The definition-and-a—basic-result
of positive systemgs are given in the following.

Definition 2 (Positive Linear System): [11] The linear system (1) is said to Ipesitive if its
state and output are both nonnegative for any nonnegatittal istate and nonnegative input.
Remark 1: In Jiterature, a system satisfying the condition in Defomti2 is often callednter-
nally positive, to make a clear distinction froaexternally positive systems. Since we only deal
with internally positive systems in this paper, we simplydi it by positive as in Definition 2.
Proposition 1: [11] The system (1) is positive if and only # € M", B € R}, C' € R}**",
andD € R},
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We next introduce the weightefd; -induced norm of positive systems. It turns out in the next
section that the weightef, -induced norm plays an important role in characterizingstadility
of interconnected positive systems.
Definition 3: Suppose’ given by (1) is positive and:(0) = 0. Then, its weighted_;-induced
norm associated with weighting vectarse R, andg, € R’} is defined by

G qullis = sup lgz 2l 2

Toolli—1. weL™w
Remark 2: The stg;dgr(il-i;dlaced norm ofG given by (1) is defined as follows [14]:

Gl = ol ® [ 3)
From the positivity of(z, we can easily confirm that the twio,-induced norms given above can
be linked by

Gy gl = [Q-GQZ |1 (4)
where @, = diag(q.1, - , @en.)s Quw = diag(quw1,- -, quwn,)- Namely, as the denomination

“weighted” L;-induced norm standg

Go..q0ll1+ coincides with the standardl;-induced norm
with weightings (or scalings) on the input and output signdlhe vector representation of
weightings as ing, and g, rather than the matrix representation asiin and @, is useful in
characterizing the weighteld;-induced norm and the stability of interconnected posiiystems
by linear inequalities. This is firstly illustrated in thexteéheorem.

Theorem 1: SupposeG given by (1) is positive. Then, for giveq, € R’?, ¢, € R}%, and

~ > 0, the following conditions are equivalent.

(i) The matrix A € M" is Hurwitz stable and G,. ;. |1+ < 7-

(i) There existsh € R} such that

| WA+ q'C W'B "D gl | <0 5)
(i) The matrix A € M" is Hurwitz stable and the following inequality holds:
4. G(0) < 74y, (6)

Here,G(s) is the transfer matrix of the syste6 defined byG(s) := C(sI — A)"'B+ D.

If we let ¢, = 1™ andgq, = 1™ where 1" stands for the all-ones vector of sizg, the
definition (2) essentially reduces to the standardinduced norm as we noted in (4). This
standardL,-induced norm is employed as a performance index in recemwltiest on switched
positive systems [32], [33]. Moreover, this standdrdinduced norm is used in [4] as a useful

tool for robust stability analysis of uncertain positivesyms.
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Even though related discussions on the proof of Theorem lbeafound, for example, in
[25], [4], we give a detailed proof of Theorem 1 in the appergkction, Subsection VII-B, for
completeness. The next corollary directly follows from) (in Theorem 1.

Corollary 1: SupposeG given by (1) is positive and stable. Then, for givene R’-_, ¢, €

R’ , the weightedL;-induced norm|G,, ,. |1+ iS given by

|Gy g ll1+ = min ~ subject tog? G(0) < ~q,, (7)
or equivalently,
T
7, G(0));
||G¢Iz qu 1+ — ma’X M (8)

Qu,
This corollary |mpI|es that it given by (1) is stable and SISO, we hay@, ;|- = G(0).

Namely, the unweighted -induced norm coincides with the steady-state gain.

[1l. STABILITY ANALYSIS OF INTERCONNECTEDPOSITIVE SYSTEMS
Let us consider the positive subsystém (i = 1,--- , N) represented by
Ay e {M™ NH™}, B e RY™™ i C; e R™ Dy e Ry,

As clearly shown in (9), we have assumed that(i = 1,--- , N) are all stable.

With these positive subsystems, let us define a positive taidessystent; by
G := diag(Gy, -+ , Q). (10)
The state space realization Gfis given by

T = AT + B,
g: (11)
Ct + Du

)
I

where

A = diag(Ay, -+, A), B:=diag(By, -+, B),

(12)
C == diag(Cy, -+ ,C), D:=diag(D, -, D),
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T

T = ] x% ] eR"™,  nz:.= E n;,
i=1
. N

w o= | wy wh } e R", ng:= g N, » (13)

i=1
- T N

z o= | ... 217\}] eR™,  nz:= E n,,.

For a given interconnection matri € R’®*"*, we are interested in the stability and the
performance of the interconnected systém( defined by (11) andv = Q2z. In relation to the
well-posedness of this interconnection, we make the nefiiten.

Definition 4. The interconnected systegx (2 is said to beadmissible if the Metzler matrix
D2 — I is Hurwitz stable.

In the sequel, we require the admissibility of the intercartad systeng x 2 whenever we
analyze its stability and performance. The meaning of thésypposition, and its rationality as
well, can be explained as follows. dfet(DS2 — I) # 0, then the interconnection is well-posed,

and the state-space description of the interconnectedmyist represented by
T=AaZ, Aq:=A+BQI-DO)7'C. (14)

Thus, if the admissibility is ensured, we see that

(i) the interconnectiory () is well-posed;

(i) the Metzler matrixDQ— I is Hurwitz and hencé/ —DQ)~! > 0 holds from (ii) of Lemma 1.
Therefore the matrix4,, is Metzler. It follows that the positive nature of the sulisyss
G; (i = 1,---,N) is inherited to the interconnected system, i.e., the noanéty of
the statess; (1 = 1,--- , N) for any nonnegative initial states is still preserved unither
interconnection.

We also note that admissibility is out of issueTf = 0, since in this case we havwd, =

A+ BQC € M"z and hencej « (2 is always (well-posed and) positive.

For the admissibility and stability of the interconnectgdtemg x {2, we can obtain the next
lemma that plays an important role in this paper.
Lemma 3: The interconnected syste¢hx () is admissible and stable if and only if the Metzler

matrix
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A BQ
II:= (15)
C DQ—1

is Hurwitz stable.

