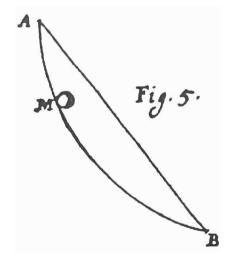
Commande optimale des systèmes dynamiques

Approche variationnelle en commande optimale

Principe du maximum de Pontryagin



Le problème de commande optimale est défini par :

$$\min_{u(t) \in \mathcal{C}^{0}([t_{0}, t_{f}], \mathbb{R}^{m})} \quad J(x, u) = \int_{t_{0}}^{t_{f}} L(t, x(t), u(t)) dt + \psi_{0}(t_{f}, x(t_{f}))$$
sous
$$\dot{x}(t) = f(t, x(t), u(t)), \ x(t_{0}) = x_{0}$$

$$x(t_{f}) = x_{f}, \ t_{f} \text{ libres}$$

- $x(t) \in \mathbb{R}^n$ est le vecteur d'état
- $u(t) \in \mathbb{R}^m$ est le vecteur de commande
- Problème de calcul des variations sous une contrainte différentielle instantanée (équation dynamique d'état)

Nota:

$$\int_{t_0}^{t_f} \frac{d\psi_0(t, x(t))}{dt} dt = \psi_0(t_f, x(t_f)) - \psi_0(t_0, x(t_0))$$

$$J_2(x, u) = \int_{t_0}^{t_f} \left[L(t, x(t), u(t)) + \frac{d\psi_0(t, x(t))}{dt} \right] dt = J(x, u) - \psi_0(t_0, x(t_0))$$

Fonctionnelle augmentée avec le vecteur des multiplieurs de Lagrange $\lambda:[t_0,t_f]\to\mathbb{R}^n$: appelé vecteur d'état adjoint

$$\mathcal{J} = \int_{t_0}^{t_f} \left\{ L(t, x, u) + \boldsymbol{\lambda}^T(t) [f(t, x, u) - \dot{x}] \right\} dt + \psi_0(t_f, x(t_f))$$

$$= \int_{t_0}^{t_f} \left\{ H(t, x(t), u(t), \boldsymbol{\lambda}(t)) - \boldsymbol{\lambda}^T(t) \dot{x}(t) \right\} dt + \psi_0(t_f, x(t_f))$$

$$= \int_{t_0}^{t_f} \left\{ H(t, x, u, \boldsymbol{\lambda}) + \dot{\lambda}^T x(t) \right\} dt - \boldsymbol{\lambda}^T(t_f) x(t_f) + \boldsymbol{\lambda}^T(t_0) x(t_0) + \psi_0(t_f, x(t_f))$$

Première variation sur l'état, la commande et le temps final :

$$x(t) = x^{*}(t) + \delta x(t) \quad u(t) = u^{*}(t) + \delta u(t) \quad t_{f} = t_{f}^{*} + \delta t_{f}$$

$$\delta J = \left[H^{*} + \psi_{0t_{f}}^{*} \right]_{|t_{f}} \delta t_{f} + \left[\nabla_{x_{f}} \psi_{0}^{*} - \lambda^{*}(t) \right]_{|t_{f}}^{T} \delta x_{f}$$

$$+ \int_{t_{0}}^{t_{f}} \left\{ \left[H_{x}^{*} + \dot{\lambda}^{*}(t) \right]^{T} \delta x(t) + H_{u}^{*T} \delta u(t) \right\} dt$$

- □ Théorème 1 Si $u^*(t)$ est trajectoire optimale locale faible de commande alors $\exists \lambda^*(t) [t_0, t_f] \to \mathbb{R}^n$:
- C.N. 1 : équations canoniques de Hamilton

$$H_{\lambda}(t, x^*, u^*, \lambda^*) = \dot{x}^*(t) = f(t, x^*, u^*)$$
 Equation d'état $H_{x}(t, x^*, u^*, \lambda^*) = -\dot{\lambda}^*(t)$ Equation d'état adjointe $H_{u}(t, x^*, u^*, \lambda^*) = 0$ Equation de commande

- C.N. 2 : condition (forte) au deuxième ordre de Jacobi Il n'existe pas de points conjugués sur $[t_0,t_f)$ ($[t_0,t_f]$) ou la solution S(t) de :

$$-\dot{S} = H_{xx} + Sf_x + f_x^T S - (H_{xu} + Sf_u)H_{uu}^{-1}(H_{ux} + f_u^T S), \quad S(t_f) = \psi_{0xx}(t_f, x(t_f))$$

est finie sur $[t_0, t_f)$ ($[t_0, t_f]$)

