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Notations

Mathematics

Proofs are ended by the � symbol.
Sets

• N: set of natural numbers.

• Z: set of integers.

• R: set of real numbers.

• C: set of complex numbers.

• N∗ = {n ∈ N s.t. n > 1}.

• Rn: linear space of real vectors of dimension n, n ∈ N∗.

• S2 =
{
x ∈ R3 s.t. ‖x‖2 = 1

}
is the unit sphere.

• c
AB := A\B = {x ∈ A s.t. x /∈ B}: complement of B in A. The prescript A may be omitted
if the context makes it clear and obvious.

• ∂A: boundary of the topological space A.

• cl (A) = A ∪ ∂A: closure of the topological space A.

• B (x,R) = {y ∈ Rn s.t. ‖x− y‖2 6 R} (n ∈ N, x ∈ Rn, R > 0).

• supp(f) = cl ({x ∈ A s.t. f (x) 6= 0}): support of f : A→ R.

• supp(µ): support of the measure µ.

• R [x]: ring of real polynomials in the variables (xi)i=1,··· ,n (n ∈ N).

• R [x]r = {p ∈ Rn [x] s.t. deg (p) 6 r}: ring of real polynomials in the variables (xi)i∈J1,nK

(n ∈ N) and of maximal degree r ∈ N.

• Nn: multi-indices of dimension n ∈ N.

• Nnr = {α ∈ Nn s.t.
∑n

i=1 αi 6 r} multi-indices of dimension n ∈ N and of maximal degree
r ∈ N.

Functions and Measures

• IdRn : identity function i.e. IdRn : Rn → Rn, x 7→ x.

• 1B : indicator function of a set B.

• |.|: absolute value.

• |α| =
n∑

i=1

αi (α ∈ Nn, n ∈ N).
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• ‖x‖2 =
[
x ∈ Rn 7→

√∑n
i=1 x

2
i

]
: Euclidean norm.

• µ1 ⊗ µ2: product measure of the measures µ1 and µ2.

• xα =
n∏

i=1

xαi

i (n ∈ N, x = (xi)i=1,··· ,n, α ∈ Nn).

Derivatives and vector analysis
Let T ⊆ R, n ∈ N, m ∈ N, f : T ×Rn → R be a scalar field, and g : T ×Rn → Rn be a vector field.

• ∂xif = fxi =
∂f
∂xi

: partial derivative of f with respect to the variable xi (i = 1, · · · , n).

• ∂αx = ∂α1
x1 · · · ∂αn

xn .

• ġ = ∂tg = (∂tg1, ∂tg2, . . . , ∂tgm): element-wise partial time derivative of g.

• ∇f = (∂tf, ∂x1f, ∂x2f, . . . )
T : gradient operator.

• div(g) = ∂x1g1 + ∂x2g2 + · · ·+ ∂xngn: divergence operator.

• J(g) = (∂x1g, ∂x2g, . . . ∂xng): Jacobian operator.

• dtf = df
dt = ∂tf + (∇f) · g: total derivative of f under the vector field g.

Linear Algebra

• (e1, . . . ,en): canonical basis of linear space Rn.

• Mm,n (K): matrices with m ∈ N rows and n ∈ N columns, and which components are in the
field K (R or C).

• In: identity square matrix of dimension n.

• A−T : transpose of the inverse of the square matrix A.

• Let (A,B) ∈ (Mn,n (K))2 (n ∈ N). The notation "A � 0" means A is positive semidefinite.
"A � B" means "A−B � 0".

• u · v: scalar product between the vectors u and v.

• 〈A,B〉F = trace
(
ATB

)
=
∑
i,j
AijBij : Frobenius inner product of two matrices (A,B) ∈

(Mn,m (K))2 (n,m ∈ N).

• 0n,m is a matrix of zeros of dimensions n×m.

• v = diag2vec(A): transform the diagonal elements of the square matrix A in the vector v.

• v = vec2diag(v): puts the entries of the vector v on the diagonal of the square matrix A.

Probabilities and Statistics

• P (E): probability of the event E.

• x ∼ N (µ,Σ): x is a n-dimensional (n ∈ N) random vector following a multivariate Gaussian
distribution with mean vector µ ∈ Rn and with covariance matrix Σ ∈ Mn,n (R) (Σ � 0).

- E[X]: mean value vector of the random vector X ;
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Orbital Mechanics

Notations for orbital state-space model
Those notations describe what the adopted letters usually denote in this report, unless otherwise
stated.

• r⋆ = (r⋆1, r⋆2, r⋆3)
T : position vector of object ⋆ in some reference frame, (primary: ⋆ = p,

secondary: ⋆ = s, relative: ⋆ = r).

• v⋆ = (v⋆1, v⋆2, v⋆3)
T : velocity vector of object ⋆.

• x⋆ = (rT⋆ , v
T
⋆ )

T : state vector of object ⋆.

• X⋆♭ = (xT⋆ , x
T
♭ )
T : state vector of combined object composed of ⋆ and ♭.

• f (., .): system dynamics.

• X
(
.|X0

)
: trajectory, solution of the equations of motion starting from the initial condition

X0.

Constant and orbital parameters

• µ = GM⊕ = 3.9860047 1014 m3s−2: standard geocentric gravitational constant from US
potential model GEM-T1 ;

- a: semimajor axis ;

- Ω : right ascenascension droite du noeud ascendant ;

- ω : argument of perigee ;

- i : inclination ;

- e : eccentricity ;

- ν : true anomaly ;

- M : mean anomaly ;

- E : eccentric anomaly ;

- n =

√
µ

a3
: mean motion ;

- T o : orbital period ;

Abbreviations

• CSM: Conjunction Summary Report.

• CAR: Conjunction Assessment Report.

• TLE: Two-Line Elements.

• TCA: Time of Closest Approach.
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1 Introduction

The most general methods to accurately compute the global collision probability, without any
additional assumption, are based on Monte-Carlo simulations, see e.g. [7, 33] in the context of
a simple encounter or [37] in the context of a multiple encounter. These methods use a random
sampling of N vectors in the space of initial conditions. For each of them, the corresponding
trajectories are propagated according to the dynamical model adopted on the discretized time
interval [0, T ]. We count 1 if there is a collision, 0 otherwise. At the end, the collision probability
is given by the formula: Pc([0, T ]) = 1

N

∑N
i=1 δi. The number of trials to be made depends on the

requested precision as well as the value of the probability: a low value requires a lot of samples to be
correctly estimated, and simulations can be dramatically time-consuming. This is one of the major
disadvantages of Monte Carlo methods which makes them unsuitable for detecting low probability
events in high dimension such as multiple events [37]. Therefore alternative approaches had to be
explored to assess the risk of collision between two or more objects.
In the particular context of encounters between two objects, encounters are usually classified into
two families: the short-term encounters [1, 21, 28, 35] and the long-term encounters [21, 33] for
which many simplifying assumptions, enabling the computation of the collision probability can be
made. In the context of short-term encounters, conjunctions are assumed to be short and rare. The
relative velocity between the two objects is assumed to be very high (higher than the km/s) and
the relative motion is assumed rectilinear on the time interval of the encounter. Finally, it is also
assumed that the cross-correlations between the estimated states of the two objects are very small
and therefore negligible. Such encounters typically occur in low orbits where the orbital velocities
are high. Long-term encounters are characterized by relative velocities of the order of m/s, and
correspond to situations where both objects spend significant time in proximity to each other. The
motion equations of both objects are linearized around the reference orbit. This type of encounter
is more common in the context of formation flying or proximity operations.
In the specific context of short-term encounters, several techniques for calculating the probability of
collision have been developed. In historical order, the main methods are identified as those of Foster
(1992) [35], Patera (2001) [61] and Alfano (2002) [2], based on numerical integration schemes and
the method of Chan (1997) [20, 21] based on an analytic formula of the probability of collision in the
form of a convergent series with positive terms. All these methods have already been the subject
of several comparative studies [6, 21]. A new method for calculating the collision probability in
short-term encounter and the instantaneous probability of collision under Gaussian uncertainty, has
been developed during the PhD thesis of R. Serra [71] and published in [73, 74, 72]. The first gives a
conservative estimate of the risk for a large part of actual encounters, those falling within the short-
term encounter framework, while the second provides, in a more general context, an instantaneous
information which then makes it possible to obtain lower bounds for the risk of collision over time
intervals. This new method has the advantage of being based on an exact analytical formula, in the
form of a convergent series with positive terms, and is the exact version of the approximate one by
Chan [20, 21]. Numerical examples are given and demonstrate the efficiency of the proposed formulas
compared to existing methods. In addition, analytical bounds are obtained for the probability of
collision: they represent a significant tool for mission analysis since their efficient evaluation, allows
in many real cases to rule on the importance of the risk.
In the general context of satellite flying formation or proximity operations, the hypothesis of short-
term encounters can no longer be considered valid for the calculation of the overall risk of collision
[37, 19]. The assumption of short-time spent in the encounter area is no longer verified when
considering a cluster of satellites and, even in the case of only two space objects, the encounter
could sometimes occur several times per orbit, for several consecutive orbits [37]. For such multiple
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encounters, the cross-correlations between the estimated states are not negligible anymore, and
assessing the risk separately for each individual encounter as if they were independent events, is not
sufficient to characterize the real risk of such a conjunction.
The extension of the probability calculation in the case of long-term encounters, also called nonlinear
framework, represents a first generalization attempt for specific cases of configurations [62, 58, 21,
33]. Unfortunately, these approaches are relatively limited because of their characterization for
particular relative trajectories and are only imperfectly generalized to other cases [63]. In this
last reference or more recently in [31], different metrics are proposed: distribution sampling, the
Mahalanobis minimum distance and its upper bound on the collision probability, the Maximum
Instantaneous probability and its lower bound on the collision probability, a hybrid probability
combining the last two metrics for which the calculations can be shared or the symmetric Kullback-
Leibler (KL) divergence. Roughly, the Mahalanobis distance or the symmetric KL divergence can
be seen as a measure of similarity between two pdfs. The idea is to reduce the computational
complexity of the distribution sampling approach by improving the determination of an interval over
which two objects are in close proximity while accounting for the uncertainties of these objects. A
similar approach based on computational tools of increasing complexity and precision (approximate
ellipsoids for the probability density, probability density level curves, etc.) is also proposed in [18].
In [28], V. Coppola proposes a mathematical formalization and generalization of the short-term
encounter formula: the two objects are modeled with uncertainty in both position and velocity,
and their trajectories are not assumed to be rectilinear anymore. However, this formulation needs
the assumption that the distribution of the uncertainty is Gaussian during the encounter interval
to be fulfilled. The reference [32] proposes to generalize the Coppola’s formulation by extending it
to mixtures of Gaussian densities used for a more realistic representation of the uncertainty. More
recently, the Coppola’s formula has been also revisited and generalized to non-spherical objects
[46]: instead of directly computing the collision probability, G. Krier first computes the collision
probability per time unit, called the hazard function. The total probability of collision is the time
integral of this hazard function, and this integration is performed numerically. This method has
been successfully validated by comparing the obtained results with Monte Carlo simulations.
The objective of this report is to give first an exact and rigorous mathematical modeling of the
problem of the computation of the probability of collision as derived by V. Coppola in the reference
[28] using the measure theory. This theoretical framework enables to define the computation of the
collision risk in a very general way encompassing the one used in [28]. This formalism clarifies the
different assumptions and their mathematical implications at every step of the derivation. From
the obtained so-called 3D integral of Coppola, additional simplifying assumptions are revisited
step-by-step to obtain the classical 2D integral used for short-term encounters. Some criteria of
validity of this last model, found in the literature, are then reviewed and analyzed. The numerical
implementations from Coppola, CARA and CNES of the 3D integral are detailed as far as possible
based on the available references. This section ends with the critical analysis of counter-examples to
the 3D integral proposed by K. Chan. This analysis shows that these examples cannot be considered
as threatening the validity of the derivations since they do not comply with one basic assumption
used to derive the 3D integral.
If the Coppola’s formulation appears to be theoretically strongly rooted and useful in cases satisfying
the model used, it remains necessary to challenge this still restrictive modeling frame which is
no more realistic for repeated conjunctions for instance. The fundamental assumption that there
must be only one entering crossing in the forbidden region is indeed not respected in every case
and an alternative method is proposed in this report. The method is based on two steps: (1)
the higher-order implicit representation of the swept-volume (volume generated by the hard body
during the encounter duration) by a polynomial superlevel sets. This is a method developed in the
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framework of polynomial optimization, which has the advantage of providing approximate closed-
form descriptions of the collision-prone states, which can then be effectively used for long-term
and repeated conjunctions analysis. From a computational viewpoint, a hierarchy of linear matrix
inequality problems is solved, which provides approximations that are convergent in volume to
the original set. (2) Once such a polynomial representation is computed, a high-order quadrature
scheme for volumes implicitly defined by a polynomial superlevel sets is employed. Numerical
examples borrowed from the literature are then used to illustrate the pros and cons of the method.
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2 Coppola’s method for risk assessment for long-term spacecraft

encounters

2.1 Encounter modeling and problem statement

Consider an operational spacecraft (called the primary) in orbit around the Earth and a space debris
(called the secondary). The state of each orbiting object is described by their position and velocity
in a reference frame R̂, and gathered in a global state vector Xps:

Xps = (rp, vp, rs, vs)
T ∈ Rn,

where n = 12.
Let [t0, t0 + T ] be the time interval of the encounter. Consider now the dynamics of the 2 objects:

{
Ẋps(t) = f(t,Xps(t)), t ∈ [t0, t0 + T ],
Xps(t0) = X0

ps.
(1)

where f is a real vector field, which is supposed to be at least Lipschitz continuous, T is a given
positive real number defining the time interval of the encounter and t0 is the initial time (time at
epoch for instance). The initial conditions X0

ps ∈ Rn (e.g. position and velocity) are usually subject
to uncertainties, and so, they are supposed to be distributed according to a given probability measure

µI with its density function ρI =
dµI
dλ

(cf. the notation defined in Appendix B). These equations

include the Newtonian gravitational central field and possible orbital perturbations (non spherical
Earth, atmospheric drag, e.g.). Whatever model is adopted, it is assumed that, for given initial
conditions, the solutions of the system (1) exist and are unique. For each fixed initial condition
X0
ps ∈ Rn, a trajectory, or sample path, is then defined as follows:

Definition 1 (Trajectory/Sample path).
Given an initial condition X0

ps ∈ Rn, a trajectory, or sample path, starting from X0
ps is the unique

solution of:

Xps(t|X0
ps) = X0

ps +

∫ t

t0

f(τ,Xps(τ |X0
ps))dτ. (2)

Classically the objects are assumed to be spherical [1, 62, 4, 21, 28]: this assumption enables one
to ignore the orientation of the objects, and to model conservatively the secondary object whose
geometry is often poorly known (see Figure 1).

Assumption 1 (Spherical geometry).
The objects involved in the conjunction have a spherical shape.

x

x

x

x

R̂

vp
vs

rp rs

Figure 1: Encounter between two spherical objects.
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Let us now define the notion of a collision. Suppose that for any initial condition X0
ps ∈ Rn the

corresponding trajectory exists on the time interval [t0, t0 + T ], then roughly speaking, a collision
occurs when a trajectory enters a certain forbidden region XR. For instance, in practice, this
describes the fact that the relative distance between two objects is less than a certain given radius
threshold R > 0.
If the state Xps is given by the positions and velocities of 2 objects, then the forbidden region is
expressed as

XR = {Xps = (rp, vp, rs, vs) ∈ R12 | ‖rs − rp‖2 −R2 < 0}. (3)

Note that, in case of two objects, the forbidden region (which depends on R) XR is also called
the combined spherical object and let its complement, so-called safe/admissible region, be cXR :=
Rn\XR.

Definition 2 (Collision).
Given an initial condition X0

ps ∈ Rn, a maximum time of interest T + t0 > 0, and a forbidden region
XR, a collision occurs if there exists t ∈ [t0, t0 + T ] such that Xps(t|X0

ps) ∈ XR.

Definition 3 (Collision domain).
The domain of collision X 0

T over the time interval [t0, t0 + T ] is the set of initial conditions leading
to a collision between any pair of objects during [t0, t0 + T ], namely:

X 0
T = {X0

ps ∈ Rn | ∃t ∈ [t0, t0 + T ], Xps(t|X0
ps) ∈ XR}. (4)

Remark 1. In Equation (3) and Definition 3, the sets XR and X 0
T have been defined based on the

combined object state vector Xps. Equivalent definitions could be given by using any combined state
vector such as Xrp for instance, as it is the case in the rest of this report.

Historically, the first criterion for collision risk assessment between two space objects was geometric:
it relies on checking whether or not the nominal trajectory enters a no-go zone [9, 29] (including
the forbidden region) whose size is either arbitrarily set or calculated with respect to uncertainties’
standard deviations. A more natural formulation of the problem of collision risk assessment consists
in computing the probability that a collision occurs:

Problem 1. Let the dynamics in (1), a maximum time of interest t0 + T > 0 and a safe region
cXR. Provided that the initial conditions X0

ps ∈ Rn are distributed according to a given probability
measure µI with its density function ρI , the probability that a collision occurs is computed simply
by:

Pc([t0, t0 + T ]) = Pc(T, t0) = P(X0
ps ∈ X 0

T ) = µI(X 0
T ) =

∫

X 0
T

dµI . (5)

The analytical calculation of the collision probability as defined in (5) is a very difficult problem: the
first issue is to determine the domain of integration, which strongly depends on the chosen model
for the dynamics when propagating the distribution of probability of the initial state. In addition,
the integration of the density of probability on this set may be very complex, even for a Gaussian
distribution [21].

2.2 Measures for the modelling of the collision probability

As in [28], we define the set X 00
T of initial states for which a collision occurs at t = t0 and the

set X 0tc
T := X 0

T \X 00
T of the remaining initial states for which a collision occurs later. The collision
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probability Pc := µI(X 0
T ) is thus, Pc = µI(X 00

T ) +µI(X 0tc
T ). Often, in practice, the probability that

a collision occurs at t = 0 is very small. However, the general computation of an instantaneous
collision probability for a fixed t = t0 (when the distribution of states at t0 is Gaussian) is of interest
and may be analyzed independently.
We now focus on computing µI(X 0tc

T ). More precisely, we are given the distribution (measure)
of all initial states µI , the dynamics, as well as the forbidden region XR. The computation of
µI(X 0tc

T ) amounts in finding (in some sense) an unknown initial measure µ0 which can be seen as
the restriction of µI to initial points leading to a collision on the time interval (t0, t0 + T ], denoted
by 1X 0tc

T
µI . Assume that trajectories Xps(·|X0

ps) starting at X0
ps ∈ cXR are continuous functions

and let (cXR)◦ be the interior of cXR. Then, over the fixed period [t0, t0 + T ], these trajectories
either are in (cXR)◦ or will touch its topological boundary ∂ cXR := cXR\(cXR)◦ at a so-called first
hitting time τ(X0

ps) ∈ (t0, t0 + T ],

τ(X0
ps) := min{t0 + T, inf(t > t0 s.t. Xps(t|X0

ps) ∈ ∂ cXR)}.