Proof of Lemma 3: From Definition 4, the interconnected syst& 2 is admissible and

stable if and only if the Metzler matriceB2 — I and A, = A + BQ(I — DQ)~'C are both

Hurwitz stable. Thus the assertion readily follows from lrean2. [ |
From this key lemma, we can obtain various conditions foratmissibility and stability of

the interconnected system according to the propertieseotibsystemé:; (i = 1,--- , N) and

the interconnection matrif. Typical examples are given in the following theorems. Thst fi

theorem, Theorem 2, concerns the interconnected systewnsinoFig. 1 for the caseéV = 3.

r=-----=-~"~"~"°="°="°="°"°=°"°=°/°7°7 777777 °7=°7=°=°7° |
. w Z |
1 12 21
W12 221 } 12 QQI ]
el : Gh :
! w zs 1
. . -1 13 31 |
w13 ~31 | 13 QSI
L T o o __T-——C _
L -7
1 W z :
—1| W21 12
Wa1 ~12 f 21 QIZ
Go | G
I Wos 2
Was Zs \ -1 23 32
23 32 : p Q32
L oo ____T- - - _
rTTTTTTTTTTTTTTTTTTTTT T TSI TS -7
. ! —1| W31 213 '
w3l 213 ; 3 Q13 —
Gy : w Gs ; :
W - Zo¢ | -1 32 23 .
32 23 . 39 Qa3
1 |
L oo ___T--_--- _
Fig. 1. Interconnected positive systeilV & 3). Fig. 2. Weightings on input and output signals.

Theorem 2: Let us consider the case where thth subsystents; represented by (9) has the

following specific structure:
N

T = A + Z Birwig,

) k=1 ki
G - ~

zj; = Chizy + E Djpwir  (j # 1)
\ k=1,k#i
N XNy ; X1 ; XMy

A; € {M"™ NH"}, By e RY ™ * C; e Ry7™, Dy € Ry
We assume that the size of; and z;; are identical, andV subsystems are interconnected by

(16)

ik
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Then, the interconnected system is admissible and staldadfonly if there exist weighting

vectorsg;; € Riﬁ" (,7=1,--+-,N,i # j) such that

||Gi7qz,i7Qw,i 1+ < 17
T

Q=i = [ Qi = G G 0 g ] ’ (18)
T

Qwi = [qz'T,l qz'T,iq QiT,iH qui| (i=1,---,N).

As noted, the interconnection structure assumed in The@émillustrated in Fig. 1 for the
caseN = 3. The subscript$i, j) of w;; andz;; indicate that these are the signals that flow from

the subsystem to the subsystem. By defining

T
o T T T T
i = [ 21t Zic1i Rigls T ANy } ) 19
T T T r 1" (19)
wi = [ Wiy ot Wi Wiy o WiN ] (i=1,---,N)

and by representing the interconnection (17)dy= 2z, we can see that the interconnected

system can be represented @y 2. For N = 3, the interconnection matrix-€an be given by

[0 0 iL,, 00 0 |
0 0 {0 0 il
vy 0 L0 0 L0 0
o | Trom (20)
0 00 00 I,
0 Ly, 0 010 0
0 0 0 I, i 0 0 |

By applying Lemma 3 to the resulting interconnected sysgent?, we €an obtain Theorem 2.
The complete proof is given in the appendix section, Submeatll-C.

The implication of the theorem is that the interconnectestesnG « () is admissible and stable
if and only if there exists a set of weighting vectors thadens the weighted,;-induced norm of
each positive subsystem less than unity. Namely, the dondibr the admissibility and stability
is separated into thé-induced norm conditions of each subsystem. In this sensecauld
say that the weighting vectors work asparators that have played important roles for stability
analysis of general linear systems [18], [27], [24]. Anotimerpretation is, as we usually do for
separators as well, that weighting vectors serve as ssalorgnput and output signals. Indeed,
from the link (4), we see thai () is admissible and stable if and only if the standaseinduced

norm of scaled systems (i.e., the systems encircled by ddstesin Fig. 2) are less than unity,
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where);; = diag(g;;). What is interesting here is that such scaling-based gtabdndition is
necessary and sufficient, which is hardly achievable faradnnected systems constructed from
general (non-positive) linear systems.

In the case wheréV = 3, the condition (18) can be written concretely as
Gy,

1G
1G)

]TH1+ < 17
}TH1+ < 1, (21)

e < 1.

a3 a7 ldls dfy
s 43" la31 433
afy 337 la3, a3
As clearly shown in (21), thé€ ;-induced norm conditions are coupled with each other thnoug
weighting vectors. However, under the mild assumption #eth subsystem provides exactly
the same scalar output to the rest of subsystems, we can eanttouple the condition and
hence the admissibility and the stability can be determimecheans of decoupled weightéd-
induced norms of subsystems. This result leads to deceetlastabilizing controller synthesis
for interconnected positive systems where the controjethesis can be done in a distributed
manner. See [7], [6] for details.

The results in Theorem 2 are valid for MIMO positive subsygsteOn the other hand, in the
case where every subsystem is SISO, conditions for the athlity and the stability for the
interconnected systei x (2 can be drastically simplified as we see in the next two thesrem
Theorem 3: Let us consider the case where the subsystémg = 1,--- , N) represented by
(9) are all SISO. Then, for givef € RJXXN, the interconnected systethx 2 is admissible
and stable if and only if the Metzler matri%2 — I is Hurwitz stable wherel € RY*V is
constructed from the unweightdd -induced norm (i.e., the steady-state gain) of each sudsyst
as inW := diag(||[Gr1ll1+, -+, [Grallis) = diag(Gi(0), - -+, G (0)).

Proof of Theorem 3: From Lemma 3, the interconnected systém() is admissible and stable
if and only if the Metzler matrixII defined by (15) is Hurwitz stable. From Lemma 2 and the
fact that||G;1.1]l1. = Gi(0) = —C;A;'B;+ D; (i = 1,--- , N), this condition holds if and only
if both ef-the Metzler matricesA and D2 — I — CA~!BQ = ¥Q) — I are Hurwitz stable. Thus
the assertion readily follows sincé is Hurwitz stable from the assumptioty € {M™ NH" }.