- C.N. 3 : condition (forte) au deuxième ordre de Legendre-Clebsch

$$H_{uu}^* \succeq 0 \qquad H_{uu}^* \succ 0$$

- C.N. 4 : les conditions de transversalité

$$\left[H(t_f, x^*(t_f), u^*(t_f), \lambda^*(t_f)) + \psi_{0t_f}^* \right] \delta t_f + \left[\nabla_{x_f} \psi_0^* - \lambda^*(t_f) \right]^T \delta x_f = 0$$

- $lacklose t_f$ fixé et x_f fixé : $\delta t_f = 0$ $\delta x_f = 0$ $x(t_0) = x_0$ $x(t_f) = x_f$
- **2** t_f fixé et x_f contraint $\psi(x(t_f)) = 0, \ \psi(.) \in \mathbb{R}^N$:

$$\psi(x^*(t_f^*)) = 0 x(t_0) = x_0$$
$$\nabla_{x_f} \psi_0^* + \psi_{x_f}^{*T} \nu = \lambda^*(t_f)$$

- **3** t_f fixé et x_f libre: $\delta t_f = 0$ $\delta x_f \neq 0$ $x(t_0) = x_0$ $\nabla_{x_f} \psi_0^* \lambda^*(t_f) = 0$
- $oldsymbol{\Phi}$ t_f libre et x_f fixé :

$$\delta t_f \neq 0$$
 $\delta x_f = 0$ $x(t_0) = x_0$ $x(t_f) = x_f$ $H(t_f, x^*(t_f), u^*(t_f), \lambda^*(t_f)) + \psi_{0t_f}^* = 0$

6 t_f libre et x_f contraint $\psi(t_f, x(t_f)) = 0, \ \psi(.) \in \mathbb{R}^N$:

$$\left[H^* + \nu^T \psi_{t_f}^* + \psi_{0t_f}^* \right]_{|t_f} = 0 \quad \text{et} \quad \left[\nabla_{x_f} \psi_0^* + \psi_{x_f}^{*T} \nu - \lambda^* \right]_{|t_f} = 0$$

6 t_f libre et x_f libre: $\delta t_f \neq 0$ $\delta x_f \neq 0$ $x(t_0) = x_0$

$$\left[H^* + \psi_{0t_f}^*\right]_{|t_f} = 0 \quad \text{et} \quad \left[\nabla_{x_f} \psi_0^* - \lambda^*\right]_{|t_f} = 0$$

☐ Théorème 2 conditions fortes de Legendre-Clebsch et de Jacobi

Si la C.N. 1 d'optimalité au premier ordre et les C.N. 2 et 3 d'optimalité fortes au second ordre sont vérifiées par un triplet d'extrémales (x^*, u^*, λ^*) alors c'est un triplet d'extrémales minimales faibles.

$$\text{Exemple 1} \qquad \min_{u(t) \in \mathcal{C}^0([0,1],\mathbb{R})} \quad J(x,u) = \int_0^1 (x(t) - u(t))^2 dt$$
 sous
$$\dot{x}(t) = u(t) \quad x(0) = 1$$

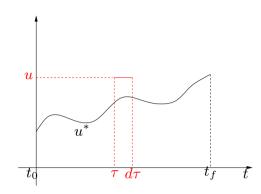
O C.N. 1:

$$H = (u - x)^{2} + \lambda u \quad H_{u}^{*} = \lambda^{*} + 2(u^{*} - x^{*}) = 0 \quad \dot{\lambda}^{*} = 2(u^{*} - x^{*}) \quad \lambda^{*}(1) = 0$$
$$\lambda^{*}(t) = 0 \quad u^{*}(t) = x^{*}(t) \quad x^{*}(t) = e^{t} \quad u^{*}(t) = e^{t}$$

- **2** C.N. 2 et condition forte de Jacobi : $\dot{s}(t) = \frac{s^2(t)}{2} 2s(t), \ s(1) = 0 \quad s(t) \equiv 0 \quad s(t)$ est finie partout sur [0,1]
- **3** C.N. 3 et Condition forte de Legendre-Clebsch : $H_{uu}=2>0$ $(x^*(t)=e^t,u^*(t)=e^t)$ est un minimum local faible

Variation forte (en aiguille)

$$\delta u = \begin{cases} 0 & \text{pour} \quad t < \tau \ \tau \in (t_0, t_f) \\ u - u^* & \text{pour} \quad \tau \le t \le \tau + d\tau \\ 0 & \text{pour} \quad \tau + d\tau \le t \le t_f \end{cases}$$



C.N. 4: condition de Weierstrass

Si (x^*, λ^*, u^*) est un minimum fort du problème de commande optimale alors u^* conduit à un minimum absolu pour le Hamiltonien :

$$\delta H = H(t, x^*, \lambda^*, u) - H(t, x^*, \lambda^*, u^*) \ge 0 \ \forall \ t \ \text{et} \ u \ne u^*$$

