
1 23

Journal of Optimization Theory and
Applications
 
ISSN 0022-3239
 
J Optim Theory Appl
DOI 10.1007/s10957-013-0282-z

A New Mixed Iterative Algorithm to
Solve the Fuel-Optimal Linear Impulsive
Rendezvous Problem

D. Arzelier, C. Louembet,
A. Rondepierre & M. Kara-Zaitri



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



J Optim Theory Appl
DOI 10.1007/s10957-013-0282-z

A New Mixed Iterative Algorithm to Solve
the Fuel-Optimal Linear Impulsive Rendezvous
Problem

D. Arzelier · C. Louembet · A. Rondepierre ·
M. Kara-Zaitri

Received: 13 April 2012 / Accepted: 12 February 2013
© Springer Science+Business Media New York 2013

Abstract The optimal fuel impulsive time-fixed rendezvous problem is reviewed.
In a linear setting, it may be reformulated as a non-convex polynomial optimization
problem for a pre-specified fixed number of velocity increments. Relying on varia-
tional results previously published in the literature, an improved mixed iterative al-
gorithm is defined to address the issue of optimization over the number of impulses.
Revisiting the primer vector theory, it combines variational tests with sophisticated
numerical tools from algebraic geometry to solve polynomial necessary and sufficient
conditions of optimality. Numerical examples under circular and elliptic assumptions
show that this algorithm is efficient and can be integrated into a rendezvous planning
tool.

Keywords Orbital rendezvous · Fuel optimal space trajectories · Primer vector
theory · Impulsive maneuvers · Linear equations of motion

1 Introduction

Given the increasing need for satellite servicing in current and future space programs
developed in conjunction with rendezvous missions for the International Space Sta-
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tion (ISS), the interest of most space agencies in developing adequate rendezvous
mission planning tools has been rising rapidly. In particular, new challenges related
to the synthesis of guidance schemes have appeared. Among those challenges, the
capacity of achieving autonomous far range rendezvous on highly elliptical orbits,
while preserving optimality in terms of fuel consumption, is fundamental. Strictly
speaking, the space far range rendezvous maneuver is an orbital transfer between a
passive target and an actuated spacecraft called “the chaser”, within a fixed or floating
time period. In this paper, we mainly focus on the so-called time-fixed fuel optimal
rendezvous problem in a linearized gravitational field, for which a renewed inter-
est has been witnessed in the literature [1–4]. Numerical solutions based on linear
relative motion are particularly appealing when dealing with on-board guidance al-
gorithms. Indirect approaches based on the solution of optimality conditions derived
from Pontryagin’s Maximum Principle, leading to the development of the so-called
primer vector theory presented in [5], have been an avenue of research in numerous
studies [6–9]. As they only focus on fixed number of impulses, these approaches fail
to optimize trajectory planning in terms of number of impulsive maneuvers. In [8], an
iterative heuristic procedure is shortly described to consider optimization over thrust
positions in the circular case, while [10] extends it to the elliptic case. To optimize the
number of impulses as well as their specific application times, an iterative algorithm
based on the calculus of variations, originally developed by Lion and Handelsman
[11], has been designed in [12–14]. The main drawback, however, is due to the possi-
ble non-smoothness and sub-optimality of the resultant trajectory of the primer vector
norm. To overcome this difficulty, a Davidon–Fletcher–Powell penalty minimization
step is proposed in order to move the impulses and achieve a smooth optimal trajec-
tory, as detailed in [13–15].

The paper’s contribution is to revisit the iterative algorithm of Lion–Handelsman,
by taking advantage of the polynomial nature of the underlying necessary conditions,
to circumvent the necessity to resort to local optimization schemes. In [16], a new
algorithm, based on polynomial optimization, is proposed to tackle the problem of
fixed-time impulsive linear rendezvous for a fixed number of impulses. A certifi-
cate of global optimality is built with the optimal solution. A heavy time-consuming
dynamic gridding of thrust locations is performed in order to determine the opti-
mal impulses for a fixed number of maneuvers. While [16] gives optimal solution
for a fixed number of impulses, this new algorithm converges to the minimum-fuel
solution over the number of impulses via an iterative process. The heavy gridding
process is avoided by obtaining the optimal locations at the end of the convergence
process. At each step, this iterative process solves some of the necessary conditions
(polynomial system of equations) without solving the complete nonlinear non-convex
polynomial optimization problem via a hierarchy of relaxations. For complex in-
stances, the order of relaxation necessary to build the optimal solution may be high
and numerically out of reach. The new proposed iterative algorithm combines pow-
erful numerical tools from the algebraic geometry field and very simple rules de-
rived from the variational tests defined in [11] to iteratively improve a non optimal
preliminary solution. In contrast with the original iterative algorithm developed in
[13, 15] or [14], this procedure builds a successive, always-improving, suboptimal
solutions, verifying necessary conditions of smoothness of the derivative of the norm
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of the primer vector, at each step. Therefore, a cusp occurrence is impossible, and
there is no need for the usual local optimal search step bypassing the usual problems
of initialization, convergence to local minima different from zero or the plateauing
phenomenon. In addition, the cases for which an initial two-impulse solution does
not exist may be tackled in a similar way. Finally, Hill–Clohessy–Wiltshire [17] or
Tschauner–Hempel [18] relative models for the primer vector dynamics may be con-
sidered indifferently, while the algorithms in [13, 15] or [14] are restricted to the first
one.

