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Abstract: This paper presents minimum-fuel glideslope autonomous guidance algorithms for
approaching a target evolving on a circular orbit. In the context of a chemical propulsion,
the classical multipulse glideslope algorithm of Hablani is revisited and it is shown that when
considering specific common directions for the glideslope such as V-bar and R-bar directions, a
linear formulation of the circular minimum-fuel linearized rendezvous problem may be deduced.
Unlike the classical glideslope algorithm for which there is no direct control on the fuel
consumption, additional degrees of freedom and relevant decision variables may be identified
by combining an analytical expression for the maximal guidance error and Hill-Clohessy-
Wiltshire relative equations of motion. For a fixed-time rendezvous with a pre-assigned number
of maneuvers, a fuel-optimal solution with a bounded guidance error is obtained by solving a
linear programming problem. Numerical examples demonstrate the usefulness of the approach
with respect to the classical ones when the approach corridor has to fulfill stringent geometrical
restrictions such as line-of-sight constraints.

Keywords: Glideslope approach, impulsive control, circular rendezvous,
Hill-Clohessy-Wiltshire equations, linear programming

1. INTRODUCTION

During the last fifteen years, there has been an increasing
demand to perform autonomous rendezvous, proximity or
On-Orbit Servicing operations between an active chaser
spacecraft and a passive target spacecraft. Autonomy
means that new challenges have to be met when designing
appropriate guidance schemes. In particular, simplicity of
onboard implementation while preserving optimality in
terms of fuel consumption, is fundamental. For the prox-
imal rendezvous phase, the assumption that the distance
between the chaser and the target is small enough com-
pared to the distance between the target and the center of
attraction a linearized model for relative dynamics may
be used to simplify the design of guidance schemes. In
addition, if the maneuvers carried out on-board provide
short high thrust pulses approximated as impulsive ma-
neuvers, the design of efficient guidance scheme for the
general rendezvous problem may be greatly simplified,
Fehse (2003). The impulsive approximation for the thrust
means that instantaneous velocity increments are applied
to the chaser whereas its position remains unchanged.

This paper focuses on the fixed-time linearized minimum-
fuel impulsive proximal rendezvous problem. Depending
on various operational and safety constraints, different
approaching trajectories may be envisioned and proposed
to realize the proximal rendezvous. In the literature, com-
mon approach strategies and directions of approaching a
target in the close range phase of the rendezvous mis-
sion are known as V-bar (curvilinear orbit direction as
a straight line) and R-bar(direction of the center of at-

traction) approaches. This is mainly due to observability
(line-of-sight constraints) and safety reasons imposing the
requirement of a trajectory belonging to a cone-shaped
approach corridor. One simple reference approaching tra-
jectory complying to safety restrictions is known as the
glideslope approach. A glideslope trajectory is a straight
path connecting the current location of the chaser to its
final destination which is a position of interest in space
near the target. The glideslope approach has been first
defined in the past for rendezvous and proximity oper-
ations involving the space shuttle, Pearson (1989). This
preliminary study has been extended and generalized later
for any direction in space and circular reference orbit in
Hablani et al. (2002), Wang et al. (2007) and for elliptic
reference orbit in Okasha and Newman (2011). Indeed, the
results presented in Hablani et al. (2002) are well-known
and define the so-called classical glideslope algorithm.

Our goal is to revisit the classical glideslope algorithm of
Hablani in specific cases (V-bar and R-bar approaches) for
which additional degrees of freedom helping to derive an
optimization formulation may be defined. The inherent
guidance error produced by the glideslope approach at
each hump is bounded allowing to control it in a lin-
ear programming formulation of the guidance problem.
Thanks to simple analytical derivations, two algorithms
based on a linear programming formulation are designed
and permit to obtain a minimum-fuel solution to the
glideslope guidance problem while controlling the guid-
ance error. The two proposed algorithms are compared
to the classical glideslope algorithm and to analytical
transfers from Fehse (2003) on two numerical examples



(one for the V-bar and one for the R-bar) illustrating the
interest of this new approach. Note that the trajectories
are considered in an open-loop setup in this paper whereas
real trajectories undergo orbital disturbances and there-
fore, have to be closed-loop controlled.