[
Theorem 4: Let us consider the case where the subsystémg = 1,--- , N) represented by

(9) are all SISO and share identical steady-state gain 0, i.e., G;(0) = --- = Gn(0) = 7.
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Then, for givern(2 € Rf“’, the interconnected systegx () is admissible and stable if and only
if YAr(2) < 1.
Proof of Theorem 4: From Theorem 3, we see that the interconnected sysient) is
admissible and stable if and only if2 — I € M is Hurwitz stable. This condition can be
restated equivalently as im\r(2) < 1. This completes the proof. [ |
These three theorems clearly show that the admissibililystability of interconnected positive
systems can be fully characterized in terms of weighfgeinduced norms of subsystems.
Moreover, if all subsystems are SISO and share identicadgtstate gainy > 0, we see from
Theorem 4 that the interconnected systém 2 is on the stability boundary ifA\p(Q2) = 1.

This idea leads us to the persistence analysi§ f) as detailed in the next section.

IV. PERSISTENCEANALYSIS OF INTERCONNECTEDPOSITIVE SYSTEMS

In this section, we are interested in thersistence of the interconnected systeghx ). After
giving our main results on the persistencedof 2, we show that the persistence results can be

applied to formation control of multi-agent systems.

A. Persistence Analysis

We first give the precise definition of what we call persistenc
Definition 5: For given positive subsysteni (i € Zy) represented by (9) and interconnection

Ng XN

matrix 2 € R;*""#, consider the interconnected systém (2. Then, the interconnected system
G« is said to have the property pérsistence if it is admissible and if there exigp, (., € R,
such that

Jim 7() = (6 2(0))6 22)
for any initial stater(0) € R"=.

This definition requires that the stateof G x{2 converges to a strictly positive scalar multiple
of a strictly positive vector as long ag0) € R’}* \ {0}, i.e., all the states; (i = 1,--- ,nz)
become strictly positive and hence “excited” eventualliisTis the reason why we call the
property persistence. It is also clear that persistencaineg)that the interconnected system
G Q) is on the stability boundary.

To state our main result on the persistencejof 2, we first need to review the definition
and related results omreducible matrices. Similarly to [10], it turns out that the irreduiity

of interconnection matrix plays a crucial role in achievipgrsistence.
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Definition 6: [Reducible Matrix [17] (p. 360)] A matrix\/ € R"*" is said to bereducible if
either
(@ n=1andM =0 or

(b) » > 2 and there exist a permutation matike R"*" andr with 1 <r <n — 1 such that

R
PTMP — Q ] ’ Q c RTXT, S c R(n—r)x(n—r)‘

Onfr,r S
Definition 7: [lrreducible Matrix [17] (p. 361)] A matrixM/ € R™*™ is said to beirreducible

if it is not reducible.
Definition 8: [Directed Graph of Matrices [17] (p. 357)] The directed drapf M € R"*",
denoted byI'(M), is the directed graph on nodesP;, P,, ---, P, such that there is a
directed arc in[’(M) from P, to P; if and only if M;; # 0 or equivalently,In(/);; # 0. Here,
In(M) stands for the indicator matrix a¥/.
Definition 9: [Strongly Connected Graph [17] (p. 358)] A directed grapis said to bestrongly
connected if between every pair of distinct nod€g, P; in I' there is a directed path of finite
length that begins aP; and ends af;.
Under these definitions, it is known that the next resultsl hol

Proposition 2: [17] (p. 362) For givenM € R™*", the following conditions are equivalent.
(@) M is irreducible.

(b) (I, + In(M))"1 > 0.

(c) T'(M) is strongly connected.

Proposition 3: [17] (p. 508) Supposé/ € R}*" is irreducible. Then the following conditions
hold.

(i) p(M) >0 andp(M) is an eigenvalue ofi/.

(i) There is a vectow R’} such thatMv = p(M)v.
(i) p(M) is an algebraically (and hence geometrically) simple eigkre of M.

The next corollary directly follows from Proposition 3, wie(iii) is particularly important.
Corollary 2: SupposeM € M" is irreducible. Then the following conditions hold where=
maxyo(ar) Re(A).

(i) « € R is an algebraically (and hence geometrically) simple eigkre of M.

(i) There is a vectow € R such thatMv = av.
(i) Re(\) <a (VA€ o(M)\{a}).
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We are now ready to state our main result on the persistenGexd? and give its proof.
Theorem 5: Let us consider the case where every subsystemepresented by (9) is SISO .
Suppos&; (i = 1,--- , N) and a given interconnection matrix € RY*" satisfy the following
conditions.

(i) (A;, B;) is controllable and A;, C;) is observable for alf =1,--- , N.
(i) G1(0) =---=GN(0) =:v(> 0) holds.
(i) The interconnection matrix € RY*" is irreducible, i.e., the directed grapts?) is strongly
connected.
(iv) Ar(Q2) =1/~ holds.
Then, for the interconnected syst&k (2, the next results hold.
(D The interconnected systeghx () is admissible, i.e., the Metzler matriR) — I is Hurwitz

stable.
(I) The matrix A, given by (14) satisfies(A,) C C_, i.e.,Re(\) <0 (VA € 0(Aq)).

(11 If we denote the right and left eigenvectors Qfassociated with the Frobenius eigenvalue

Ar(Q) by vg € RY, anduy, € RY,, respectively, we havel,&r = 0 and{f A, = 0 where

r=—A"Buor R}, & =—-ATCloeRY, =1 (23)
Here the eigenvectors;, v, € RY., are appropriately scaled so thgtég = 1 is satisfied.

(IV) The matrix A, has eigenvalu@ that is algebraically (and hence geometrically) simple.

Moreover, we hav&e(\) < 0 (VA € a(Aq) \ {0}).
(V) We have
lim 3(t) = f(7(0)ér,  f(7(0)) = £7(0) (24)
for any initial stater(0) € R".

The results (1), (IIl) and (V) of Theorem 5 clearly show thahder the conditions (i)-(iv), the
interconnected syste@« (2 has the property of persistence, and (22) in Definition 5 isfsad
with & = &, € R}?. andé,, = &g € RT7,.