In the first section of this paper, the framework of the minimum-fuel fixed-time
rendezvous problem is presented, and necessary and sufficient conditions of opti-
mality are recalled. Relative dynamics motion for rendezvous are the well-known
Tschauner–Hempel equations [18] and the transition matrix of Yamanaka–Ankersen
[19]. The results of [11] are recalled, and the mixed iterative algorithm is presented.
For the sake of comparison, the efficiency of the proposed algorithms is illustrated
with three different numerical examples. First, an academic example taken from
Carter’s reference [8] is studied in detail. Furthermore, two realistic scenarios based
on the ATV program [20] and on the PRISMA “technology in-orbit testbed mission”,
demonstrating formation flight [3], are also reviewed.

2 The Time-fixed Optimal Rendezvous Problem

2.1 Linear Impulsive Time-fixed Optimal Rendezvous Problem

This paper focuses on the fixed-time minimum-fuel rendezvous between close orbits
of an active (actuated) spacecraft, called the chaser, with a passive target spacecraft,
assuming a linear impulsive setting, and a Keplerian relative motion, as it is defined
in [8, 9]. The impulsive approximation for the thrust means that instantaneous ve-
locity increments are applied to the chaser whereas its position is continuous. If the
relative equations of motion of the chaser are supposed to be linear and under the
previous Keplerian assumptions, it is shown in [8–10] that the considered minimum-
fuel rendezvous problem may be reformulated as the following optimization prob-
lem:

min
N,θi ,�vi ,β(θi )

J =
N∑

i=1

�vi

s.t. uf =
N∑

i=1

φ−1(θi)B(θi)�viβ(θi) =
N∑

i=1

R(θi)�viβ(θi),

∥∥β(θi)
∥∥ = 1,

�vi ≥ 0,

(1)

where φ(θ) is the fundamental matrix associated to the linearized relative free
motion and Φ(θ, θ1) = φ(θ)φ−1(θ1) denotes, therefore, the transition matrix of
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the linearized relative free motion. Note that the true anomaly θ has been chosen
as the independent variable throughout in the paper. θ0 and θf respectively de-
note the initial and final values of the true anomaly during the rendezvous. uf =
φ−1(θf )Xf − φ−1(θ1)X0 �= 0, where the state vector Xf = [rT

f vT
f ]T at θf and

the state vector X0 = [rT
0 vT

0 ]T at θ0 are composed of the relative positions and
relative velocities vectors. The optimization decision variables are the number of im-
pulses N , the sequence of thrust locations {θi}i=1,...,N , the sequence of thrust mag-
nitudes {�vi}i=1,...,N and of thrust directions {β(θi)}i=1,...,N . Due to the lack of a
priori information about the optimal number of impulses to be considered, problem
(1) is very hard to solve from both theoretical and numerical points of view. There-
fore, the associated fixed-time minimum-fuel rendezvous problem for a fixed number
N of impulses has been considered in the literature mainly via geometric methods
near circular [6, 15, 21] or elliptic [10] orbits. These results are mainly based on
the derivation of optimality conditions for the problem (1) when N is fixed a pri-
ori.

2.2 Carter’s Necessary and Sufficient Conditions for a Fixed Number of Impulses

When the number of impulses is not a part of the optimization process and is fixed
a priori to N , problem (1) may be considered as the joint optimal selection of N

velocity increments �V (θi) = �viβ(θi) and N times θi of maneuvers. By applying
a Lagrange multiplier rule for the problem (1) as in [10], one can derive necessary
conditions of optimality (2) to (6) in terms of the Lagrange multiplier vector λ ∈ R

n,
as is recalled in Theorem 2.1 below. Prussing has first shown in [22] that these con-
ditions are also sufficient in the case of linear relative motion with the strengthening
semi-infinite constraint (9) that should be fulfilled on the continuum [θ0, θf ] and is
expressed in terms of the matrix R(θ).

Theorem 2.1 (Carter [9]) (θ1, . . . , θN ,�v1, . . . ,�vN,β(θ1), . . . , β(θN)) is the op-
timal solution of problem (1) if and only if there exists a non-zero vector λ ∈ R

m,

m = dim(φ) that verifies the necessary and sufficient conditions:

�vi = 0 or β(θi) = RT (θi)λ, ∀i = 1, . . . ,N, (2)

�vi = 0 or λT R(θi)R(θi)
T λ = 1, ∀i = 1, . . . ,N, (3)

�vi = 0 or θ1 = θ0 or θN = θf or λT dR(θi)

dθ
R(θi)

T λ = 0,

∀i = 1, . . . ,N, (4)

N∑

i=1

[
R(θi)R

T (θi)
]
λ�vi = uf , (5)

�vi ≥ 0, ∀i = 1, . . . ,N, (6)
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N∑

i=1

�vi = uT
f λ > 0, (7)

uT
f λ is the minimum of the set defined as

{
λ ∈ R

m : (2)–(7) are verified
}
, (8)

∥∥λv(θ)
∥∥ ≤ 1, ∀θ ∈ [θ1, θN ], (9)

where λv(θ) = R(θ)T λ denotes the so-called primer vector.