Exemple 1 (suite)

4 C.N. 4: condition de Weierstrass

$$H(t, x^*, \lambda^*, u) - H(t, x^*, \lambda^*, u^*) = (u - x^*)^2 + \lambda^* u - (u^* - x^*)^2 - \lambda^* u^*$$
$$= (u - u^*)^2 > 0 \ \forall \ u \neq u^*$$

 $(x^*(t) = e^t, u^*(t) = e^t)$ vérifie la C.N de Weierstrass

On suppose que $u^* \in \mathcal{PC}^1([t_0, t_f], \mathbb{R}^n)$ et $\tau \in [t_0, t_f]$ est le point de discontinuité en lequel la condition $\theta(\tau, x(\tau)) = 0$ est imposée

On définit alors $G(\tau, x_{\tau}, \xi, t_f, x_f, \nu) = \psi_0(t_f, x_f) + \nu^T \psi(t_f, x_f) + \xi^T \theta(\tau, x_{\tau})$

- Equations canoniques d'Euler-Lagrange sur les sous-arcs $[t_0, \tau]$ et $[\tau, t_f]$
- 2 Conditions de transversalité et conditions aux extrémités
- 3 Condition de Legendre-Clebsch
- 4 Conditions de Weierstrass-Erdmann :

$$H^*(\tau, x(\tau), u(\tau^-), \lambda(\tau^-)) = H^*(\tau, x(\tau), u(\tau^+), \lambda(\tau^+)) - G_{\tau}(\tau^*, x^*(\tau), \xi^*)$$
$$\lambda^*(\tau^-) = \lambda^*(\tau^+) + G_{x_{\tau}}(\tau^*, x^*(\tau), \xi^*)$$

6 Condition de Weierstrass : $\forall u \neq u^* \text{ et } \forall u \neq u^*(\tau^+)$

$$H(t, x^*, \lambda^*, u) - H(t, x^*, \lambda^*, u^*) > 0$$

Nota : pour une discontinuité non contrainte $\theta \equiv 0$, la condition de Weierstrass est vérifiée à l'égalité pour $u^* = u(\tau^-)$ et $u = u(\tau^+)$

Exemple 2

O C.N. 1:

$$\dot{\lambda}^* = 0$$
 $\lambda^*(t) = \lambda^*(1) = \lambda^*$ $H = u^3 + \lambda u$ $H_u^* = \lambda^* + 3u^{2*} = 0$ $u^* = \sqrt{\frac{-\lambda^*}{3}}$ $u^*(t) = \sqrt{\frac{-\lambda^*}{3}}t$ $u^*(t) = 1$ $u^*(t) = 1$ $u^*(t) = 1$

2 C.N. 3 et Condition forte de Legendre-Clebsch :

$$H_{uu} = 6u \quad H_{uu}^* = 6 > 0$$

3 C.N. 2 et Condition forte de Jacobi : équation de Riccati homogène

$$\dot{s}(t) = s^2/6, \ s(1) = 0 \quad s(t) \equiv 0$$

Le minimum $(x^*, u^*, \lambda^*) = (t, 1, -3)$ est un minimum local faible

4 C.N. 5 : condition de Weierstrass

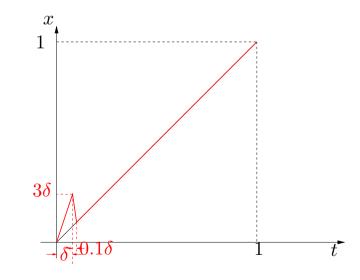
$$\delta H(x^*, \lambda^*, u, u^*) = u^3 - u^{3*} + \lambda^*(u - u^*) = (u - 1)^2(u + 2) < 0 \text{ pour } u < -2!$$

Le minimum $(x^*, u^*, \lambda^*) = (t, 1, -3)$ n'est pas un minimum fort

6 C.N. 4: conditions de Weierstrass-Erdman

$$\lambda(\tau_i^-) = \lambda(\tau_i^+) = \lambda u(\tau_i^-)(u^2(\tau_i^-) + \lambda) = u(\tau_i^+)(u^2(\tau_i^+) + \lambda)$$

$$J(x,u) = \int_0^{\delta} u^3(t)dt + \int_{\delta}^{1.1\delta} u^3(t)dt + \int_{1.1\delta}^1 u^3(t)dt$$
$$= 1 - 678\delta$$
$$J_{u \in \mathcal{KC}^0}^* < J_{u \in \mathcal{C}^0}^*$$