Finally, one defines the final measure µF ∈M([t0, t0+T ]×Rn)+ which captures the distribution of
the first hitting times τ(X0

ps) and the corresponding state Xps(t|X0
ps) after it has been propagated

by the dynamics starting at t = t0 from the initial measure µ0:

µF (A×B) :=

∫

[t0,t0+T ]×Rn

1A×B(τ(X
0
ps),Xps(τ(X

0
ps)|X0

ps))dµ0
(
X0
ps

)
, (6)

for all Borel measurable sets A × B ⊆ (t0, t0 + T ]× Rn. The final measure µF is the pushforward
measure hτ⋆µ0 of µ0, via the mapping:

hτ : Rn → [t0, t0 + T ]× Rn,
X0
ps 7→ (τ(X0

ps),Xps(τ(X
0
ps)|X0

ps)),
(7)

that is:
µF (A×B) = µ0(h

−1
τ (A×B)), (8)

for any Borel measurable sets A×B ⊆ (t0, t0 + T ]× Rn (cf. Figure 2).

XR

µF

µ
(1)
0

µ
(2)
0

τ2τ1 τ3

µI : mesure initiale donnée

t0 t0 + T

Xps

Figure 2: Yellow points: X0
ps ∈ X 00

T , red points: X0
ps ∈ X 0τi

T , blue points: X0
ps ∈ cX 0

T .

11



2.3 Coppola’s formula revisited via measure theory

The objective of this section is twofold: First to derive the formula for the computation of the
probability of collision given in [28] and obtained in a general context. The method for computing
the long-term probability of collision with velocity uncertainty and proposed by Coppola is also
known as the direct method [32]. Our intention is to give a thorough and rigorous treatment to
the solution proposed in [28] (the so-called 3D PoC method). The second objective is to review the
literature dedicated to the 3D PoC, its limitations and possible alternatives.
We assume that the dynamical model under consideration (regardless of how the state vector X∗∗

of the combined object is defined) Ẋ(t) = f(t,X(t)) gives rise to an invertible flow ϕtt0 , behaving
as a C1-diffeomorphism for t ∈ [t0, t0 + T ]:

ϕtt0 : R12 → R12

X0 7→ X(t|X0),

where ϕtt0(·) is the map ϕ(t, t0, ·) for a given (t, t0) ∈ R × R. Assuming that the function ϕ(·, ·, ·) :
R×R× R12 → R12 remains unchanged under time translation, we could set t0 = 0 without loss of
generality [38]. The two parameter family of mappings satisfies:

∂

∂t
ϕtt0(X

0) = f(t, ϕtt0(X
0)).

Its inverse is given by: (
ϕtt0
)−1

= ϕt0t : X(t|X0) 7→ X0.

When manipulating density functions and the change of variable formula in the calculations below,
we will also need the local linearization of the flow with respect to the initial conditions, denoted
by Dϕtt0(X

0) ∈ R12×12. Indeed, if X̃0 is close to X0, then:

ϕtt0(X̃
0) ≈ ϕtt0(X0) + Dϕtt0(X

0)(X̃0 −X0).

Note that the local linearization of the inverse flow ϕt0t satisfies the relation:

Dϕt0t (ϕ
t
t0(X

0)) =
(
Dϕtt0(X

0)
)−1

,

since by differentiating with respect to X0 the equation ϕt0t ◦ ϕtt0 = IdR12 , we get Dϕt0t (ϕ
t
t0(X

0)) ◦
Dϕtt0(X

0) = IdR12 .

Example 1.
Under the assumption that the flow is linear, Ẋ(t) = A(t)X(t), the solution of the dynamics
equation via the state transition matrix Φ(t, t0), is such that

X(t|X0) = ϕt0(X
0) = Φ(t, t0)X

0,

that is, the initial conditions are propagated from time 0 to time t via the matrix Φ(t, t0). One
has also X0 = Φ(t, t0)

−1X(t) = Φ(t0, t)X(t).

Also, suppose that there is a suitable surface parametrization of the whole or part of ∂ cXR given
by P : S → Rn, with S ⊆ Rn−1 and with P (s) = (p1(s), . . . , pn(s)) ∈ ∂ cXR.

12



Example 2.

(a) (Circle) The coordinates (x, y) ∈ R2 of a point on the circle of radius R are parameterized
on the circle via the change of coordinates:

(x, y)T := P (θ) = (R cos(θ), R sin(θ))T ,

with θ ∈ S = [0, 2π].

(b) (Sphere) The coordinates (x, y, z) ∈ R3 of a point on the sphere of radius R are parame-
terized on the sphere via the change of coordinates:

(x, y, z)T := P (θ, φ) = (R cos(θ) sin(φ), R sin(θ) sin(φ), R cos(φ))T ,

with θ ∈ [0, 2π), φ ∈ [0, π] and S = [0, 2π) × [0, π].

(c) (Practical case in Coppola’s article)
For Xrp = (rr1, rr2, rr3, vr1, vr2, vr3, rp1, rp2, rp3, vp1, vp2, vp3)

T ∈ R12 the surface rr1
2 +

rr2
2 + rr3

2 = R2, is parameterized on R11 via the change of coordinates:

Xrp = (rr1, rr2, rr3, vr1, vr2, vr3, rp1, rp2, rp3, vp1, vp2, vp3)
T := P (θ, φ, vr1, . . . , vp3), (9)

= (R cos(θ) sin(φ), R sin(θ) sin(φ), R cos(φ), vr1, vr2, vr3, rp1, rp2, rp3, vp1, vp2, vp3)
T ,(10)

with θ ∈ [0, 2π), φ ∈ [0, π] and S = [0, 2π) × [0, π] × R9. Note that this parametrization
is based on spherical coordinates used in Mathematics and which convention is different
(θ and φ are swapped) from the one preferentially used in Physics and in Geography as in
[28] (radius R, longitude ϕ and latitude λ = π

2 − θ (denoted θ in [28])).

y

x

z

R

0

P

θ

φ

Figure 3: Spherical coordinates for the parametrization of a sphere.

The a priori unknown and possibly complicated shape of X 0tc
T makes it difficult to get the probability

of collision by directly computing an integral over this set. The principle of Coppola’s formula is

13



to compute an equivalent integral over the set of collision states instead, via a change of variables
given by the function ψ : [t0, t0 + T ]× S → X 0tc

T , ψ(t, s) = ϕt0t (P (s)) (note that this definition is a
partial composition only, since ϕt0t depends on the first argument t of ψ). For this substitution to be
licit, as stated by the following lemma, we need ψ to be 1-1 (more precisely, a C1-diffeomorphism).
The following assumption is sufficient for the bijectivity of ψ.

Assumption 2 (Only one entering crossing).
For each trajectory leading to a collision, there is only one entering crossing in (or only one tangent
to) the forbidden region XR for all t ∈ (t0, t0 + T ]. Therefore, the collision domain X 0tc

T and the
surface S are respectively defined by:

X 0tc
T =

{
X0 ∈ Rn | ∃!t ∈ (t0, t0 + T ], X(t|X0) ∈ XR and vr(t)

T rr(t) 6 0
}
, (11)

and

S =
{
(θ, φ, vr, rp, vp) ∈ [0, 2π) × [0, π] × R9 : vr1 cos(θ) sin(φ) + vr2 sin(θ) sin(φ) + vr3 cos(φ) 6 0

}
.

(12)

In order to compute the part of the collision probability Pc given by µI(X 0tc
T ) := µ0(R

n), the next
derivations rely on the following lemma:

Lemma 1.

(i) µF = ((IdR × P ) ◦ ψ−1)⋆µ0;

(ii)

∫

Rn

dµ0 =

∫

X 0tc
T

ρI(X
0)dλ(X0) =

∫

[t0,t0+T ]×S
(ρI ◦ ψ)(t, s) |det(J(ψ)(t, s))| dλ(t, s), (13)

where J(ψ) is the Jacobian matrix of the mapping ψ.

Proof.

(i) One notices that since ψ is 1-1, each point which achieves a collision, X0 ∈ X 0tc
T ⊂ Rn is

transported via (IdR × P ) ◦ ψ−1 on the surface ∂ cXR at a certain time τ(X0) ∈ (t0, t0 + T ]
and reciprocally since:

X 0tc
T ⊂ Rn

ψ−1

−−→ [t0, t0 + T ]× S IdR×P−−−−→ [t0, t0 + T ]× Rn,
X0 7−→ (τ(X0), s(X0)) 7−→ (τ(X0),X(τ(X0)|X0)).

Therefore, we have that hτ = ((IdR × P ) ◦ ψ−1) and by Theorem 5 in Appendix C,

∫

[t0,t0+T ]×Rn

1A×B(t,X)dµF =

∫

Rn

1A×B ◦ (IdR × P ) ◦ ψ−1(X0)dµ0.

(ii) One uses the Jacobi’s change of variables formula [69, Chapter 15], since ψ is a C1-diffeomorphism.
Note that this formula is obtained by applying (127) with X = [t0, t0 + T ] × S, Y = X 0t

T ,
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g(ψ) = ρI(ψ) |det(J(ψ))|, µ = λ and noting that d(ψ⋆µ) = d(ψ⋆λ) =
∣∣det(J(ψ−1))

∣∣ dλ [69,
Remark 15.10]. Indeed,
∫

[t0,t0+T ]×S
(ρI ◦ ψ)(t, s) |det(J(ψ)(t, s))| dλ(t, s) =

∫

X 0t
T

ρI(X
0)
∣∣det(J(ψ)(ψ−1(X0)))

∣∣ dψ⋆λ(X0) =
∫

X 0t
T

ρI(X
0)
∣∣det(J(ψ)(ψ−1(X0)))

∣∣ ∣∣det(J(ψ−1)(X0))
∣∣ dλ(X0) =

∫

X 0t
T

ρI(X
0)
∣∣det(J(ψ)(ψ−1(X0)))

∣∣ ∣∣det(J(ψ)(ψ−1(X0)))
∣∣−1

dλ(X0) =
∫

X 0t
T

ρI(X
0)dλ(X0) =

∫

X 0t
T

dµ(X0).

Note that J(ψ)(ψ−1(X0))J(ψ−1)(X0) = In.

Example 3.

If the flow is linear, the function ψ is now defined as ψ : [t0, t0 + T ] × S → X 0tc
T , ψ(t, s) =

Φ(t, t0)
−1P (s).

Remark 2.
Assumption 2 is equivalent to the Assumptions (A1) and (A2) proposed in Coppola’s article and
reminded below.

(A1) Only one crossing.

(A2) Trajectories must cross.

For computing the Jacobian of ψ, one has:

∂ψ

∂t
(t, s) = −Dϕt0t (P (s))f(t, P (s)) ∈ R12.

This indeed follows from differentiating with respect to t the equality P (s) = ϕtt0(ψ(t, s)) by applying
the chain rule:

0 =
∂

∂t

(
ϕtt0(ψ(t, s))

)

=
∂ϕtt0
∂t

(ψ(t, s)) + Dϕtt0(ψ(t, s))
∂ψ

∂t
(t, s)

= f(t, ϕtt0(ψ(t, s))) + Dϕtt0(ψ(t, s))
∂ψ

∂t
(t, s)

= f(t, P (s)) +
(
Dϕt0t (P (s))

)−1 ∂ψ

∂t
(t, s).

In addition, we have that:

∂ψ

∂s
(t, s) = Dϕt0t (P (s))

∂P (s)

∂s
∈ R12×11.

Hence

J(ψ)(t, s) = Dϕt0t (P (s))

[
−f(t, P (s))

∣∣∣∣
∂P (s)

∂s

]
∈ R12×12. (14)
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Example 4.
In the case of linear dynamics, the computations above become

∂ψ

∂t
= −Φ−1(t, t0)

∂Φ(t, t0)

∂t
Φ−1(t, t0)P (s) = −Φ−1(t, t0)A(t)P (s),

since ∂Φ(t,t0)
∂t = A(t)Φ(t, t0). Moreover, we have

∂ψ

∂s
= Φ(t, t0)

−1∂P (s)

∂s
,

and (14) becomes

J(ψ) = Φ−1(t, t0)

(
−A(t)P (s)

∣∣∣∣
∂P (s)

∂s

)
.

Practical computations for the Jacobian matrix in Coppola’s case (Example 2(c)), are as follows:

∂P (s)

∂s
=




−R sin (θ) sin (φ) R cos (θ) cos (φ)
R cos (θ) sin (φ) R sin (θ) cos (φ)

0 −R sin (φ)
03,9

09,2 I9


 .

Due to 0 blocks in the above matrix, to compute the determinant of J(ψ), one only needs the first
three coordinates of the f(t, P (s)) vector, and since f(t, ·) is the dynamics, one has

f(t, P (s)) = (vr1, vr2, vr3, v̇r1, v̇r2, v̇r3, vp1, vp2, v̇p3, v̇p1, v̇p2, v̇p3)
T ∈ R12.

This gives:

det(J(ψ)(t, s)) =

∣∣∣∣∣∣

−vr1 −R sin (θ) sin (φ) R cos (θ) cos (φ)
−vr2 R cos (θ) sin (φ) R sin (θ) cos (φ)
−vr3 0 −R sin (φ)

∣∣∣∣∣∣
det
(
Dϕt0t (P (s))

)
,

which amounts to:

det(J(ψ)) = R2 sin (φ) (cos (θ) sin (φ) vr1 + sin (φ) sin (θ) vr2 + cos (φ) vr3) det
(
Dϕt0t (P (s))

)

= R2 sin (φ) vr · n̂det
(
Dϕt0t (P (s))

)
,

(15)
where n̂ = [cos (θ) sin (φ) sin (φ) sin (θ) cos (φ)]T is the unit vector normal to the sphere.

Example 5.
For linear dynamics, one may easily deduce that

det(J(ψ)) =

∣∣∣∣∣∣

−vr1 −R sin (θ) sin (φ) R cos (θ) cos (φ)
−vr2 R cos (θ) sin (φ) R sin (θ) cos (φ)
−vr3 0 −R sin (φ)

∣∣∣∣∣∣
det(Φ−1(t, t0)),
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and finally

det(J(ψ)) = R2 sin (φ) (cos (θ) sin (φ) vr1 + sin (φ) sin (θ) vr2 + cos (φ) vr3) det(Φ
−1(t, t0))

= R2 sin (φ) vr · n̂ det(Φ−1(t, t0)).
(16)

Now, since ψ is 1− 1, one can apply Equation (13) and get:

∫

Rn

dµ0 =

∫ t0+T

t0

∫ 2π

0

∫ π

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ρI(ψ(t, θ, φ, vr , rp, vp))

∣∣det
(
Dϕt0t (P (t, θ, φ, vr, rp, vp))

)∣∣

1vr ·n̂60(vr)
∣∣R2 sin (φ) vr · n̂

∣∣dvpdrpdvrdφdθdt (17)

Example 6.
For linear dynamics, we have

∫

Rn

dµ0 =

∫ t0+T

t=t0

∫ 2π

0

∫ π

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ρI(ψ(t, θ, φ, vr, rp, vp))

∣∣det(Φ−1(t, t0))
∣∣ 1vr ·n̂60(vr)

∣∣R2 sin (φ) vr · n̂
∣∣dvpdrpdvrdφdθdt(18)

Lemma 2.
Let a given random vector X with probability density ρX and another random vector Y related to
X by the equation y = g(x), and g bijective. The probability density ρY for Y is:

ρY (y) = ρX(g
−1(y))

∣∣det(J(g−1)(y))
∣∣ . (19)

Proof. Let P(Y ∈ S) be the probability that Y takes a value in some particular subset S, so that
we get:

P(Y ∈ S) =
∫

S
ρY (y) dy.

Since Y takes a value in S whenever X takes a value in g−1(S), one has:

P(Y ∈ S) =
∫

g−1(S)
ρX(x) dx.

Now, changing from variable x to y gives:

P(Y ∈ S) =
∫

g−1(S)
ρX(x) dx =

∫

S
ρX(g

−1(y))
∣∣det(J(g−1)(y))

∣∣ dy.

In our case, let g be the flow ϕtt0 , and ρI be the probability density of the initial random state
X0, one obtains the probability density ρt(X) of the random state X at a given fixed time t from
Equation (19):

ρt(X) = ρI(ϕ
t0
t (X))

∣∣det
(
Dϕt0t (X)

)∣∣ . (20)
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Example 7.
In the linear case, the flow is given by X0 7→ Φ(t, t0)X

0 and then, we have that the probability
density ρt(X) of the random state X at a given fixed time t is given by

ρt(X) = ρI(Φ
−1(t, t0)X)

∣∣det(Φ−1(t, t0))
∣∣ . (21)

From Equations (20) and (17), one has:

PI(T ) =
∫

Rn

dµ0 =

∫ t0+T

t=t0

∫ 2π

θ=0

∫ π

φ=0

∫ ∞

vr=−∞

∫ ∞

rp=−∞

∫ ∞

vp=−∞
ρt(P (θ, φ, vr, rp, vp))1vr ·n̂60(vr)

∣∣R2 sin (φ) vr · n̂
∣∣dvpdrpdvrdφdθdt. (22)

Remark 3.
Equation (22) is similar to formula (15) in Coppola’s article, with two differences. Firstly, the
parametrization in spherical coordinates is different, but this does not affect the result in any way.
Secondly, there is a slight abuse of notation in formula (15) of Coppola’s article, concerning the
probability density function ρt(X) which appears instead of ours ρt(P (s)). More precisely, this
means that ρt is the probability density of the state random variable X at each fixed time t, but this
function should be applied to P (s) (after the reparametrization).
There is also a slight abuse of notations in this document regarding the definition of a probability
density function ρt(P (s)) as shown in Lemma 2 since the random vector and the variable of the
density function coincide.

We move on to the next assumption made in [28]:

Assumption 3. Independence of the two random vectors xp and xs.
The dynamic model and probability distribution function for one object are independent from the
dynamic model and probability distribution function of the other object.