Note that conditions (7) and (8) may be easily derived from the previous ones.
These results derive directly from the seminal work of [5] in the early 1960s, and
form an alternative formulation to the primer vector theory.

A numerical solution of optimality conditions (2)–(9) in the unknowns λ ∈ R
m,

{θi}i=1,...,N , {β(θi)}i=1,...,N , {�vi}i=1,...,N is still hard to find for a fixed number of
impulses N , due to the non-convex and transcendental nature of these polynomial
equalities and inequalities. However, it is shown in [16] that the problem may be
tackled by using an adequate dynamic gridding strategy and polynomial optimiza-
tion. Still, the optimal number of impulses N∗ for a particular rendezvous problem
is generally unknown, and only a bound N∗ ≤ Nmax is available [23]. Nmax = 2 for
out-of-plane rendezvous [7], Nmax = 4 for in-plane rendezvous while Nmax = 6 for a
general three-dimensional rendezvous problem. Apart from the gridding step, the ne-
cessity to try every case for 2 ≤ N ≤ Nmax in [16] appears be very time-consuming,
and a more direct approach to solve problem (1) is now proposed.

3 Optimizing over the Number of Impulses

3.1 Using Lion & Handelsman Results on Multi-impulse Trajectories

In [11], a method is proposed to take advantage of the primer vector theory, devel-
oped by Lawden, in order to improve non-optimal trajectories by adding or shifting
impulses. The calculus of variations is used to find conditions on the norm of the
primer vector for an additional impulse and on the derivative of this norm for ini-
tial and/or final coastings. The method is mainly based on derivation of the so-called
variational adjoint equation resulting from the variation of the cost function. Later,
Jezewski [12, 13] and Prussing in [14] developed a numerical algorithm, combin-
ing Lion–Handelsman’s conditions with a modified gradient search approach to the
problem in an inverse square gravitational field. The additional local optimization
procedure is used to find the optimal position and modulus of the additional impulse
and prevent a resulting cusp for the norm of the primer vector, as reported in [12, 13].
In this section, the conditions of Lion and Handelsman are recalled, and a different
heuristic iterative procedure avoiding local optimal search step and cusp occurrence
is proposed. It is worth noticing that the extension of these conditions for elliptical
reference orbit (Tschauner–Hempel [18] dynamical relative model and Yamanaka–
Ankersen transition matrix [19]) from [24] is used here.
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3.1.1 Additional Interior Impulse Condition

Perturbing a reference initial two-impulse trajectory and adding an interior impulse
at θm, the differential cost can be expressed as:

δJ = �vm

(
1 − λv(θm)T β(θm)

) = �vm

(
1 − λT R(θm)β(θm)

)
. (10)

From (10), it is easy to conclude that δJ < 0 when ‖λv(θm)‖ > 1 and that a maximum
decrease in cost is obtained when:

θm = arg max
θ∈[θ0,θf ]

∥∥λv(θ)
∥∥ = arg max

θ∈[θ0,θf ]
∥∥RT (θ)λ

∥∥. (11)

3.1.2 Additional Coasting Period Conditions

For an additional initial coasting period of duration dθ1, the cost variation is given
by:

δJ = −�v1
dλv

dθ

T

(θ1)λv(θ1)dθ1 = −�v1λ
T dR

dθ
(θ1)R

T (θ1)λdθ1

= �v2
1
d‖λv(θ)‖

dθ |θ=θ1

dθ1. (12)

This condition means that adding an initial coasting arc of dθ1 > 0 duration may
improve the cost if λ̇v(θ1)

T λv(θ1) > 0, i.e., the right derivative of the primer vector
norm at θ1 is positive. Similarly, for a final coasting arc of duration dθf , we get:

δJ = −�vf

dλv

dθ
(θf )T λv(θf )dθf = −�vf λT dR

dθ
(θf )RT (θf )λdθf

= −�v2
f

d‖λv(θ)‖
dθ |θ=θf

dθf . (13)

A final coast of dθf < 0 duration will improve the cost when the left derivative of the
primer vector norm at θf is negative, i.e., when dλv

dθ
(θf )T λv(θf ).

3.2 A Mixed Iterative Algorithm

These conditions may be used jointly to reduce the cost of a reference non-optimal
two-impulse trajectory, but can also be generalized to multi-impulse trajectories.