- Le vecteur d'état adjoint $\lambda(t)$ découple les variables x(t) et u(t) dans les équations d'Euler-Lagrange (équations canoniques de Hamilton)
- Le vecteur de commande u(t) n'est pas contraint ni borné
- La commande optimale $u^*(t)$ est obtenue par application du principe du minimum de Pontryagin : $H(t,x,u,\lambda) = \lambda_0 L(t,x,u) + \lambda^T f(t,x,u)$
 - $\lambda_0 = 1$: principe du minimum de Pontryagin
 - $\lambda_0 = -1$: principe du maximum de Pontryagin

$$\max \to \min \quad J(x, u) \to \lambda_0 J(x, u) = \int_{t_0}^{t_f} \lambda_0 L(t, x(t), u(t)) dt + \lambda_0 \psi_0^*$$

- Si ${\cal H}$ ne dépend pas explicitement de t alors il est constant le long de la trajectoire optimale

$$H_t(t, x^*, u^*, \lambda^*) = \frac{dH(t, x, u, \lambda)}{dt}$$

- Résoudre le problème aux deux bouts revient à résoudre les équations d'état et d'état adjointe avec les conditions initiales et finales (méthodes numériques dans les cas généraux : non linéaires et variants dans le temps)
- La résolution du problème aux deux bouts permet de résoudre l'équation de commande pour obtenir la commande optimale $u^*(t)$ en boucle ouverte

Exemple 3 Soit le problème de commande optimale (double intégrateur)

$$\min_{u(t)\in\mathcal{KC}^{0}([t_{0},t_{f}],\mathbb{R})} \quad J(x,u) = \frac{1}{2} \int_{0}^{2} u(t)^{2} dt$$
sous
$$\dot{x}_{1}(t) = x_{2}(t)$$

$$\dot{x}_{2}(t) = u(t)$$

$$x(0) = \begin{bmatrix} 1 & 2 \end{bmatrix}^{T}$$

$$x(2) = \begin{bmatrix} 1 & 0 \end{bmatrix}^{T}$$

Nota : problème de commande optimale à instant final et état final fixes où $L(t,x(t),u(t))=\frac{1}{2}u^2(t)$ est de classe \mathcal{C}^2

• Hamiltonien :

$$H(x_1(t), x_2(t), u(t), \lambda_1(t), \lambda_2(t)) = \frac{1}{2}u^2(t) + \lambda_1(t)x_2(t) + \lambda_2(t)u(t)$$

2 Equation de commande :

$$\frac{\partial H}{\partial u}(x^*, u^*, \lambda^*) = u^*(t) + \lambda_2^*(t) = 0$$
$$u^*(t) = -\lambda_2^*(t)$$

3 Hamiltonien à l'optimum :

$$H(x_1^*(t), x_2^*(t), \lambda_1^*(t), \lambda_2^*(t)) = -\frac{1}{2}\lambda_2^{2*}(t) + \lambda_1^*(t)x_2^*(t)$$

• Equations d'état :

$$\dot{x}_1^*(t) = H_{\lambda_1}(x_1^*(t), x_2^*(t), \lambda_1^*(t), \lambda_2^*(t)) = x_2^*(t)
\dot{x}_2^*(t) = H_{\lambda_2}(x_1^*(t), x_2^*(t), \lambda_1^*(t), \lambda_2^*(t)) = -\lambda_2^*(t)$$

• Equations d'état adjointe :

$$\dot{\lambda}_1^*(t) = -H_{x_1}(x_1^*(t), x_2^*(t), \lambda_1^*(t), \lambda_2^*(t) = 0$$

$$\dot{\lambda}_2^*(t) = -H_{x_2}(x_1^*(t), x_2^*(t), \lambda_1^*(t), \lambda_2^*(t) = -\lambda_1^*(t)$$

6 Solution des équations d'état et d'état adjointe :

$$x_1^*(t) = \frac{C_3}{6}t^3 - \frac{C_4}{2}t^2 + C_2t + C_1$$

$$x_2^*(t) = \frac{C_3}{2}t^2 - C_4t + C_2$$

$$\lambda_1^*(t) = C_3$$

$$\lambda_2^*(t) = -C_3t + C_4$$

Expression explicite de la commande optimale :