We need the following lemma for the proof of Theorem 5. Theopmf this lemma is given
in the appendix section, Subsection VII-D.

Lemma 4: For givenA € {M"NH"}, B € R?*!, andC € RY*", we haveA™'B < 0 if (A, B)

is controllable. Similarly, we have’A~! < 0 if (A4, C) is observable.
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Proof of Theorem 5:

Proof of (1): From (i) and Lemma 4, it is clear thatC;A;'B; > 0 (i = 1,---,N). If we
defineS := diag(—C1A;'By, -+, —CyAy' By) € DY, , we haveD = ~I — S from (ii). On
the other hand, from (iii) and Proposition 3, we see thatehexistsvg € RY. such that
Qur = A\p(Q)vr. This implies(yQ2 — I')ug = 0 since (iv) holds. Therefore we hay®() — I)vg
=((vI —=8)Q —1I)vg = =SQur = —Ap(2)Swvr < 0. It follows from (the dual version of) (iii)
of Lemma 1 thatD$2 — I is Hurwitz stable.

Proof of (Il): From Theorem 4, we see thafA;) C C_ if and only if yAp(€2) < 1. Since at
presenty\r(Q2) = 1 holds from (iv), we see that(A,) C C_ holds from the continuity of the
eigenvalue of4. with respect to perturbations on it.

Proof of (lll): By definingQp := Q(I — DQ)~!, we readily see

Aaér = — (A + BQpC) A 'Bug
= —Bug — BQpC A Bug
= —Bug — BQp(D — yI)vg
=—B(I+QUI—-DQ) (D —~I))vr
=—B(I+(I-0D)'QUD —~I)) g
= -B(I - QD) (I — Q) vy
= —B(I - QD)™ (1 = e (Q)) vr
=0.

The equality¢f A, = 0 follows similarly. On the other hand, sindel;, B;) is controllable and
(A;, C;) is observable, we seeA;'B; > 0 and—C;A;' >0 (i = 1,--- ,N) from Lemma 4.
Moreover, since? is irreducible, we haver > 0 andwv, > 0 from Proposition 3. Therefore we
haveér = —A™'Bug € R%, andé, = —ATCTo, € R,

Proof of (IV): We can prove that, is irreducible and hence the assertion readily follows from
(I, (1) and Corollary 2. The proof for the irreducibiiit of A, which is indeed the core of
the proof of Theorem 5, is given in the appendix section, Sciisn VII-E.

Proof of (V): Since (IV) holds and-and sincg € R7 is the right eigenvector ofd, cor-
responding to the eigenvalug it is an elementary fact that the stateof the interconnected
systemg * €2 converges tof (z(0)){r for some linear functionf : R"@ — R. Furthermore,

for the dynamics of the interconnected system represeryeﬁ B A,Z, we can readily see
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that ¢z = 0. Therefore we have’Z(0) = f(7(0))¢7¢x. Sincecléx = 1 from (lll), we have
f(2(0)) = &7(0). This completes the proof. u
We have a strong prospect that the persistence result inrdimed has a wide range of
applications. The scope includes analysis of coexistericeompetitive species in systems
biology, dynamic resource allocation in social system glesand analysis and synthesis of
multi-agent systems. The last issue is pursued in the nekbse Section V, after giving several

preliminary results in the next subsections.

B. Analysis of Seady-Sate Output

The next result concerns the steady state outpuf ef(2. This is a direct consequence of
Theorem 5 and illustrates its usefulness in the applicatoformation control of multi-agent
systems with positive dynamics.

Corollary 3: Consider the case where every subsyst@mrepresented by (9) is SISO and
satisfies conditions (i) and (ii) in Theorem 5. Then, for give,; € RY,, the output of
interconnected systei x 2 satisfies

Jimn 3(1) = 7 (2(0) vy (= 761 7(0)) o) (25)
if Q@ € RY*Y has the following property in addition to (iii) of Theorem 5:
(V') Quon; = (1/7)von; holds.
Namely, for any initial stater(0) € R’ \ {0}, we can achieve the convergence of the output
2@t) = [ z1(t) -+ 2n(t) |7 to v£(2(0))ven; € RY, by the interconnection witlf2 € RY*N
having properties (iii) and (iv’).

This corollary implies that, foy givem,,; € RY. that represents the output position of each
agent in a “desired formation,” we can achieve the convergg@5) as long as we desigh
satisfying (iii) and (iv’). This is the basic idea to use tlesults in Theorem 5 and Corollary 3
for the formation control of multi-agent systems.

A brief sketch of the proof of Corollary 3 is as follows. Sinflec RY*" satisfiesQu,,; =
(1/7)vop; for vy € RY.,, we can see from Corollary 8.1.30 of [17] that(2) = 1/~. Namely,

a matrix € satisfying the condition (iv’) satisfies the condition (iv) Theorem 5 as well. It
follows from Theorem 5 that,, = —f(Z(0)).A™'Bug,; wherez,, := lim,_,, Z(¢). Therefore,

for z, := lim;_,, 2(t), we obtain
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%o = (I — DA
= —f(@(0)
—f(2(0)

) 1Cane

)(I - DR)~'CA™ Bug,
)([ DQ) (D — ’}/I)Uobj
f((0))

- -0 (I — D) (Ar()D — YAR()T ) Vo,

_f(&(0))
Ar(£2)

= 7/ (2(0))vop;-

This validates the assertion in Corollary 3.

(I — D) HDQ — I)vgp;

C. Relationship with the f-Consensus Protocol [22], [13]

Theorem 5 and Corollary 3 are closely related to (and me#mimxtensions of) the results
already obtained in the study area of multi-agent syster@k [22], [30], [31]. In this section,
we show that thef-consensus protocol shown in [22], [13] can readily be olgtdialong with
Theorem 5.