As noted in [12] and in [25], computation of the mid-impulse might nevertheless
results in a non-optimal trajectory not verifying the optimality conditions of Lawden
and condition (9), particularly in the case of occurrence of a cusp at θm, as illus-
trated in Fig. 1. A particular strategy combining Lion–Handelsman’s conditions and
local direct optimization based on the Davidon–Fletcher–Powell penalty method in
[13] or based on BFGS method in [25] has been proposed to optimize the result-
ing three-impulse trajectory. The objective of this section is to propose an alterna-
tive to this complicated procedure by developing a mixed iterative algorithm, taking
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Fig. 1 Non-optimal primer
vector norm with a cusp at the
interior impulse

advantage of the algebraic formulation of Carter’s optimality conditions and of the
Lion–Handelsman’s conditions. Starting from a non-optimal two-impulse trajectory,
successive admissible improved trajectories will be iteratively built by:

– Adding impulse at θm if the impulse number does not exceed the upper bound
Nmax;

– Moving the proximal impulse to θm if an impulse cannot be added due to N =
Nmax;

– Merging two impulses at θm if there is no proximal impulse and if an impulse
cannot be added due to N = Nmax,

where θm is defined by (11). The logic of the proposed heuristic algorithm is depicted

at Fig. 2, where dpi = d‖λ‖
dθ

(θi) and dpi+1 = d‖λ‖
dθ

(θi+1). The set Timp denotes the
current set impulses and the new impulse θm is always added to it.

This heuristic procedure relies on basic principles that are used to make the
successive sequences of maneuvers monotonically converging to an optimal solu-
tion.

– The first and final maneuvers locations, defined respectively at θ0 and θf , cannot be
moved in the process. Therefore, optimal solutions consisting of an initial and/or
final coasting period cannot be found by this algorithm.

– A new impulse is always added at θm. In case 8 for an actual number of impulses
N < Nmax, it increases the number of impulses, while when N = Nmax, it reduces
the number of impulses in cases 3 and 7, and it does not change this number for
cases 1, 2, 4, 5, and 6.

– Every move of an actual maneuver time to θm is chosen to be the proximal of θm (in
particular for case 4), except in case 7, which is specific since moves of impulses
θi and θi+1 are not required to improve the trajectory. In this case, the idea is rather
to re-initialize the iterative process with a new three-impulse trajectory. In practice,
this case has never occurred on all the tested numerical examples.

The systematic convergence of the algorithm for any rendezvous is not analytically
proven, but no different case has been reported in the different numerical tests per-
formed so far.

The algorithm may now be described in details. It is mainly composed of two
stages: One initialization step solving a two-impulse rendezvous problem, and the
iterative procedure building the final plan of maneuvers. εcond and ελ are respectively
the precision values on the conditioning number of the transition sub-matrix Φ12,
and on the maximum of the norm of the primer vector. Typically, εcond = 106 while
ελ = 10−6.
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Initialization step:

(a) Solve the two-impulse problem:
1. Initialize

Timp = {θ1, θ2} = {θ0, θf }. (14)

2. Compute the transition matrices

Φ(θf , θ1) =
[

Φ11(θf , θ1) Φ12(θf , θ1)

Φ21(θf , θ1) Φ22(θf , θ1)

]
,

Φ#(θf , θ1) = Φ−T (θf , θ1) =
[

Φ#
11(θf , θ1) Φ#

12(θf , θ1)

Φ#
21(θf , θ1) Φ#

22(θf , θ1)

]
.

(15)

If cond(Φ12(θf , θ1)) < εcond Then

�V (θ1) = Φ−1
12 (θf , θ1)

[
rf − Φ11(θf , θ1)r1 − Φ12(θf , θ1)v1

]
,

�V (θf ) = vf + [
Φ22(θf , θ1)Φ

−1
12 (θf , θ1)Φ11(θf , θ1) − Φ21(θf , θ1)

]
r1

− Φ22(θf , θ1)Φ
−1
12 (θf , θ1)rf .

(16)

Else

Solve polynomial system w.r.t. (λ, {�vi}i=1,...,f )

λT R(θi)R(θi)
T λ = 1, ∀θi ∈ Timp,

∑

θi∈Timp

[
R(θi)R

T (θi)
]
λ�vi = uf , ∀θi ∈ Timp, i = 1, . . . , f,

�vi ≥ 0, i = 1, . . . , f.

(17)

Choose the minimum-fuel solution:

λinit = arg
[
min

λ
uT

f λ
]
. (18)

Compute impulses:

β(θi) = R(θi)
T λinit, ∀θi ∈ Timp, i = 1, . . . , f,

�V (θi) = �viβ(θi), ∀θi ∈ Timp, i = 1, . . . , f.

(19)
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(b) Propagate primer vector λv(θ) on a grid Π = {θ1, . . . , θf }:
If cond(Φ#

21(θf , θ1)) < εcond Then

λv(θ1) = �V (θ1)

�v1
, λv(θf ) = �V (θf )

�vf

,

λv(θ) = Φ#
21(θ, θ1)Φ

#−1
21 (θf , θ1)

[
λv(θf ) − Φ#

22(θf , θ1)λv(θ1)
]

+ Φ#
22(θ, θ1)λv(θ1).

(20)

Else
Compute R(θ) on grid Π and Propagate λv(θ) via

λv(θ) = RT (θ)λ. (21)

(c) Compute

lvm = max
θ∈[θ0,θf ] ‖λv(θ)‖ and θm = arg

[
max

θ∈[θ0,θf ] ‖λv(θ)‖
]
.

(d) If lvm − 1 < ελ Then stop. The two-impulse trajectory is optimal.
Else start iterative procedure.

