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a b s t r a c t

This paper shows that, under specific structures of generalized plants, the set of static controllers satisfy-
ing internal stability and a certain level ofH∞ performance becomes convex.More precisely,we character-
ize such staticH∞ controllers by an LMIwith controller variables being kept directly as decision variables.
The structural conditions on the generalized plant are not too strict, and we show that generalized plants
corresponding to a sort of mixed sensitivity problems indeed satisfy these conditions. For the generalized
plants of interest, we further prove that full-order dynamical H∞ controllers can be characterized by an
LMI with a simple change of variables. In stark contrast to the known LMI-based H∞ controller synthesis,
the change of variables is free from the coefficient matrices of the generalized plant and this property is
promisingwhen dealingwith a variety of robust control problems. Related issues such as robust controller
synthesis against real parametric uncertainties are also discussed.
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1. Introduction

In modern control system analysis and synthesis, linear matrix
inequality (LMI) and semidefinite programming (SDP) are widely
accepted as useful tools with the help of freely available powerful
softwares. In retrospect, one of the reasonswhy LMI attracted such
intensive attention would be the fact that the H∞ control prob-
lem, the central issue of the robust control theory, has been solved
completely by means of LMIs. The prominent result is the elimi-
nation of controller variables approach independently conceived
by Gahinet and Apkarian (1994) and Iwasaki and Skelton (1994).
Subsequently, Scherer, Gahinet, and Chilali (1997) andMasubuchi,
Ohara, and Suda (1998) independently proposed the linearizing
change of controller variables approach. These pioneering works
are then extended to other problems such as gain-scheduled con-
troller synthesis.
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Even though these works opened up a new horizon forH∞ con-
trol theory, one of the possible criticisms is that these approaches
do not provide LMIs that keep controller variables directly as deci-
sion variables, and in particular, the controller variables are char-
acterized as a function of the plant data. This surely restricts the
scope of their application. For example, it is hard to design robust
H∞ controllers for the plants with parametric uncertainties.

In this paper, we show that, under specific structures of gener-
alized plants, the set of static controllers satisfying internal stabil-
ity and a certain level of H∞ performance becomes convex. More
precisely, we characterize such static H∞ controllers by an LMI
with controller variables being kept directly as decision variables.
Even in the case of dynamical controller synthesis, we can conceive
novel convexity results for the generalized plant of interest. In par-
ticular, we show that full-order H∞ controllers can be character-
ized by an LMI with a simple change of variables. In stark contrast
to Masubuchi et al. (1998) and Scherer et al. (1997), the change of
variables in the present paper does not involve plant data and this
property is promising when dealing with a variety of robust con-
trol problems. As an example, we show that we can design robust
H∞ controllers for the plant with parametric uncertainties, where
we can employ parameter-dependent Lyapunov functions so that
less conservative results can be achieved.

The synthesis of static output feedback controllers that meet
desired performances and/or robustness specifications has been a
challenging issue (Syrmos, Abdallah, Dorato, & Grigoriadis, 1997).
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In recent years, many attempts have been made to give effi-
cient numerical procedures to solve related problems (de Oliveira,
Geromel, & Bernussou, 2002; El Ghaoui, Oustry, & AitRami, 1997;
Geromel, Peres, & Souza, 1996; Grigoriadis & Beran, 2000; Iwasaki,
1999; Suplin & Shaked, 2005). In de Oliveira and Geromel (1997),
a numerical comparison was performed and classification into
three categories (nonlinear programming, parametric optimiza-
tion and convex programming approaches) was proposed. Among
them, LMI-based methods are relevant to the current study, ex-
amples of which are efficient iterative algorithms (El Ghaoui et al.,
1997; Grigoriadis & Beran, 2000; Iwasaki, 1999) and extended LMI
approach with structural constraints on LMI variables to handle
static output feedback synthesis (de Oliveira et al., 2002; Suplin
& Shaked, 2005). We also note that, recently, the static and fixed-
order controller synthesis problems under structural constraints
have been studied in Henrion (2005), Henrion and Lasserre (2005,
2006) and Hol and Scherer (2005) by means of positive polynomi-
als and real algebraic geometry. Differently from these studies, the
basic spirit of the present study is overcoming nonconvexity by ex-
ploiting specific structures of the H∞ control problem.

On the other hand, the change of variables for full-order H∞

controllers presented in this paper is closely related to those for
(robust) filter synthesis (de Souza & Trofino, 2000). We thus ex-
pect that H∞ controller synthesis problems treated in this paper
is somehow related to filter synthesis, even though we have not
obtained definite results along this direction.

We use the following notations: for A ∈ Rn×n and B ∈ Rn×m, we
defineHe{A} := A+AT and Sq{B} = BBT . The set of positive definite
(Hurwitz stable) matrices of the size n is denoted by Sn

++
(Hn). In

symmetric matrices, we denote by ∗ those blocks that are obvious
by symmetry. Other notations are standard.