Notations: A⊗B stands for the usual Kronecker product
between matrices A and B. Op×m, Im and 1m denote
respectively the null matrix of dimensions p×m, the iden-
tity matrix of dimension m and the m-vector composed of
ones.Mm and Lm are respectively defined as a (m+1)×m
matrix and a m square matrix defined by:

Mm =



1 0 · · · 0

−1 1
. . .

...

0 −1
. . . 0

...
. . .

. . . 1
0 · · · 0 −1

 , Lm =



0 0 · · · · · · 0

1 0
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 0

0 · · · 0 1 0


(1)

n =

√
µ

a3
is the mean motion of the circular reference

orbit where a is its radius and µ is the standard gravita-
tional parameter.

2. CLASSICAL GLIDESLOPE APPROACH FOR
RENDEZVOUS

2.1 Relative motion dynamics

This work focuses on the close range phase of the space-
craft rendezvous mission, Fehse (2003). When relative
navigation information is available to the chaser, the
relative motion expressed in the Local-Vertical-Local-
Horizontal (LVLH) frame centered at the target space-
craft position and depicted on Figure 1 is used to charac-
terize the dynamics of the chaser.
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r

Fig. 1. LVLH frame for spacecraft rendezvous.

The vector r defines the relative position of the chaser
with respect to the target. Without any further assump-
tions, the relative dynamics are described by a set of
nonlinear differential equations, Alfriend (2010), which
are hard to handle for control purposes. Considering that
the two spacecraft are sufficiently close to each other
(proximity assumption) and under Keplerian hypothesis,
linear relative dynamics may be derived as shown in
the seminal work of Lawden, Lawden (1963). This set
of equations are also known as the Tschauner-Hempel
equations, Tschauner and Hempel (1964), that boil down
to the well known Hill-Clohessy-Wiltshire equations, Clo-
hessy and Wiltshire (1960), when the target spacecraft
orbit is supposed to be circular. Defining the state vector
of the relative dynamics by X(ν) = [r(ν), v(ν)]T =

[x, y, z, dx
dν ,

dy
dν ,

dz
dν ]T where time is replaced by the

true anomaly ν as the independent variable, the au-
tonomous relative motion of the chaser has the follow-
ing Linear Time-Invariant state space representation, Al-
friend (2010):

dX

dν
(ν) =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2
0 −1 0 0 0 0
0 0 3 −2 0 0

X(ν). (2)

The transition matrix Φ(ν, ν0) of (2) is readily available
such that X(ν) = Φ(ν, ν0)X(ν0) for ν ≥ ν0 where:

Φ(ν, ν0) =


1 0 6(δν − sν) (4sν − 3δν)/ω 0 2(1− cν)/ω
0 cν 0 0 sν 0
0 0 4− 3cν 2(cν − 1)/ω 0 sν/ω
0 0 6ω(1− cν) 4cν − 3 0 2sν
0 −sν 0 0 cν 0
0 0 3ωsν −2sν 0 cν


(3)

where δν = ν − ν0, cν = cos(ν − ν0) and sν = sin(ν − ν0).
It is assumed that only the chaser is cooperative using
6 ungimbaled identical chemical thrusters. The use of
chemical propulsion allows to idealize possible thrusts
as impulsive maneuvers providing instantaneous velocity
changes while the relative position remains unchanged
during firing. Thus, a controlled trajectory composed of
N impulses is described by the following equation:

X(ν) = Φ(ν, ν0)X(ν0) +

N∑
i=1

Φ(ν, νi)B∆vi, (4)

where ν1 < ν2 < · · · < νN ≤ ν and ∆vi denotes the
impulsive control applied at νi. B = [O3 13]T is the input
matrix. It is well-known and it may be observed from
equations (2) and (3) that the in-plane motion (x − z)
and the out-of-track motion are decoupled. This work
will be focused on the in-plane motion for which fuel-
optimal V-bar and R-bar glideslope guidance schemes will
be derived. Hereafter, the following notation describing
the in-plane free motion is adopted:[
r(ν)
v(ν)

]
=

[
Φrr(ν, ν0) Φrv(ν, ν0)
Φvr(ν, ν0) Φvv(ν, ν0)

] [
r0
v0

]

=

 1 6(δν − sν) (4sν − 3δν)/ω 2(1− cν)/ω
0 4− 3cν 2(cν − 1)/ω sν/ω
0 6ω(1− cν) 4cν − 3 2sν
0 3ωsν −2sν cν


(5)

where r = [x z]T and v = [vx vz]
T .