ε1λ and ε2λ are two different precision values used in the iterative procedure to test
the maximum value of the norm of the primer vector with respect to 1. εcost is a
parameter used to check the evolution of the cost during the iterative process.

Iterative procedure:
While (lvm − 1 ≥ ε1λ) and (diffcost = |uT

f λiter −uT
f λiter−1| > εcost or lvm − 1 ≥ ε2λ)

(a) iter ← iter + 1; Choose θa, θb ∈ Timp such that

(θa < θm < θb) and (θa = θi, θb = θi+1).

(b) Modify Timp = Timp ∪ {θm}.
If dim(Timp) > Nmax Then Modify Timp as

(1) If dλv(θa)
dθ

T
λv(θa) > 0 and dλv(θb)

dθ

T
λv(θb) < 0 Then

(i) If θa = θ1 Then

θb = θm and Timp = Timp − {θb}. (22)

(ii) Else
If θb = θf Then

θa = θm and Timp = Timp − {θa}. (23)

(iii) Else

θa = θb = θm and Timp = Timp − {θa, θb}
if θm = (θa + θb)/2, (24)
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θa or θb = θm and Timp = Timp − {θa or θb}
if |θm − θa| < |θm − θb| or |θm − θb| < |θm − θa|. (25)

(2) If dλv(θa)
dθ

T
λv(θa) < 0 or dλv(θb)

dθ

T
λv(θb) > 0

(i) If dλv(θa)
dθ

T
λv(θa) > 0 Then

θa = θm and Timp = Timp − {θa}. (26)

(ii) If dλv(θb)
dθ

T
λv(θb) < 0 Then

θb = θm and Timp = Timp − {θb}. (27)

(iii) If dλv(θb)
dθ

T
λv(θb) > 0 and dλv(θa)

dθ

T
λv(θa) < 0

θa = θb = θm and Timp = Timp − {θa, θb}. (28)

(c) Solve polynomial system w.r.t. (λ, {�vi}i=1,f )

λT R(θi)R(θi)
T λ = 1, ∀θi ∈ Timp,

∑

θi∈Timp

[
R(θi)R

T (θi)
]
λ�vi = uf , ∀θi ∈ Timp, i = 1, . . . ,N,

�vi ≥ 0, i = 1, . . . ,N.

(29)

(d) Choose the minimum-fuel solution:

λiter = arg
[
min

λ
uT

f λ
]
. (30)

(e) Compute impulses:

β(θi) = R(θi)
T λiter, ∀θi ∈ Timp, i = 1, . . . ,N,

�V (θi) = �viβ(θi), ∀θi ∈ Timp, i = 1, . . . ,N.
(31)

(f) Compute cost difference

diffcost = ∣∣uT
f λiter − uT

f λiter−1
∣∣. (32)

(g) Compute R(θ) on grid Π and Propagate λv(θ) via

λv(θ) = RT (θ)λiter. (33)

(h) Compute

lvm = max
θ∈[θ1,θf ]

∥∥λv(θ)
∥∥ and θm = arg

[
max

θ∈[θ1,θf ]
∥∥λv(θ)

∥∥
]
.

Repeat Iterative Procedure until lvm ≤ 1.
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The initialization stage and step c of the iterative procedure require solving a sys-
tem of polynomial equations ((17) in the first case if the transition matrix Φ(θf , θ1)

is ill-conditioned and (29) in the iterative procedure) with respect to λ and �vi . The
set of solutions to the two first sets of equations of this polynomial system are com-
posed of 8 couples of solutions (λ, {�vi}i=1,...,f ). Among this set of solutions, only
those corresponding to a positive magnitude are kept to compute the minimum-fuel
solution. Note that regular algebraic tools for finding all real solutions of multivari-
ate polynomial equations based on formal Gröbner basis computation may fail due
to highly complex equations. Here, homotopy continuation methods have been used
[26]. In particular, the free software package PHCPack developed by Jan Verschelde
[27] is used to solve the system of polynomial equations at each iteration at step c

of the iterative procedure, and at the initialization step if necessary. The efficiency of
this algorithm is now demonstrated on several different examples.

4 Applications and Numerical Examples

In this section, numerical results obtained from the mixed iterative algorithm, applied
to an initial academic example, are compared with previous ones published in the lit-
erature [8]. Two additional examples based on more realistic cases borrowed from the
ATV program [20] and the PRISMA test bed [3] are provided.1 In all cases, when the
mixed iterative algorithm converges to an Nit solution, the Polynomial Rendezvous
Delta-V (PRDV) algorithm from [16] is used to certify optimality of this solution
for this fixed number of impulses. Only coplanar elliptic rendezvous problems based
on the Yamanaka–Ankersen transition matrix [19] are considered for numerical illus-
tration of the results proposed, except for the first case study for which eccentricity
e = 0. In this last case, the Yamanaka–Ankersen transition matrix reduces to the Hill–
Clohessy–Wiltshire transition matrix [17]. Under Keplerian assumptions, the bound
of Neustadt [23] on the optimal number of impulses is 4 and therefore Nmax = 4
in the following. Note also that the algorithm has been successfully applied to the
highly elliptic rendezvous mission SIMBOL-X in [24]. Finally, all numerical exam-
ples are processed using PHCpack 2.3.52 [26, 27] under Matlab 2010b© running on
an Intel� Core(TM) i7 X920 2.0 GHz system with 8 GB RAM.