The preliminary version of this paper has been presented in
Ebihara, Peaucelle, and Arzelier (2011). We refined the results in
Ebihara et al. (2011) so that we can provide a useful way for con-
structing generalized plants to cope with practical control specifi-
cations. Moreover, wewill illustrate the effectiveness of our design
strategy by a practical mixed sensitivity problem for a radar an-
tenna studied in Gahinet, Nemirovski, Laub, and Chilali (1995).

2. Static H∞ controller synthesis

In this section, we show that a set of static controllers satisfying
internal stability and a certain level of H∞ performance becomes
convexwhen the generalized plant satisfies specific structural con-
ditions. Concrete examples of the generalized plant satisfying the
required conditions are also given.

2.1. Specific structures of generalized plant ensuring convexity

Let us consider the closed-loop system depicted in Fig. 1 where
Gγ denotes the generalized plant and K denotes the controller to
be designed. Suppose the state space realization of Gγ is given by

Gγ :

ẋ = Ax + B1w + B2u,
z = C1,γ x + D11w + D12u,
y = C2x + D21w.

(1)

Here, x ∈ Rn is the state, w ∈ Rnw the disturbance input, u ∈ Rnu

the control input, z ∈ Rnz the performance output, and y ∈ Rny the
measured output, respectively. We consider the case where C1 is a
continuous function of γ > 0 as in C1,γ , where γ stands for theH∞

performance level to be minimized. It might be natural to let D11
andD12 as functions of γ but we assume that they are independent
of γ to derive the main result, Theorem 1.2

2 In fact we further assume D11 = 0 in Theorem 1.
Fig. 1. Generalized plant for the H∞ controller synthesis.

For a given controller K , static or dynamic, let us denote by
T (Gγ , K) the closed-loop system shown in Fig. 1. Moreover, for
static controllers K ∈ Rnu×ny , we define the set

Kγ :=

K : K ∈ Rnu×ny , A + B2KC2 ∈ Hn

and ∥T (Gγ , K)∥∞ < 1

. (2)

Our main concern in this paper is under what condition on Gγ the
setKγ defined by (2) becomes convex. It turns out that the follow-
ing assumption will suffice:

Assumption 1. (i) D11 = 0 and D21 = 0;
(ii) the matrix B1 can be partitioned as B1 = [B2 B12] for some

matrix B12. The matrix B12 can be null;
(iii) DT

12D12 ≽ Inu .

Indeed, under this assumption, we can establish the following
theorem.

Theorem 1. For given γ > 0 and the generalized plant Gγ satis-
fying Assumption 1, the set of static controllers Kγ defined by (2) is
convex if it is not empty. In particular, the set Kγ can be characterized
by an LMI as follows:

Kγ =

K : K ∈ Rnu×ny , ∃P ≻ 0 such that
L(Mγ , P, K) ≺ 0


, (3)

Mγ := {A, B1, B2, C1,γ ,D12, C2}.

Here, L(Mγ , P, K) is defined in (4) given in Box I.

Proof. Let us denote by (Acl, Bcl, Ccl,Dcl) the state space matrices
of the closed-loop system T (Gγ , K). They can be represented by

Acl = A + B2KC2, Bcl = B1,

Ccl = C1,γ + D12KC2, Dcl = 0
(5)

where the assumption (i) is used tacitly. Then, from bounded real
lemma (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994; Skelton,
Iwasaki, & Grigoriadis, 1997), we see that Acl is Hurwitz stable and
∥T (Gγ , K)∥ < 1 holds if and only if there exists P ∈ Sn

++
such that

He{PAcl} + Sq{PBcl} + Sq{CT
cl} ≺ 0.

From (5) and the assumption (ii), this inequality can be rewritten
equivalently as

He{PA + CT
1,γD12KC2} + Sq{PB2 + CT

2 K
T
} + Sq{PB12}

+ Sq{CT
1,γ } + CT

2 K
T (DT

12D12 − I)KC2 ≺ 0.

SinceDT
12D12− I ≽ 0 from (iii), we can rewrite the above inequality

as in L(Mγ , P, K) ≺ 0 via Schur complement, where L(Mγ , P, K) is
given in (4). This completes the proof. �

Remark 1. In our preliminary result in Ebihara et al. (2011), we
have imposed additional conditions CT

1,γD12 = 0 and A is Hurwitz
in Assumption 1. In the present paperwe have shown that the con-
vexity of the set Kγ is ensured even if we remove these two con-
ditions.