2.2 Hablani’s classical glideslope approach for rendezvous

As mentioned in the introduction, the most cited reference
on this topic is the paper Hablani et al. (2002) in which
the so called classical inbound and outbound glideslope
approaches for circular reference are presented in a general
setup. This paper is only concerned by inbound decel-
erating glideslope trajectories and the main features of
the classical glideslope algorithm are now recalled in this
particular case. In the general case, this guidance trajec-
tory is characterized by a straight line and its associated
vector ρ(ν) = rc(ν) − rT , defining the commanded path
as illustrated in Figure 2. Defining ρ0 = r0−rT , the unit
vector u defines the direction of the straight path where:

u =

[
x0 − xT
‖ρ0‖

y0 − yT
‖ρ0‖

z0 − zT
‖ρ0‖

]T
.

Hablani et al. (2002) The chaser is commanded to reach
rT from r0 following a specific commanded profile for the
distance to go ‖ρ‖ = ρ:
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Fig. 2. Glideslope approach.

ρ(ν) = ρ0e

(ρ̇0 − ρ̇T )ν

nρ0 +
ρ̇T ρ0

ρ̇0 − ρ̇T

e (ρ̇0 − ρ̇T )ν

nρ0 − 1


(6)

where ρ̇0 < 0, ρ̇T < 0 are respectively the initial and
final commanded velocities and ρ0 is the initial distance
to go. These quantities are specified by the designer and
inputs for the classical algorithm. Note that ρ̇0 > ρ̇T
and that ρT = 0 by definition of the trajectory. For
a given set of these parameters, the basic principle of
the classical algorithm is then to analytically compute a
fixed number of impulses equally spaced in time over the
transfer duration T . Each computed incremental velocity
at rk is obtained as ∆vk = v+

k − v
−
k where v+

k is the
departure velocity needed to go from rk to rk+1 and
v−k is the arrival velocity at rk. Both quantities are
simply obtained by solving the autonomous Hill-Clohessy-
Wiltshire (5) at each step k.

The classical glideslope algorithm is straightforward and
rapid to implement but suffers from key shortcomings.
In particular, it is important to notice that the actual
trajectory of the chaser will not be strictly along the
commanded straight line path but will exhibit humps
between the N points where an impulsive maneuver
is performed and located on the commanded path (cf.
Figure 2). These humps coming from the natural relative
motion of the chaser driven by the Hill-Clohessy-Wiltshire
equations are nothing but lateral guidance position errors
possibly occurring in and out-of-plane that cannot be
directly controlled in the classical glideslope algorithm.
In addition, if the initial and final commanded velocities
of the glideslope profile are a priori given, there is no
degree of freedom left to control the transfer time and the
consumption when X(0) and X(νT ) are fixed. Indeed, the
transfer time T is not fixed a priori but deduced from the
initial and final commanded velocities (ρ̇0, ρ̇T ) and from
the initial distance to go ρ0:

T =
ρ0

ρ̇0 − ρ̇T
ln

[
ρ̇T
ρ̇0

]
. (7)

The consumption itself is computed a posteriori from the
velocity increments without any possibility to optimize it
for given side conditions of the rendezvous. The objective
of the paper is then to propose a new optimization algo-
rithm for particular and common glideslope approaching
directions as V-bar and R-bar allowing to take these
important features into account.

- Minimize the fuel-consumption for a given set of
initial and final rendezvous conditions and an a priori
fixed time of transfer;

- Control the maximum guidance error by defining
constraints on the humps profile.

2.3 Derivation of guidance error in orbital plane

Keeping in mind the requirements of the previous section,
finding an analytical expression for the guidance error is
a key technical step for the development of an efficient
algorithm. Due to the decoupling property between in-
plane and out-of-plane keplerian relative motions, this
study will be limited to glideslope approaches defined in
the orbital plane.

Let us define the point A in the x−z plane (see Figure 2)
as the orthogonal projection of the chaser position r on
the glideslope straight line. We can thus write

OA = (r − r0)Tu u+ r0,

and hence, guidance error is given by

εT = r −OA.
The guidance error norm is then deduced as:

‖εT ‖2 =
(
δr − [δrTu] u

)T(
δr − [δrTu] u

)
= δrT δr − [δrTu]2

= δr2
x(1− u2

x) + δr2
z(1− u2

z)− 2uxuzδrxδrz

(8)

with δr = r − r0, δrx = x− x0 and δrz = z − z0.