Keeping in mind the slight abuse of notations mentioned in Remark 3 and if ρtps(xp, xs), ρtp(xp),
ρts(xs) denote respectively the joint density functions of the random vectors XT =

[
xTp x

T
s

]
, xp and

xs then Assumption 3 means that:

ρtps(xp, xs) = ρtp(xp)ρts(xs). (23)

This implies that the density ρt(P (s)) = ρt(xr(θ, φ, vr), xp) satisfies:

ρt(xr, xp) = ρtps(xp, xs) = ρtp(xp)ρts(xp + xr), (24)

where xr = xs − xp is the relative state on the sphere of radius R. This may be proved by noting

that Xrp =

[
xr
xp

]
=

[
−I6 I6
I6 06,6

] [
xp
xs

]
and by applying Lemma 2. Therefore, Equation (17)

becomes:

PI(T ) =
∫ t0+T

t0

∫ 2π

0

∫ π

0
|sin (φ)|

∫ ∞

−∞
R2 |vr · n̂| 1vr ·n̂60(vr)

∫ ∞

−∞

∫ ∞

−∞
ρtp(xp)ρts(xp + xr)dvpdrpdvrdφdθdt.(25)

The next assumption from [28] is related to the Gaussian nature of the two density functions of the
random vectors xp and xs.
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Assumption 4. Gaussian distributions.
The probability distribution functions ρtp ∼ N (mp(t), Pp(t)) and ρts ∼ N (ms(t), Ps(t)) remain
Gaussian at each time t.

It may be deduced that xr = xs − xp ∼ N (ms(t)−mp(t), Pp(t) + Ps(t)

Pr(t)

).

Let us define the following matrices:

G−1 = P−1
p + P−1

s , T = GP−1
s , (26)

where G is a symmetric positive semidefinite matrix. Let us define the random vector w = xp+Txr.
Keeping in mind that:

ρtp(xp) =
1√

(2π)6
√

det(Pp)
e
−
1

2
(xp−mp)TP

−1
p (xp−mp)

,

ρts(xs) =
1√

(2π)6
√

det(Ps)
e
−
1

2
(xs−ms)TP

−1
s (xs−ms)

,

(27)

then
ρt(xr, xp) = ρtp(xp)ρts(xp + xr) = ρt(w, xr) = ρtw(w)ρtr(xr), (28)

is obtained after tedious algebraic manipulations for which the following identities are used:

TPsT
T + (I6 − T )Pp(I6 − T )T = GT T +G(I6 − T )T = G,

det(Pp) det(Ps) = det(PpPs) = det(GP ) = det(G) det(P ),
(29)

and:
ρtw ∼ N (mp(t) + T (ms(t)−mp(t))

mr(t)

, G(t)),

ρtr ∼ N (mr(t), Pr(t)).

(30)

Equation (28) shows that the random vectors w = xp+Txr and xr are independent. Therefore, we
get that:

PI(T ) =

∫ t0+T

t0

∫ 2π

0

∫ π

0
|sin (φ)|

∫ ∞

−∞
R2 |vr · n̂| 1vr ·n̂60(vr)ρtr(xr)

∫ ∞

−∞
ρtw(w)dw

=1

dvrdφdθdt

=

∫ t0+T

t0

∫ 2π

0

∫ π

0
|sin (φ)|

∫ ∞

−∞
R2 |vr · n̂| 1vr ·n̂60(vr)ρtr(xr(θ, φ, vr))dvrdφdθdt.

(31)

The next step consists in partitioning the mean vector mr(t) =

[
mrr(t)
mvr(t)

]
and the covariance

matrix Pr(t) as Pr(t) =

[
P11(t) P12(t)
P T12(t) P22(t)

]
leading to:

P−1
r (t) =

[
P−1
11 (t) + P−1

11 (t)P12(t)∆
−1(t)P T12(t)P

−1
11 (t) −P−1

11 (t)P12(t)∆
−1(t)

−∆−1(t)P T12(t)P
−1
11 (t) ∆−1(t)

]
,

∆(t) = P22(t)− P T12(t)P−1
11 (t)P12(t).
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Consequently, we get that:

−1

2
(xr −mr)

TP−1
r (xr −mr) = −1

2
(rr −mrr)

TP−1
11 (rr −mrr) · · ·

−1

2
(·)T∆−1 (

v′

vr − P T12P−1
11 rr−

m′
v

(mvr − P T12P−1
11 mrr))

v′−m′
v

,

= −1

2
(rr −mrr)

TP−1
11 (rr −mrr)−

1

2
(v′ −m′

v)
T∆−1(v′ −m′

v),

and ρtr(xr) = ρtr(rr)ρtv′(v
′) with:

ρtr ∼ N (mrr(t), P11(t)),

ρtv′ ∼ N (m′
v(t),∆(t)).

(32)

Moreover, |vr · n̂| =
∣∣v′(t) · n̂+Rn̂TP−1

11 (t)P12(t)n̂
∣∣ =

∣∣v′(t) · n̂+Rn̂TP T12(t)P
−1
11 (t)n̂

∣∣ = |v′(t) · n̂+ ǫ0(n̂, t)|,
where ǫ0(n̂, t) = Rn̂TP T12(t)P

−1
11 (t)n̂ and we get:

PI(T ) =

∫ t0+T

t0

∫ 2π

0

∫ π

0
R2 |sin (φ)| ρtr(rr)·

∫ ∞

−∞

∣∣v′(t) · n̂+ ǫ0(n̂, t)
∣∣ 1v′(t)·n̂+ǫ0(n̂,t)60(v

′)ρtv′(v
′)dv′

I(n̂,t)

dφdθdt. (33)

The unit vector normal to the sphere n̂ is defined by n̂ = [cos (θ) sin (φ) sin (φ) sin (θ) cos (φ)]T

and the orthogonal matrix T defined by:

T =




cos(θ) sin(φ) sin(φ) sin(θ) cos(φ)
− sin(θ) cos(θ) 0

− cos(θ) cos(φ) − sin(θ) cos(φ) sin(φ)


 , (34)

is such that ~i =
[
1 0 0

]T
= Tn̂. With the notations:

v′′(t) = Tv′(t) =

[
ǫ(t)
ζ(t)

]
,

m′′
v(t) = Tm′

v(t) =

[
mǫ(t)
mζ(t)

]
,

∆(θ, φ, t) = T∆(t)T
T
=

[
σ2(θ, φ, t) ∆12(t)

∆
T
12(t) ∆22(t)

]
,

σ2(θ, φ, t) = n̂T (P22(t)− P T12(t)P11(t)
−1P12(t))n̂,

(35)

we have that ρtv′(v
′) = ρtv′′(v

′′) with v′′ ∼ N (m′′
v(t),∆(t)) and simple algebraic computations lead

to ρtv′′(v
′′) = ρtǫ(ǫ)ρtζ(ζ) with:

ǫ ∼ N (mǫ, σ
2),

ζ = ζ − ǫ∆
T
12

σ2
∼ N

(
mζ −

mǫ∆
T
12

σ2
,∆22 −

∆
T
12∆12

σ2

)
.
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Note that mǫ(θ, φ, t) = n̂T (mvr − P T12(t)P−1
11 (t)mrr) =~i

Tm′′
v(t). Therefore,

I(n̂, t) =

∫ ∞

−∞

∣∣v′(t) · n̂+ ǫ0(n̂, t)
∣∣ 1v′(t)·n̂+ǫ0(n̂,t)60(v

′)ρtv′(v
′)dv′,

=

∫ ∞

−∞
|ǫ(t) + ǫ0(n̂, t)| 1ǫ+ǫ0(n̂,t)60(ǫ)ρtv′′ (v

′′)dζdǫ,

=

∫ ∞

−∞
|ǫ(t) + ǫ0(n̂, t)| 1ǫ+ǫ0(n̂,t)60(ǫ)ρtǫ(ǫ)

∫ ∞

−∞
ρtζ(ζ)dζ

1

dǫ,

= − 1√
2π σ

∫ −ǫ0(n̂,t)

−∞
(ǫ(t) + ǫ0(n̂, t)) e

−
(ǫ−mǫ)

2

2σ2 dǫ,

(36)

since v′(t) · n̂ = v′′(t) · T n̂ = v′′(t) ·~i. Finally, remembering that the error function is given by:

erf : R → R

x 7→ erf(x) =
1√
π

∫ x

0
e−t

2

dt,
(37)

the integral I(n̂, t) may be readily computed as:

I(n̂, t) =
σ√
2π

e
−
(ǫ0(n̂, t) +mǫ)

2

2σ2 − (mǫ + ǫ0(n̂, t))

2

[
1− erf

(
mǫ + ǫ0(n̂, t)√

2 σ

)]
, (38)

and the probability PI(T ) is finally obtained as:

PI(T ) =
∫ t0+T

t0

∫ 2π

0

∫ π

0
R2 |sin (φ)| ρtr(rr(θ, φ))I(n̂, t)dφdθdt. (39)
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2.4 Derivation of the classic short-term encounter formula

2.4.1 The 2D integral

The first subsequent assumption made to obtain the classic short-term encounter formula is the
following:

Assumption 5. No velocity uncertainty.
At each time t ∈ [t0, t0+T ], the relative velocity vector vr(t) is precisely known and is a deterministic
vector.

This assumption is clearly mathematically unrealistic since, even if the relative position vector at
t = t0, rr(t0) is a random vector and the relative velocity vector at t = t0 is a deterministic vector
vr(t0), the relative velocity vector at any time t > t0 will be a random vector vr(t) due to the
interconnections in the relative dynamics between rr and vr (unless the flow ϕtt0 has a particular
structure). Nevertheless, one can expect that this propagated uncertainty affecting the relative
velocity vector will be small enough to be considered as not significant.
Assumption 5 first implies that the matrix P12 = 0. This implies that ǫ0(n̂, t) = 0 and therefore
that vr = v′ and mǫ = n̂ ·mvr = n̂ · vr. From Equation (38), we get that:

I(n̂, t) =
σ√
2π

e
−
m2
ǫ

2σ2 − mǫ

2

[
1− erf

(
mǫ√
2 σ

)]
. (40)

If vr is a deterministic vector, ǫ is a deterministic variable either since ǫ(t) = n̂ · v′(t) = n̂ · vr(t) and
its variance σ → 0+. In Equation (40), we have:

lim
σ→0+

I(n̂, t) =

{
−n̂ · vr if n̂ · vr 6 0

0 if n̂ · vr > 0.
(41)

From Equation (39), the probability PI(T ) becomes:

PI(T ) = −
∫ t0+T

t0

∫ 2π

0

∫ π

0
R2 sin (φ) ρtr(rr(θ, φ))1n̂·vr(t)60(θ, φ, t)(n̂ · vr(t))dφdθdt. (42)

To get rid of the function 1n̂·vr(t)60(ǫ) in the integrand of (42), one may modify the integration limits
to the hemisphere where n̂ · vr(t) 6 0. By choosing τ -dependent axes for the spherical coordinates
for which the x-axis is aligned with the vector vr(τ) where τ is the first hitting time, we get the
following formula:

PI(T ) = −
∫ t0+T

t0

∫ 3π
2

π
2

∫ π

0
R2 sin (φ) ρtr(rr(θ, φ))(n̂ · vr(t))dφdθdt. (43)

It is important to note that rr(θ, φ) in (42) is expressed in the original basis while rr(θ, φ) is
expressed in the new basis for which the x-axis is aligned with the vector vr(τ). The 2D-geometry
of the hemisphere domain of integration for encounters obeying to Assumptions 1-5 is illustrated
by Figure 4.
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x(t1)

y(t1)

x(t2)

y(t2)
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vr(t1)

vr(t2)

n̂1

n̂2

θ1

θ2

x(t3)

y(t3)

n̂3vr(t3)

Figure 4: Illustration in 2D of three collisions at t1, t2 and t3 with the hemisphere of integration for
t3.

As is clearly suggested by the terminology short-term encounter, the next set of assumptions relies
on the assumed short duration of the encounter.

Assumption 6. Short encounter time.
The encounter time interval [t0, t0 + T ] is small enough that the relative motion is a straight line.

x

y

z

Rvr0

vr0

vr0

n̂1

n̂2

n̂3

Figure 5: Three collisions in (x, y) plane with deterministic and rectilinear relative velocity vr0 .

Assumption 6 has a strong impact on the structure of the relative vector field fr which has to

satisfy fr =
[
vr0 0

]T
when there is no uncertainty on the relative velocity. The relative state-

space solution is therefore defined as :

rr(t) = vr0(t− t0) + rr0
vr(t) = vr0 ,

(44)
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where vr0 is a deterministic vector. It may be easily deduced that the relative trajectory is character-
ized by a mean vector mrr(t) = E [rr(t)] = mr0+ vr0(t− t0). This implies also that the relative tra-
jectory has a constant covariance matrix P11(t) = E

[
(rr(t)−mrr(t))(rr(t)−mrr(t))T

]
= P11(t0).

It is to be noted that the time-invariant nature of the covariant matrix of the random vector rr(t) is
deduced from the assumptions rather than part of the a priori assumptions themselves as improperly
presented in the reference [28].
Keeping in mind that the encounter frame has been chosen such that vr0 = ‖vr0‖~i, we get that :

mr1(t) = mr1(0) + ‖vr0‖(t− t0)
mr2(t) = mr2(0)
mr3(t) = mr3(0).

(45)

In addition, the dot product in (43) may be readily calculated as n̂·vr(t) = n̂·vr0 = ‖vr0‖ cos(θ) sin(φ).
Applying Corollary 1 to (43) with h : [0, π]×[π/2, 3π/2] → B(0, R), (φ, θ) 7→ (rr2 , rr3), det(Dh(φ, θ)) =
R2 sin2(φ) cos(θ) and g = ρtr, we get that :

PI(T ) = −
∫ t0+T

t0

∫ 3π
2

π
2

∫ π

0
‖vr0‖R2 sin2 (φ) cos(θ)ρtr(rr(θ, φ))dφdθdt

=

∫ t0+T

t0

∫ 3π
2

π
2

∫ π

0
‖vr0‖ρtr(rr(θ, φ))|det(Dh(φ, θ))|dφdθdt

=

∫ t0+T

t0

∫∫

B(0,R)

‖vr0‖ρtr(rr(rr2 , rr3))drr2drr3dt,

(46)

where rr(rr2 , rr3) =
[
rr1(rr2 , rr3) rr2 rr3

]T
and rr1(rr2 , rr3) = −

√
R2 − r2r2 − r2r3 . Equation

(46) is equivalent to Equation (28) in [1] with T →∞ and t0 → −∞.
At this point, it is known that rr ∼ N (mrr, P11(t0)). Therefore, the trick already used above with
Pr and consisting in building a linear transformation L from the partitioning of P11(t0) may be
applied. With the following partitioning of P11(t0), the linear transformation L is given as:

L =

[
1 −̟TP−1

rr2rr3
02,1 I2

]
where P11(t0) =

[
η2 ̟T

̟ Prr2rr3

]
.

Applying L to the random vector rr −mrr, we get:

L(rr −mrr) =



rr1 −̟TP−1

rr2rr3

[
rr2
rr3

]
−
(
mr1 −̟TP−1

rr2rr3

[
mr2
mr3

])

rr2 −mr2
rr3 −mr3


 :=

[
r̄r1 − m̄r1
ς −mς

]
.

We also have:

LP11(t0)L
T =

[
η2 −̟TP−1

rr2rr3
̟ 01,2

02,1 Prr2rr3

]
(47)

and det(P11(t0)) = η2̟TP−1
rr2rr3

̟ · det(Prr2 rr3 ). The normal density ρtr may then be factorized as

ρtr(rr) = ρtr̄r1 (r̄r1)ρς(ς) where:

ρtr̄r1 ∼ N (m̄r1, η
2 −̟TP−1

rr2rr3
̟), ρς ∼ N (mς,Prr2rr3 ). (48)
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Note that the normal density ρς does not depend upon time since mς (from (45)) and Prr2rr3 are
constant over time. Then, the probability PI(T ) becomes:

PI(T ) =

∫ t0+T

t0

∫∫

B(0,R)

‖vr0‖ρtr(rr)drr2drr3dt =
∫∫

B(0,R)

ρς(ς)

∫ t0+T

t0

‖vr0‖ρtr̄r1 (r̄r1(t))dtdς. (49)

In Formula (49), the variable rr1 appearing in r̄r1 must satisfy rr1 = −
√
R2 − r2r2 − r2r3 to comply

with the hemisphere of integration depicted on Figure 5. The last step to obtain the classical 2D
probability of collision formula (see [21], [1] or [72]) is a final change of variables χ = m̄r1 − r̄r1
for the inner integral with respect to time and extending the time of integration to infinity at both
limits. ∫ t0+T

t0

‖vr0‖ρtr̄r1 (r̄r1(t))dt ≃
∫ +∞

−∞
‖vr0‖ρtr̄r1 (r̄r1(t))dt =

∫ +∞

−∞
ρχ(χ)dχ = 1, (50)

where ρχ ∼ N (0, η2 −̟TP−1
yz ̟).

The last assumption related to the limits of integration is called Time integrates out and qualified as
an odd one in [28]. We strongly agree with this feeling since the statement defining this assumption
"the time integration interval is sufficiently long to approximate the time integral (50) as 1 but not
so long as to violate the short-term encounter assumption" proves to be almost a contradiction in
terms. Finally, the classical 2D probability of collision, computed as the double integral on a disk
of a Gaussian function, is retrieved as:

PI(T ) =
1

2π det(Pς)

∫∫

B(0,R)

exp

[
−1

2
(ς −mς)TP−1

ς (ς −mς)
]

dς. (51)

Remark 4.
Note that M.R. Akella and K.T. Alfriend [1] are the first authors having given the relations be-
tween the 2D integral in (51) and a 3D integral involving the full relative position covariance and a
hidden time integration through the integration over the relative velocity vector (which direction is
perpendicular to the encounter plane). This paper extends a preliminary result by Z.N. Khutorovsky
[45] giving the collision probability as a function of time under the assumption that the size of the
primary is much smaller compared to the position uncertainty of the secondary object.

2.4.2 Validity of the 2D integral

The formula (51) has been widely studied in the literature and used in practice for risk assesment.
Since the seminal work in [34], different numerical approaches have been conducted to compute the
most efficiently the 2D integral (see for instance [61], [3], [21], [72]). Nevertheless, it is well-known
that the assumptions 5 and 6 are not met for some conjunctions (events with long durations, with
non negligible uncertainty on the relative velocity and/or satellite pairs orbiting in close proximity)
and different ways to estimate conjunction duration and the validity of the 2D integral have been
proposed.
First, K. Chan has proposed in [25] to analyze the extent of the encounter region for which the
relative orbit can be considered to be a straight line to decide when is the above approximation of
using Equation (51) instead of Equation (39) good enough. It is then proposed that if the path of
the relative motion is a straight line over a length of 8.5 standard deviations along the integration
direction, then the simplification is valid from a computational viewpoint.
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Miss-distance
Primary

Secondary

17σ

Figure 6: Path length for rectilinear approximation according to [25].