Remark 2. For the case where B12 is null (i.e., B1 = B2), the cor-
responding LMI can be obtained by removing the third row and
column from (4).
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4)
L(Mγ , P, K) :=

He{PA + CT
1,γD12KC2} + Sq{CT

1,γ } PB2 + CT
2 K

T PB12 CT
2 K

T (DT
12D12 − I)1/2

∗ −I 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

 . (

Box I.
Remark 3. Wearrive at Assumption 1 by extending the simple fact
that the set of internally stabilizing static output feedback con-
trollers that render the H∞ norm of unweighted input-side com-
plementary sensitivity function less than unity is convex (if the set
is not empty). This corresponds to the case where the generalized
plant (1) satisfies Assumption 1 with null B12 and D12 = I . Under
Assumption 1 that does not necessarily require that B12 is null and
D12 = I , we can handle a variant of mixed sensitivity problems as
shown in Section 2.2.

Remark 4. The LMI L(Mγ , P, K) ≺ 0 is not convex in γ in general.
Therefore we need a bisection search over γ for its minimization.

We can obtain a similar result to Theorem 1 by replacing As-
sumption 1 by Assumption 2 given below. This fact readily follows
from the concept of system duality.

Assumption 2. (i) D11 = 0 and D12 = 0;
(ii) the matrix C1 can be partitioned as C1 = [CT

2 CT
12]

T for some
matrix C12. The matrix C12 can be null;

(iii) D21DT
21 ≽ Iny .

When stating the above assumption, we implicitly assume that C1
is a constant matrix whereas B1 is a function of γ as in B1,γ . Again,
this is natural from of the system duality.

Remark 5. Assumption 1never holds if nw < nu andAssumption 2
never holds if nz < ny. Therefore at least one of the conditions
nw ≥ nu and nw ≥ nu needs to be satisfied for applying the design
method developed in this paper.

2.2. Modified generalized plant for mixed sensitivity problem

Let us consider the mixed sensitivity problem for the plant P
described by P(s) = CP(sI − AP)

−1BP . We assume that P is a SISO
system just for simplicity. As usual, we assume that weighting
functions WS and WT are appropriately designed for the shaping
of the sensitivity and complementary sensitivity functions, respec-
tively. Since WS and WT are typically chosen to be low-pass and
high-pass, suppose that their state space realizations are given by

WS(s) =


AS BS
CS 0


, WT (s) =


AT BT
CT DT


. (6)

If we place these weighting functions on the input-side of P , the
block-diagram for the mixed sensitivity problem can be repre-
sented as Fig. 2. Then, one of the standard settings for the mixed
sensitivity problem will be

inf
K

γ subject to ∥T (Gγ , K)∥∞ < 1 (7)

where Gγ can be written explicitly as

Gγ (s) =


AP 0 0 BP BP
0 AS 0 BS BS
0 0 AT 0 BT

0 1
γ
CS 0 0 0

0 0 CT 0 DT
CP 0 0 0 0

 . (8)

Unfortunately, as expected, this generalized plant does not satisfy
Assumption 1 unless BT = 0 andDT ≥ 1. It is obvious that Assump-
tion 2 is never satisfied. In view of these facts, we try to modify
Fig. 2. Standard generalized plant with weightings on input-side.

Fig. 3. Modified generalized plant for Fig. 2.

Fig. 2 while preserving the basic spirit of the sensitivity and com-
plementary sensitivity function shaping via WS and WT . By intro-
ducing a parameter α (0 ≤ α < 1) and defining β :=

√
1 − α2

(0 < β ≤ 1), we propose a possible modification in Fig. 3. The
state space realization of the corresponding Gγ ,α is given by

Gγ ,α(s) =


AP 0 BPCT BP β−1BPDT BP
0 AS 0 BS 0 BS
0 0 AT 0 β−1BT 0
0 1

γ
CS 0 0 0 α

0 0 0 0 0 β
CP 0 0 0 0 0


(0 ≤ α < 1, β =


1 − α2). (9)

We can confirm that this generalized plant certainly satisfies As-
sumption 1 irrespective of 0 ≤ α < 1 sinceDT

12D12 = α2
+β2

= 1.
It is of course important to compare the two strategies of H∞

controller synthesis based on the generalized plants in Figs. 2 and
3. If we employ Fig. 2, the constraint ∥T (Gγ , K)∥∞ < 1 can bewrit-
ten explicitly as
 1

γ
WSS

−WTT


∞

< 1,

S := (1 + KP)−1, T := (1 + KP)−1KP.

(10)

On the other hand, in the case of Fig. 3, the constraint ∥T (Gγ ,α,
K)∥∞ < 1 becomes

 1
γ
WSS − αT −

1
β


1
γ
WS + α


TWT

−βT −TWT


∞

< 1. (11)
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Wehave the following remarks regarding the comparison between
(10) and (11).

(a) The constraint (11) implies
 β

γ
WSS


∞

< 1 and ∥TWT∥∞ < 1.
The former inequality follows fromβ

γ
WSS


∞

=


β −α

  1
γ
WSS − αT

−βT


∞

≤


β −α
 

 1
γ
WSS − αT

−βT


∞

≤


β −α
 = 1.