3. MINIMUM-FUEL V-BAR GLIDESLOPE
APPROACH VIA LINEAR PROGRAMMING

3.1 Constraint on guidance error

Considering a glideslope along a line parallel to the x-
axis, the unitary direction vector u is [1 0 0]T . Hence, the
guidance error norm (8) is reduced to

‖εT ‖2 = δr2z ,

=

(
(4− 3 cos δν)z0 +

2

ω
(cos δν − 1)x′0 +

1

ω
z′0 sin δν − z0

)2

,

=

(
3(1− cos δν)z0 +

2

ω
(cos δν − 1)x′0 +

1

ω
z′0 sin δν

)2

.

(9)
When the guidance error distance is maximal, the velocity
vector v is parallel to the glideslope line. A maximum
condition is then given by

z′ = 0 ⇔ 3ωz0 sin δν − 2x′0 sin δν + z′0 cos δν = 0. (10)

Lemma 1. Let us define δνm the value of the true anomaly
when guidance error is maximal and δν0 the value of the
true anomaly when guidance error is null, that is, when
the satellite is back on the glideslope commanded path.
Considering a single hump, we have the relationship:

δν0 = 2 δνm.

That is, the maximum occurs in the middle (in terms of
true anomaly) of the hump.

From equation (9), guidance error distance can be readily
upper-bounded with

|εT | =
∣∣∣(3− 3 cos δν)z0 +

2

ω
(cos δν − 1)x′0 +

1

ω
z′0 sin δν

∣∣∣,
≤
∣∣∣(3− 3 cos δνm)z0 +

2

ω
(cos δνm − 1)x′0 +

1

ω
z′0 sin δνm

∣∣∣.
3.2 Problem formulation

We aim now at combining motion equations, guidance
error equations and identify relevant decision variables in
order to formulate an optimization problem. The analysis
of the previous paragraph provides an inequality that will



be used to specify maximum conditions on guidance error
for each hump, k = 0, . . . , N − 1:∣∣∣(3− 3 cos δνm)z0 +

2

ω
(cos δνm − 1)x′k +

1

ω
z′k sin δνm

∣∣∣ ≤ mk
are equivalently (3− 3 cos δνm)z0 +

2

ω
(cos δνm − 1)x′k +

1

ω
z′k sin δνm ≤ mk

−(3− 3 cos δνm)z0 −
2

ω
(cos δνm − 1)x′k −

1

ω
z′k sin δνm ≤ mk

(11)
where mk is given and specifies the maximal allowable
guidance error during the (k + 1)th maneuver. We recall
that assuming the interval δν0 is constant, the parameter
δνm is constant too.

After each maneuver, the chaser must be back on the
glideslope. Such a requirement can be enforced by N
equations of the form

rk+1 = Φrrrk + Φrvvk, k = 0, . . . , N − 1 (12)

where

rk =
[
xk
z0

]
, vk =

[
x′k
z′k

]
, r0 =

[
x0
z0

]
, rN =

[
xT
z0

]
.

r0 and rT are given and impose the initial and final posi-
tions. The z-component of rk remains constant and equals
z0 since the glideslope is assumed to be parallel to the
V-bar direction. The interval δν0 between two impulses
being constant, the transition matrix {Φrr,Φrv,Φvr,Φvv}
is constant. We consider vk as the velocity vector result-
ing from the (k + 1)th control impulse. Its components
together with xk form our decision variables. Hence, all
positions on the glideslope, except the initial and final
ones, are set free. Moreover, an additional equation may
be specified so as to impose a final velocity condition vT :

vT = vN = ΦvrrN−1 + ΦvvvN−1 + ∆vN . (13)

vN is thus the desired final velocity vector (and not a
variable) while ∆vN is an extra variable representing the
last impulse.

The optimization problem consists in finding the values
of

• velocity vectors vk for k = 0, . . . , N − 1,
• positions xk between two manoeuvres for k =

1, . . . , N − 1,
• the final impulse ∆vN ,

minimizing the overall consumption. This latter is based
on impulses:

min

N∑
k=0

‖∆vk‖1,

with ∆vk = vk − vk− . This criterion can be expressed
with respect to the decision variables:

min ‖v0−v0−‖1+

N−1∑
k=1

‖vk−Φvrrk−1−Φvvvk−1‖1+‖∆vN‖1,

(14)
where v0− is the initial velocity vector. This cost function
involving absolute values can be transformed into a lin-
ear function with the introduction of new variables and
inequality constraints, Bertsimas and Tsitsiklis (1997).