As has been demonstrated later, a key assumption for the validity of this simplification is that the
relative velocity between the two objects is high in order to get a short encounter duration. In [36], a
twofold study has been conducted on historical operational data and generated encounter geometries
both in LEO and GEO orbit regimes to determine the relative velocity threshold below which the
validity of the rectilinear assumption breaks down and a 3D alternative (developed by McKinley in
this particular case [58]) has to be used instead of the 2D integral. In the first case, the study gathers
3680 conjunction events in LEO, between June of 2005 and June of 2007, and 12 events in the GEO
orbit case. All in all, the results of [36] confirm that not only relative velocity, but also combined
covariance, and miss distance have a decisive impact on the encounter duration and therefore on
the discrepancy between the 2D integral and the 3D computation. In addition, the relative velocity
threshold in itself can be set to 10 m/sec. Note also the linearity test developed in [5], where the
objective is to get a minimum relative velocity at TCA to ensure that a user-specified fractional
probability threshold will not be exceeded. This fractional probability threshold is computed as the
absolute difference between the 2D and an alternative based on nonlinear relative motion divided by
the 2D results. However, as previously mentioned, depending on the miss distance and covariance,
the study also concludes that the 2D integral may still be sufficient for relative velocities as low as 1
m/sec and that a good metric for determining when the 2D integral may be validly computed and
used is the encounter duration (for an encounter duration less than 500 s).
This notion of a short-term encounter validity time interval that provides a metric for assessing the
acceptability of the short encounter assumptions is formally defined in [27]. To do so, it is necessary
to get back to the time integral (50).

I(ς) =

∫ t0+T

t0

‖vr0‖ρtr̄r1 (r̄r1(t))dt =
∫ χT

χ0

ρχ(χ)dχ, (52)

where ‖vr0‖ is the relative velocity at TCA (tTCA = 0) and

χ(t) = m̄r1 − r̄r1 = ‖vr0‖t+̟TP−1
rr2rr3

(ς −mς0) +
√
R2 − r2r2 − r2r3 ,

mχ = 0,
σ2χ = η2 −̟TP−1

rr2rr3
̟,

ρχ(χ) ∼ N1(0, σχ) =
1√

2π σ2χ
e
−
χ2

2σ2χ ,

(53)

since mr1(t) = ‖vr0‖t. When deriving the 2D integral for the computation of the probability of
collision under the short-term assumptions, the integral I(ς) in (52) is equal to 1 since it is computed
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over all time. V.T. Coppola defines the short-term duration as the duration for which this integral
I(ς) can be approximately but accurately considered to be equal to 1. Note that by using the
definition of the normal cumulative distribution function, it is easy to compute that:

I(ς) =
1

2
(erf(αT )− erf(α0)) , (54)

where αT =
χT

σχ
√
2

and α0 =
χ0

σχ
√
2

. Therefore, erf(αT ) → 1 and erf(α0) → −1 is needed to get

I(ς) ≃ 1. Let γ be the absolute error with respect to 1 or −1 when computing respectively erf(αT )
and erf(α0) and evaluating the integral I(ς) over a finite duration. The idea is, for a given absolute
error γ to compute α0 and αT such that:

α0 6 erf−1(−1 + γ) and αT > erf−1(1− γ). (55)

The first condition is satisfied for t0 6 τ0 =
−
√
2 αc(γ)σχ +̟Tmς0 − δmax

‖vr0‖
while the second

condition leads to
−
√
2 αc(γ)σχ +̟Tmς0 − δmin

‖vr0‖
= τ1 6 t0+T where δmin and δmax are computed

as the minimum and maximum of ̟T ς +
√
R2 − ςT ς over the area of the circle ‖ς‖ 6 R. A not so

straightforward computation leads to :

δmax = max
‖ς‖6R

̟T ς +
√
R2 − ςT ς = R

√
1 +̟T̟ for ς =

R̟√
1 +̟T̟

,

δmin = min
‖ς‖6R

̟T ς +
√
R2 − ςT ς = −R

√
̟T̟ for ς = − R̟√

̟T̟
.

(56)

Let us give some additional details on how equations in (56) are obtained.
The derivation is quite the same for both min and max problems. The constraint set of both
problems is the closed ball B(0, R). First, consider the min and max problems over the boundary
∂B(0, R):

δ1max = max
ςT ς=R2

̟T ς and δ1min = min
ςT ς=R2

̟T ς. (57)

Introducing the Lagrangian L(ς;λ) = ̟T ς + λ(ςT ς −R2) (where λ 6= 0 is a lagrangian parameter),
the first necessary condition of optimality reads

∇L(ς∗;λ∗) = ̟ + 2λ∗ς∗ = 0 ⇔ ς∗ =
−̟
2λ∗

. (58)

As ς∗T ς∗ = R2, we get that λ∗ = ±
√
̟T̟

2R
and ς∗ = ∓ R̟√

̟T̟
. The Hessian of the Lagrangian

is given by H[L](ς∗, λ∗) = 2λ∗I2 and therefore, the second order sufficient condition gives a local

maximum δ1max = R
√
ςT ς for λ∗ = −

√
̟T̟

2R
, ς∗ =

R̟√
̟T̟

and a local minimum δ1min =

−R
√
ςT ς for λ∗ =

√
̟T̟

2R
, ς∗ = − R̟√

̟T̟
.

The next step consists in checking the global optimality of this solution over the ball B(0, R), i.e.
check if there exists ς ∈ B(0, R) such that δmax(ς) > δ1max and if there exists ς ∈ B(0, R) such that
δmin(ς) < δ1min.
In the first case (maximum problem), it is necessary to compute the maximum of ̟T ς+

√
R2 − ςT ς

over the open ball. It amounts to solve an unconstrained convex optimization problem and to verify
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that the obtained solution is in the open ball since it is the maximization of a concave function
over an open set. A first order necessary and sufficient condition is given by the vanishing of the
gradient of the cost function, i.e. the equation of the critical point of the cost function:

̟ − ς√
R2 − ςT ς

= 0. (59)

From (59), it is easy to compute that ςT ς =
R2̟T̟

1 +̟T̟
and ς =

R̟√
1 +̟T̟

∈ B(0, R) for an

optimal cost of δmax(ς) = R
√
1 +̟T̟ > δ1max. The conclusion in (56) follows.

In the second case(minimum problem), a simple geometric argument, illustrated at Figure 7, may be
used to show that δmin = δ1min. Indeed, ∄ ς ∈ B(0, R) such that ̟T ς +

√
R2 − ςT ς < R

√
̟T̟ =

δ1min since B(0, R) ⊂ H+ where H+ is the positive half-space defined by the hyperplane ̟T ς∗ =
δ1min, i.e. ∀ ς ∈ B(0, R), ̟T (ς− ς∗) > 0 and therefore ∀ ς ∈ B(0, R), ̟T ς+

√
R2 − ςT ς > ̟T ς∗ =

δ1min = δmin.

ς∗

ς

ς1

ς2

̟T ς∗ = δ1min

̟

H+

H−

R

Figure 7: Ball B(0, R) ⊂ H+.

Finally, we get that:

τ0(γ) =
−
√
2 αc(γ)σχ +̟Tmς0 −R(

√
1 +̟T̟

‖vr0‖
, τ1(γ) =

√
2 αc(γ)σχ +̟Tmς0 +R(

√
̟T̟

‖vr0‖
,

(60)
and

∆τ(γ) = τ1(γ)− τ0(γ) =
2
√
2 αc(γ)σχ +R(

√
̟T̟ +

√
1 +̟T̟ )

‖vr0‖
. (61)

Remark 5.
As shown in [27], the interval [τ0, τ ] does not always include the origin (tTCA = 0) and the duration
∆τ may be smaller than the duration between τ0 or τ1 and t = 0.

Keeping in mind the last remark, the short-term encounter validity time interval is then defined in
[27] by:

∆t(γ) = max{∆τ(γ), τ0(γ), τ1(γ)}. (62)

This means that the rectilinear and constant-covariance assumptions must be satisfied during the
time span TCA±∆t(γ) (γ = 10−16 for double-precision numerical processing). This appears to be
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consistent with the index defined by Chan and converted in time span as 17σ‖vr0‖ in [27]. Still, at
our knowledge, there is no known absolute threshold for the time span that could indicate a clear
separation between long-term and short-term encounters.
The usage of this time span has been reviewed in [40] and adapted to define bounds for the time
integration in Coppola’s formula.
for and refined in [39].

2.5 Three different implementations of the 3D PoC

In all the numerical implementations encountered in the literature, the time and sphere integrations
are performed separately. In addition, the collision probability PI(T ) given in (39) may also be
defined by introducing the collision probability rate pi(t).

Definition 4. [Collision probability rate [32]]
The collision probability rate pi(t) is the instantaneous increase in collision probability at t. We have
therefore that

PI(T ) =

∫ t0+T

t0

pi(t)dt. (63)

In addition, if Assumptions 1-4 are fulfilled then, following (31), the collision probability rate is
nothing but

pi(t) =

∫ 2π

0

∫ π

0
|sin (φ)|

∫ ∞

−∞
R2 |vr · n̂| 1vr ·n̂60(vr)ρtr(xr(θ, φ, vr))dvrdφdθ. (64)

Remark 6.
Note that Equation (64) is the definition of the collision rate as given in reference [32]. The subse-
quent developments of Coppola as given above may be used without loss of generality and Equation
(39) may replace Equation (31).

pi(t) =

∫ 2π

0

∫ π

0
R2 sin (φ) ρtr(rr(θ, φ))I(n̂, t)dφdθ. (65)

Remark 7.
The function pi(t) is also known as the probability density flux penetrating the HBR sphere at t in
the reference [68] or as the collision probability flow in the reference [76].

In [7], S. Alfano published an analysis of twelve conjunctions and compared results obtained with two
different Monte Carlo simulations and with several short-term and long-term collision probability
computations. The three different implementations of Coppola’s formulation have been evaluated
on different subsets of these twelve cases. The results are summarized in each case below.

Remark 8.
It is important to notice that the notion of collision probability rate (or collision probability flow) has
also been extensively used in air traffic control (see [76] and the references therein) and automotive
applications (see [10] and the references therein) with results very similar to the one of Coppola for
the formulation of the probability of collision. These references focus on upper bounds of the collision
probability rate, integrated over a time period that are numerically tractable via usual quadratures.
The first reference uses a relaxation of the set of trajectories that have not earlier entered the
collision volume given by the set of all trajectories leading to a collision. The second reference
derives a formulation of an upper bound of the probability of collision over a time period that may
be found in the literature dedicated to the problem of level crossings of vector stochastic processes
[14], [43]. This line of research originates in the twin papers [65, 66] with the Rice’s formula and
has found specific applications in reliability theory [42].
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2.5.1 Coppola’s implementation of the 3D PoC

The numerical implementation of the Formula (39) is quickly described in [28] in the section present-
ing the numerical results of the proposed method. Very few details are given except that the triple
integration is performed in two steps: the outer time numerical integration is based on a Simpson’s
rule while a Lebedev quadrature is used for the integration over the sphere. The dynamical model
used for the propagation of the Gaussian density is not detailed except that a grid of ephemeris
(including the 6 × 6 covariance matrices is generated by STK (software available from Analytical
Graphics Inc.) by numerically integrating the trajectory and the covariance matrix.

Numerical integration over the unit sphere The integral defining the collision probability
rate in (65) is an integral over the unit sphere written into a standard form that may be generically
defined as:

pi(t) =

∫ 2π

0

∫ π

0
R2 sin (φ) ρtr(rr(θ, φ))I(n̂, t)dφdθ = I[f ] =

∫ 2π

0

∫ π

0
f(θ, φ) sin (φ) dφdθ, (66)

where f : [t0, t0 + T ]× S2 → R and the dependency of the function f upon time has been omitted
for simplification’s sake since the objective is to present the principles of the Lebedev quadratures
[52], [53], [54], [55]. Before exposing the basics of Lebedev quadratures, some preliminary facts
about the expansion of square integrable functions over the sphere are given.
Following [13], a function which is square integrable on S2 has an expansion in terms of the spherical
harmonics orthonormal basis on the unit sphere:

f(θ, φ) =

∞∑

n=0

n∑

m=n

cmnY
m
n (θ, φ), (67)

where the spherical harmonic functions Y mn (θ, φ) are given by:

Y m
n (θ, φ) =

1√
2π

Pmn (cos(φ))eimθ , − n 6 m 6 n, n,m ∈ N. (68)

Pmn are the normalized Legendre functions, m is the order of the spherical harmonic, n is the degree,
cmn are the coefficients of the expansion that may be computed as the inner product of the function
f with the basis functions:

cmn =

∫ 2π

0

∫ π

0
f(θ, φ)Y

m
n (θ, φ)dφdθ. (69)

Note that Y
m
n (θ, φ) is the conjugate of Y m

n (θ, φ). This class of spherical harmonics expansion is
well-know in astrodynamics when expanding the gravity potential [79], [59].
A quadrature is a numerical scheme giving an approximation of the integral I[f ] by a weighted sum
over a finite collection of points {xi} ⊂ S2:

∫ 2π

0

∫ π

0
f(θ, φ) sin (φ) dφdθ ≈

N∑

i=1

wif(xi) := QN [f ], (70)

where wi are the weights and QN [f ] the quadrature of the integral. A quadrature scheme is therefore
based on the choice of the distribution of nodes {xi} and on the choice of the weights wi. Lebedev
quadratures belong to the class of Gauss quadratures for which the weights are not fixed (Chebyshev
quadratures) but computed with the nodes at the same time over the whole sphere.

30



The general Lebedev quadrature scheme may be written as [54]:

QN [f ] = A1

6∑

i=1

f(a1i ) +A2

12∑

i=1

f(a2i ) +A3

8∑

i=1

f(a3i ) +

N1∑

k=1

Bk

24∑

i=1

f(bki ) +

N2∑

k=1

Ck

24∑

i=1

f(cki )

+

N3∑

k=1

Dk

48∑

i=1

f(dki ),

(71)
where the typical nodes of each type have the form:

a11 = (1, 0, 0), a21 = (2−1/2, 2−1/2, 0), a31 = (3−1/2, 3−1/2, 3−1/2),
bk1 = (lk, lk, mk), 2l2k +m2

k = 1,
ck1 = (pk, qk, 0), p2k + q2k = 1,
dki = (rk, sk, tk), r2k + s2k + t2k = 1.

(72)
The remaining points are obtained by permutation of coordinates or by change of their sign. The
generic rationale behind the computation of the weights and the node is that the quadrature has to
be exact for all spherical harmonics up to a given degree p while keeping symmetry under octahedral
rotations and reflections. This problem is simplified by a theorem of S.L. Sobolev implying that
this condition need be imposed only on those polynomials which are invariant under the octahedral
rotation group with inversion. Imposing these conditions leads to solving a nonlinear system of
equations which has been solved and tabulated up to order 131 [55]. The number of samples is then
given by N = 26 + 24(N1 +N2) + 48N3.
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Figure 8: Lebedev’s quadrature with N = 1454 samples for integration over the sphere.

Numerical integration over time The time integration used in [28] is a composite Simpson’rule.
Here is recalled the composite Simpson rule for 2M subintervals for the numerical integration of∫ t0+T

t0

f(t)dt.

Theorem 1. [Composite Simpson rule [57]]
If the interval [t0, t0 + T ] is subdivided into 2M subintervals [tk, tk+1] of equal width h = T/2M by
using tk = t0+ kh for k = 0, 1, · · · , 2M . The composite Simpson rule for 2M subintervals is given
by the following expression:

∫ t0+T

t0

f(t)dt ≈ h

3

M∑

k=1

[f(t2k−2) + 4f(t2k−1) + f(t2k)]. (73)

31



Summary of numerical results Coppola has evaluated his formulation on five cases from [7]
(cases 3, 4, 8, 10 and 11). The first one case 3 falls within the category of short-term encounters
and was mainly meant to study the adequacy between the 3D PoC and the 2D Poc as well as to
study the impact of the time integration bounds on the accuracy of the 3D PoC. The four last
cases involve long-term conjunctions for which some of the simplifying assumptions of the 2D PoC
formulation are not fulfilled. The comparisons of the results obtained with this implementation and
the results obtained by the voxels method of Alfano appear to be satisfactory and consistent.

2.5.2 CARA implementation of the 3D PoC

The CARA implementation of the 3D PoC formulation is given in the reference [40] and at first,
has been validated using Monte Carlo simulations of several well-studied conjunctions. Since then,
the opinion of CARA about the usefulness of this formulation seems to be different. One of the
objective of the paper [40] was to show that the usual 2D PoC integral may provide inaccurate com-
putations or at least significant differences when compared to the 3D PoC estimate. In particular,
the relative dynamical model used to propagate the uncertainty may be more realistic in the 3D
PoC computations than the one on which relies the 2D Poc.

Uncertainty propagation Computing the collision probability as defined by Equation (39),
where ρtr ∼ N (mrr(t), P11(t)) implies that mrr(t) and P11(t) are available on the grid of points
defined on the interval [t0, t0 + T ] for numerical integration and therefore a specific care must
be taken to define the uncertainty propagation on this interval. At CARA, the implementation
described in [40] is built on the Keplerian two-body dynamical model to propagate mrr(t) from
TCA and the analytically-derived state transition matrix Φsh given in [75] to linearly propagate the
covariances expressed in the ECI-frame:

P11(t) = Φsh(t, tTCA)P (tTCA)Φ
T
sh(t, tTCA). (74)

Choice of time integration limits Based on the formulation of Coppola in [27], for the estima-
tion of short-term conjunction durations (see subsection on the validity of the 2D integral above),
conjunction bounds are defined as:

t0 = τm − E
τ1 − τ2

2
, t0 + T = τm + E

τ1 − τ2
2

, (75)

where τm = τ1+τ0
2 is the conjunction midpoint and E is a user-specified factor used to expand the

conjunctions bounds in order for all peaks in pi(t) to be included in the conjunction time interval.
The choice for E is dependent upon the dynamical model used for the uncertainty propagation. For
instance, when using 3D PoC formulation with the simplified dynamical model and propagation
summarized by Equation (44) under the assumptions that the covariance remains constant during

the encounter with no uncertainty on the relative velocity (Pr(t) =

[
P11(tTCA) 03×3

03×3 03×3

]
, Hall

recommends to set E = 1. When the Keplerian two-body dynamical model is used, the factor E
may vary from 2 to 5 with an apparent maximum of 10.