Therefore the shaping of S and T via WS and WT is basi-
cally achieved, even though the former is slightly loosened to 1

γ
WSS


∞

< 1
β

(0 < β ≤ 1). Note that the above evaluation β

γ
WSS


∞

< 1 is conservative due to the application of the
triangular inequality.

(b) The constraint (11) implies∥T∥∞ < β−1, i.e., it restricts theH∞

norm of the unweighted complementary sensitivity function
under β−1. In well-designed feedback control systems, the fre-
quency response T (jω) typically satisfies ∥T (jω)∥ ≃ 1 at low
frequency range and ∥T (jω)∥ ≪ 1 at high frequency range.
Therefore, the restriction ∥T (jω)∥ < β−1 would not be strin-
gent in these frequency ranges. However, if we take β very
close to 1 (i.e., α very close to 0), the restriction ∥T∥∞ < β−1

can be a source of conservatism when we want to improve
the frequency response of overall system at middle frequency
range.

(c) The constraint (11) implies 1
β


1
γ
WS + α


TWT


∞

< 1

and again this could be a source of conservatism. However, the
defect can be reduced if ∥WSWT∥∞ ≪ 1 and α ≪ β . We can
expect that the former condition is usually satisfied since WS
andWT are typically chosen as low-pass and high-pass, respec-
tively.

(d) Since 1
γ
WSS and TWT are on the diagonal blocks in (11),we can-

not draw any definite conclusion on the inclusion relationship
among the two sets Kγ corresponding to the generalized plants
in Figs. 2 and 3.

In our preliminary paper (Ebihara et al., 2011), we only dealt with
the case α = 0 (and hence β = 1). As we will illustrate in Sec-
tion 2.3, it is often the case that we cannot shape the sensitivity
function adequately if we let α = 0, probably because of the con-
servatism stated in (b). This is the motivation why we introduce
the parameter α. If we increase α from 0, then we can expect that
the conservatism arising from (b) can be reduced gradually. How-
ever, if we take α too large, the conservatism arising from (c) be-
comes serious. In addition, the constraint

 1
γ
WSS


∞

< 1
β
can be

excessively loose. Consequently, by gradually increasing α from 0
and repeat trial and error procedure, we can expect that desirable
α can be obtained.

Even though we have placed weighting functions on the input-
side of P , it is possible to place them on the output-side of P and
construct a generalized plant (with a parameter) that satisfies As-
sumption 2.

2.3. Numerical example

Let us consider a mixed sensitivity problem borrowed from
Gahinet et al. (1995), where the plant is a radar antenna whose
Fig. 4. Bode gain plots ofWS0 andWS .

transfer function3 is given by

P(s) =
30

(s + 0.002)(s2 + 0.099s + 300.3)

=:
Kβω2

n

(s + β)(s2 + 2ζωns + ω2
n)

(12)

where K ≈ 49.95, β = 0.002, ζ ≈ 0.0029(=:ζ0) and ωn ≈

17.3292. The weightings used in Gahinet et al. (1995) for the shap-
ing of S and T are follows:

WS0(s) =
0.640s3 + 1.045s2 + 1.4928s + 2.587 × 10−2

s3 + 0.120s2 + 0.0083s + 8.31 × 10−7
,

WT0(s) = 100
3.41s + 21.775
s + 3.54 × 103 .

Since we assume that WS is strictly proper in (6), and since
∥WSWT∥∞ ≪ 1 is desirable in the generalized plant in Fig. 3, we
first slightly modify these weightings and redesign WS and WT as
follows:

WS(s) =
1.6556s2 + 1.4472s + 2.5192 × 10−2

s3 + 0.1165s2 + 0.00808s + 8.092 × 10−7
,

WT (s) = 100
3.41s2 + 0.2ωr + 10−5ω2

r

s2 + 0.06ωr s + 10−2ω2
r

×
s

s + 4 × 103 ,

ωr = 173.

(13)

The weighting WS is obtained by applying balanced truncation to
WS0(s) 1

0.01s+1 , whileWT (s) is designed to actively suppress the res-
onance of the plant around ωr (rad/s). The bode gain plot of these
weightings are given in Figs. 4 and 5.

With these P , WS0, and WT0, we first constructed the standard
generalized plant in Fig. 2 and designed a full-order H∞ optimal
controller by minimizing γ subject to ∥T (Gγ , K)∥∞ < 1 via bisec-
tion search. Here, we have used the LMI-based method in Scherer
et al. (1997) for the H∞ controller synthesis. Then, we next de-
signed an H∞ optimal controller for the generalized plant in Fig. 2
with the modified weightings WS and WT . The Bode gain plots of
the resulting S and T are shown in Figs. 6 and 7. We can confirm
that adequate (and almost identical) shaping of S and T is achieved
in both cases. We therefore employWS andWT in the sequel.

