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Context

Prediction of the risk by space surveillance centers (JSpOC)

Goal: detect, track, identify and catalogue all in-orbit space objects

Procedure:

[1 Detection of debris (> 5 — 10 cm for LEO and > 0.3 — 1.0 m elsewhere)

[1 Propagation of trajectories

[1 Sending alert reports to operators or/and owners (if there is a risk of collision)

» Reference time ., (Time of Closest Approach e.g.)
» Information on the geometry of the 2 objects

» Positions and velocities of the 2 objects at ¢, + statistical uncertainty information
Risk management by operators or owners (ex: Airbus Defence & Space)
[1 Collision risk assessment

[1 Performing one or several evasive maneuvers if the predicted risk is too high
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Single encounter modelling 3

[1 Geometry

Orbital debris s

s(t) = (75(t),vs(2))

Operational satellite p

Tp(t) = (rp(t), vp(1))

Let:
z(t) = te[0,T]
[1 Deterministic dynamics
z(t) = f(t,z(t)), tel[0,T]
~  x(-|xg) sample path from x

[1 Uncertainties: initial condition xg € R'2 not exactly known
» Random vector X ~ N(mo, Zo) according to a given Gaussian probability measure /i

> (mo, ZO) given by the CDM (Conjunction Data Message) or CSM (Conjunction Summary Message)
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Collision risk assessment: problem statement 4

[1 A forbidden region X'r

[] Safe initial conditions Xj

[J Collision-prone intial states X5 = R™ \ Xy

[J Collision-prone intial states X5; = Xy \ Xoo
X

AN

Xr = {x=(rp,vp,7s,vs) ERZ||rp — 75|53 < R?}
V Definition 1 Given g € R", T" > 0, and X, a collision occursif 3¢ € [0, T]
st z(t|xo) € Xr

Probability of collision:

PC I:P(Xo c XOC) :/L[(XOC) :/ d,LL[ =1 —Pnc =1 —IP)(X() c XQ) =1 —,LL[(X())

x5

] |
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Collision risk assessment for specific encounter models 5

Short-term encounter model (Low Earth Orbits (LEO) - Relative velocity > 1 km/s)

3-dn — o ellipse

-d n-— o ellipse

2 —1 2 P
Pc = 2T (o) / exp _— dxlde :,/ ﬁ
( i=1 ) B5(0,R) < 2 o2 ) .

[1 Methods based on numerical integration schemes

[1 Analytical formula in the form of a series with positive terms:
P [Chan 1997]: based on a simplifying approximation (isotropic vs anisotropic) of the initial model

P [Serra 2015 - JGCD 2016]. exact analytical formula, analytical bounds, numerically efficient, validated on more than 220

000 test-cases by CNES

P [Garcia-Pelayo 2015 - JGCD 2016]: exact analytical formula, analytical bounds, numerically efficient, expansion valid for

arbitrary pdf and involving Hermite polynomials for Gaussian pdf
Long-term encounter model (Geostationary orbits - Relative velocities: < 10 m/s)

» Piece-wise linear approximation methods [Chan 2008], [Coppola 2012, Krier 2017]

Propose an exact, mostly general and rigorous modelling for the computation of the probability of collision
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New formulation via occupation measures' 6

Given pr and X', seek for the measure g = 1x, 1 > 0 which measures safe initial states in Xy

O po = Lagpr < pur

0 Xy C Xg and supp(ug) C Xgi N . A
L4 support
0 o = Arglsup puo(Xg)] ~ supp(pg) = Xp "mielmeasues -
I
’ \ \_/\—/\ Final measure pr

[J Transportof xg € Xpto x(1T') € X via x(t|xo) %
/\_/—\—/

[1 Family of trajectories from Xj /‘\

» Occupation measures (- X -|xp) and o
p(x) & -
t
» Lifting dynamics: Liouville’s equation and opera- 0 t T
tor

Any family of x(t|xo) with ¢ € X distributed by the measure jo generates:
- an occupation measure [

- a final measure yu
s.t. (o, i, pr) satisfies Liouville’s equation

T based on works of D. Henrion and M. Korda
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Pushforward measures or image of a measure 7

V Definition 2 (Pushforward measure)

- (X, A) and (Y, B) two measurable spaces
- [+ X = Y a (A, B)-measurable mapping
- p € M(X)+

The image measure under the mapping f is:

v(B) = fupu(B) = u(f~(B))

[1 Theorem 1 (Change of variables)

Let 4 € M (X ). and g a measurable function on Y

[odttan = [ 9o san

X
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Occupation measures as pushforward measures (I) 8