4.1 Case Study 1

The first example is one of the academic cases of Carter, and is recalled in Table 1.
As will be seen in the sequel, this simple example is particularly interesting since
it exhibits numerical hurdles to find the optimal solution that is quite surprising for
such a simple example.

1We would like to thank J.C. Berges from DCT/SB/MO at CNES who provided us with the scenarios for
these particular examples.
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Table 1 Data for Carter’s first
example [8] Eccentricity e = 0

θ0 0 rad

XT
0 [1 0 0 0]

θf 2π rad

XT
f

[0 0 0 0]

4.1.1 Analysis of Carter’s Solution

The solution proposed in [8] is the minimum-fuel two-impulse solution for fixed
thrust locations at the beginning and end of the rendezvous duration. It is made of an
initial and final thrusts in opposite directions along the x-axis of the LVLH frame.
This solution is analytical in the sense that it is the solution of the linear system:

Rhcw(0)�V (0) + Rhcw(2π)�V (2π) = φ−1
hcw(2π)Xf − φ−1

hcw(0)X0 = uf (34)

and may readily be computed as:

�V (0) = [
1

6π
0
]T

, �V (2π) = [− 1
6π

0
]T

. (35)

It could be a reasonable conjecture that this is the minimum-fuel solution, in particu-
lar when recalling the following result from [21].

Theorem 4.1 [21] For HCW rendezvous problems, there is no optimal four-impulse
conditions for boundary conditions defined as

XT
0 = [

x0 z0 0 0
]
, XT

f = [
0 0 0 0

]
.

It appears that the solution (35) is not optimal, as may be demonstrated by the
associated primer vector that does not satisfy all the necessary conditions of optimal-
ity. λv(θ) is defined by λv(θ) := RT (θ)λ, where λ = [λ1 λ2 λ3 λ4]T must be the
solution of the following linear system:

⎡

⎢⎢⎣

36π2 + 8 4 12π −6π

4 2 0 0
12π 0 8 −4
−6π 0 −4 2

⎤

⎥⎥⎦

⎡

⎢⎢⎣

λ1
λ2
λ3
λ4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−6π

0
0
0

⎤

⎥⎥⎦ . (36)

Hence, λ may be parametrized as:

λ = [− 1
3π

2
3π

λ3 −1 + 2λ3
]T

. (37)

If λ is a solution verifying the optimality condition (9), then

∥∥λv(θ)c
∥∥ = ∥∥RT

hcw(θ)λ
∥∥ < 1, ∀θ ∈]0,2π[. (38)
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The condition (38) is equivalent to the existence of λ3 ∈ R such that ∀θ ∈]0,2π[:
∥∥λv(θ)

∥∥2 = ∥∥RT
hcw(θ)λ

∥∥2
< 1

= [
4(cos θ − 1)2 + sin2 θ

]
λ2

3 − 4

π
(cos θ − 1)[θ − π − sin θ ]λ3

+ (3(θ − π) − 4 sin θ)2 + 4(cos θ − 1)2

9π2
< 1. (39)

For θ = π
20 , it is easy to show that the second order polynomial of (39) is always

strictly greater than 1, ∀λ3 ∈ R. Carter’s solution is, therefore, not optimal.

4.1.2 Analytical Two-impulse Solution

Let us now consider this problem, without setting the two times of thrusting a priori,
but by defining (θ1, θ2) as decision variables. The two-point boundary value problem
reads as:

Xf − Φ(2π,0)X0 = Φ(2π, θ1)B�V (θ1) + Φ(2π, θ2)B�V (θ2), (40)

and is equivalent to the system (41) to be solved:

⎡

⎢⎢⎢⎣

−6π + 3θ1 − 4 sin θ1 2 − 2 cos θ1 −6π + 3θ2 − 4 sin θ2 2 − 2 cos θ2

−2 + 2 cos θ1 − sin θ1 −2 + 2 cos θ2 − sin θ2

−3 + 4 cos θ1 −2 sin θ1 −3 + 4 cos θ2 −2 sin θ2

2 sin θ1 cos θ1 2 sin θ2 cos θ2

⎤

⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎣

�Vx(θ1)

�Vz(θ1)

�Vx(θ2)

�Vz(θ2)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

−1

0

0

0

⎤

⎥⎥⎥⎦ ,

M(θ1, θ2)�V = �f .

(41)

The determinant of M(θ1, θ2) is:

detM(θ1, θ2) = 16 sin2((θ2 − θ1)/2
) − 3(θ2 − θ1) sin(θ2 − θ1) = g(θ), (42)

where 0 ≤ θ = θ2 − θ1 ≤ 2π . The function g(θ) is a strictly positive on ]0,2π[ and
vanishes for 0 and 2π as may be easily verified [6]. Cases θ = 0 and θ = 2π may be
excluded for obvious reasons. We get the vector of thrusts as functions of (θ1, θ2).