3 We have scaled the frequency variable s with the factor 0.1 to avoid possible
numerical problems.
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Fig. 5. Bode gain plots ofWT0 and WT .

Fig. 6. Bode gain plots of S shaped under the generalized plant in Fig. 2.

Fig. 7. Bode gain plots of T shaped under the generalized plant in Fig. 2.

We next constructed the generalized plant shown in Fig. 3 with
P , WS , and WT . We then designed a full-order H∞ optimal con-
troller byminimizing γ subject to ∥T (Gγ ,α, K)∥∞ < 1 via bisection
search. The bisection terminated at 85.0235 for α = 0 and 0.1988
Fig. 8. Bode gain plot of S shaped under the proposed generalized plant in Fig. 3
with α = 0.5.

Fig. 9. Bode gain plot of T shaped under the proposed generalized plant in Fig. 3
with α = 0.5.

for α = 0.5. The Bode gain plots of the resulting shaped S and T for
the case α = 0.5 are shown in Figs. 8 and 9. It can be seen that we
can shape S and T as desired by letting α = 0.5. In particular, the
results in Figs. 8 and 9 are almost identical to those in Figs. 6 and 7,
respectively.We thus confirmed the usefulness of the parameterα.

Since Gγ ,α satisfies Assumption 1, we can compute the H∞-
optimal static gain by carrying out a bisection search over γ subject
to L(Mγ , P, K) ≺ 0. The bisection search terminated at γ = 2.4079
× 103 yielding an optimal static controller Kopt,st = −0.2228. The
Bode gain plot of the corresponding S and T are shown in Figs. 10
and 11. Even though Kopt,st is surely optimal static controller, we
can see that the shaping of S and T is inadequate. This clarifies the
limitation of the performance achievable by static controllers in
this case.

3. Dynamical H∞ controller synthesis

Let us move on to the synthesis of dynamical controllers of the
form

K :


ẋc = Acxc + Bcy,
u = Ccxc + Dcy

(14)

where xc ∈ Rnc . As in the preceding section, we are interested in
whether the set of controllers K satisfying internal stability and
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Fig. 10. Bode gain plot of S shaped with the static H∞-optimal controller.

Fig. 11. Bode gain plot of T shaped with the static H∞-optimal controller.

∥T (Gγ , K)∥ < 1 becomes convex in the variables (Ac, Bc, Cc,Dc)
under Assumption 1 (or 2). Unfortunately, this seems too demand-
ing and beyond reach as explicated later on. However, it turns out
that Assumption 1 (or 2) still brings novel convexity results for dy-
namical controller synthesis. In the sequel, we only concentrate on
Assumption 1 to avoid duplicated arguments.

3.1. Convexity of (Cc,Dc) for fixed (Ac, Bc)

By following the standard procedure for dynamical controller
synthesis, let us first write the state space matrices (Acl, Bcl, Ccl,
Dcl) of the closed-loop system T (Gγ , K) as

Acl = A +B2KC2, Bcl = B1,

Ccl = C1,γ +D12KC2, Dcl = 0.
(15)

Here, we defined

A :=


A 0
0 0nc


, B1 :=


B1

0nc ,nw


, B2 :=


B2 0
0 Inc


,

C1,γ :=

C1,γ 0nz ,nc


, D12 :=


D12 0nz ,nc


,

C2 :=


C2 0
0 Inc


, K :=


Dc Cc
Bc Ac


.

(16)
Furthermore, let us define

Gγ (s) :=

 A B1 B2C1,γ 0 D12C2 0 0

 . (17)

As is well-known, this procedure enables us to deal with the dy-
namical controller synthesis problem as a static controller synthe-
sis problem since T (Gγ , K) = T (Gγ ,K) holds. In particular, since
the structure of (15) conforms to (5), we can conclude that the set
Kdy

γ , defined by

Kdy
γ :=

K : K ∈ R(nc+nu)×(nc+ny),A +B2KC2 ∈ Hn+nc and ∥T (Gγ ,K)∥∞ < 1

,

becomes convex if the state space matrices in (17) satisfy the con-
ditions in Assumption 1. Unfortunately, it is obvious from (16) that
the condition (ii) is never satisfied unless we let nc = 0.

To examine which convexity results can be obtained under
Assumption 1, let us focus on the alternative representation of
(Acl, Bcl, Ccl,Dcl) given by

Acl = A(Ac, Bc) + B2KC2, Bcl = B1,

Ccl = C1,γ + D12KC2, Dcl = 0.
(18)

Here, we defined

A(Ac, Bc) :=


A 0

BcC2 Ac


, B1 := B1,

B2 :=


B2

0nc ,nu


,

C1,γ := C1,γ , D12 := D12, C2 := C2,

K :=

Dc Cc


.