Numerical integration over time In order to remedy the problem of possible numerical insta-
bilities caused by Simpson’s rule for time integration, CARA’s software relies on the trapezoidal
scheme of the closed Newton-Cotes quadrature formulas for time integration.
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Theorem 2. [Trapezoidal rule [57]]
If the interval [t0, t0 + T ] is subdivided into M subintervals [tk, tk+1] of equal width h = T/M by
using tk = t0 + kh for k = 0, 1, · · · , M . The trapezoidal rule for M subintervals is given by the
following expression:

∫ t0+T

t0

f(t)dt ≈ h

2

M∑

k=0

(f(tk) + f(tk−1)). (76)

Numerical integration over the unit sphere The CARA’s implementation uses a Lebedev
quadrature for the integration over the unit sphere with the maximum available Lebedev algebraic
order of 131, which implies to compute a weighted sum over 5810 points.

Summary of numerical results Only two cases (case 3 and case 10) from [7] are used to validate
the CARA’s implementation of the 3D PoC.
The first (a short-term encounter) confirms the results given in [28] and allows also to study the
step-by-step relaxation of the 2D PoC assumptions (rectilinear relative motion, no uncertainty on
the relative velocity and a time-invariant covariance matrix).
For the second test case (case 10), an identical analysis (step-by-step relaxation of simplifying
assumptions) shows that the four relaxation schemes produce distinctly different results for example
exhibiting two peaks for pi(t) and the result from the complete Coppola’s implementation (Kepler
two-body propagation with a time-varying complete covariance matrix) in line with Alfano’s Monte
Carlo simulations.
In a second step, the authors of [40] analyze a set of 80,827 archived OCMs, representing historical
actual conjunctions that occurred between 2016-04-01 and 2016-06-1. This analysis reveals various
types of conjunctions events:

- Repeating and/or blended conjunction events: such events occur when two satellites per-
sistently operate in close proximity and this may be detected by the presence of multiple
(possibly blending) peaks of the curve of the flux pi(t). On a purely empirical basis (no clear
theoretical justification is given in [40]), the CARA team proposes the following index in order
to identify the extended, repeating of blended events which lead the Coppola’s formulation to
break down.

∆τ

T omin
> 0.01, (77)

where T omin is the minimum orbital period between the two objects concerned by the conjunc-
tion.

- Isolated conjunction events for which noteworthy differences between the 2D PoC and the
3D PoC have to be noticed since they may induce false alarms or misdetections. A further
empirical analysis of the CARA team would tend to induce a correlation between these dis-
crepancies and some features of the data used for the computation ([τ0, τ1] does not bracket
tTCA, the peak in probability flux is sharp and relatively far from the conjunction midpoint,
[τ0, τ1] does not bracket the peak of flux, the covariance matrix of one of the obect is of a poor
quality).

2.5.3 CNES implementation of the 3D PoC

The implementation of Coppola’s formulation of the CNES team is known from the references
[70] and [68]. Unfortunately, though the reference [70] is the most detailed one with respect to
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the implementation, it is not the most up-to-date versions since some variations have been made
recently. The second reference [68] is more focused on the results obtained than on numerical details.

Uncertainty propagation The propagation of the uncertainty is the same as the one used by
the team CARA i.e. the Kepler two body dynamical model for the mean vectors and Equation (74)
for the covariance matrices.

Choice of time integration limits The time integration limits are τ0 and τ2 computed from
Equation (60) with

√
2 αc = 15.

Numerical integration over time An adaptive Simpson rule is used and described in the
reference [70]. The rationale behind the adaptive Simpson rule is briefly recalled. Suppose that the
interval [t0, t0+T ] has been subdivided into 2M subintervals [tk, tk+1] of equal width h = T/2M by
using tk = t0 + kh for k = 0, 1, · · · , 2M nodes. On each subinterval [tk, tk+1], a tolerance ǫk > 0
is defined as well as two subintervals [t1k, t

1
k+1] and [t2k, t

2
k+1] with t1k = tk and tk+1 = t2k+1. the

composite Simpson rule (73) is applied on such subinterval to get:

S(t1k, t
1
k+1) + S(t2k, t

2
k+1) =

h

6
[f(t12k−2) + 4f((t12k−2 + t12k)/2) + f(t12k)]

+
h

6
[f(t22k−2) + 4f((t22k−2 + t22k)/2) + f(t22k)].

(78)

Then, if |S(t1k, t1k+1) + S(t2k, t
2
k+1) − S(tk, tk+1)| < ǫk then

∫ tk+1

tk

f(t)dt ≈ S(t1k, t
1
k+1) + S(t2k, t

2
k+1).

If the accuracy test fails, new tolerances ǫ1k = ǫk/2 and ǫ2k = ǫk/2 are defined for each subinterval
for further refinement and testing. It may be shown that the process will terminate after a finite
number of steps [57].

t

f(t)

Figure 9: Subintervals used in adaptive Simpson quadrature.

Numerical integration over the unit sphere A classic Lebedev quadrature with 1454 nodes
or 5810 nodes is mentioned in the reference [68] as well as a converged (θ, φ) discretization which is a
combined adaptive Simpson scheme on θ and φ (this last one seems to be useful in some pathological
cases where the covariance in the orthogonal plane to the relative velocity is very small compared
to the combined hard body radius). At our knowledge, this is what is used in the latest version of
the implementation of the method.

Summary of numerical results In [70], the implementation of Coppola is computed with and
without uncertainty on the velocity and compared to the 2D PoC, the Monte Carlo reference results
given in [7] and two alternatives given as the method of adjoining cylinders and the method of
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bundled parallelepipeds [58], [5] on the twelve examples proposed by S. Alfano in [7]. Except for
the test cases 11 and 12, the implementation of the Coppola’s formulation and the reference Monte-
Carlo as defined by the report conform with each other. Cases 11 and 12 are quite peculiar and
should deserve a particular attention as has been done by Alfano for test case 11 (see [28]).
In [68], 28512 collision risks have been generated in order to evaluate the Coppola’s formulation and
to compare it to the 2D PoC formulation. Even if the two agree for most high-velocity encounters,
important discrepancies remain in some cases pointing in particular the inadequacy of the 2D PoC
result in those cases. For the long-term encounters (low relative velocity), the paper concludes
that two issues have to be carefully addressed: the definition of the time span for the numerical
integration and the fulfillment of the three assumptions involved in the Coppola’s formulation.

2.6 The 3D PoC: Chan’s counter-examples

In 2015, K. Chan has challanged Coppola’s result in two twin papers [22], [23] in which four counter-
examples pertaining to the long-term encounter setting are given. The main point raised by the
Author in these references is quite not clearly formulated in its full generality: "Even though it may
be meaningful to consider the pdfs with their Cartesian positions and relative Cartesian positions
as random variables at a specific instant of time, it is no longer meaningful to consider these
quantities over an extended period of time for computing the probability between the two
objects". Rephrased in [40] as "Coppola’s integration of the flux of a time-dependent probability
distribution function (PDF) through a hemi-spherical surface is not consistent with the basic tenets
of probability theory", the comment remains quite general and not exactly sustained by a rigorous
theoretical analysis. We have therefore favoured a more thorough analysis of the proposed counter-
examples in order to find the hidden catch in Coppola’s formulation or in Chan’s examples (if they
don’t comply with the assumptions set-up clearly presented in [28]). Unfortunately, Chan’s papers
have not been written with all the necessary details, particularly concerning the exact assumptions
made at each step.
The counter-examples presented in [22] and [23] are built under the assumption that the relative
motion of the secondary object with respect to the primary object may be well approximated by
the first order linearized relative dynamic equations known as the Hill-Clohessy-Wiltshire (HCW)
equations [26]. This clearly implies that the linearized model of the relative motion is derived with
a circular orbit as the reference (the primary in this case) and under Keplerian assumptions.

Assumption Chan’s counter-examples 1 (Circular reference orbit).
The primary object is moving in a circular orbit under Keplerian assumptions.

Another induced assumption is that the primary and the secondary are sufficiently close to each
other (proximity assumption) during the encounter time interval.

Assumption Chan’s counter-examples 2 (Proximity assumption).
The distance between the primary object and the secondary object is small with respect to the radius
of the circular orbit of the primary for all t ∈ [t0, t0 + T ].

In the next paragraph, the HCW equations and their solution are briefly recalled.

2.6.1 Hill-Clohessy-Wiltshire relative equations of motion

Defining the state vector of the relative dynamics byXr(t) = [rr(t)
T , vr(t)

T ]T = [rr1 , rr2 , rr3 , vr1 , vr2 , vr3 ]
T ,

the autonomous relative motion of the secondary has the following Linear Time-Invariant (LTI) state
space representation [8]:
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dXr

dt
(t) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2n
0 −n2 0 0 0 0
0 0 3n2 −2n 0 0



Xr(t), (79)

where n is the mean motion of the reference (primary) orbit. It is well-known and it may be observed
from Equation (79) that the in-plane motion ( ~XLV LH - ~ZLV LH) and the out-of-track motion (~YLV LH
direction) are decoupled. The transition matrix ΦHCW (t, t0) of (79) is readily available (using the
Laplace transform for instance) such that Xr(t) = ΦHCW (t, t0)Xr(t0) for t > t0 where:

ΦHCW (t, t0) =




1 0 6(δt − st) (4st − 3δt)/n 0 2(1 − ct)/n
0 ct 0 0 st/n 0
0 0 4− 3ct 2(ct − 1)/n 0 st/n

0 0 6n(1− ct) 4ct − 3 0 2st
0 −nst 0 0 ct 0
0 0 3nst −2st 0 ct




(80)

where δt = n(t − t0), ct = cos(n(t − t0)) and st = sin(n(t − t0)). The solution of the circular
linearized relative equations are therefore given by:

rr1(t) = rr10 + 6(δt − st)rr30 + (4st − 3δt)vr10/n+ 2(1 − ct)vr30/n
rr2(t) = ctrr20 + stvr20/n
rr3(t) = (4− 3ct)rr30 + 2(ct − 1)vr10/n+ stvr30/n
vr1(t) = 6n(1− ct)rr30 + (4ct − 3)vr10 + 2stvr30
vr2(t) = −nstrr20 + ctvr20
vr3(t) = 3nstrr30 − 2stvr10 + ctvr30 .

(81)

The HCW relative motion is composed of an oscillatory mode along the ~YLV LH axis (out-of-plane
motion) and a drifting ellipse for the in-plane motion (see the geometry of the drifting ellipse in
~XLV LH - ~ZLV LH plane as depicted by Figure 10). This latter is the combination of a stationary
mode, an oscillation mode and a drifting mode.
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Figure 10: Drifting ellipse of the HCW relative motion

At this point, due to the linearity properties of the relative motion, if the state vector Xr0 at
time t0 is uncertain and distributed according to the density ρtXr0

, the dynamic evolution of the
two first moments, i.e. the mean E[Xr(t)] = mr(t) and the covariance matrix Pr(t, t) = Pr(t) =
E[(Xr(t)−mr(t))(Xr(t)−mr(t))

T ]) of the state vector Xr(t) (which is a Gaussian stochastic process)
can be computed as [44]:

mr(t) = ΦHCW (t, t0)mr(t0) Pr(t) = ΦHCW (t, t0)Pr(t0)ΦHCW (t, t0)
T . (82)

2.6.2 Stationary hovering collision probability

In this example, the relative mean (nominal according to Chan’s terminology) motion is assumed to

be stationary i.e. mr(t0) =
[
r̄r10 0 0 0 0 0

]T
. The exposition of the example is confusing

in [22] and [23] so that it is necessary to rebuild the example and guess what the Author intends to
prove by assuming explicitly what is implicitly suggested in the papers.
First of all, it seems that there is no uncertainty on the velocity vector at t = t0 if we look at the
isotropic 3D Gaussian pdf given in Equation (14) of [22] or Equation (1) of [23] and we have the
mean vector and the covariance matrix at t = t0 defined by:

mr(t0) =
[
mrr10

0 0 0 0 0
]T
, Pr(t0) =

[
P11(t0) 03×3

03×3 03×3

]
. (83)

If the HCW transition matrix is partitioned as ΦHCW (t, t0) =

[
Φ11(t, t0) Φ12(t, t0)
Φ21(t, t0) Φ22(t, t0)

]
according

to the partitioning of the covariance matrix, by (80) and (82),we get that:

mr(t) =
[
mrr10

0 0 0 0 0
]T
, Pr(t) =

[
Φ11(t, t0)P11(t0)Φ11(t, t0)

T Φ11(t, t0)P11(t0)Φ21(t, t0)
T

Φ21(t, t0)P11(t0)Φ11(t, t0)
T Φ21(t, t0)P11(t0)Φ21(t, t0)

T

]
.

(84)
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The initial isotropic Gaussian pdf of the relative position has a covariance P11(t0) = σ̄2I3×3 and
therefore:

Pr(t) = σ̄2
[
Φ11(t, t0)Φ11(t, t0)

T Φ11(t, t0)Φ21(t, t0)
T

Φ21(t, t0)Φ11(t, t0)
T Φ21(t, t0)Φ21(t, t0)

T

]
.

Due to the form of this covariance matrix, it is to be noted that the variances of the random variables
rr are not likely to be affine function of t as is claimed and enforced in references [22] and [23].
Let see what are the consequences of these choices on the computations involved in the derivation
of the collision probability (39) and in particular in the calculation of the integral I(n̂, t). First, if
mr(t) = mr(t0) and in particular, mvr(t) = 03×1 and considering the HCW transition matrix then:

mǫ(θ, φ, t) = n̂T (mvr − P T12(t)P−1
11 (t)mrr) = −n̂TP T12(t)P−1

11 (t)mrr(t)
= −n̂TΦ21(t, t0)Φ11(t, t0)

−1mrr(t) = 0
(85)

Note that we need the invertibility of Φ11(t, t0), ∀ t ∈ [t0, t0 + T ] which is ensured by assuming
that n(t − t0) 6= π/2 + kπ, ∀ t ∈ [t0, t0 + T ]. The function ǫ0(n̂, t) = Rn̂TP T12(t)P

−1
11 (t)n̂ =

Rn̂TΦ21(t, t0)Φ11(t, t0)
−1n̂ which is given by:

ǫ0(n̂, t) = Rn̂T




0 0 6n(1−ct)
4−3ct

0 −nst
ct

0

0 0 3nst
4−3ct


 n̂. (86)

The function ǫ0(n̂, t) is a quadratic form which may be 0, positive or negative when the vector n̂
covers the whole surface of a 3D unit sphere.

1- If ǫ0(n̂, t) = 0 then

I(n̂, t) =
σ√
2π

. (87)

2- If ǫ0(n̂, t) 6= 0 then

I(n̂, t) =
σ√
2π

e
−
ǫ20(n̂, t)

2σ2 − ǫ0(n̂, t)

2

[
1− erf

(
ǫ0(n̂, t)√

2 σ

)]
. (88)

Similarly, the variance σ of ǫ may be obtained as:

σ2(θ, φ, t) = n̂T (P22(t)− P T12(t)P11(t)
−1P12(t))n̂ = 0. (89)

Thus, the rationale behind the derivation of (41) may be used here to compute the actual integral
I(n̂, t).

lim
σ→0+

I(n̂, t) =

{
−ǫ0(n̂, t) if ǫ0(n̂, t) < 0

0 if ǫ0(n̂, t) > 0.
(90)

Finally, the collision probability PI(T ) must be computed as:

PI(T ) = −
∫ t0+T

t0

∫ 2π

0

∫ π

0
R2 sin (φ) ρtr(rr(θ, φ))1ǫ0(n̂,t)<0(θ, φ, t)ǫ0(n̂, t)dφdθdt. (91)

The reference [22] uses Equation (43) to compute PI(T ) which is not the right thing to do considering
the previous developments. The computation that is used in the companion paper [23] is nevertheless
interesting and will prove to useful for the derivation of a new methodology (see Section 3). With
the assumptions of [23], the situation may be summarized and illustrated by Figure 11
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Figure 11: 1− σ sphere at t = 0 (black), 1− σ ellipses for t = t1 (green) anf for t = t2 (blue) with
the hardbody collision sphere (red).

The local frame has its origin at the secondary object so that the σ-ellipses (or spheres) are centered
at this point. The combined hard body sphere is centered at the primary which mean motion is
considered to be stationary at the abscissa mrr10

. At t = 0, the pdf for the uncertainty relative
state (defined in the plane (rr1 , rr2)) is an isotropic Gaussian 2D pdf defined as:

ρrr1rr3 ∼ N (
[
mrr10

0
]T
, σ20I2). (92)

In each direction, the uncertainty at time t is supposed to remain Gaussian but characterized by a
time-varying standard deviation σr1(t) = σ0+αt and σr2(t) = σ0+βt respectively, with α > β > 0
which means that the time-dependent pdf at time t is no more isotropic. The Author proposes then
to make a change of variables on the relative position to render isotropic the time-dependent pdf
at each time t. This implies to scale the hard body sphere to get a different ellipse at each time t.
Figuring out the analytical equation of the envelope of the volume swept by the hard body during
the encounter duration, it is then proposed to integrate the isotropic density over this volume to get
the probability of collision. This approach is quite appealing and a new approach will be based on
the idea of the integration of the initial pdf over the swept volume of the hard body sphere during
the encounter duration. Unfortunately, apart the theoretical approximations of the exposition, this
idea is quite misleading in the particular case analyzed by Chan. Indeed, all the samples drawn
from the pdf and belonging to the hard body sphere at time t = 0 are initial conditions leading to
a collision at t = 0. As the hard body is stationary since the hovering is stationary, these samples
will lead to a collision at any time t > t1. This means that the possible collisions issuing from
these initial conditions will counted several times for the computation of the probability of collision
and it is clear that the Assumption 2 (only one entering crossing) is violated here. This particular
example cannot be used to show that the Coppola’s formulation breaks down since the method has
not been intended to work on such cases. In this particular case, the probability of collision should
be computed as P0 = µI(X 00

T ).

2.6.3 Elliptical relative motion with small drift and/or with high eccentricity

These two examples are simultaneously dealt with since the argument used by the Author of [22]
is the same for both examples. K. Chan shows that under specific assumptions about the relative
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motions (mainly an elliptic relative motion with none (but high eccentricity) or a small drift of the
secondary around the primary), the two objects may experience multiple high-risk close approach
events over the time interval of interest [t0, t0+T ]. This is clearly in contradiction with Assumption
2 of only one entering crossing in the forbidden region XR used to derive the 3D PoC formula.
Therefore, this formula should not be used in such a context and the flaws pointed out by K. Chan
in [22] are not fair as in the previous example.

rr3 ~ZLV LH

~XLV LH

Secondary

Primary

Hardbody

rr1

Figure 12: Encounter definition for Chan’s examples 1 and 2 from [22].