⎡

⎢⎢⎢⎣

�Vx(θ1)

�Vz(θ1)

�Vx(θ2)

�Vz(θ2)

⎤

⎥⎥⎥⎦ = M−1(θ)�f = 1

g(θ)

⎡

⎢⎢⎢⎣

− sin θ

−4 sin2(θ/2)

sin θ

−4 sin2(θ/2)

⎤

⎥⎥⎥⎦ . (43)
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Fig. 3
dJl2

(θ)

dθ
and

d2Jl2
(θ)

dθ2 on (0,2π)

The minimum-fuel rendezvous problem is equivalent to the parametric optimization
problem (44), where θ is the only decision variable.

min
θ

2
√

sin2 θ + 16 sin4(θ/2)

16 sin2(θ/2) − 3θ sin θ
= Jl2(θ)

s.t. 0 < θ < 2π.

(44)

As it is, this problem appears difficult to solve analytically. In fact, (44) is a convex
optimization problem for which a minimum may be computed, via the computation
of the only zero of its derivative (45) on the interval (0,2π) by a Newton method.

dJl2(θ)

dθ
= −2

(
18θ + 8 sin(2θ) − 9 sin(3θ)/4 − 37 sin θ/4

(16 sin2(θ/2) − 3θ sin θ)2
√

16 sin4(θ/2) + sin2 θ

+ 24θ(2 sin2(θ/2) − 1) − 6θ(2 sin2(θ) − 1)

(16 sin2(θ/2) − 3θ sin θ)2
√

16 sin4(θ/2) + sin2 θ

)
. (45)

We get the minimizer θ∗ of (44) as

θ∗ = 6.230033575529312. (46)

The first and second derivatives of g(θ) are shown in Figs. 3(a) and 3(b), confirming
the convexity of the problem on the interval ]0,2π[.

Finally, the optimal cost and the optimal maneuvers for Carter’s example are given
by:

Jl2

(
θ∗) = 0.105954087364712

⎡

⎢⎢⎢⎣

�Vx(θ1)

�Vz(θ1)

�Vx(θ2)

�Vz(θ2)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

−0.052902333870518

−0.002812512822111

0.052902333870518

−0.002812512822111

⎤

⎥⎥⎥⎦ . (47)
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Table 2 Results of the mixed
iterative algorithm for Carter’s
first example [8]

Mixed iterative algorithm

θi (rad) [0 0.0681 6.1837 2π ]
�V (θ0)T [0.021453 0.001138]
�V (θ1)T [0.031449 0.001685]
�V (θ2)T [0.006797 0.000364]
�V (θf )T [0.046105 0.002446]
Fuel cost 0.105954

Fig. 4 Norm of the primer
vector and cost evolution

These results show that the optimal two-impulse solution for this example is not
unique. There is an infinite number of optimal solutions with the same consumption
and a couple of optimal impulse times verifying (θ∗

1 , θ∗
2 ) ∈]0,2π − θ∗[× ]θ∗,2π[

with θ∗
2 − θ∗

1 = θ∗.

4.1.3 The Mixed Iterative Algorithm Solution

The results of the mixed iterative algorithm are presented in the Table 2 and clearly
show that Carter’s solution is indeed not an optimal solution. The mixed algorithm
converges after 13 iterations to a four-impulse solution illustrated by Fig. 5(a). The
norm of the primer vector and the cost evolution are given in Fig. 4 where lvm =
1.0000048.

The distribution of this solution may be defined as two pairs of almost simultane-
ous impulses at the beginning and at the end of the rendezvous (as is illustrated by
the plot of the trajectory in the orbital plane in Fig. 5(b)).

Keeping in mind that the optimal solution has been computed analytically as a
two-impulse solution (with one initial and one final coasting period) and recalling the
result presented by Theorem 4.1, the result of the mixed iterative algorithm may be
analyzed as a tight approximation of the genuine optimal two-impulse solution.
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Fig. 5 State and control trajectories for the Carter’s first case [8]

Table 3 ATV rendezvous
characteristics Semi-major axis a = 6763 km

Inclination i = 52 deg

Argument of perigee ω = 0 deg

Right ascension of the ascending
node

Ω = 0 deg

Eccentricity e = 0.0052

True anomaly θ0 = 0 rad

t0 0 s

XT
0 = [rT

0 vT
0 ] [−30 0.5 8.514 0] km -m/s

tf 55350 s

XT
f

= [rT
f

vT
f

] [−100 0 0 0] m -m/s

Nmax 4

4.2 Case Study 2

Following the first academic numerical example, a more realistic illustration based
on the first Automated Transfer Vehicle (ATV) mission [20] is now presented. The
ATV is the European unmanned Vehicle capable of performing in-orbit replenishment
missions to the International Space Station (ISS). The orbital elements of the target
orbit are given in Table 3. Initial, final rendezvous conditions and duration listed in
Table 3 are variations of the original scenario that have been provided by CNES. Note
that the rendezvous should last for 10 orbit periods.