The communication over multi-agents in [22], [13] is detagred by the directed grapH(Z, &)
with the set of nodeq := {1,--- , N} and edges€ C Z x Z. The dynamics of the agents are

assumed to be identical integrator as in
Ppooai(t) = wilt), xi(t) € R (26)
The goal is to determine the input; (i = 1,--- , N) by the communication with other agents

over network so that we can achieve

lim 2(t) = f((ON1Y, Z:=[xzy, ---, ox |7 € RY. (27)

t—o00

If (27) is achieved for some : RY — R, we say thatf-consensus is achieved. In order to

achieve anf-consensus, the following protocol is presented in [223][1

wilt) = ) (;(t) — ai(t)). (28)

JEN;
Here,\; is the neighbors of the nodalefined byV; := {j € Z: (j,7) € £}. The interconnected

system constructed from (26) and (28) can be represented by
T(t) = —Li(t), L=D—-A (29)
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where L € RV*V is the graph Laplacian of' defined by

L:=D—A,
D := diag(dla e 7dN)7 dz = ‘/\/;|7 (30)
A=[Ay], Aij=1(G N, Aij =0 (j ¢ Ny).

It is easy to see that1” = 0 holds (i.e.,1V € RY, is the right-eigenvector of with respect
to the eigenvalu®). It is shown in [22], [13] that, if the grapl(Z, &) is strongly connected,

an f-consensus is achieved by (28) as in

lim Z(t) = f(2(0))1",  f(Z(0)) = & 2(0). (31)

t—o0

Here,& € RY is the left-eigenvector of with respect to the eigenvaluesatisfyingéI' 1V = 1.
In the following, we will show that (31) follows directly fra Theorem 5. To this end, we

first note that-that (29) is a positive system sinee € M”. Moreover, (29) can be rewritten as
x*(t) = —Dz(t)+w(t), Z(t):=Dz(t), wt)=AD'Z(t). (32)

From this expression, we can regard (29) as an intercorthexgtstem constructed fronV

positive, SISO and stable subsyste@is(: = 1,--- , N) given by

Li(t) = —dizi(t) + wi(t),
g | @0 (1) + wilt) -
and the interconnection matrix

Q=AD" e RV, (34)

It is clear thatG; (i = 1,---,N) in the form of (33) satisfies (i) and (ii) of Theorem 5 with
v = 1. On the other hand, the interconnection mafiix RY*" given in (34) is irreducible if
(and only if) the graph=(Z,£) is strongly connected, and its Frobenius eigenvalué veith
the right-eigenvectorg = D1V € RY. and the left-eigenvectar;, = &. Therefore(2 € RfXN
satisfies the condition (iii) and (iv) of Theorem 5 with= 1. Moreover, it is easy to see from
(23) thatég = 1V and &, = & in this case. It follows that (24) in Theorem 5 coincides with
(31).

To summarize, Theorem 5 turns out to be an intriguing extensif f-consensus protocol

shown in [22], [13]. Theorem 5 shows that, under certain @@, we can achievg-consensus
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(with respect to the output of each subsystem) even if wergéine the dynamics of each agent
from integrators to positive systems, and interconneati@atrix from graph-Laplacian matrices

to nonnegative matrices.

D. Parametrization of Interconnection Matrices

For the preparation of the formation control of multi-agepstems based on Theorem 5 and
Corollary 3, it is meaningful to show a concrete way to cansttra desired? ¢ RY*Y that
satisfiesQu,,; = (1/7)von; @andI'(2) = I' for prescribedv,,; € R_’L and graph structur€. For

illustration, consider the cases whdras schematically shown in Figs.3 and 4 far = 3.

@/@\\@ () =(e)=(a)

Fig. 3. Graph structur®,. Fig. 4. Graph structuré’s.

For graph structurd’,, any interconnection matri® € RY*" satisfying Quop; = (1/7)vob;

andI'(2) = I'y can be parametrized by

1
Q= ;Q(Uobj,p) e RN (35)
where
Uo i ..
( (]‘_pl) bl (Za.]) :LN7
Vobj,N
—obid (1<i<N, j=i+1),
Uobj,j
Q(’Uoijp)i,j = (]_ _pz) Vobj,i (1 S 7 S N’ ] =17 — 1), (36)
Uobj,j
py— (i,j) = (N, 1),
Uobj,1
0 otherwise.

Here, parametep € RY, can be chosen arbitrarily amorig< p < 1V. On the other hand,
for graph structurd's, any interconnection matri € Rf xN satisfyingQugn; = (1/7)ven; and
I'(©2) = 'y can be parametrized again by (35) and (36) where parametét’’, can be chosen
such thatp; =1, py =0, and0 < p; < 1 (i € Zy \ {1, N}). In both cases, we can confirm that
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resulting interconnection matri® is irreducible (sincd’, andI'g are both strongly connected).

When N = 3, the matrixQ2(v,h;, p) can be respectively illustrated fdr, andI's as follows:

I'(Q) =Ta
[ Uobj,1 Uobj,1 ]
0 P1—— (1—py)—=
Vobj,2 Vobj,3
Vobj,2 Vobj,2
Q(vobj, p) (1 —p2) 0 po—=
) Uobj,1 Uohj,3 ’
o J7 o J)
Uobj,3 Uobj,3
p3—=— (1 —ps) 0
Uobj,1 Uobj,2 J
I'(Q) =TIy
[ 0 Uobj,1 0 )
" Vobj,2 "
obj,2 obj,2
QVobjyp) = | (L=p2)—>= 0 po
Vobj,1 Vobj,3
0 Vobj,3 0
L Vobj,2 i

V. FORMATION CONTROL OFMULTI-AGENT POSITIVE SYSTEMS

In this section, we apply the results in Section IV to formaatcontrol of multi-agent systems.

A. Problem Setting and Consensus-based Formation Control

Let us consider a multi-agent system withagents, where theth agent(i = 1,--- , N) can
move on the(z, y)-plane. We denote b, ,(t), 2, (t)) the position of agent Furthermore, we
definez; :=[z1; -~ 2n4]7 (j = z,y) by stacking the coordinates of the agents.