(19)

If we fix thematrices Ac and Bc and incorporate them into the plant
side, we can confirm that T (Gγ , K) = T (Gγ ,Ac ,Bc ,K) holds where

Gγ ,Ac ,Bc (s) :=


A(Ac, Bc) B1 B2

C1,γ 0 D12
C2 0 0


. (20)

Moreover, it is straightforward to see that the above state space
matrices satisfy Assumption 1. It follows that the set of admissible
K = [Dc Cc] becomes convex for fixed Ac and Bc . This result can be
stated formally as in the next theorem.

Theorem 2. For given γ > 0 and the generalized plant Gγ satis-
fying Assumption 1, let us consider the synthesis of dynamical con-
troller K of the form (14). Then, for each fixed (Ac, Bc), the set Kγ ,Ac ,Bc
defined by

Kγ ,Ac ,Bc :=

K : K = [Dc Cc ] ∈ Rnu×(ny+nc ),

A(Ac, Bc) + B2KC2 ∈ Hn+nc

and ∥T (Gγ ,Ac ,Bc ,K)∥∞ < 1


(21)

is convex if it is not empty. In particular, the set Kγ ,Ac ,Bc can be char-
acterized by an LMI as follows:

Kγ ,Ac ,Bc =

K : K = [Dc Cc] ∈ Rnu×(ny+nc ),

∃P ∈ Sn+nc
++ such that L(Mγ ,Ac ,Bc , P,K) ≺ 0


. (22)

Here, Mγ ,Ac ,Bc is defined through (19) as Mγ ,Ac ,Bc := {A(Ac, Bc),B1,
B2,C1,γ ,D12,C2}.

In view of the results in Theorems 1 and 2, we could say that
Assumption 1 has the effect that it convexifies (Cc,Dc) of the
controller to be designed. The usefulness of Theorem 2 is briefly
sketched in Ebihara et al. (2011).
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3.2. Full-order controller synthesis via new change of variables

In the preceding subsection,wehave shownan LMI-based strat-
egy for dynamical H∞ controller synthesis of any order. The vari-
ables (Cc,Dc) are kept directly as LMI variables at the expense of
freezing (Ac, Bc). It is nonetheless useful if we can directly optimize
(Ac, Bc) as well in most problem instances.

In this subsection, we consider the case of full-order controller
synthesis (i.e., nc = n in (14)) and show that such direct op-
timization of (Ac, Bc) is indeed possible, provided that we allow
them being involved in a linearizing change of variables. It should
be noted that, if we give up the objective of deriving LMI condi-
tions that keep the controller variables directly as decision vari-
ables, the problemof LMI-basedH∞ controller characterizationhas
been solved completely in the literature. In fact, the elimination
of controller variables approach has been proposed independently
in Gahinet and Apkarian (1994) and Iwasaki and Skelton (1994),
while the linearizing change of controller variables approach has
been proposed independently in Masubuchi et al. (1998) and
Scherer et al. (1997). In comparison with these known approaches,
the present approach still has its own benefits mainly because of
the following reasons:
(i) contrary to Gahinet and Apkarian (1994), Iwasaki and Skelton

(1994), the controller variables are kept as decision variables
without being eliminated;

(ii) contrary to Masubuchi et al. (1998), Scherer et al. (1997), the
linearizing change of variables in the present paper does not
involve the state space matrices of the generalized plant in the
controller parametrization.

We emphasize that these benefits are obtained under the restric-
tion that the generalized plant satisfies Assumptions 1 or 2.

On the other hand, our approach has the same drawback as
Gahinet and Apkarian (1994), Iwasaki and Skelton (1994), Ma-
subuchi et al. (1998), Scherer et al. (1997) and cannot deal with
structural constraints on the controller due to change of variables.
Nevertheless, we emphasize that the properties stated above are
particularly useful when dealing with robust controller synthesis
problems for plants affected by parametric uncertainties (Barmish,
1994; Boyd et al., 1994). Roughly speaking, in thepresent approach,
we can deal with dynamical output-feedback controller synthesis
as for static state-feedback controller synthesis by a well-known
simple change of variables (Scherer et al., 1997). The rest of this
section is devoted to the technical details to verify these assertions.