3.3 Minimum-fuel LP algorithm

In this paragraph, the optimization to be addressed is
stated and an algorithm is proposed. This algorithm
computes appropriate impulses to transfer the satellite
from an initial position r0 to a final position rT while

minimizing the consumption. Considering the decision
variables previously defined, the cost criterion (14) and
gathering constraints on guidance errors (11), on positions
(12) and on the final velocity (13), a linear programming
problem can be built.

min cTX

s.t. AX ≤ b, AeqX = beq
(15)

The vector X puts together all the decision variables,

X =
[
x1 . . . xN−1 v

T
0 . . . vTN−1 ∆vTN dT0 . . . dTN

]T
,

(16)
where di ∈ R2 are extra variables used to deal with the
absolute values in the cost function. This cost criterion
is then reduced to the sum of di, i = 0, . . . , N , and the
vector c is defined as

cT = [O1×3N+1 1 . . . 1 ] .

The equality constraint is built on equations (12) and
(13), while the inequality constraint is built on equation
(11) and additional inequalities introduced to cope with
the absolute values in the cost function, Bertsimas and
Tsitsiklis (1997). The different matrices involved in the
linear programming problem are defined as:

Aeq =

[
MN−1 ⊗ C1 −IN ⊗ Φrv O2N×2 O2N×(2N+2)

O2×(N−1) O2×(2N−2) Φvv I2×2 O2×(2N+2)

]
(17)

and

beq =

 Φrrr0 − C2z0

1N−2 ⊗ (Φrr − I2)C2z0
ΦrrC2z0 − rT
vT − ΦvrC2z0

 , (18)

where C1 =
[

1
0

]
and C2 =

[
0
1

]
.

A =

O4(N+1)×N−1 A
O4N×2
I2
−I2

IN+1 ⊗
[−I2
−I2

]
O2N×N−1 IN ⊗M O2N×2 O2N×2(N+1)


(19)

where A =

 LN ⊗
[−Φvv

Φvv

]
+ IN ⊗

[ I2
−I2

]
O2×2N
O2×2N

 and

b =



v0−
−v0−
Φvrr0
−Φvrr0

1N−2 ⊗
[

ΦvrC2z0
−ΦvrC2z0

]
O2×1
O2×1
M0

...
MN−1


(20)

with

M =

 2

ω

(
cos δνm − 1

) 1

ω
sin δνm

− 2

ω

(
cos δνm − 1

)
− 1

ω
sin δνm

 ,
Mk =

[
mk −

(
3− 3 cos δνm

)
z0

mk +
(
3− 3 cos δνm

)
z0

]
.

(21)

Remark 1. Note that expressions of above matrices have
been slightly simplified because we have ΦrrC1 = C1 and

ΦvrC1 =
[

0
0

]
.



The procedure to run the glideslope method proposed
in this paper is summarized in Algorithm 1. Given an
initial {r0,v0−} and a final {rT ,vT } configuration, a
transfer time T and a number N of maneuvers, the
algorithm computes the optimal impulse sequence ∆vk,
k = 0, . . . , N , minimizing the consumption while ensuring
a maximal guidance error mk for each manoeuvre.

Algorithm 1: Minimum-fuel LP glideslope

Data: r0, rT , v−
0 , vT , N , T , ω, m

Initialization: δt = T/N ; δν0 = ω δt ; δνmax = δν0/2;[
Φrr,Φrv,Φvr,Φvv

]
← compute transition matrix for δt and ω;

for k = 0 to N − 1 do
Mk ← compute matrix with mk, z0 and δνmax;

A ← compute matrix with Φvv , δνmax, ω and N ;
b ← compute vector with Φvr, v0− , Mk, r0 and N ;

Aeq ← compute matrix with Φrv, Φvv and N ;
beq ← compute vector with Φrr, Φvr, r0, rT , vT and N ;
c ← compute vector with N ;
Solve: the linear programming problem, and store the optimal solution

in X
if a solution is found then

vk ← extracted from X, k = 0, . . . , N − 1;
∆vN ← extracted from X;
for k = 0 to N − 1 do

rk+1 ← Φrrrk + Φrvvk;
vk+1− ← Φvrrk + Φvvvk;