[1 Conditional occupation measure

T

10 (A x Blao) = /1AxB (t, 3 (t|zo)) dt
0
Ex:

,LL(AXB|CIZ‘0):t4—t3—|—t2—t1

(A X Blxog) = hzy «A(A X B)
hay : [0,T] — [0,7] x R"
t —  (t,z(t|xo))

0 (A % Blao) = A(hs (4 x B)) R

For any measurable function v € C*([0,T] x R™)

/ o(t, 2)dp (L, lzo) = / v(t,az)d(hxo*A):/Tvohxo(t)dt:/Tv(t,:c(t\azo))dt

[0,T] xR™ [0, T]xR™
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Occupation measures as pushforward measures (lI) 9

O Average occupation measure

W(Ax B) = /R 1 (A x Blzo) dpo (x0)
— h (A ® po)(A x B)

h: [0, T]xR" — [0,T] xR"
(t,xo) +— (t,x(t|xo))

For any measurable function v € C*([0,T] x R™)

/ v(t,x)dp (t,x) = / / v o h(t,xo)dpo(zo)dt = / / t,x(t|zo))duo(xo)dt

[0,T] xR™

[1 Final measure

0 pr(B) = po(hy' (B)) K

pe (B) = | 1n(e(Thoo))dpo (w0) = hiapo(B)
hF: R™ — R"

ro +— x(T|xo)

R™ R™
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Liouville’s equation and operator

10

For any test function v € C* ([0, T'] x R™)

[ Liouville's operator: £ : C' ([0,T] x R™) — C ([0,T] x R™)

[1 Liouville’s equation:

/ (T, 2)dur () / 00, 20)dpo (o) = /[ ICOICRIACE
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LP formulation based on safe initial states A 11

[1 Problem 1 [Direct problem]

Solve for (1o, fb, [LE):

p* = sup po(XR)
Ko,y b F
/ o(T, iy = / 2(0,)d o + / (Lv)dp, ¥ v € CL([0,T] x R™)
X xe 0,T]x X¢
st Mo S pr

IMOZoa /~L207 :LLFZO
supp(io) € Xg, supp(i) € [0,T] x X, supp(ur) C XR

[] Theorem 2

Final

/méasure wr

Given initial

p* = pur(Xo) = Pne and pf = lx, s

Gaussian measure

Kr d

~+y
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LP formulation based on collision-prone initial states Xy 12

[1 Problem 2 [Indirect problem]

Solve for (ﬁ07 ﬁ7 ﬁF)

¢" = sup [ip (XR)
MO)P")P"F
/ wdip = [ 00 )+ [ (Lol Yo e C(0,T] X RY)
[0,T]x0XE X6 [0,T]x X,

50 Ty <, g > 0, 1> 0, Tip >0

supp(fzg) C Xg, supp(iz) C [0,T] x Xg, supp(ig) C 0XR

Given initial

Saussian measure

><

W’\ﬁ [J Theorem 3
./\_/—\—\ q = /”(XOcl) =P. and ﬁg - 1)(6:1/”

-
o

I (1)
0

I
—(2
M(())
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Numerical solving of LP on measures: a moment approach (I) 13

[1 Problem 3 [Direct problem]

s.b. Ho S BI
po =0

supp(io) € X5
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Numerical solving of LP on measures: a moment approach (1) 14

[J Problem 4 [GM] Compute /44 (€2) with

[l

no(B) = = exp(— : )dx
B

= /p(x)dx

andQ={x € R"|gi(z) >0, gs e R"[z], Vi=1,--- ,m}

[] Theorem 4 [Lasserre 2015]

pg(2) = p* = Slépﬁb (2)
¢ < pg (a)
s.t. supp(¢) C Q  (b)
¢ > 0 ()

:::::
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From measures to moments (I)

15

¥ Definition 3 [Moment of order o € N of a positive measure (]

ya:/xadﬂ
X

Notation: y = (ya)aeNn IS the real infinite sequence of the moments

Example 1
Let X = R (n = 1)and let 14 be the Gaussian measure with mean 1+ = 0 and variance o? Va € N:

] g2 0 if o odd
ya=/ xo‘dug=/wo‘p(w) dz = /fvo‘e 202 dz = ¢%2P/2 _ /fa+1
X R oVam JRr r ( > if o even
NZs 2
V¥ Definition 4 [Riesz Linear functional associated to (ya)aeNn]
Ly : R™[z] — R
(0
J = Zfozx = Ly(f): Zfozyoz
aeN” aeN™