To derive the desired LMI condition, let us revisit the matrix in-
equality condition

L(Mγ ,Ac ,Bc , P,K) ≺ 0 (23)

which is presented in (22). If we consider (Ac, Bc) as decision vari-
ables as well, this matrix inequality condition is a BMI since a bi-
linear term among (Ac, Bc) and P ∈ S2n

++
appears. To get around

this difficulty, let us first consider partitioning P . Due to the free-
dom of the similarity transformation of the controller, it is shown
in Masubuchi et al. (1998) that we can select P as follows without
introducing any conservatism:

P =


X Z
Z Z


, X, Z ∈ Sn

++
. (24)

Then, the sole bilinear term in (23) given by PA(Ac, Bc) can be lin-
earized as
X Z
Z Z

 
A 0

BcC2 Ac


↔


XA + YBcC2 YAc
ZA + YBcC2 YAc


. (25)

Here, we introduced the linearizing change of variables YAc := ZAc
and YBc := ZBc . Thus the BMI (23) can be reduced into the LMI of
the formL(Mγ , X, Z, YAc , YBc , Cc,Dc) ≺ 0. (26)
Here,L(·) is an affine function with respect to the decision vari-
ables X ∈ Sn

++
, Z ∈ Sn

++
, YAc ∈ Rn×n, YBc ∈ Rn×ny , Cc ∈ Rnu×n, and

Dc ∈ Rnu×ny . If this LMI is feasible, then the desired full-order H∞

controller K can be reconstructed by

K(s) =


Z−1YAc Z−1YBc

Cc Dc


. (27)

As noted, the BMI (23) can be linearized also by the known ap-
proaches in Gahinet and Apkarian (1994), Iwasaki and Skelton
(1994), Masubuchi et al. (1998) and Scherer et al. (1997). However,
in stark contrast with (27), the controller parametrization there in-
volves state space matrices of the generalized plant and this is un-
desirable in several applications. One of the typical examples is the
robust controller synthesis against parametric uncertainties. We
briefly discuss this issue in the sequel and show the usefulness of
the present approach.

Consider the case where the state space matrices of Gγ are af-
fected by polytopic-type uncertainty as follows: A B1 B2
C1,γ 0 D12
C2 0 0


∈

 L
l=1

θl

 A[l] B[l]
1 B[l]

2
C1,γ 0 D12

C [l]
2 0 0

 : θ ∈ θ

 ,

θ :=


θ : θ ∈ RL,

L
l=1

θl = 1, θl ≥ 0


.

(28)

Here, A[l], B[l]
1 , B[l]

2 , C [l]
2 (l = 1, . . . , L), C1,γ and D12 are known ma-

trices. On the other hand, θ is a time-invariant uncertain param-
eter whose only available information is θ ∈ θ. In (28), we have
assumed that C1,γ and D12 are parameter-independent to derive
concise convex formulation.

For ease of description, we denote by Gθ
γ the generalized plant

for the parameter θ ∈ θ. Then, our goal here is to design a full-order
robust controller K satisfying

∥T (Gθ
γ , K)∥∞ < 1 ∀θ ∈ θ. (29)

Since the LMI (26) is affine with respect to the plant data Mγ for
frozen C1,γ and D12, and since the parametrization (27) does not
depend on the plant data, such robust controller can be sought by
solving the following LMI problem:L(M [l]

γ , X, Z, YAc , YBc , Cc,Dc) ≺ 0 (l = 1, . . . , L). (30)

Here, we defined

M [l]
γ := {A[l], B[l]

1 , B[l]
2 , C1,γ ,D12, C

[l]
2 } (l = 1, . . . , L).

If this LMI is feasible, then the desired robust controller can be
reconstructed via (27).

This approach is based on the well-known concept of quadratic
stabilization (Bernussou, Geromel, & Peres, 1989), sincewe seek for
a single Lyapunov matrix P of the form (24) that ensures the H∞

performance over the whole uncertainty domain. Due to this re-
striction, the LMI approach (30) is surely conservative, but there is
no other source of conservatism. To this date, such effective and ef-
ficient quadratic-stability-based approach is only available for the
static state-feedback controller synthesis. In fact, for the present
robust output-feedback H∞ controller synthesis problem, we can-
not apply the approaches in Gahinet and Apkarian (1994), Iwasaki
and Skelton (1994) from the outset since the elimination of the
controller variables does not preserve the constraint that we have
to generate a single (parameter-independent) robust controller.
Similarly, the direct application of the approaches in Masubuchi
et al. (1998), Scherer et al. (1997) results in a controller that de-
pends on θ (and hence cannot be implemented). In the present
approach, we have successfully circumvented these difficulties by
exploiting the underlying assumptions on the generalized plant.
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2)

He{YBcC

[l]
2 + CT

1,γD12DcC
[l]
2 } + Sq{CT

1,γ } YAc + (ZA[l]
+ YBcC

[l]
2 )T + CT

1,γD12Cc C [l]T
2 DT

c 0 X [l]

∗ He{YAc } ZB[l]
2 + C [l]T

c ZB[l]
12 0

∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ 0



+He



F1
F2
F3
F4
F5

 
A[l] 0 B[l]

2 B[l]
12 −I


 ≺ 0,


X [l] Z
Z Z


≻ 0 (l = 1, . . . , L). (3

Box II.
To reduce the conservatism of the quadratic-stability-based ap-
proach, we further note that the parameter dependent Lyapunov
matrix of the form