∆vk ← vk − vk− ;

else
increase some mk, update Mk and b, and re-run the solver;

4. EXTENSION TO R-BAR APPROACH

4.1 Constraint on excursion

In that case, the unitary direction vector u is [0 0 1]T .
Hence, the guidance error norm (8) reduces to:

‖εT ‖2 = δr2
x,

=

(
6z0(δν − sin δν) +

1

ω
(4 sin δν − 3δν)x′0

+
2

ω
(1− cos δν)z′0

)2

.

(22)

The following lemma will be used in the next paragraph
to provide an inequality constraint on the excursion for
each hump. Unlike the V-bar case, a simple relationship
between the true anomaly δνm when the guidance error
is maximal and the maneuver interval δν0 cannot be
established. So, a conservative bound is introduced.
Lemma 2. Let us define δν0 the value of the true anomaly
when guidance error is 0, that is, when the satellite is back
on the glideslope commanded path. Considering a single
hump such that δν0 ∈ [0 arccos 3

4 ], a conservative upper-
bound of the guidance error is given by:

|εT | ≤ α1|x′0|+ α2|z′0|+ α3|z0|,
with α1 = | 1ω (4 sin δν0− 3δν0)|, α2 = | 2ω (1− cos δν0)| and
α3 = |6(δν0 − sin δν0)|.

Although in the above lemma the range of δν0 is restricted
to [0 arccos 3

4 ], this result can be easily extended to a full
revolution.

4.2 Formulation and algorithm

The problem formulation for the R-bar approach follows
the same process as in Subsection 3.3. The set ofN motion
equations (12) with

rk =
[
x0
zk

]
, vk =

[
x′k
z′k

]
, r0 =

[
x0
z0

]
, rN =

[
x0
zT

]
.

allows the satellite to go along the glideslope line. For the
R-bar approach, the z-component is changing while the x-
component remains constant. Thus, equations (12), (13)
and (14) are considered again and combined with the new
appropriate vector of decision variables:

X =
[
z1 . . . zN−1 v

T
0 . . . vTN−1 ∆vTN dT0 . . . dTN

]T
.

Again, di ∈ R2 are extra variables used to deal with
the absolute values in the cost function. Eventually, a
minimum-fuel R-bar glideslope approach is formulated as
a linear programming problem (15) with matrices defined
as follows.

Aeq =

[
Ã −IN ⊗ Φrv O2N×2 O2N×2N+2

O2×N−2 ΦvrC2 O2×2N−2 Φvv I2×2 O2×2N+2

]
,

(23)

with Ã =
[IN−1 ⊗ C2
O2×N−1

]
+
[

O2×N−1
IN−1 ⊗−ΦrrC2

]
and

beq =

Φrrr0 − C1x0
O2(N−2)×1
C1x0 − rT

vT

 , (24)

A =


Â A

O4N×2
I2
−I2

IN+1 ⊗
[−I2
−I2

]
O8×N−1
IN−1 ⊗M1

IN ⊗M2 O8N×2 O8N×2(N+1)


(25)

where

A =

 LN ⊗
[−Φvv

Φvv

]
+ IN ⊗

[ I2
−I2

]
O2×2N
O2×2N

 ,
Â =

 O8×N−2 O8×1

IN−2 ⊗
[−ΦvrC2

ΦvrC2

]
O4(N−2)×1

O4×N−2 O4×1

 ,
M1 =

[
14
−14

]
α3, M2 = 12 ⊗

 α1 α2
α1 −α2
−α1 α2
−α1 −α2

 ,
and

b =



v0−
−v0−
Φvrr0
−Φvrr0
O4(N−1)×1

18m0 −M1z0
18m1

...
18mN−1


. (26)

5. NUMERICAL EXAMPLES

This scenario, extracted from Hablani et al. (2002), is
a tangential impulse transfer along V-bar direction and
considers a target flying an orbit at 400km altitude,
which corresponds to an orbital rate of ω ≈ 0.001 rad/s.
The standard glideslope algorithm is used to transfer the
chaser from x = −500 m to x = −100 m in 10 maneuvers
(N) along 9 min (T = 540 s). This example’s parameters
are set as follows:

r0 =

[
−500

0
−20

]
, rT =

[
−100

0
−20

]
, v0− =

[
0
0
0

]
.