We assume that agenhas independent dynamics along theandy-axes, denoted by, .. (s)
and P, ,(s), respectively, and independent control inpufs(¢) andu; ,(t). We further assume
that, as typical dynamics of moving agent3,(s) are given by

Zij(s) = Py j(5)Ui;(s), Pij(s) = . :

s+ ay)’ ki; >0, a,;>0(=1,---,N, j=uz,7y).
7’7]

SinceP, ;(s) is not stable (or say, on the stability boundary), we canpptyadirectly the results

in Theorem 5. To get around this difficulty, we apply a minogdback as in

uij(t) = —fij(zi5(t) —wi;(t)) (i € Zn, j=x,y)

with 0 < f;; < a7, /4k;;, wherew; ; (i € Zy, j = x,y) is the exogenous input kept for the

interconnection. Then we have
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bi; 1 0
(37)
Gij(s)=1 0 —cij|bjcij |, bij+ecig=aij, bijcij= fiki;.
1 0 ‘ 0
It follows from Proposition 1 tha&; ; (i =1,--- , N, j = z,y) are positive (with respect to the

minimal realizations (37)), SISO, and stable systems With(0) =1 (i=1,--- ,N, j =z,y).
The last property is a natural consequence from the factehelh open-loop transfer function
P, i(s) (1t =1,---,N, j = z,y) includes an integrator. We emphasize that the properties of
G ;(s) mentioned above robustly hold against “small” perturlyedion the plant parameters and
the minor-feedback gains. For description simplicity, veéinew; := [wy; - - wx ;T (j = x,y).

We assume thaW-agents independently communicate thesndy positions each other. Our
goal here is to design interconnection matri€gsand 2, such that, under the interconnection
with Q, and(, for (z,, w,) and(z,, @,), respectively, the following formation can be achieved:

lim [ Z,(2) 2,(t)) | = [ fa(Z2(0))vobja  fy(Zy(0))vobiy |- (38)

t—o00

Here,voy;; € RY, (j = x,y) are given vectors that specify the desired formation,&d) (; =
x,y) stand for the initial states of the corresponding interemted systems. On the other hand,
fi : R*N - R (j = z,y) stand for the scaling factors that depend upon the initetest It is
obvious that we can readily solve this problem by followingedrem 5 and Corollary 3.
Remark 3: Since the synthesis method of interconnection matriceggsed in Theorem 5 and
Corollary 3 are based on the idea of consensus, and since wetdalow to incorporate any
external signals to the interconnected systems, we camchide the effect of initial states at
the limits of the outputs. The problem setting (38) hasbeemedatong-with-this—fact. Similar
problem setting can be found, for example, in [10].

Remark 4: To illustrate our results in Theorem 5 and Corollary 3 in diséia situation, we
assume typical second-order dynamics of moving agentsiitegrator plus first-order lag) and
showed that we can make them satisfy the conditions (i) ajdn(iTheorem 5 by applying
minor-feedbacks. It is of course possible to apply the tesal Theorem 5 and Corollary 3 to

the agents with other dynamics as long as they satisfy (i)(8nhdf Theorem 5.
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B. Numerical Examples

Along with the basic problem settings stated in Subsectioh, We generated:; ; and k; ;
randomly over the closed interval0 20] and [1 2|, respectively, and then lef; as f;; =
0.8 x a7 ;/4k;;. We thus constructed;; (i = 1,---, N, j = x,y). We let [vobjz Vobjyli =
2 + cos(2mi/N) 2+ sin(27i/N)] so that the agents can form a (scaled) circle.

As for the graph structures of the interconnection matriees consider the two casds,
andI's (see Figs. 3, 4). Namely, we designed two sets of interca'rmematrices(QLA],QLA])
and (7", Q) with D(Ql") = I, (j = 2,9, k = A, B) following the parametrizations shown
in (36). Here, by using the freedom of parametein (36), we designec(QLcA],Q&B]) so that
they share identical left-eigenvector, , with respect to the Frobenius eigenvalueSimilarly
for (LY, QIP)). From (25) and (23), these allow us to have identical scafmgors alongz-
and y-axes between the interconnection w(mk‘], Q?[,A}) and (Q;E;B], QLB]). Therefore formations
to be achieved are exactly the same as long as the initi@sstae the same. The synthesis
of interconnection matrices can be done by solving linearagties as detailed in [8]. We thus
carried out simulation for the cas€ = 20, under the same initial conditions.

Figs 5-8 are the simulation results for the c:{z@éf*], QZ[,A]), and Figs 9-12 are the simulation
results for the caseQLCB], QLB]). In both cases, we see that the agents gradually form a (8cale
circle and converge to the position shown by blue dot whictomputed in advance from (25).
The convergence is rather slow for the graph struckiyén comparison with the graph structure
I's, and this slower convergence is often observed in otherlations. This would be partially

because the graph structurg is more sparse thah,.

VI. CONCLUSION

In this paper, we presented several novel results on thelistaednd persistence of inter-
connected heterogeneous positive systems. We showecdhthatability and persistence can be
characterized completely in terms of the (weightéglinduced norm of each positive subsystem
and the Frobenius eigenvalue of the interconnection matvix illustrated the usefulness of the
persistence results by applying them to formation contfahalti-agent systems. By noting the
fact that typical dynamics of moving agents are positive,sliewed that efficient synthesis of
communication scheme over the agents can be done as long dgriamics of the agents are

all positive, stable, SISO and-and share an identical stetadg gain.
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VIl. APPENDICES
A. Proof of Lemma 2

Proof of Lemma 2: We will prove the equivalence of (i) and (ii). The equivalenaf (i) and
(iii) follows similarly.
(i) = (ii) Suppose (i) holds. Then, from (iii) of Lemma 1, there eXistc R, andh, € R’

such that
RIP+hjR<0, hiQ+h3S <D0. (39)

The first inequality clearly shows thd is Hurwitz stable again from (iii) of Lemma 1. Since
P is Metzler and Hurwitz and hencB~! < 0 holds from (ii) of Lemma 1, the first inequality

in (39) impliesh! > —hTRP~!. From this and the second inequality, we have
hl (S — RP7'Q) < 0. (40)