P(θ) =


X(θ) Z
Z Z


(31)

can be employed. The variable Z needs to remain constant since
it is involved in the linearizing change of variables. If we resort to
the parameter-dependent Lyapunovmatrix (31), the resulting con-
troller synthesis problem becomes a robust SDP for which pow-
erful approaches are available nowadays. In particular, if we let
X(θ) to be linear on θ and apply the idea in Ebihara and Hagiwara
(2005), Peaucelle, Arzelier, Bachelier, and Bernussou (2000) known
as slack-variable LMI or LMI dilation, we can derive a tractable LMI
problem ensuring that we can yield better (noworse) upper bound
than the quadratic-stability-based approach. For reference, the di-
lated LMI condition in the case where DT

12D12 − I = 0 is shown in
(32) given in Box II. In (32), the variables are X [l] (l = 1, . . . , L),
Z , YAc , YBc , Cc , Dc and Fi (i = 1, . . . , 5). It can be easily seen that if
the LMI (30) is feasible with γ = γ0, X = X0, Z = Z0, YAc = YAc ,0,
YBc = YBc ,0, Cc = Cc,0, and Dc = Dc,0, then there exists sufficiently
small ε > 0 such that the dilated LMI (32) is feasible with γ = γ0,
X [l]

= X0 (l = 1, . . . , L), Z = Z0, YAc = YAc ,0, YBc = YBc ,0, Cc = Cc,0,
Dc = Dc,0, and [F1 F2 F3 F4 F5] = [X0 0 0 0 εI]. The dilated LMI (32)
enables us to design a robust controller via a parameter-dependent
Lyapunov matrix of the form

P(θ) =

L
i=1

θl


X [l] Z
Z Z


. (33)

In the next section, we will design a robust controller by means
of (32).

3.3. Numerical examples

Let us consider again the mixed sensitivity problem discussed
in Section 2.3. For the plant (12), we selected weighting functions
as in (13) and constructed the generalized plant as in Fig. 3 with
α = 0.5. For this generalized plant, we consider the problem (7) by
concentrating on the full-order controllers. Obviously, this prob-
lem can be cast as

inf
X,Z,YAc ,YBc ,Cc ,Dc

γ subject to (26).

By a bisection search over γ , we successfully designed an H∞ opti-
mal controller that achieves the optimal H∞ performance γopt =

0.1962. As expected, the resulting value is very close to γopt =

0.1988 obtained by applying the method (Scherer et al., 1997)
to exactly the same problem.4 We confirmed that the designed

4 Theoretically these two values should coincide with each other. However, due
to unavoidable numerical error, we cannot expect the coincidence in practice.
Fig. 12. Bode gain plots of S shaped with robust controller.

optimal controller achieves the desirable shaping of S and T that
is almost the same as in Figs. 8, 9.

We finally dealwith the casewhere the parameter ζ of the plant
(12) is uncertain but bounded as ζ0 ≤ ζ ≤ 2ζ0. The corresponding
generalized plant can bemodeled as (28) by appropriately defining
M [l]

γ (l = 1, 2). Under this setting, we aim at designing a robustH∞

controller. More precisely, we want to solve

γrob := inf
K

γ subject to (29).

To this end, we first solve the following problem:

inf
X,Z,YAc ,YBc ,Cc ,Dc

γ subject to (30).

The best achievable performance by this quadratic-stability-based
approach turned out to be γ = 728.6299. In view of the fact that
we have achieved γ ≈ 0.20 in the case where ζ = ζ0, this result is
very conservative, possibly due to the use of common (parameter-
independent) Lyapunov matrix. To reduce the conservatism of the
design, we next apply the dilated LMI approach that enables us to
employ a parameter-dependent Lyapunov matrix of the form (33).
Indeed, by minimizing γ subject to (32) via bisection search, we
were able to design a suboptimal robust controller that achieves
an upper bound γpd = 0.9704. The performance of this controller
is illustrated by Figs. 12 and 13. In these figures, the gain plots of S
for ζ = ζ0 and ζ = 2ζ0 turn out to be almost the same. Similarly
for the gain plots of T . We see that, by means of the parameter-
dependent Lyapunov matrix, satisfactory shaping of S and T has
been achieved robustly against the variation of the parameter ζ

over ζ0 ≤ ζ ≤ 2ζ0.
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Fig. 13. Bode gain plots of T shaped with robust controller.

4. Conclusion

In this paper, we clarified several sufficient conditions on the
generalized plant under which the set of static H∞ controllers
becomes convex. For the generalized plant satisfying these condi-
tions, we further clarified that novel convexity results can be ob-
tained even in the case of dynamical controller synthesis.

We finally note that Assumptions 1 and 2 are of course demand-
ing for the convexity of the set of admissible static H∞ controllers.
It is undoubtfully an important issue to investigate how to loosen
these assumptions further.
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