Example 2
Forp: x € R® — p(z) = 1+ 3z; + 2x% —x122, Ly (p) = yoo + 3y10 + 2y20 — Y11
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From measures to moments (l1)

16

V Definition 5 [Moment Matrix] Letn € N and k € N and a given sequence (Y ) aenn, the moment matrix

n+k
My (y) € S("2") of order k with rows and columns labelled by « € N

My, (y)a,g — Ly(xaafﬁ) = Yatp, Vo, €Ny

Example 3
Letn = 2and k = 2, then M (y) is:

(yoo Y10

Yio Y20

Mo (y) = Yo1r Y11
Y20 Y30

Y11 Y21

\3/02 Y12

Yo1
Y11
Yo2
Y21
Y12

Yos

Y20
Y30
Y21
Y40
Y31

Y22

Y11
Y21
Y12
Y31
Y22

Y13

yoz\

Y12
Yos
Y22

Y13

yo4)

M, (y) defines a bilinear form (., .) on R™ [z],:

(p.4), = Ly(pg) = (p, Mi(y)q), = p" Mi(y)q, ¥ p,q € R
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From moments to measures: the moment problem (1) 17

For a given sequence of real numbers (Yq ) o enn
» arepresenting finite Borel positive measure 4 s.t. supp(p) = X and yo = fX x® du?
» Is i determinate (uniquely determined by (Yo, ) aenn)?
X is a basic semi-algebraic set, X = {x € R" | gj(z) >0Vj=1,--- ;m}
Solutions for the classical one-dimensional real moment problems [Simon 1998]:
» Stieltjes (1894), whenn = 1, X = R>0, (Ya)aenr C R>g
» Hamburger (1921), whenn = 1, X = R, (Yo )aenn C R

» Hausdorff (1923), whenn = 1, X = [0, 1], (ya)aen» C R

No general solution for the multi-dimensional moment problem (n > 1) for general sets X

[] Theorem 5 [Riesz-Haviland]
Let (Yo )aenn and the closed set X C R™.

7 a finite representing Borel positive measure g, on X if and only if L, (f) > 0,V f € R[x] non negative on X

Nota: conditions based on representation of nonnegative polynomials on basic semi-algebraic sets and SemiDefinite

Programming (SDP)
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From moments to measures: the moment problem (lII) 18

[]
[]

if 4 is & representing measure for (Yo )acnn, then Vg € R™ [z], (¢, Mk(y)q), = Ly (¢°) = [ ¢° du >0,
and M (y) = 0, Vk € N.ifn = 1 then NSC

Existence sufficient condition of Carleman (multivariate case, X = R", X = [—a, a]™)

LMI conditions for the X -moment problem when X is a basic semi-algebraic set

V¥V Definition 6 [Localizing Matrix]

n+k

Letn € N, (Yo) yepn and u € R™ [z]. My, (uy) € S("2") is the localizing matrix of order & w.r.t (Yo ), cnn and u:

Mk (uy)a,ﬂ — Ly (’LL (ZB) xaxﬁ) — Z UyYy+a+8, VO‘)B S NZ

yEN™

Example 4
Letn = 2,k = 1, (Yo ) ,en2 @ad u € R?[z] withw :  — a + bxy + ca3:

ayoo + byio + cyo2  ayio + by20 + cy12  ayo1 + byi1 + cyos
M (uy) = | ayio + by20 + cy12  aya0 + byso + cy22  ayi1 + by21 + cyis
ayo1 + byi1 + cyiz  ayi1 + by21 + cyiz  ayoz2 + byiz2 + cyoa

[]

L is a representing measure for (Yo ) aenn with supp(u) C X iff

Mk(gJy) ~ 0, \V/JC{L am}a Vke€Nandgs = ng’g(Z):l
Jjed
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Upper bounds for problem GM 19

1
Finite SDP relaxation of order k of the problem GM (Upper bounds): ﬁ(k)* k——> g (£2)
— 400
pk)" = sup  uo
Mk (y — u) i 0
s.t. My (u) ~ 0
My—q, (gju) = 0, VYj=1,---,m, d;j = [deg(g;)/2] and k > j:rlng,?cmdj
Example 5
Given a standard Gaussian distribution (g ~ N (m, o), compute P. = P(zg € [— R, R]) = ¢([— R, R]). The theoretical value of P, is:
> 1 /R _<m2—n5>2d 1( f(R—m>+ f<R—}—m>> . (-R, )
C = e o r = — er er = — su _ ,
oVvV2rm J_Rr 2 o2 ov'2 P c,op v
0" = 1[_R,R] Mg st. @< pg, >0
supp(¢) C [ R, R]
- Objective function: if supp(¢) C [— R, R], then p([— R, R]) = / dep = / 1i_gr,rjde = uo
[— R, R] R

- Domination constraint: Vk € N* | My (y — u) = 0
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Upper bounds for problem GM

20

- Support constraint: Yk € N*, My, _1(gu) = 0, where g(z) = R?> — z

2

- Existence and uniqueness of positive representative measures: Vk € N*, Mg (u) > 0

The relaxation of order k reads:

2_9(k)* —

sup

(uOé)Ogole(Qk)

s.t.