$$u^*(t) = C_3 t - C_4$$

8 Détermination des constantes d'intégration :

$$C_1 = 1$$
 $C_2 = 2$ $C_3 = 3$ $C_4 = 4$

9 Solution optimale :

$$x_{1}^{*}(t) = 0.5t^{3} - 2t^{2} + 2t + 1$$

$$x_{2}^{*}(t) = 1.5t^{2} - 4t + 2$$

$$\lambda_{1}^{*}(t) = 3$$

$$\lambda_{2}^{*}(t) = -3t + 4$$

$$u^{*}(t) = 3t - 4$$

$$H(x^{*}(t), \lambda^{*}(t)) = -2$$

$$J(x^{*}(t), u^{*}(t)) = \frac{1}{2} \int_{0}^{2} u^{2}(t) dt$$

$$= \frac{3}{2} \left[t^{3}\right]_{0}^{2} - 6 \left[t^{2}\right]_{0}^{2} + 8 \left[t\right]_{0}^{2} = 4$$


```
>> S=dsolve('Dx1=x2,Dx2=-lambda2,Dlambda1=0,Dlambda2=-lambda1,...
x1(0)=1,x2(0)=2,x1(2)=1,x2(2)=0
S =
    lambda1: [1x1 sym]
    lambda2: [1x1 sym]
         x1: [1x1 sym]
         x2: [1x1 sym]
>> j=1;for tp=0:0.02:2
t=sym(tp);
x1p(j)=double(subs(S.x1));
x2p(j)=double(subs(S.x2));
lambda2(j)=double(subs(S.lambda2));
u(j)=-double(subs(S.lambda2));
t1(j)=tp;
j=j+1;
end
```


Approche variationnelle en CO: exemple 2

Exemple 4 Problème du transfert orbital : soit une fusée de masse m(t) devant atteindre en un temps donné (t_f) l'orbite circulaire de rayon maximal $(r(t_f))$ à partir d'une orbite circulaire donnée r(0) et avec une vitesse initiale donnée v_0 , en utilisant une poussée constante T dont l'orientation $\phi(t)$ peut varier.

Mise en équations :

- Equations dynamiques :

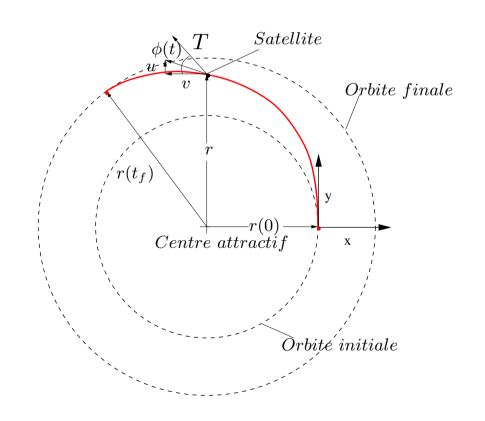
$$\dot{r}(t) = u(t)
\dot{u}(t) = \frac{v^{2}(t)}{r} - \frac{\mu}{r^{2}} + \frac{T \sin \phi}{m_{0} - |\dot{m}(t)|t}
\dot{v}(t) = -\frac{uv}{r} + \frac{T \cos \phi}{m_{0} - |\dot{m}(t)|t}$$

- Conditions aux limites :

$$r(0) = r_0 > 0, \ u(0) = 0, \ v(0) = \sqrt{\frac{\mu}{r_0}}$$

 $u(t_f) = 0, \ v(t_f) = \sqrt{\frac{\mu}{r(t_f)}}$

- Fonctionnelle : $J = -r(t_f)$



• Hamiltonien:

$$H(x(t), \phi(t), \lambda(t)) = \lambda_1 u + \lambda_2 \left(\frac{v^2}{r} - \frac{\mu}{r^2} + \frac{T \sin \phi}{m_0 - |\dot{m}|t} \right) + \lambda_3 \left(-\frac{uv}{r} + \frac{T \cos \phi}{m_0 - |\dot{m}|t} \right)$$

2 Equation de commande :

$$\frac{\partial H}{\partial \phi}(x^*, \phi^*, \lambda^*) = \frac{T}{m_0 - |\dot{m}|t} (\lambda_2^*(t) \cos \phi^*(t) - \lambda_3^*(t) \sin \phi^*(t)) = 0$$
$$\lambda_2^*(t) \cos \phi^*(t) = \lambda_3^*(t) \sin \phi^*(t) \Rightarrow \tan \phi^*(t) = \frac{\lambda_2^*(t)}{\lambda_3^*(t)}$$

3 Equation d'état adjointe :

$$\dot{\lambda}_{1}^{*}(t) = -H_{r}(x^{*}(t), \phi^{*}, \lambda^{*}(t)) = -\lambda_{2}^{*}(t) \left(-\frac{v^{2*}(t)}{r^{2*}(t)} + \frac{2\mu}{r^{3*}} \right) - \lambda_{3}^{*}(t) \frac{u^{*}(t)v^{*}(t)}{r^{2*}(t)}
\dot{\lambda}_{2}^{*}(t) = -H_{u}(x^{*}(t), \phi^{*}, \lambda^{*}(t)) = -\lambda_{1}^{*}(t) + \lambda_{3}^{*}(t) \frac{v^{*}(t)}{r^{*}(t)}
\dot{\lambda}_{3}^{*}(t) = -H_{v}(x^{*}(t), \phi^{*}, \lambda^{*}(t)) = -2\lambda_{2}^{*}(t) \frac{v^{*}(t)}{r^{*}(t)} + \lambda_{3}^{*}(t) \frac{u^{*}(t)}{r^{*}(t)}$$