It is obvious thatS — RP~1(Q is Metzler sinceP~! < 0 and hence, again from (iii) of Lemma 1,
we conclude that — RP~1Q is Hurwitz stable.
(i) = (i) Suppose (ii) holds. Then, from (iii) of Lemma 1, there exisis= R’}*, such that (40)

holds. It follows that there exists > 0 such that
hlS — (hIR 4+ c1mT)P71Q < 0

where1™ € R™ stands for the all-ones vector. If we defihe:= —((hi R +e1mT)P~HT we

haveh; > 0 since P is Hurwitz and hence”~! < 0. In addition, we readily obtain
RfQ +hls <0, w'P+AlR=—c1m" <.
Again, from (iii) of Lemma 1, this shows that the Metzler natfT in (i) is Hurwitz stable. m

B. Proof of Theorem 1

Proof of Theorem 1: (ii)=-(i) Suppose (ii) holds for somk > 0. Then A € M" is obviously

Hurwitz from (iii) of Lemma 1. In addition, there exists> 0 such that

WA+ C WB+¢ D~ (y—2)gl | <0
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It follows that, for anyx € R® andw € R™ satisfying[ 27 w” | > 0, we have

xz
WA+ IO WB+ D~ (y—o)gb] | | <0 (42)
w

Since( is positive, we note that(t) > 0 V¢ € [0, 00) holds for any input signalv € L}y and
x(0) = 0. From this fact and (41), we see that along the trajectorhefsystent: the following

relation holds:
RYa(t) + g 2(t) — (v — e)gpw(t) <0Vt € [0,00) Vw e Liv. (42)
By integrating the above inequality ovér, 7], we have
T T
W (T) + / ()t — (v — <) / Jw(t)dt <0 Ve LM,
0 0
By noting 2”7 z(T) > 0, it is obvious that
T T
/ gl z(t)dt — (y — s)/ gow(t)dt <0 Vw e L.
0 0
Moreover, by restrictingv to these such thafqlwl||; = 1 and lettingT’ — oo, we see that
| =it - -2 <0
0

holds for allw € LT such thatl|¢lw|; = 1. It follows that (i) is satisfied.

(i)=-(ii) To prove the assertion by contradiction, suppose (ii) dagsald for anyh > 0. Then

only the following two cases are possible:

(&) A is not Hurwitz stable.

(b) A is Hurwitz stable-but{5)-deesnet-heldferany=10,

Since (a) clearly contradicts (i), we only consider the dq@deThen, from the strong alternative
for linear inequalities [3, Section 5.8], there existc R” and g, € R}, not simultaneously

zero, such that
Agi + Bgs >0, ¢/ Cgi+ (¢L D —~ql)g, > 0.

If go =0, we haveg; # 0, g; > 0, and Ag; > 0, which contradicts the Hurwitz stability of
(see (iv) of Lemma 1). Therefore it suffices to consider theeoahereA is Hurwitz stable and

g2 # 0. With this in mind, let us note that the first inequality abdwsplies g; < —A~'Bg,
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since A~ < 0 from (ii) of Lemma 1. By substituting this into the seconddnality, we obtain
(¢FG(0) — v¢L)g2 > 0. Moreover, sincegs > 0 and g, # 0 as noted above, the following

inequality must hold for at least one indgx (1 < j* < n,):

(47 G(0))j+ = Yqu,j» = 0. (43)

In the following, we assume,, ;- = 1 without loss of generality. For a giveéfi > 0, we also
define a linear operatdy as follows:

((t) (0<t<T)
0 (T <t '

Ir¢ =

Now we move on to the final stage of the proof. To this end, letefne a constant input
signalw (t) := e;» € R, wheree; is thei-th standard basis d&"=. We also denote by(t)
the response of the systefer, the inputws(t). Then, in view of the steady-state output, we

see that for any > 0 satisfyingy — ¢ > 0, there exists/. > 0 such that
3
¢ z(t) = L GO (t) > —5 V> T, =
From (43), this implies
T £
4(t) — — Vt>T.
q, zst(t) — v > 5 vt > @
or equivalently,
T 8
q, 2st(t) > -5 >0 Vt>T..

If we define another input signat.(t) := Irwg for a givenT'(> 7.) and denote by.(¢) the
corresponding output signal, then we hd\g ws||, = T, 25(t) = 2, (t) (0 <t < T) and hence

||QTZ:*F||1 1 T T T T * T
—L————E/QﬂWWHJP%%@ﬁf/QﬁWMt
0 e
T

latwlly T T

1 *
> 5 | s
(v -

19

§>(T_Te)
2 T
> € ( E)E
=TTy Uy

Therefore, for the particular choice of
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g
T35 2y — ¢

T>—27 = l_7u>ﬂy

2

we have
T %

TN
lawi [l

Sincee > 0 can be taken arbitrarily small, this impli¢&7,. . |li.+ > 7, which contradicts (i).

(ii)=-(iii) The linear inequality (5) impliest € H™ and
R > —¢"CA™', W'B+¢'D < ¢l

since we haved~! < 0 from (ii) of Lemma 1. By substituting the former into the Ettwe
obtain (6).
(i) = (i) Let us fixv € R%, such thatv”A < 0. Then, the condition (6) implies that there

existse > 0 such that
' D+ (—¢ICA™ " + 0B < vql.

If we defineh := (—¢7 CA™! + ev”)T > 0, we readily obtain
RPA+¢'C=ecv'A<0, W'B+¢"'D—~¢ <.