For example, whenm = Oand o = 1:

pV" = sup uQ

Up, U1

u2

s.t.

uo Ui
U1 u9
Yo — uo
Y1 — ua

~ 0
Yy —uil
Y2 — U2

uo

p? " = sup uQ
Uo<i<4

uo U1

S.t. U1 U9

u2 us

Yo — Uo

Yi — u1

] =0 | Y2 — u2
| RQUO — U2
i R2U1 — us

u2
us
Uy
Y1
Y2
Y3

— Ul Y2 — U2
— U2 Yz — U3 tC

— us Yqa — U4y

R2u1 — us

RQ’U,Q — U4y
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Links with polynomial optimization via SDP duality (1) 21

Primal : Dual :
5K ipf — B, (B — inf M = M
P inf  —uo Pp x b, (Mi(y), ) = trace(Mi(y) )
s.t. Mg (u) =0 s.t. (Ap, S — X)— > (Bjo0,4;) =1
1<j<m
Mk(y_u)to <Aa7S_X>_ Z <Bj,04,Zj>:O
1<j<m
Mk:—dj (gju)io SEO,XEO, tho
Nota : Lagrangian duality and My (u) = >, Aquqand Mg (gju) = > Bjala
la| <2k || <2k

L(u, X, 5,(Z;);) = —clu — (M (u), X) — (Mg(y —u), S) — Z <Mk:—dj (gju), Zj)

1<j<m
[1 SDP dual as a polynomial optimization problem:
P = inf / hd g
70,h,01<j<m JQ
h—o0— Y gjo; =1 inf / h(z) — 1a(z)|dg ()
S.t. h € 22[:1:]%, oo € EQ[x]zk heR™ [x]qy K
g; € 22[x]2(k_dj) h>1q
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Links with polynomial optimization via SDP duality (I1)

22

Example 6

Following Example 5, we get the SDP dual of SDP relaxation of order 1 as:

2_9D(1)* = —(xzo0 + 1)yo — 2z1y1 — T2Y2

o 1 Z:O
1 )

—S0Yo — 281Y1 — 282Y2 — 254Y4 — Y353 — S5Ys5

sup
z0,T1,%2

and:

So — o — 20 = 1
251 — 2x1 — 2R%*21 =0
282—|—83—2£U2—333—|—ZQ—R222 =0
284 — 2x4 + 21 =0
S5 — Ty — 2R2z1 =0

To T1 T2 So S1 82
~ 0

A Y

Z1 3 L4 S1 S$3 S4

2 T4 Is5 52 S4 55

<2
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Lower bounds for problem GM

23

Finite SDP relaxation of order k of the problem GM (Lower bounds):
Let Q¢ = Q\supp(p)and Q2 = {z € R" | gi(x) >0, g e R"[z], Vi=1,--- ;m}

[] Corollary 1 Assume that:

Q° = QFf with o(Q°) =) o()
=1 =1
where:
Qf ={zeR": g,,(x) >0, g, eRlz], j=1,--- ,;mu}, Il=1,--- s

Letd; = [(degg:;)/2] and do = maxd;
J

Let ]_yl(k) foralll = 1,--- , s be the optimal value of the SDP relaxation of order k with g1, instead of g; (and 1M

instead of ™). If
k)* n : —(k)*
p™" = p(R") - (sz( ) >
=1

Then, (p(k) *)keN is monotone non decreasing with:

p(Q) >p™ VEk>dy and p®" —— p(Q)
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Back to the computation of the probability of collision

24

[1 Liouville’s equation as an infinite system of linear equations on moments
[1 Assumption 1 The real vector field f defining the dynamics of the objects involved in the encounter is:

fi:(t,x) — E pi,vl,vztlem
Y1+lv2|<dg,

[J Proposition 1 For test functions v, 3 = v~ : (t,x) > t*”  the weak form of the Liouville equation is an

infinite-dimensional linear system of equation on (u5)yenn, (Uy)yenn+1 and (uh )yenn of pup:

T T
AU=A| W Wl W7 =0

Y Y

where A is a linear operator defined by the structure of U and given as:

n
F 0 :
uf —ug—>» B D Piyivala, g1y, = 0 Ha=0
=1 yi+|v2|<dy,
n
F .
Tau,é’ — QUa—1,8 — E 52 E piﬁlﬁ2ua+fyl,6(i)—|—'yg = 0 ifo Z 1

=1 y1+]v2|<dy,

where 5 = 7 g7 g0, B € N
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Relaxations for the direct and indirect problems 25

Direct : Indirect :
o 0 .
b 0 e 0 A, (7,7, u") = 0
Ay 00, 1,0) = M (1) =
My, (u”) =0 My (y —a°) = 0
My, (y° —u”) = 0 M, (@) = 0
My, (u) = 0 My, (@) = 0
s.t. Mg (uF) =0 S.t. Mk—ddi (QEZEO) =0
i, afa) = i (67) =
My—a,, (g7u) = 0 Mj_y (t(T —£)7) = 0
My—2 (t(T —t)u) =0 > gk, =0
My—aq, (gu™) =0 VS da;
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Relaxations for the direct problem: numerical example 26
Example 7
=ihy 0 Xo ~ N (1, 0)
0 #(t) = —x(t), zoand t € [0, 1]
| 0 z(t) = xoexp(—t)
0 X5 = {z|z® — 1> 0}
Pre = Plzo € (—o0, —exp(1)] U [exp(1), 50)) = pg((—00, — exp(1)] U [exp(1),00)) = 1 — erf (X252}

The relaxation of order k reads:

]_)(k)* = sup u8
(uQ)a<2k (va)a<ak: (UG a <2k
.t My (u®) = 0, My(y —u’) = 0
My _2(gu’) = 0, My (u) =0
My _2(gu) = 0, Mi_o(t(1 —t)u) = 0O
My (u™) = 0, My_o(gu’) =0

Ap(u®,u,uf) =0
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Relaxations for the direct problem: numerical example

27

Relaxation of order &k = 1:

D" = sup u8
U, U7y Uy
F F _F
(u’ij)ogi,j§1 » Ug s Uy Ug
ug Uy Yo — o Y1~ uy
s.t. 0 0 ~ 0, 0 0 0 0 ~ 0
Uy Uz Yy — U1 Yz — Us
’LL(I)T uf “ 0 uUoo uo1 “ 0
uf ug N uio U1l B
ug—ug = 0, ucl)—u()l—uf:O
uoo — ’U,g =0
oo exp (—w2>
. 2
p* = / L(— o0, exp(1)]Ulexp(1),00) (%) e dz=1- erf(exp(1)V2/2) = 0.0065

— o0

2
exp (—23: )

V2m

Ll 1(_00’_ exp(1l)]U[exp(l),00) ('CU)

2
exp ( —_;j )

V2m

[0 Approximation pq ()
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Relaxations for the direct problem: numerical example

28

0.1

Direct formulation, d=2k=2

-5

—— Outer approximation
— Exact
0.08
0.06
0.04
0.02 r
0 J
5

0

@d=27p"" =0.333

0.01

0.008 r

0.006

0.004 |

0.002

Direct formulation, d=2k=8

N
—— Quter approximation

— Exact

YAVAN

0
-5

0 5

d)d=87p%" =0.032

Direct formulation, d=2k=4
0.02 ¢

— Outer approximation
— Exact

0.015
0.01 -
0.005
7 mVA

-5 0 5

0 d=4p%" =0.056

Direct formulation, d=2k=10
0.012 ¢

— Quter approximation

0.01 | — Exact
0.008
0.006
0.004 -
0.002 -
: AN
-5

0 5

@ d=127p9" =0.031

0.01

0.008

0.006

0.004 -

0.002

Direct formulation, d=2k=6

-5

N
— Outer approximation
— Exact
0

©d=67p%" =0.032

o X10 Birect formulation, d=2k=12

— Quter approximation
— Exact

0

5

®d=14,"" =0.019
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Relaxations for the direct problem: numerical example 29

Direct formulation, d=2k=14 Direct formulation, d=2k=16
0.015 . 0.6 r
— Quter approximation — Quter approximation
— Exact 04 & — Exact
0.01 r )
0.2 r
0.005 r
O — S——
0 |
-0.2
-0.005 | 04 |
-0.01 : : -0.6 : :
-5 0 5 -5 0 5
_ k _ >k
@ d=16,®" =0.017 thyd =187 =0.018
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