2.6.4 Expanding spherical pdf

This last example is even poorly presented than the three previous one. The position of the sec-
ondary is not defined and what is known for sure is that the primary mean motion is assumed to
be rectilinear with a constant velocity in the local orbital frame. At t = 0, the primary object is
located at the origin of the frame and so is the hard body sphere which is attached to the mean
position of the primary object. One may deduce (or assume) that the mean relative free motion,
following the HCW equations (81), is given as:

mrr1
(t) = 3(2mrr30

−mvr10
/n)δt,

mrr2
(t) = 0,

mrr3
(t) = 2(2mrr30

−mvr10
/n),

mvr1
(t) = 3(2nmrr30

−mvr10
),

mvr2
(t) = 0,

mvr3
(t) = 0,

(93)

under the conditions 3nmrr30
− 2mvr10

and mrr10
= mrr10

= mvr20
= mvr30

= 0. It is then assumed
that the initial Gaussian isotropic pdf at time t = 0, ρrr0 ∼ N (mr0 , σ

2
0I3), will be such that the

1 − σ will expand with the same constant velocity mvr1
(t) = mvr1

(see Figure 13), meaning that
ρtrr ∼ N (mrr(t), σ(t)

2I3) with σ(t) = R + 3(2nmrr30
−mvr10

)t, which is not consistent with the
propagation of the covariance matrix as given by Equation (84).
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Figure 13: Expanding 1− σ sphere at t = t1 (black) and drifting hardbody collision sphere (red).

Since the hard body sphere remains tangent to the time-varying 1 − σ sphere of the pdf at time
t, the Author seems to deduce that the cumulative probability is constant i.e. the probability rate
is zero though the Coppola’s formulation given in Equation (43) cannot be zero since the relative
velocity is not zero. Once again, K. Chan should have been more careful when analyzing Coppola’s
formulation and should have made the preliminary analysis of the Coppola’s formulation, starting
from (39) and evaluating precisely the inner integral as it has been done for the first counter-
example presented in this report. Note that all samples drawn in the 1 − σ sphere of the pdf at
time t = 0 will lead to a collision at t = 0 since it is included in the hard body sphere at t = 0.
Note also that any point of the hard body sphere defined at t = t1 (corresponding to collision at
that time) will be retro-propagated to the hard-body sphere at t = 0 to produce a collision domain
X 0
t which is exactly the initial hard body collision sphere. Once again, the Coppola’s formulation

cannot be used here for the very same argument as before and the probability of collision is given
as P0 = µI(X 00

T ) ≃ 0.3935.

3 An alternative method for long-term encounters

3.1 Introduction

Remember first from (5) that the probability of collision is given as follows:

Pc([t0, t0 + T ]) = Pc(T, t0) = P(X0
ps ∈ X 0

T ) = µI(X 0
T ) =

∫

X 0
T

dµI , (94)
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where X 0
T is the set of all the relative initial conditions which generate collisions on the time interval

t ∈ [t0, t0+T ]. If the distribution of these relative initial conditions is assumed to be Gaussian with
a density ρI ∼ N (mI , PI) then the computation of the collision probability Pc([t0, t0 + T ]) boils
down to the computation of the integral formula:

Pc([t0, t0 + T ]) :=
1√

(2π)ndet(PI)

∫

X 0
T

e−
1

2
(X−mI )

TP−1

I
(X−mI )dX. (95)

First, it is necessary to characterize more precisely the set X 0
T on which the integration is performed.

Keeping in mind the definitions given in Section 2 of this report, a simple illustration of the points
making up this set is given at Figure 14.

XR

τ2τ1 τ3

µI

t0 t0 + T

Xr

Figure 14: 1 −D illustration of the construction of X 0
T for tTCA = t0 - blue point: τ = tTCA, red

points: τ > tTCA, black points: ∄ τ ∈ [t0, t0 + T ] | Xr(τ |X0
r ) ∈ X 0

T .

Obviously, these points are given by X0
r = ϕt0t (Xr(τ |X0

r )) where ϕt0t is the inverse flow of the
relative dynamics and τ is the first hitting time (i.e. X(τ |X0

r ) ∈ ∂XR). The idea is then to
build the set X 0

T by propagating backward and forward (if needed depending on the chosen time
tTCA ∈ [t0, t0+ tTCA]) all the relative states Xr(t|X0

r ) of the set XR for each time t ∈ [t0, t0+ tTCA].
The Figure 15 depicts an example of the building of the set X 0

T for a spherical hard body XR and
linear relative dynamics.
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Figure 15: 4 − σ ellipsoid of the Gaussian density (black) and X 0
T at TCA: red (t0 6 t 6 tTCA) -

blue (t = tTCA) - red (tTCA < t 6 t0 + T ).

In practice, the set on which the integration must be calculated is very difficult to determine
analytically, so various simplifications have been made in literature as shown in the previous sections.
Let us detail the ones necessary for the purpose of this work:

- The forbidden region XR has a simple form. For instance, in the case of two objects, this
describes the fact that the relative distance between them is less than a certain given radius
threshold R. It is thus assumed that XR is a basic real semi-algebraic set (described by a
finite sequence of polynomial inequalities).

- As it has been seen previously, the relative dynamics are usually simplified. In what follows,
we consider two objects, whose relative dynamics flow is linear and invertible and the solution
of the relative dynamics equation is known via a given state transition matrix Φ(·, t0) : [t0, t0+
T ]→ R6, such that

X(t|x0) = Φ(t, t0)X0, for t ∈ [t0, t0 + T ].

Within this frame and using the two previous assumptions, we propose to tackle the integral (95)
in two main steps:

1. Implicit representation of the integration domain by a polynomial superlevel set.

The domain of integration X 0
T (see Equation (4)) is approximated by so-called polynomial

superlevel sets (PSS) [30] (see also [41, 51] for similar works and [17, Chap. 3,p. 75] for
the definition of superlevel set). More precisely, suppose that X 0

T can be outer-bounded by a
hyper-rectangle B ⊇ X 0

T , with

B = [a, b] := {x ∈ Rn, ai 6 xi 6 bi, for i = 1, 2, . . . , n} , a, b ∈ Rn. (96)
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Definition 5 (polynomial superlevel set).

A polynomial superlevel set (PSS) for X 0
T is defined by a polynomial pd ∈ R[x]d, such that

X 0
T ⊆ PSSpd := {x ∈ B : pd(x) > 1}. (97)

Note that in this definition, the usual notation x for the indeterminate of the polynomial is
used (as it is also used in Section 3.2 while when necessary, it will be denoted by X for the
relative state. We believe that the context will clear enough to prevent any confusion.

The polynomial pd defining the PSS approximation can be seen as an approximation of the
indicator function 1X 0

T
of the set X 0

T . As shown in [30], such suitable approximations can
be obtained by solving a convex optimization problem whose constraints are linear matrix
inequalities (LMIs). Moreover, as the degree of the approximation d increases, the sequence
(pd)d>1 converges in L1-norm, almost uniformly and almost everywhere to the indicator func-
tion of the set X 0

T of interest. The set approximations provided by the method of [30] can
be thought as a direct generalization of classical ellipsoidal set approximations, in the sense
that if second degree approximations are used, we exactly recover well-known semi-definite
optimization-based approaches (see for example [17, Chap. 8, pp. 410-414] and [16, Section
3.7]).

2. High-order quadrature for volumes implicitly defined by a polynomial superlevel

set. For a fixed pd, the integral (95) is approximated by:

Pc([t0, t0 + T ]) 6
1√

(2π)ndet(PI)

∫

PSSpd

e−
1

2
(X−mI )

TP−1

I
(X−mI )dX. (98)

Several methods exist for computing this integral of an n-variate Gaussian density, where
the integration domain is implicitly defined by a polynomial [47, 41, 50]. However, a good
complexity vs. accuracy trade-off analysis is more challenging to obtain, especially since, in
practice, the ambient space dimension n is at least 3. To this end, for n = 3, we considered
building an adaptive Gauss quadrature integration scheme based on the work presented in [67].
By converting the implicitly defined geometry into the graph of an implicitly defined height
function, it leads to a recursive algorithm on the number of spatial dimensions which requires
only one-dimensional root finding and one-dimensional Gaussian quadrature. The computed
quadrature scheme yields strictly positive quadrature weights and inherits the high-order
accuracy of Gaussian quadrature. Currently, for n = 6, blunt Monte-Carlo sampling is used,
but more involved methods are to be studied and tested.

K. Chan formulated the need to find a suitable description of the volume of initial states (at a fixed
time t0) which lead to collisions during a given time interval [t0, T + t0] in a series of works [23, 24].
He understood that the hard-body sphere (with radius R equal to the combined radius of the two
spherical satellites) is mapped to a non-spherical volume at every instant of time t, which results in
a union of non-spherical and non-disjoint volumes, known as the "derived ellipsoid", since roughly
speaking, for linearized dynamics with no velocity uncertainty, the hard-body sphere is mapped
to an ellipsoid each time t (see Section 3.3.2 for more details). This is also sometimes called the
swept-volume, a definition which was coined mainly in the case of rectilinear relative motion, when
the hard-body sphere sweeps out a volume looking like a long circular cylinder extending along the
direction of relative velocity.
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Thus, for simplicity, we also call swept-volume the set X 0
T , even in the general case of a non-rectilinear

motion, when this volume is non-convex or in the higher-dimensional case (when for instance, both
the relative positions and velocities are uncertain and hence the volume is 6 dimensional and not
necessarily compact). In the works of Chan and also more recently in [77], a swept-volume defined
by a union of ellipsoids is characterized by its envelope. This is computed numerically in the 3-
dimensional case, or in an ad-hoc manner, with various trivial simplifications for lower dimensional
cases. However, a general method relying both on an effective characterization of the swept-volume
(when its shape is not trivially reduced to a cylinder) and on the computation of the subsequent
integral of the Gaussian density over such a volume is missing in literature.
Note also that a different class of methods exists, which intends to deal with the highly complex
shape of X 0

T by a different strategy: instead of considering at t0 the image of the hard-body through
the inverse flow, one propagates the initial uncertainty i.e., one considers the pushforward measure
by the flow of the Gaussian measure at t0. Roughly speaking this corresponds to performing a change
of variable in the integral (95). The forward propagation of uncertainty is employed by Coppola’s
method [28] or the so-called methods of adjoining cylinders/parallelepipeds [5, 7]. Without entering
the details, it is important to note that these methods work only under the assumption that a
bijective map can be found between the set X 0

T and its image through the flow, during the time
interval [t0, t0 +T ]. In particular it implies that repeated encounters (when t in Equation (4) is not
unique)) can not be correctly treated.
The present formulation, taking place in the framework of polynomial optimization, has the ad-
vantage of providing approximate closed-form descriptions of the collision-prone states X 0

T which
can be effectively used for long-term and repeated conjunctions. Actually, even a visual accurate
outer-approximation of X 0

T can provide an important insight on the practical type of encounter.
For instance, a straight cylinder form can confirm some of the fast encounter assumptions. The
PSS approximation allows for highly non-convex shapes to be represented, which in turn allows for
further analysis of so-called long-term encounters. Another important advantage is that providing
a PSS approximation of X 0

T allows for an implicit representation of all collision prone-states and in
turn, for evaluating directly the integral (98), without introducing additional assumptions regarding
uncertainty propagation or repeated conjunctions. This method allows for handling practical cases
without the paramount Assumption 2 that each initial condition enters the forbidden region at only
one unique specific time, which was required by previous methods like those of Coppola [28], or the
adjoining cylinders/bundled parallelepipeds of Alfano [5].
Let us firstly recall the theoretical mathematical modeling and numerical solution as developed
in [30, 41, 51]. In a second time, this is to be adapted to our setting of approximating the so-
called swept-volume. Note that tTCA = t0 in the following without loss of generality. The proposed
algorithms are easily tunable for a different case t0 < tTCA < t0 + T .

3.2 PSS approximations of bounded semi-algebraic sets

Let a semi-algebraic set K be described by given real multivariate polynomials gi ∈ R[x]di :

K = {x ∈ Rn : gi(x) > 0, i = 1, 2, . . . ,m} , (99)

and a bounding set B ⊇ K as in Equation (96). We are interested in computing the coefficients of
a sequence (pd)d>1 of good polynomial outer-approximations pd ∈ R[x]d, to the indicator function
1K, in the sense that the polynomial superlevel set (PSS)

PSSpd := {x ∈ B : pd(x) > 1},

converges strongly to K when d→∞.
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3.2.1 Formulation as a polynomial optimization problem

Such a sequence can be found considering the following optimization problem, for each fixed d:

w∗
d = inf

p∈K[x]d
‖p‖1,

s.t.
p > 0 onB,
p > 1 onK.

(100)

For completeness, note that this problem is closely related to the one of computing the volume of
the semi-algebraic set K. More precisely, one can consider the following infinite-dimensional linear
programming problem in the cone of positive measures:

v∗ = sup
µ0,µ̂0

µ0 (B) ,

s.t.

µ0 + µ̂0 = λB,
supp(µ0) ⊆ K,
supp(µ̂0) ⊆ B,
µ0, µ̂0 > 0.

(101)

where λA = vol(A) is the Lebesgue measure of the set A ⊂ B. This can be interpreted as: one
searches to maximize the mass of a positive measure µ0 whose support is included in K and which
is dominated by the Lebesgue measure λB on B. This translates to an equality constraint by
introducing the slack variable µ̂0 such that µ0 + µ̂0 = λB. The second and third constraints ensure
that the support of the respective measures is in the admissible domain K and respectively B.
The last constraints ensure that µ0 and µ̂0 are nonnegative measures (see [12] for very similar
developments and additional details).
It is proven in [30, 41] that the supremum of Problem (101) is attained and v∗ = vol(K). Moreover,
the infimum of Problem (100) is attained for a polynomial p∗d ∈ R[x]d, with PSSp∗

d
⊇ K, w∗

d+1 6 w∗
d

and lim
d→∞

w∗
d = vol(K).

3.2.2 LMI hierarchy to compute the PSS

In this section, we provide the basic details on the numerical computation of the solution of Prob-
lem (100) (or its dual Problem (101)), which is now more or less standard in the field of Polynomial
Optimization [49].
Note that in Problem (100), we aim at finding a polynomial p ∈ R[x]d such that

- p is positive on B,

- p− 1 is positive on K.

In order to obtain a numerically solvable problem, one enforces positivity by requiring the polynomial
to be sum-of-squares (SOS). Let us denote the convex cone of real polynomials that are SOS by
Σ2[x] ⊂ R[x] and respectively, Σ2[x]2k ⊂ R[x]2k, its subcone of SOS polynomials of degree at most
2k. Using Putinar’s Positivstellensatz [48, 64, 49], Problem (100) becomes, when fixing r ∈ N:
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w∗2r,d = inf
p∈R[x]d

∫

B

p(x)dx,

s.t.
p− σ0,B −

∑
16j6n

(xj − aj)(bj − xj)σj,B = 0

σ0,B ∈ Σ2[x]2r,
σj,B ∈ Σ2[x]2(r−1), ∀j = 1, · · · , n,




p > 0 onB

p− σ0,K −
∑

16j6m
gjσj,K = 1

σ0,K ∈ Σ2[x]2r,
σj,K ∈ Σ2[x]2(r−⌈dj/2⌉), ∀j = 1, · · · ,m,




p > 1 onK,

(102)

Problem (102) is now tractable in software:

- its objective function

∫

B

p(x)dx =
∑

06|i|6d

pi

∫

B

xidx is a linear function of the coefficients pi

of the polynomial p, while the involved integrals on the bounding box B can be effectively
computed and correspond to moments up to degree d of the Lebesgue measure on B.

- The constraints can be recast in terms of Linear Matrix Inequalities (LMIs); this is already a
classical strategy and several software tools are available to model problems of the form above,
like for instance the Matlab Toolbox YALMIP [56].

- This boils down to solving only a semi-definite programming problem (whenever the degrees
d and r are fixed).

One can prove that when r →∞, the value of Problem (102) converges to w∗
d and moreover, for any

2r > d, the solution p∗2r,d of Problem (102) satisfies the constraints of Problem (100) i.e., PSSp∗
2r,d

is a PSS approximation of K.

Remark 9 (Numerical Solving and Possible Improvements).
For each fixed d and r, Problem (102) can be written as a semidefinite program (SDP), which is
a conic convex optimization problem that can be solved efficiently (in time polynomial in its input
size) up to arbitrary precision fixed in advance. Numerical solvers like Mosek SDP solver [60]
can be employed. However, when the whole hierarchy of relaxations is solved i.e., d is increased,
the observed convergence is slow, mainly due to the Gibbs phenomenon, since the polynomial p∗2r,d
approximates the indicator function 1K, which is discontinuous. The works [41, 51] further improve
on this issue and the implementation can be adjusted to include them.

Let us now describe how we can compute PSS approximations of the so-called swept-volume.

3.3 PSS approximations of the swept-volume in relative dynamics

Recall that the swept-volume is defined as the set of all initial conditions X0
r ∈ Rn which lead to at

least a collision during the time span [t0, t0 + T ]. When considering two objects and the fact that
the solution of the relative dynamics equation is known via a given state transition matrix Φ(t, t0),
one has:

- The relative position and velocity are given at any time t by Xr(t|X0
r ) = Φ(t, t0)X

0
r , with

X0
r ∈ R6;
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- The collision region is defined simply by XR := {rr ∈ R3 : R2 − rTr rr > 0};

Thus, equation (4) defining the swept-volume X 0
T becomes:

X 0
T =

{
X0
r ∈ R6 : ∃t ∈ [t0, t0 + T ] s.t. R2 −X0T

r Φ(t, t0)
T I11Φ(t, t0)X

0
r > 0

}
, (103)

where the matrix I11 ∈ R6×6 is defined by I11 :=

(
I3 0
0 0

)
. Note that this appears in the formula

simply because only the positions (first 3 coordinates of Xr(t|X0
r )) at each time t are constrained

to belong to XR.
The main idea is to describe the swept-volume X 0

T by semi-algebraic constraints, which can then
be approximated by PSS, as we have shown in Section 3.2. Since XR is a basic semi-algebraic
set, several options are possible for keeping this setting: (1) obtain an approximate polynomial
transition matrix Φ(t, t0) – this is a univariate approximation in t, which means that Xr(t|X0

r ) is a
vector of polynomials in the variables t,X0

r ; or (2) consider a sufficiently fine discretization of size
N , τN := {t0 6 t1 6 · · · 6 ti 6 · · · 6 t0 + T}, which implies that Xr(ti|X0

r ) is linear in X0
r for

each fixed grid value ti. We consider the second option, for simplicity of implementation, in what
follows.