Onditions de transversalité : t_f fixé et $x(t_f)$ contraint par $\psi(t_f, x^*(t_f)) = 0$

Problème aux deux bouts : (TPBVP)

$$\dot{r}^* = u^*
\dot{u}^* = \frac{v^{2*}}{r^*} - \frac{\mu}{r^{2*}} + \frac{T \sin \phi^*}{m_0 - |\dot{m}(t)|t}
\dot{v}^* = -\frac{u^* v^*}{r^*} + \frac{T \cos \phi^*}{m_0 - |\dot{m}(t)|t}
\dot{\lambda}_1^* = -\lambda_2^* \left(-\frac{v^{2*}}{r^{2*}} + \frac{2\mu}{r^{3*}} \right) - \lambda_3^* \frac{u^* v^*}{r^{2*}}
\dot{\lambda}_2^* = -\lambda_1^* + \lambda_3^* \frac{v^*}{r^*}
\dot{\lambda}_3^* = -2\lambda_2^* \frac{v^*}{r^*} + \lambda_3^* \frac{u^*}{r^*}$$

Conditions initiales et finales :

$$\lambda_1^*(t_f) = -1 + \frac{\nu_2\sqrt{\mu}}{2r^{*3/2}(t_f)} \quad r(0) = r_0$$

$$\lambda_2^*(t_f) = \nu_1 \qquad u(0) = 0$$

$$\lambda_3^*(t_f) = \nu_2 \qquad v(0) = \sqrt{\frac{\mu}{r_0}}$$

$$\begin{bmatrix} u^*(t_f) \\ v^*(t_f) - \sqrt{\frac{\mu}{r^*(t_f)}} \end{bmatrix} = 0$$

Le problème de commande optimale étudié est défini par :

$$\min_{u(t) \in \mathcal{U}} J(x, u) = \int_{t_0}^{t_f} L(t, x(t), u(t)) dt + \psi_0(t_f, x(t_f))$$
sous
$$\dot{x}(t) = f(t, x(t), u(t)), \ x(t_0) = x_0$$

$$x(t_f) = x_f, \ t_f \text{ libres}$$

- **Hypothèses 1** les fonctions L(.) et f(.) sont de classe \mathcal{C}^1 par rapport à x et t : f(t,x,u), $f_x(t,x,u)$, $f_t(t,x,u)$, L(t,x,u), $L_x(t,x,u)$, $L_t(t,x,u)$ sont continues sur $[t_0,t_f]\times\mathbb{R}^n\times\overline{\mathcal{U}}$
- Le Hamiltonien $H(t,x,u,\lambda) = L(t,x,u) + \lambda^T f(t,x,u)$ est de classe \mathcal{C}^1 par rapport à $x: H(t,x,u,\lambda)$ et $H_x(t,x,u,\lambda)$ sont continues sur $[t_0,t_f]\times\mathbb{R}^n\times\overline{\mathcal{U}}\times\mathbb{R}^n$
- Contrainte sur le vecteur de commandes : $u(t) \in \mathcal{U}$ espace topologique de $\mathcal{KC}^0([t_0,t_f],\mathbb{R}^m)$
- Les variations $\delta u(t)$ sur la trajectoire optimale de la commande $u^*(t)$ ne sont plus arbitraires : $u(t)=u^*(t)+\delta u(t)\in\mathcal{U}$
- Principe du maximum de Pontryagin pour $H(t,x,u,\lambda)=-L(t,x,u)+\lambda^T f(t,x,u)$ donc ici principe du minimun de Pontryagin

Première variation de la fonctionnelle :

$$\delta J = \left[H^* + \psi_{0t_f}^* \right]_{|t_f} \delta t_f + \left[\nabla_{x_f} \psi_0^* - \lambda^*(t) \right]_{|t_f}^T \delta x_f + \int_{t_0}^{t_f} \left\{ \left[H_x^* + \dot{\lambda}^*(t) \right]^T \delta x(t) + H_u^{*T} \delta u(t) \right\} dt$$