N 2 3 4 10 20

cons. m/s
Std 3.61 4.76 5.63 8.09 9.32

Alg 1 2.26 2.29 2.30 2.31 2.31

exc. m
Std 26.2 16.2 11.1 2.67 0.78

Alg 1 13.8 6.2 3.5 0.56 0.15

Table 1.

x [m]
-550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50

z
[m

]

-20.5

-20

-19.5

-19

-18.5

-18

-17.5

-17

-16.5

-16
x! z plane

Standard glideslope
Algorithm 1
Two-impulses approach

Fig. 3. Three glideslope transfers along V-bar.

These parameters have been injected in Algorithm 1 to
compute the 10 pulses, and a final velocity has been spec-
ified as well (vT = 0). Figure 3 shows the chaser trajecto-
ries for three different methods in the x−z plane: the stan-
dard glideslope defined in Hablani et al. (2002), the two
impulses approach from Fehse (2003) and our Algorithm
1. In this simulation, the mk has been chosen identically
equal to 1m. It is interesting to note in that configuration
that the algorithm adjusts pulses to be regularly spaced.
We remind that xk, 0 < k < N , are not constrained (and
not ordered) and could be anywhere on the glideslope line.
Regarding the consumption, Algorithm 1 outperforms the
standard glideslope, reducing the cost from 8.09m/s to
2.31m/s. Note that we have included in the consumption
of the standard approach an extra impulse to end up the
manoeuvre with the desired final velocity vector vT . The
consumption of the two tangential impulses approach is
very low, 0.12m/s, but it results in a very large excursion
(≈ 125m). Table 1 compares numerical simulations of the
standard glideslope and Algorithm 1 for various number
of impulses. For every test we set mk identically equal to
20m.

A second scenario, inspired from Di Cairano et al.
(2012), is considered. In this case, from an initial position
(x0, z0) = (250, 0), the chaser must be transferred to a
target platform while remaining within a Line-of-Sight
(LOS) cone. The docking port is located at the position
coordinates (2.5, 0). The half angle of the LOS cone is
2deg and its vertex is 0.5m behind the docking port. The
simulations of the standard glideslope and Algorithm 1,
for N = 5 and T = 480s, are shown in Figure 4 and Figure
??. Specifying the following upper-bounds on guidance
error allows to maintain the spacecraft within the LOS
cone.

m = [ 5 1.5 0.4 0.1 0.03 ]

Moreover, the resulting consumption is 3.87m/s, lower
than the standard glideslope 4.90m/s.

6. CONCLUSION

In this paper, a revisited solution to the classical Hablani
glideslope algorithm, Hablani et al. (2002), for the impul-
sive close range rendezvous in a circular orbit framework
is proposed for the the V-bar and R-bar approaches. It is
aimed at tackling the two main drawbacks of this classical
algorithm which are the lack of control on the bounds
over the inherent guidance errors and the impossibility of
minimizing the fuel consumption.

x [m]
0 50 100 150 200 250

z
[m

]

-7

-6

-5

-4

-3

-2

-1

0

1
x! z plane

Standard glideslope
Algorithm 1
Line of Sight cone

Fig. 4. Hablani’s glideslope (green) and new algorithm
transfer (violet) along V-bar with a LOS constraint

In response to these issues, a new problem formulation
is developed, where the relative dynamics, the guidance
error expressions and the identification of relevant deci-
sion variables are combined in order to derive a linear
programming formulation of the guidance problem. This
new proposed glideslope algorithm includes important de-
sign features like the specification of maximum conditions
on the guidance error for each hump.

Different simulations are performed for V-bar and R-
bar approaches and are then compared to the classical
glideslope algorithm given by Hablani et al. (2002) and
to the two-impulses approach by (Fehse, 2003). The key
features of the exposed results are a significant improved
fuel consumption with respect to Hablani’s algorithm and
a user-defined bound profile on the maximum guidance
error, which turns out to be very useful when dealing when
visibility constraints.

The next perspectives on this topic are mainly to gen-
eralize this approach to any type of glideslope approach
and not only the V-bar and R-bar ones and extend it to
elliptic reference orbits.
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