3.3.1 PSS approximations of discretizations of the swept-volume

When considering a discretization on time, the constraint describing a subset Ki ⊆ X 0
T corresponding

to each ti is:
Ki := {X0

r ∈ R6 : R2 −X0T
r Φ(ti, t0)

T I11Φ(ti, t0)X
0
r > 0}, (104)

This discretization provides an approximate description of X 0
T as a union of basic semi-algebraic

sets: ⋃

i=1,...,N

Ki ⊆ X 0
T . (105)

Two observations are important: in general, the sets Ki are not disjoint and moreover, they are not
compact.
The fact that they are not disjoint does not constitute an issue for the PSS-like method to be
described in what follows. Let us stress that this also implies that imposing only one crossing i.e.,
there is only one ti corresponding to each X0

r is not necessary for this method.
However, the fact that Ki are not compact, needs to be handled.

Computing the Bounding Box B. A straightforward solution is to rely on the fact that a
PPS computed for

⋃
i=1,...,N

Ki is the volume on which the multivariate Gaussian density is to be

integrated afterwards. Hence, one can consider, function of the numerical requirements, a suitable
ℓ−σ ellipsoid corresponding to the given covariance matrix PI (say ℓ = 6 in practice maybe add some
bound from other papers) and bound it by a hyper-rectangle B. Then, each of the sets Ki = Ki ∩B
for i = 1, . . . , N is compact.

PSS for the 6-dimensional swept-volume. We are now ready to state the optimization prob-
lem to be solved:

Problem 2 (Approximate PSS Computation for the swept-volume).
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Let the semi-algebraic set K =
⋃

i=1,...,N
Ki be given by the union of N basic compact semi-algebraic

sets Ki, a given bounding hyper-rectangle B ⊇ K and also a fixed degree d. Solve the optimization
problem

w∗
d,K

= inf
p∈K[X0

r ]d
‖p‖1,

s.t.

p > 0 onB,
p > 1 onK1,
. . . ,

p > 1 onKN .

(106)

The main result is the following.

Theorem 3. The infimum in Problem (106) is attained for a polynomial p∗
d,K
∈ R[X0

r ]d. Moreover,

PSSp∗
d,K
⊇ K, w∗

d+1,K
6 w∗

d,K
and lim

d→∞
w∗
d,K

= vol(K).

Proof. The proof is similar to the one given in [30, Thm. 2]. Note also another similar proof in [51],
which considers the dual problem in the space of positive measures, which can be formulated as:

v∗
d,K

= sup
µ1,...,µN

N∑
i=1

µi (B) ,

s.t.

N∑
i=1

µi 6 λB,

supp(µi) ⊆ Ki, i = 1, . . . , N
µi > 0, i = 1, . . . , N.

(107)

Formulation as an SOS. We proceed similarly to Section 3.2.2. Regarding the constraints
defining the sets Ki:

Ki := {X0
r ∈ R6 : gi(X

0
r ) > 0, gj,B > 0, j = 1, . . . , 6}, i = 1, . . . , N, (108)

the polynomial gi is obtained from Equation (104),

gi(X
0
r ) := R2 −X0T

r Φ(ti, t0)
T I11Φ(ti, t0)X

0
r , i = 1, . . . , N, (109)

and gj,B are the constraints defining the hyper-rectangle B,

gj,B(X
0
r ) := (X0

r j − aj)(bj −X0
r j), j = 1, . . . , 6. (110)
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It follows that Problem (106) can be numerically solved by the following SOS formulation:

w∗2r,d,K = inf
p∈R[X0

r ]d

∫

B

p(X0
r )dX

0
r ,

s.t.
p− σ0,B −

∑
16j66

gj,Bσj,B = 0

σ0,B ∈ Σ2[X0
r ]2r,

σj,B ∈ Σ2[X0
r ]2(r−1), ∀j = 1, · · · , 6,




p > 0 onB

p− σ0,K1
− g1σ1,K1

− ∑
16j66

gj,Bσ1,j,B = 1

σ0,K1
∈ Σ2[X0

r ]2r,
σ1,K1

∈ Σ2[X0
r ]2(r−1),

σ1,j,B ∈ Σ2[X0
r ]2(r−1), ∀j = 1, · · · , 6,




p > 1 onK1,

. . .

p− σ0,KN
− gNσN,KN

− ∑
16j66

gj,BσN,j,B = 1

σ0,KN
∈ Σ2[X0

r ]2r,
σN,KN

∈ Σ2[X0
r ]2(r−1),

σN,j,B ∈ Σ2[X0
r ]2(r−1), ∀j = 1, · · · , 6,




p > 1 onKN .

(111)

Proposition 1 (Convergence of LMI hierarchy).
For each fixed d ∈ N, the value of Problem (111) converges to w∗

d,K
, as r → ∞ and moreover, for

any 2r > d, the solution p∗
2r,d,K

of Problem (102) satisfies the constraints of Problem (106) i.e.,

PSSp∗
2r,d,K

is a PSS approximation of K.

Proof. The proof can be found in [51].

Before entering into more implementation details regarding Problem (111), let us discuss an impor-
tant simplification which occurs in practice, when one considers that in the six dimensional relative
dynamics (position, velocity), the Gaussian uncertainty on the velocity can be neglected during the
encounter time interval [t0, t0 + T ].

3.3.2 No velocity uncertainty

The case of no velocity uncertainty involves the following simplifications:

- The integral in Equation (95) becomes three-dimensional.

- The swept-volume X 0
T contains only relative positions, since the relative velocities are sup-

posed to be exactly known. Consequently, straightforward calculations lead to the following
characterization of the swept-volume.

Proposition 2 (Swept-volume in linear relative dynamics and no velocity uncertainty).

Denote the state vector X0
r ∈ R6 by X0

r := (r0
T

r , v0
T

r )T , where v0r ∈ R3 is given and not a random
vector. Let the relative dynamics transition matrix Φ(t, t0) be given and denoted by blocks by Φ :=(
Φ11 Φ12

Φ21 Φ22

)
.
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Assume that Φ11(t, t0) is invertible for each t ∈ [t0, t0 + T ]. The swept-volume containing all the
relative positions r0r ∈ R3, which lead to collisions during the time interval [t0, t0 + T ], is described
by a union of ellipsoids,

X 0
rT =

⋃

t∈[t0,t0+T ]

Et,t0 ,

with
Et,t0 :=

{
r0r ∈ R3 : R2 − (r0r − c(t, t0))TQ(t, t0)

−1(r0r − c(t, t0)) > 0
}
, (112)

where
c(t, t0) = −Φ11(t, t0)

−1Φ12(t, t0)v
0
r ,

Q(t, t0) = Φ11(t, t0)
−1Φ11(t, t0)

−T .
(113)

Proof. It is sufficient to plug-in the known terms in Equation (103).

Remark 10 (The swept-volume as a compact set).
Note that provided that the matrix Φ11(t, t0) is invertible for each t ∈ [t0, t0 +T ], each ellipsoid Et,t0
is proper (Q(t, t0) has full rank) and thus their union is compact. Otherwise, the swept-volume can
still be described by the union of non-necessary proper quadratic forms.

Compared to the general case, a compact swept-volume is an advantage, in the sense that it can be
directly bounded, without resorting to further intersections with the ℓ−σ-ellipsoids of the Gaussian
distribution.

Proposition 3 (Direct computation of a bounding box).
Assume that Φ11(t, t0) is invertible for each t ∈ [t0, t0 + T ]. Then, X 0

rT in Proposition 2 is enclosed
in the box B0r ⊂ R3:

B0r =
[

min
t∈[t0,t0+T ]

(c(t, t0)− δ(t, t0)), max
t∈[t0,t0+T ]

(c(t, t0) + δ(t, t0))

]
, (114)

where δ(t, t0), is the vector generated by the square roots of the diagonal elements of the matrix
1
R2Q(t, t0) and the min and max are to be taken component-wise.

Proof. Each ellipsoid in Equation (112) can be seen as an affine transformation of the unit ball,
hence for each t ∈ [t0, t0 + T ], one has:

r0r(t, t0)− c(t, t0) =
1

R
Φ11(t, t0)

−1y, with y ∈ R3, ‖y‖2 6 1,

from which one has a component-wise enclosure by taking the 2-norm of each row of the matrix
1
RΦ11(t, t0)

−1.

In this simplified setting, we describe in Algorithm 1 how to compute a PSS approximation for the
swept-volume. Its correctness follows directly from Propositions 2, 3 and 1.
For the general 6-dimensional case a similar algorithm can be designed, which solves Problem 111,
with the additional requirement (and approximation) that a compact bounding box needs to be
provided as input. As already mentioned, this may come from the covariance level sets of the
Gaussian distribution in Equation (95).

51



Algorithm 1 PSSApprox3D(τN ,Φ(t, t0), v
0
r , R, d, r)

Input: time grid τN , Φ(t, t0) with invertible upper-left block for t ∈ τN , known initial velocities v0r ∈ R3,
radius R, degrees 2r > d, d > 1.

Output: pd ∈ R[x]d is a PSS approx of the discretized collision set i.e.,

{x ∈ R3 : pd(x) > 1} ⊇ {r0r ∈ R3 : ∃t ∈ τN , s.t. X0
r = [r0

T

r v0
T

r ]T ,

X0T

r Φ(t, t0)
T I11Φ(t, t0)X

0
r 6 R2} .

⊲ Define ellipsoids Eti,t0 :=
{
r0r ∈ R3 : R2 − (r0r − c(ti, t0))TQ(ti, t0)

−1(r0r − c(ti, t0)) > 0
}

1: c(ti, t0)← −Φ11(ti, t0)
−1Φ12(ti, t0)v

0
r , for ti ∈ τN ;

2: Q(ti, t0)← Φ11(ti, t0)
−1Φ11(ti, t0)

−T
, for ti ∈ τN ;

⊲ Find a bounding box Br := {x ∈ R3 : a 6 x 6 b}

3: δ(ti, t0)←
√
diag

(
1
R2Q(ti, t0)

)
, for ti ∈ τN ;

4: [a, b]←
[
min
ti∈τN

(c(ti, t0)− δ(ti, t0)), max
ti∈τN

(c(ti, t0) + δ(ti, t0))

]
;

⊲ Solve the optimization problem

5: gti ← R2 − (x− c(ti, t0))T Q(ti, t0)
−1 (x− c(ti, t0)) for ti ∈ τN ;

6: gj,B0
r
← (xj − aj) (bj − xj), for j = 1, 2, 3;

w∗2r,d = min
p∈R[x]d

∫

B0
r

p(x)dx,

s.t.
p− σ0,B0

r
− ∑

16j63

gj,B0
r
σj,B0

r
= 0

σ0,B0
r
∈ Σ2[X0

r ]2r,
σj,B0

r
∈ Σ2[X0

r ]2(r−1), ∀j = 1, 2, 3,




p > 0 onB0

r

p− σ0,ti − gtiσ1,ti = 1
σ0,ti ∈ Σ2[X0

r ]2r,
σ1,ti ∈ Σ2[X0

r ]2(r−1),



 p > 1 on each ellipsoid Eti,t0 , for ti ∈ τN .

(115)

7: return p∗2r,d = Argmin (115)

3.4 Integration of a Gaussian on a volume implicitly defined by a polynomial

We already mentioned in Section 3.2.1 that the problem of finding a PSS is closely related to the one
of computing the volume of a semi-algebraic set. In fact Problem 101 (and similarly Problem 107)
can be adapted such that their optimal value is the volume with respect to a Gaussian measure
denoted by µ0 in Equation (95), instead of the classical Lebesgue one, cf. [51]:

v∗Gauss = sup
µ0,µ̂0

µ0 (K) ,

s.t.
µ0 + µ̂0 = µg,
supp(µ0) ⊆ K,
µ0, µ̂0 > 0.

(116)

Compared to Problem 101, this formulation requires the computation of the moments of a Gaussian
measure, while the Lebesgue measure moments on a given hyper-rectangle were required before.
In practice, we have however observed more numerical issues when directly solving Problem 116
instead of Problem 101, hence we decided to stick with Problem 107 for computing a PSS and then,
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to employ other methods for the computation of the restriction of the Gaussian to the obtained
PSS.
Two strategies have been developed so far:

• The 3D case: After Algorithm 1 is executed, the obtained polynomial p∗2r,d provides an
implicit representation of the approximated volume. This is used as input for [67, Algorithm 3],
which automatically determines a high-order accurate numerical quadrature for the evaluation
of integrals over volumes, whose geometry is defined implicitly via a fixed level set of a smooth
function φ : R3 → R. Obviously in our case, φ = p∗2r,d.

• The 6D case: Similarly, after Problem 111 is solved for an optimal p∗2r,d, the integral of
a Gaussian distribution over the volume PSSp∗

2r,d
is evaluated by a Monte Carlo sampling,

namely evaluating

Ns∑
i=1

1PSSp∗
2r,d

(Xs,i)

Ns
, which consists in simply checking whether p∗2r,d(Xs,i) >

1 for each sample Xs,i.

3.5 Detailed numerical implementation

For the 6D case, which is more general, some implementation details are given in Algorithms 2, 3
and 4. Specifically, all the constraints are scaled to the unit cube [−1, 1]6, in Algorithms 2 and 3,
which ensures a much better numerical quality of the results. This rather tedious, but necessary
step is documented for completeness of this report. A proof of correctness is given below.

Algorithm 2 FindPosBoundBox(τN ,Φ(t, t0),m
0
vr , Q

0
vr , R)

Input: time grid τN , Φ(t, t0) with invertible upper-left and upper-right block for t ∈ τN , given mean initial
velocities m0

vr
∈ R3 and 6-σ ellipsoid matrix Q0

vr
, radius R.

Output: [a0r, b
0
r] := {r0r ∈ R3 : a 6 r0r 6 b} ⊇ {r0r ∈ R3 : ∃t ∈ τN , s.t.

X0
r := [r0

T

r v0
T

r ]T ∈ R6, (v0r −m0
vr
)TQ0−1

vr
(v0r −m0

vr
) 6 1,

X0T

r Φ(t, t0)
T I11Φ(t, t0)X

0
r 6 R2}.

1: c(ti, t0)← −Φ11(ti, t0)
−1Φ12(ti, t0)m

0
vr

, for ti ∈ τN ;

2: Q(ti, t0)← Φ11(ti, t0)
−1Φ11(ti, t0)

−1T
, for ti ∈ τN ;

3: δ1(ti, t0)←
√
diag2vec

(
1
R2Q(ti, t0)

)
, for ti ∈ τN ;

4: if Q0
vr
6= 0 then

5: q(ti, t0)← Φ11(ti, t0)
−1Φ12(ti, t0)Q

0
vr
Φ12(ti, t0)

TΦ11(ti, t0)
−T , for ti ∈ τN ;

6: δ2(ti, t0)←
√
diag2vec (q(ti, t0)) , for ti ∈ τN ;

7: else

⊲ No velocity uncertainty

8: q(ti, t0)← 0;
9: δ2(ti, t0)← 0;

10: end if

11: [a0r, b
0
r]←

[
min
ti∈τN

(c(ti, t0)− δ1(ti, t0)− δ2(ti, t0)), max
ti∈τN

(c(ti, t0) + δ1(ti, t0) + δ2(ti, t0))

]
;

12: return [a0r, b
0
r].
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Algorithm 3 ScaleConstrainsUnitCube(τN ,Φ(t, t0),m
0
vr , Q

0
vr , R)

Input: time grid τN , Φ(t, t0) with invertible upper-left and upper-right block for t ∈ τN , given mean initial
velocities m0

vr
∈ R3 and 6-σ ellipsoid matrix Q0

vr
, radius R.

Output: Polynomial constraints for the set {X0
r = [r0

T

r v0
T

r ]T ∈ R6 : ∃t ∈ τN , s.t.
X0T

r Φ(t, t0)
T I11Φ(t, t0)X

0
r 6 R2, (v0r −m0

vr
)TQ0−1

vr
(v0r −m0

vr
) 6 1} rescaled in the unit box [−1, 1]6.

⊲ Find a bounding box for positions [a0r, b
0
r] := {r0r ∈ R3 : a 6 r0r 6 b}

1: [a0r, b
0
r]← FindPosBoundBox(τN ,Φ(t, t0),m

0
vr
, Q0

vr
, R);

⊲ Rescale variables [r0r ; v
0
r ] to [−1; 1]3 × [−1; 1]3

2: c(ti, t0)← −Φ11(ti, t0)
−1Φ12(ti, t0)m

0
vr

, for ti ∈ τN ;

3: Q(ti, t0)← Φ11(ti, t0)
−1Φ11(ti, t0)

−T , for ti ∈ τN ;

4: c̃(ti, t0)← vec2diag
(

b0
r
−a0

r

2

)−1 (
c(ti, t0)− b0

r
+a0

r

2

)
, for ti ∈ τN ;

5: Q̃(ti, t0)← 1
R2 vec2diag

(
b0
r
−a0

r

2

)−1

Q(ti, t0)vec2diag
(

b0
r
−a0

r

2

)−1

, for ti ∈ τN ;

6: if Q0
vr
6= 0 then

7: δ3 ←
√
diag2vec

(
Q0

vr

)
;

8: [a0v, b
0
v]← [−δ3, δ3];

9: ∆(ti, t0)← −vec2diag
(

b0
r
−a0

r

2

)−1

Φ11(ti, t0)
−1Φ12(ti, t0)vec2diag

(
b0
v
−a0

v

2

)
;

10: Q̃0
vr
← vec2diag

(
b0
v
−a0

v

2

)
Q0

vr
vec2diag

(
b0
vr

−a0

vr

2

)
;

11: else

12: ∆(ti, t0)← 0;
13: end if

⊲ Define polynomial constraints

⊲ Position constraints

14: gti ← 1−
(
r̃0r − c̃(ti, t0)−∆(ti, t0)ṽ

0
r

)T
Q̃(ti, t0)

−1
(
r̃0r − c̃(ti, t0)−∆(ti, t0)ṽ

0
r

)
for ti ∈ τN ;

15: if Q0
vr
6= 0 then

⊲ Velocity constraints

16: hvr0 ← 1− ṽ0Tr Q̃0−1

vr
ṽ0r ;

17: else

18: hvr0 ← 0;
19: end if

20: return {gti > 0, ti ∈ τN}, {hvr0 > 0}
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Algorithm 4 PSSApprox6D(τN ,Φ(t, t0),m
0
vr , Q

0
vr , R, d, l)

Input: time grid τN , Φ(t, t0) with invertible upper-left and upper-right block for t ∈ τN , given mean initial
velocities m0

vr
∈ R3 and 6-σ ellipsoid matrix Q0

vr
, radius R, degrees 2l > d, d > 1.