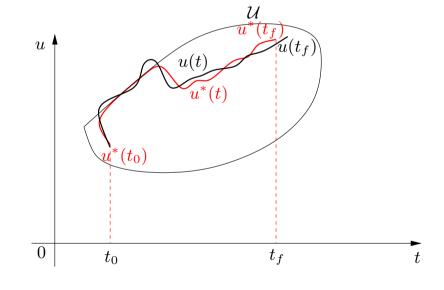
Les conditions nécessaires pour que $u^*(t)$ minimise J sont :

- $\delta J = 0$ si $u^*(t)$ est à l'intérieur de $\mathcal U$
- $\delta J \geq 0$ si $u^*(t)$ est sur la frontière de $\mathcal U$
- Equations canoniques de Hamilton :

$$\dot{x}^{*}(t) = H_{\lambda}(t, x^{*}, u^{*}, \lambda^{*})$$
$$\dot{\lambda}^{*}(t) = -H_{x}(t, x^{*}, u^{*}, \lambda^{*})$$

- Conditions de transversalité :

$$\left[H^* + \psi_{0t_f}^*\right]_{|t_f|} \delta t_f + \left[\nabla_{x_f} \psi_0^* - \lambda^*(t)\right]_{|t_f|}^T \delta x_f = 0$$



$$\begin{split} \delta J &= \int_{t_0}^{t_f} H_u^{*T} \delta u(t) dt \text{ avec } H_u^{*T} \delta u(t) = H((t, x^*, u^* + \delta u, \lambda^*)) - H((t, x^*, u^*, \lambda^*)) \text{ d'où } \\ \delta J &\geq 0 \text{ implique } H(t, x^*, u, \lambda^*) \geq H(t, x^*, u^*, \lambda^*) \ \forall \ u \in \mathcal{U} \end{split}$$

☐ Théorème 3 principe de Pontryagin

Si $u^*(t) \in \mathcal{U}$ est une commande optimale admissible et $x^*(t)$ la trajectoire d'état optimale solution de l'équation d'état associée à $u^*(t)$ alors il existe un vecteur $\lambda^*(t)$ tel que les équations canoniques de Hamilton :

$$\dot{x}^*(t) = H_{\lambda}(t, x^*, u^*, \lambda^*)$$
$$\dot{\lambda}^*(t) = -H_x(t, x^*, u^*, \lambda^*)$$

L.S. Pontryagii

aient des solutions $(x^*(t),\lambda^*(t))$ sous les conditions de transversalité :

$$\left[H^* + \psi_{0t_f}^*\right]_{|t_f|} \delta t_f + \left[\nabla_{x_f} \psi_0^* - \lambda^*(t)\right]_{|t_f|}^T \delta x_f = 0$$

et $u^*(t)$ est un minimum global du Hamiltonien sur ${\cal U}$

$$\min_{u \in \mathcal{U}} H(t, x^*, \lambda^*, u) = H(t, x^*, \lambda^*, u^*)$$

oи

$$H(t, x^*, \lambda^*, u) \ge H(t, x^*, \lambda^*, u^*) \quad \forall \ u \in \mathcal{U}$$

Nota:

- Si le vecteur de commande n'est pas contraint, la condition de minimisation du Hamiltonien revient à l'annulation du gradient du Hamiltonien par rapport à la commande à l'optimum

$$\min_{u \in \mathbb{R}^m} \ H(t, x^*, \lambda^*, u) = H(t, x^*, \lambda^*, u^*) \ \Leftrightarrow \ H_u(t, x^*, \lambda^*, u^*) = 0$$

- Problème aux deux bouts : 2n équations différentielles à résoudre avec n conditions initiales x(0) et n conditions finales si $x(t_f)$ est fixé ou N multiplieurs n-N contraintes sur les variables adjointes si $y(0)\in\mathbb{R}^N$ avec $y(t_f,x(t_f))=0$ Conditions nécessaires additionnelles :

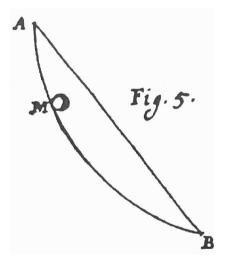
① Si t_f est libre et $H(t, x, \lambda, u) = H(x, \lambda, u)$ alors

$$H(x^*(t), \lambda^*(t), u^*(t)) \equiv 0 \ \forall \ t \in [t_0, t_f]$$

2 Si t_f est fixé et $H(t,x,\lambda,u)=H(x,\lambda,u)$ alors

$$H(x^*(t), \lambda^*(t), u^*(t)) = C \ \forall \ t \in [t_0, t_f]$$

Commande optimale des systèmes dynamiques Applications du principe de Pontryagin



Z Exemple 5 Problème de l'alunissage

$$\min_{0 \le u(t) \le 1} - \int_0^{t_f} \dot{x}_3(t) dt = \int_0^{t_f} \sigma u(t) dt$$
sous
$$\dot{x}_1(t) = x_2(t)$$