The mixed iterative algorithm converges to the three-impulse optimal solution
within 5 iterations as shown in Table 4. The PRDV algorithm has been applied to
this case to certify global optimality of this solution. In addition, the classical two-
impulse solution without initial or final coast arc cannot be computed for this example
due to the ill-conditioning of the data.

The in-plane trajectory and impulse positions are depicted in Fig. 6(a), while
Fig. 6(b) gives the amplitude and locus of the primer vector.
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Table 4 Results of the mixed
iterative algorithm and
two-impulse solution for the
ATV case study

Two-impulse solution Mixed iterative algorithm

θint (rad) – 59.8867

�V (θ0)T – [−7.55418 0.2336]
�V (θ1)T – [0.14408 0.00103]
�V (θf )T – [0.04166 0.00128]
Fuel cost m/s – 7.74356

Fig. 6 Trajectory and primer vector norm and locus for the ATV mission

4.3 Case Study 3

Finally, an illustration based on PRISMA [3] is now presented. PRISMA programme
is a cooperative effort between the Swedish National Space Board (SNSB), the
French Centre National d’Etudes Spatiales (CNES), the German Deutsche Zentrum
für Luft- und Raumfahrt (DLR) and the Danish Danmarks Tekniske Universitet
(DTU) [2]. Launched on June 15, 2010 in Yasny (Russia), it was intended to test
in-orbit new guidance schemes (particularly autonomous orbit control) for formation
flying and rendezvous technologies. This mission includes the FFIORD experiment
led by CNES, which features a rendezvous maneuver (formation acquisition). The
orbital elements of the target orbit, as well as initial and final rendezvous conditions,
are listed in Table 5.

To save fuel and allow for in-flight testing throughout the FFIORD experiment,
the rendezvous maneuver must last several orbits. Duration of the rendezvous is ap-
proximately 12 orbital periods for an expected average cost of 20 cm/s [3].

The mixed iterative algorithm achieves optimization within 6 iterations. Global
optimality of this four-impulse solution has been established by running the PDRV
algorithm.

Figure 7(b) shows primer vector magnitude during transfer. Note the low mag-
nitude of the second and third impulses (0.009 m/s), with respect to the initial and
final velocity increments (0.039 m/s), but these velocity increments play a signifi-
cant role in the optimality of the result. In particular, they provide the right chaser
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Table 5 PRISMA rendezvous
characteristics Semi-major axis a = 7011 km

Inclination i = 98 deg

Argument of perigee ω = 0 deg

Right ascension of the ascending
node

Ω = 190 deg

Eccentricity e = 0.004

True anomaly θ0 = 0 rad

t0 0 s

XT
0 = [rT

0 vT
0 ] [10 0 0 0] km -km/s

tf 70107.1282 s

XT
f

= [rT
f

vT
f

] [100 0 0 0] m -m/s

Nmax 4

Table 6 Results of the mixed
iterative algorithm and
two-impulse solution for the
PRISMA case study

Two-impulse solution Mixed iterative algorithm

θ1
int (rad) – 4.5317

θ2
int (rad) – 70.8663

�V (θ0)T [0.04669 −0.04276] [0.03893 −0.00321]
�V (θ1)T – [0.009232 −0.00002]
�V (θ2)T – [0.009232 −0.00002]
�V (θf )T [−0.046695 0] [0.03893 −0.00321]
Fuel cost m/s 0.11 0.09659

Fig. 7 Trajectory and primer vector norm and locus for the PRISMA mission

orientation for the long drift (61665 s) between the second impulse and the third one.
The two-impulse strategy, presented in the second column of Table 6, proves to be
strongly suboptimal since its fuel cost is 13.83 % greater than the optimal solution
(0.09659 m/s). The long drifting period of 61665 s of the optimal solution is clearly
illustrated in Fig. 7(a) where the in-plane trajectory and impulse positions are repre-

Author's personal copy



J Optim Theory Appl

sented. Finally, it is worth noticing that the optimal cost is half the expected average
cost of 20 cm/s [3].

5 Conclusion

A new numerical algorithm, based on heuristic rules deduced from the work of [11]
and tools from algebraic geometry, has been proposed to address the issue of time-
fixed optimal rendezvous in a linear setting. This algorithm is a mixed iterative al-
gorithm optimizing over the number of impulses with a low numerical complexity,
mainly consisting in the solution of a small size polynomial system of equations.

A first extension of this work would be to derive a formal proof of the conver-
gence of this heuristic algorithm. This convergence analysis could demonstrate the
efficiency of the logic on which is based the algorithm or concur to improve it. In
addition, its numerical behavior may probably be improved by considering a tai-
lored tool for the solution of the system of polynomial equations. Despite the good
numerical results presented, some improvement can still be expected if more sophis-
ticated transition matrices (including orbital perturbation effects) are used such as
atmospheric drag or gravity harmonics term J2. It will imply to work out general-
izations of the work of Lion and Handelsman to new relative dynamics models such
the ones given in [28, 29]. Another avenue of research deals with the extension of
this algorithm for optimal trajectory planning with collision avoidance constraints by
considering path-constraints for impulsive trajectories.
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would like to thank Marine Feron for her careful reading of our manuscript and providing us with her
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