Output: pd ∈ R[x]d is a PSS approx of the discretized collision set i.e.,

{x ∈ R6 : pd(x) > 1} ⊇ {X0
r = [r0

T

r v0
T

r ]T ∈ R6 : ∃t ∈ τN , s.t.
X0T

r Φ(t, t0)
T I11Φ(t, t0)X

0
r 6 R2, (v0r −m0

vr
)TQ0−1

vr
(v0r −m0

vr
) 6 1}.

⊲ Rescale variables [r0
T

r v0
T

r ]T to [−1; 1]3 × [−1; 1]3
1: {gti > 0, ti ∈ τN}, {h0vr > 0} ←ScaleConstrainsUnitCube(τN ,Φ(t, t0),m

0
vr
, Q0

vr
, R)

⊲ Solve optimization problem

2: if Q0
vr

= 0 then

3: gr0,j ← 1− r̃02r,j , for j = 1, 2, 3;

w∗2l,d = min
p∈R[r̃0

r
]d

∫

[−1;1]3

p(r̃0r)dr̃
0
r ,

s.t.
p− σr0,0 −

∑
16j63

gr0,jσr0,j = 0

σr0,0 ∈ Σ2[r̃0r ]2l,
σr0,j ∈ Σ2[r̃0r ]2(l−1), ∀j = 1, 2, 3,




p > 0 on [−1; 1]3

p− σti,0 − gtiσti,1 = 1
σti,0 ∈ Σ2[r̃0r ]2l,
σti,1 ∈ Σ2[r̃0r ]2(l−1),



 p > 1 on each set {r̃0r ∈ R3 : gti(r̃

0
r ) > 0}, for ti ∈ τN .

(117)

4: return p∗2l,d = Argmin (117)
5: else

6: gr0,j ← 1− r̃02r,j , and gv0,j ← 1− ṽ02r,j , for j = 1, 2, 3;

w∗2l,d = min
p∈R[X̃0

r
]d

∫

[−1;1]6

p(X̃0
r )dX̃

0
r ,

s.t.
p− σ0 −

∑
16j63

gr0,jσr0,j −
∑

16j63

gv0,jσv0,j = 0

σ0 ∈ Σ2[X̃0
r ]2l,

σr0,j , σv0,j ∈ Σ2[X̃0
r ]2(l−1), ∀j = 1, 2, 3,




p > 0 on [−1; 1]6

p− σti,0 − gtiσti,1 − h0vrσv0,ti = 1

σti,0 ∈ Σ2[X̃0
r ]2l,

σti,1, σv0,ti ∈ Σ2[X̃0
r ]2(l−1),



 p > 1 on each set

{X̃0
r ∈ R6 : gti(X̃

0
r ) > 0, h0vr(X̃

0
r ) > 0}, for ti ∈ τN .

(118)

7: return p∗2l,d = Argmin (118)
8: end if

Proposition 4. Algorithm 4 is correct.

Proof. Note that the 3D case proved above is directly obtained when the matrix input Q0
vr is

zero. Otherwise, the velocities are uncertain, so to obtain a compact constraint, the 6-σ covariance
ellipsoid is used, so (v0r −m0

vr)
TQ0−1

vr (v0r −m0
vr) 6 1. Hence, Equation (112) becomes, for each fixed
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t:

Êt,t0 :=
{
r0r ∈ R3 : R2 − (r0r − cv0(t, t0))TQ(t, t0)

−1(r0r − cv0(t, t0)) > 0,

1− (v0r −m0
vr))

TQ0−1

vr (v0r −m0
vr) > 0

}
,

(119)

where
cv0(t, t0) = −Φ11(t, t0)

−1Φ12(t, t0)r
0
r ,

Q(t, t0) = Φ11(t, t0)
−1Φ11(t, t0)

−T .
(120)

If moreover,Φ12(t, t0) has full rank, the set Êt,t0 can be enclosed in the box returned by Algorithm 2,
by seeing each ellipsoid as an affine transformation of the unit ball. Specifically, this transformation
is:

v0r = Av0uv0 +m0
vr , with ‖uv0‖2 6 1, andAv0A

T
v0 = Q0

vr , (121)

which gives:
cv0(t, t0) = −Φ11(t, t0)

−1Φ12(t, t0)m
0
vr

−Φ11(t, t0)
−1Φ12(t, t0)Av0uv0,with ‖uv0‖2 6 1.

(122)

One finally has:

r0r(t|t0) = 1
RΦ11(t, t0)

−1ur0
−Φ11(t, t0)

−1Φ12(t, t0)m
0
vr

−Φ11(t, t0)
−1Φ12(t, t0)Av0uv0,with ‖uv0‖2 6 1, ‖ur0‖2 6 1,

(123)

which gives the proposed bounding. Next, the rescaling of the variables [r0
T

r v0
T

r ]T to the box [−1; 1]6
is important for the numerical quality of the results, although from a theoretical point of view it
is not necessary. Substituting the simple scaling formula x̃ = 2x

b−a − b+a
b−a to be applied component-

wise in the above equations, one obtains the equations defined in lines 4, 5, 9, 10 of Algorithm 3,
which directly translates to the polynomial constraints in lines 14 and 16 of Algorithm 3. These
constraints, now concern the rescaled variables X̃0

r = [r̃0
T

r ṽ0
T

r ]T ∈ [−1; 1]6. Following the theoretical
developments in Section 3.3.1, Problem 118 or respectively 117 provide a PSS solution for the input
set.

3.6 Numerical Implementation and Examples

Example 8.

56



Appendix
This appendix quickly summarizes the main definitions from measure theory and integration that
are needed for the developments presented in this report. The material here in is mainly borrowed
from the references [15], [11] and [69].

A Basic definitions, results and facts from measure theory

Definition 6 (Indicator Function). Let B ⊂ A. The indicator function 1B of B is defined as:

1B : A → {0, 1} ,
x 7→

{
0 if x /∈ B,
1 if x ∈ B.

Definition 7 (σ-algebra). Let A be a set. A σ-algebra of subsets of A (sometimes called a σ-field)
is a family A of subsets of A such that:

1. ∅ ∈ A,

2. ∀E ∈ A, A\E ∈ A,

3. for every sequence (En)n∈N ∈ A,
⋃

n∈N

En ∈ A.

Example 9.

- P(A) is a (the maximal) σ-algebra on A.

- {∅, A} is a (the minimal) σ-algebra on A.

- For B ⊂ A, {∅, B,A\B,A} is a σ-algebra on A.

- If B 6= ∅ and B 6= A then {∅, B,A} is not a σ-algebra on A.

Definition 8. For every system of sets G ∈ P(A), there exists a smallest σ-algebra containing G.
This σ-algebra, denoted by σ(G) is the σ-algebra generated by G.

Definition 9 (Borel σ-algebra or topological σ-algebra). The σ-algebra σ(On), denoted B(Rn),
generated by the system On of all open sets of Rn is called the Borel σ-algebra on Rn and its
members are the Borel sets or Borel measurable sets.

Note that the Borel σ-algebra B(Rn) may be generated by the family of half-open rectangles in Rn,
i.e. B(Rn) = I where I = I(Rn) = {[a1, b1)× · · · × [an, bn) : aj , bj ∈ R}.

Definition 10 (Measurable Space). A measurable space is a pair (A,A) where A is a set and A is
a σ-algebra of subsets of A.

Definition 11 (Measure). Let (A,A) be a measurable space (see Definition 10). A positive measure
on A (or, more precisely, on (A,A)) is a mapping µ : A → [0,+∞] satisfying:

57



1. µ (∅) = 0,

2. for every sequence (En)n∈N of pairwise disjoint sets in A, µ

(
⋃

n∈N

En

)
=
∑

n∈N

µ (En).

Example 10.

- Borel measure : A measure defined on the Borel σ-algebra B(Rn) is called a Borel measure.

- Dirac Measure at a : Let (A,A) be any measurable space and let a ∈ A. Then δa : A →
{0, 1}, defined for A ∈ A by:

δa(A) =

{
0 if a 6∈ A,
1 if a ∈ A,

is called the Dirac measure at the point a.

- Lebesgue measure: The set-function λn on (Rn,B(Rn)) that assigns the value :

λn ([a1, b1)× · · · × [an, bn)) =

n∏

j=1

(bj − aj)

to every half-open rectangle [a1, b1)×· · ·×[an, bn) ∈ I, is called the n-dimensional Lebesgue
measure. If A ⊂ Rn then

λn(A) = inf
A⊂ ∪∞i=1Ri

∑
(bi1 − ai1) · · · · · (bin − ain),

where the Ri’s are half-open rectangles, i.e. Ri = [ai1, b
i
1)× · · · × [ain, b

i
n).

The 1-dimensional-Lebesgue measure represents the conventional "length" of a segment:

∀ (a, b) ∈ R2 s.t. a < b, λ ([a, b]) = b− a.

Remark that, for a ∈ R, λ ({a}) = 0. From the second point of Definition 11:

∀ (a, b) ∈ R2 s.t. a < b, λ ([a, b]) = λ ({a}) + λ (]a, b[) + λ ({b}) = λ (]a, b[) .

Definition 12 (Measure Space). A measure space is a triplet (A,A, µ) where A is a set, A is a
σ-algebra of subsets of A, and µ is a positive measure on (A,A).

Property 1. Let (A,A, µ) be a measure space and B,C ∈ A. Then, C ⊂ B ⇒ µ (C) 6 µ (B).
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Figure 16: Monotonicity of positive measures.

Definition 13 (σ-finite measure). A measure µ defined on (A,A) is said to be σ-finite and (A,A, µ)
is called a σ-finite measure space if A contains an increasing sequence (Aj)j∈N ⊂ A of sets A1 ⊂
A2 ⊂ · · · such that ∪j∈NAj = A (exhausting sequence) verifying µ(Aj) <∞ for all j ∈ N.

Definition 14 (Support of a Measure). Let (A,A, µ) be a measure space.
The support of the positive measure µ is the smallest closed set defined as:

supp(µ) = {x ∈ A s.t. µ (U) > 0 for every open neighborhood U of x} .

Example 11.

- The support of the Dirac measure at 0 is the singleton {0}.

- Let (R,B(R)). The support of the Lebesgue measure λ is R. Note that every single point
has Lebesgue measure zero and so has every countable union of points.

Definition 15 (Product Measure). Let (A1,A1, µ1) and (A2,A2, µ2) be two σ-finite measure spaces.
Then the set-function

ρ : A1 ×A2 → [0,∞],
A1 ×A2 7→ µ1(A1)µ2(A2)

is the unique measure called product measure, denoted by ρ = µ1⊗µ2 and defined on the measurable
space (A1 × A2,A1 ⊗ A2) where A1 ⊗ A2 = σ(A1 × A2) is a product σ-algebra. (A1 × A2,A1 ⊗
A2, µ1 ⊗ µ2) is called the product measure space.
The product measure ρ is a σ-finite measure on (A1 ×A2,A1 ⊗A2) such that

ρ(E) =

∫ ∫
1E(x, y)µ1(dx)µ2(dy) =

∫ ∫
1E(x, y)µ2(dy)µ1(dx),

holds for all E ∈ A1 ⊗A2.
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Example 12.
The n-dimensional Lebesgue measure λn on (Rn,B(Rn)) may be defined as a product measure,
i.e.

(Rn,B(Rn), λn) = (Rd × Rn−d,B(Rd)⊗ B(Rn−d), λd ⊗ λn−d), ∀ n > d > 1.

B Measurable functions and integration

Definition 16 ((A1,A2)-measurable mapping). Let (A1,A1) and (A2,A2) be two measurable spaces.
A mapping f : A1 → A2 is (A1,A2)-measurable if

f−1(B) ∈ A1, ∀ B ∈ A2.

Definition 17 (Measurable function). Let (A,A) be a measurable space. A function f : A→ R is
A-measurable (or measurable in short) if {x : f(x) < c} ∈ A for every c ∈ R or equivalently

f−1(B) ∈ A, ∀ B ∈ B(Rn).

A measurable function f : A→ R is a (A1,B(R))-measurable mapping.

Example 13.
Let (X,A) be a measurable space. The indicator function f(x) = 1A(x) is measurable if and
only if A ∈ A. Indeed, for a set A ∈ A

{x : 1A(x) < c} = ∅ ∈ A if c 6 0,
{x : 1A(x) < c} = X\A ∈ A if c ∈ (0, 1],
{x : 1A(x) < c} = X ∈ A if c > 1.

Definition 18 (Simple function). A simple function g : A→ R on a measurable space (A,A) is a
function of the form:

g(x) =

M∑

j=1

yj1Aj
(x),

with finitely many disjoint sets A1, · · · , AM ∈ A and y1, · · · , yM ∈ R.
If yi > 0 for all i, the function g is called a positive simple function.

Definition 19. Suppose µ is a positive measure on the measurable space (A,A) and f is measurable

- If f =

M∑

j=1

yj1Aj
is a positive simple function then

∫
fdµ =

M∑

i=1

yiµ(Ai).

- If f > 0 then ∫
fdµ = sup

{∫
gdg : g 6 f, g is positive simple

}
.
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- For arbitrary f , ∫
fdµ =

∫
f+dµ−

∫
f−dµ,

where f+ = max{f, 0} and f+ = −min{f, 0}.

If (B,B) is measurable, the integral of f over B is defined by:

∫

B
fdµ =

∫
f1Bdµ.

Theorem 4 (Fubini). Let (A1,A1, µ1) and (A2,A2, µ2) be σ-finite measure spaces and let f : A1×
A2 → R be A1 ⊗A2-measurable. If at least one of the following is finite

∫

A1×A2

|f |d(µ1 ⊗ µ2),
∫

A2

∫

A1

|f(x, y)|µ1(dx)µ2(dy),
∫

A1

∫

A2

|f(x, y)|µ2(dy)µ1(dx)

then
∫

A1×A2

fd(µ1 ⊗ µ2) =
∫

A2

∫

A1

f(x, y)µ1(dx)µ2(dy) =

∫

A1

∫

A2

f(x, y)µ2(dy)µ1(dx).

Definition 20 (Density). Let (A,A, µ) be a measure space and ρ a positive real A-measurable
function, the set-function

µρ : A 7→
∫

A
ρdµ =

∫
1Aρdµ =

∫
1A(x)ρ(x)µ(dx),

is a measure on (A,A) called the measure with density function ρ with respect to µ and denoted

µρ = ρµ. Traditionally, the density is denoted ρ =
dµρ
dµ

.

For instance, if the measure µI is Gaussian (µI = µg), with mean m ∈ Rn, and covariance matrix
Σ, given by:

µI(A) :=
1√

(2πdet(Σ))n

∫

A

exp

(
−(X −m)TΣ−1(X −m)

2

)
dX, (124)

where A ∈ B(Rn), and B(Rn) denotes the completion of the Borel σ-algebra on Rn and the integral
in (124) is with respect to the standard n-dimensional Lebesgue measure. The density of the measure
µI is a function ρI : R

n → R defined by:

ρI(X) =
1√

(2πdet(Σ))n
exp

(
−(X −m)TΣ−1(X −m)

2

)
. (125)

Using the notation of Definition 20, one has ρI =
dµI
dλ

.

C Image of a measure

Let us denote by M(S)+ the cone of all nonnegative Borel measures on the subset S of a measurable
space. For completeness, let us recall the classical notions related to the pushforward measure, which
is roughly speaking the image of a given measure under a given mapping :
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Definition 21. [78, Theorem 1.44] (Pushforward measure) Let two measurable spaces (X,A) and
(Y,B), a (A,B)-measurable mapping h : X → Y and a measure µ ∈ M(X)+. The pushforward
measure (or image measure under the mapping h) µh = h⋆µ ∈M(Y )+ defined on B is given by:

µh(B) = h⋆µ(B) = µ(h−1(B)), (126)

for all Borel measurable sets B ⊆ Y .

For an arbitrary set B ⊆ Y , h−1(B) is the preimage of B under the mapping h, i.e.

h−1(B) = {x ∈ X : h(x) ∈ B} .

X

Y

0

µh

Bh−1(B)

µh(B) = µ(h−1(B)) R

h

µ

Figure 17: Pushforward measure or image measure µh.

Theorem 5. [15, Theorem 3.6.1] (Change of variables) Let µ ∈ M(X)+. A measurable function
g on Y is integrable with respect to the pushforward measure h⋆µ ∈ M(Y )+ if and only if the
composition g ◦ h is integrable with respect to the measure µ ∈M(X)+. In that case:

∫

Y

g d(h⋆µ) =

∫

X

g ◦ hdµ. (127)

A useful corollary may be easily deduced from Theorem 5.

Corollary 1. [69, Corollary 15.8] (General transformation theorem)
Let h : X → Y be a C1-diffeomorphism. A measurable function g on Y is integrable with respect to
λn if and only if, the function g ◦ h · |detDh| : X → R is integrable with respect to λn. In this case,

∫

Y
g(y)λn(dy) =

∫

X
g(h(x))|det Dh(x)|λn(dx). (128)
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D Local frame for relative motion modelling

When modelling the relative motion of two space objects in close proximity, it is usual to define a
moving Local-Vertical-Local-Horizontal (LVLH) frame RLV LH located at the center of gravity of a
reference object (here the primary object to be consistent with Chan’s rules) and which rotates with

its angular velocity. The precise definition of RLV LH =
(
OS , ~XLV LH , ~YLV LH , ~ZLV LH

)
may vary in

the literature and in this document, the choice is to define it with its origin OS , as the centre of
mass of the reference satellite and its axes by the vectors:

- ~ZLV LH is radial inward, oriented from primary to the centre of the Earth ;

- ~YLV LH is normal to the orbital plane in the opposite direction of the angular momentum ;

- ~XLV LH = ~YLV LH ∧ ~ZLV LH [ ~XLV LH , ~YLV LH , ~ZLV LH ] completes the orthogonal right-handed
frame.

~xin

~yin

~zin

~ZLV LH

~YLV LH

~v

~XLV LH

Figure 18: LVLH frame

Note also the usual English designation for these three axes:

- Axis of ~ZLV LH is R-bar ;

- Axis of ~YLV LH is H-bar ;

- Axis ~XLV LH = ~YLV LH ∧ ~ZLV LH is V-bar.
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t0 t1 tN−1 tN

δr+p0 = r−p0
δv+p0 = δv−p0 +∆V0

δr+p1 = δr−p1
δv+p1 = δv−p1 +∆V1

· · · δr+pN−1
= δr−pN−1

δv+pN−1
= δv−pN−1

+∆VN−1

δr+pN = δr−pN
δv+pN = δv−pN

0 Re

Im

−1
2σ2x

−1
2σ2y
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