This clearly shows that (5) holds. [ |

C. Proof of Theorem 2

Proof of Theorem 2: For each subsystem, let us define

Bi:=[Biy -+ Bij1 Biiy1 - Bin |,

Chi Dy;v -+ Diiic1 Diivi - Diin
Cic1,i . Divin -+ Diciiicr Diciivn -+ Dicign
CZ - ) DZ =
Cit1,i Dit1i1 +++ Div1iic1 Diviiiva -+ Divian
| Cnii | | Dnii -+ Dniic1 Dngiyn -+ Dnin |
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and z;, w; (i = 1,--- ,N) by (19). Then, the syster@ defined by (10) can be written in the
form of (11) with (12) and (13). Therefore the interconnectof subsystems:; with (17) can
be seen as an interconnection wifhand a matrix{) precisely given in the following. From
(17) and (19), we see that the interconnection mdtriaf this case is nothing but a permutation

matrix that permutes;; andz;; in z, i.e.,

Zij Zji

ol + | =]+ (44)

A concrete example of is given in (20). Since? is a permutation matrix, we see that> 0.
It follows from Lemma 3 that the interconnected system is iadinle and stable if and only if

the Metzler matrix

A BQ
C DQL—-1

is Hurwitz stable. This can be restated equivalently tharehexistsh; € R’ andg; €
R."7 (i,j=1,---,N,i # j) such that

T

h A BQ - T T
<0, he=|nl - B | , ¢=|q¢, - ¢ . (45)
7. c DO [ 1 N} [QJ q, N
Here,q., (i = 1,---, N) are given by (18). Sinc€ is a permutation matrix, we see that (45)
holds if and only if
- T
h A B
<0 (46)
7. c D-OF

Moreover, we see from the property Qf represented by (44) that

T
@O =(0g)" =q, Gwi=|qb, - @y

Here,q,; (i =1,--- , N) are given by (18). It follows that (46) can be divided imfoinequalities

as in
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hiA+q,Ci hiBi+qDi—qp; | <0 (i=1--,N). (47)
From Theorem 1, the inequalities above hold if and only if

||G17QZ,i7Qw,'L'

e <1(i=1,--,N).

This completes the proof. [ |

D. Proof of Lemma 4

Proof of Lemma 4: We give the proof for the controllability only. The resultfitne observability
readily follows from the system duality. For contradicti®upposey := A~'B < 0 does not
hold. From the underlying assumptions € {M" N H"} and B € R", we see that < 0
definitely holds sinceA=! < 0. Therefore there exists a nonempty index et {1,---,n}

such that
v, =00G€eZ), v,<0(ieI
whereZ° is the complement of. Again from B(= Av) € R, it follows that
Av>0, v, =00G€eZ), v; <0 (ieI. (48)

SinceA € M", the above conditions implyl;; =0 (i € Z, j € Z¢). Therefore we havéAv); =
0 (i € Z). Repeating the same argument, we obtalfiv); =0 (i € Z, k =0,1,--- ,n — 1).
Then, if we denote by/. the controllability matrix for the paifA, B), we have
rank(U.) = rank([B AB ---A""'B])
= rank([Av A%v --- A" ])
= rank([v Av - A" )
< n—|Z|
where|Z| stands for the cardinality of the index $etThis implies tha{ A, B) is not controllable

and hence the proof is completed. [ |

E. Proof of (IV) in Theorem 5

For the proof, we need the next lemma.
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Lemma 5: For givenA € M", B € R, andC € RY*", supposeg A, B) is controllable and
(A4, C) is observable. Then, for a givence R such thatn/+ A € R?*", we haveC(al+A)'B >
0 for at least one index € {0,--- ,n — 1}.

Proof of Lemma 5: Since (A, B) is controllable and A, C) is observable(al + A, B) is
controllable and(al + A, C) is observable. Therefore we see that= U, ,U., € R}" is
nonsingular wheré/. , andU, , stand for the controllability and observability matrices the
pairs (ol + A, B) and (ol + A, C), respectively. The first row ot/ given by [ CB C(al +
A)B ---C(al + A)"'B] is nonzero sincé/ is nonsingular from the controllability and ob-
servability assumption. Therefore the assertion readilipws. [ |
Proof of (IV) in Theorem 5: Let us definep := Q(I —DN)~! as in the proof of (Ill). Then,
from the assertion (I) already validated, the matfix2 — I is Hurwitz and hencep(D2) =
Ar(DQ2) < 1. It follows that

Qp =Q(I =D~ =Q) (D) >0 >0.
=0

Since(? is irreducible from (iii), the above inequality implig€3y, is also irreducible anfp €
RY*M,
With this in mind, supposed, is reducible for contradiction. Then, far > 0 such that
al + A > 0, there exists a permutation matriX such that
PT(al + A+ BQpC)P € W,

R
W= W= Q : QERTXT, SE]R(nggfr)x(n,;fr)7 1<r<ns;—1. 7

Oni—r,r S
W, == WnRP*".

Sinceal + A and BQ2pC are both nonnegative, the above condition implies
Vy:=Plal + AP e W, (49)
Vpe = PTBQpyCP e W, (50)

To proceed, let us define

Nmax = Max ng, U:= (PT(al + A)P) € W,.

i=1,- N
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Then, from Lemma 5, we have
X :=CPUP"B e DY,. (51)

With the matrixU € W, defined above, we also have
Vee = PPBQpCP € W,
VecUYVse = PP BQpXQpCP € W,
Vee(UYpe)® = PTBQp(XQp)*CP € W,

Vec(UYVge)N ™ = PTBQp(XQp) N ICP e W,

It follows that
N-1
P'BZCP e W,, Z:=Qp ) (XQp)'". (52)

1=0
SinceQp is irreducible andt € DY, it is obvious thatY(p is irreducible. Moreover, since
XQp € RN, we see from (b) of Proposition 2 th& ' (XQp)’ € RYXN. SinceQp is
irreducible andp € RY*Y, this further indicates thaE € RY V.

Now we move onto the final stage of the proof. To this end, letiefne
Ap:=PTAP, Bp:=P'B, Cp:=CP

and partitionBp andCp as follows:

B 5—T
Bp =: P , BPJ € R:_XN, BRQ € R(fz )XN,
Bpa

CP = |: CP,l CP,Q i| 5 CP’l E for, CP72 E RfX(ni_T).

Then, from (49) and (52), we have
Ap e W, (53)
BpZCp e W,, ZecRYN, (54)

Here, in relation to (54), suppod&r» # 0. Then, from (54), we hav€p; = 0. On the other
hand, suppos€p; # 0. Then, again from (54), we havBp, = 0. It follows that Bp; = 0

or Cpy = 0 holds. From the form ofd, given by (53), the former case impli€sip, Bp) is
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not controllable, and the latter case impliedp,Cp) is not observable. This contradicts to the
assumption thatA;, B;) is controllable and A4;, C;) is observable foi = 1,--- , N (and hence

(A, B) and (A, C) are controllable and observable, respectively). This detap the proof. B
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