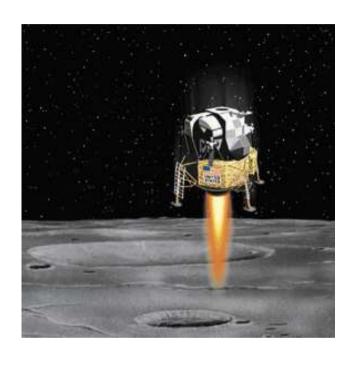
$$\dot{x}_2(t) = -g + \sigma \alpha \frac{u(t)}{x_3(t)}$$

$$\dot{x}_3(t) = -\sigma u(t), \ x_1(0) = h_0 > 0$$

$$t_f \text{ libre, } x_2(0) = v_0 \le 0$$

$$x_3(0) = M + F, \ x_1(t_f) = 0$$

$$x_2(t_f) = 0, \ 0 \le u(t) \le 1$$



Nota : problème de consommation minimum ≡ problème en temps minimum

$$J(t_f) = -\int_0^{t_f} \dot{x}_3(t)dt = -\int_0^{t_f} \dot{m}(t)dt = m(0) - m(t_f) = m(0) \left(1 - e^{\frac{(v_0 - gt_f)}{\alpha}}\right)$$

 $J(t_f)$ est une fonction strictement monotone croissante

△ Définition du Hamiltonien :

$$H(x,\lambda,u) = \sigma u(t) + \lambda_1(t)x_2(t) + \lambda_2(t)(\sigma \alpha \frac{u(t)}{x_3(t)} - g) - \sigma \lambda_3(t)u(t)$$

Equations canoniques de Hamilton :

$$\dot{x}_{1}^{*}(t) = x_{2}^{*}(t)
\dot{x}_{2}^{*}(t) = -g + \sigma \alpha \frac{u^{*}(t)}{x_{3}^{*}(t)}
\dot{x}_{3}^{*}(t) = -\sigma u^{*}(t)
\dot{\lambda}_{1}^{*}(t) = -H_{x_{1}}^{*} = 0 \Rightarrow \lambda_{1}^{*}(t) = K_{1}
\dot{\lambda}_{2}^{*}(t) = -H_{x_{2}}^{*} = -\lambda_{1}^{*}(t) \Rightarrow \lambda_{2}^{*}(t) = -K_{1}t + K_{2}
\dot{\lambda}_{3}^{*}(t) = -H_{x_{3}}^{*} = \sigma \alpha \frac{\lambda_{2}^{*}(t)u^{*}(t)}{x_{3}^{2*}(t)} \Rightarrow \dot{\lambda}_{3}^{*}(t) = \sigma \alpha \frac{(-K_{1}t + K_{2})u^{*}(t)}{x_{3}^{2*}(t)}$$

Conditions initiales, finales :

$$x_1(0) = h_0$$
 $x_2(0) = v_0$ $x_3(0) = M + F$ $x_1(t_f) = 0$ $x_2(t_f) = 0$

 \triangle Analyse du Hamiltonien comme fonction de u:

$$H(u) = \lambda_1(t)x_2(t) - \lambda_2(t)g + \left[\sigma\alpha\frac{\lambda_2(t)}{x_3(t)} - \sigma(\lambda_3(t) - 1)\right]u(t) = \phi_1(t) + \phi_2(t)u(t)$$

H(u) est une fonction affine qui est minimale en ses bornes inférieure ou supérieure suivant le signe de $\phi_2(t)$ \Rightarrow commande optimale tout ou rien

$$u^{*}(t) = \begin{cases} 1 & \text{si } \phi_{2}(t) < 0 \iff \frac{\alpha \lambda_{2}(t)}{x_{3}(t)} + 1 < \lambda_{3}(t) \\ 0 & \text{si } \phi_{2}(t) > 0 \iff \frac{\alpha \lambda_{2}(t)}{x_{3}(t)} + 1 > \lambda_{3}(t) \end{cases}$$

Nota : condition de singularité

$$u(t)$$
 est indéterminée si $\phi_2(t) = \frac{\alpha\lambda_2(t)}{x_3(t)} + 1 - \lambda_3(t) = 0$

Cette condition de singularité ne peut jamais être physiquement satisfaite

$$\Rightarrow$$
 Etude du signe de $\phi_2(t) = \left[\sigma \alpha \frac{\lambda_2(t)}{x_3(t)} - \sigma(\lambda_3(t) - 1)\right]$:

$$-\frac{d\phi_2(t)}{dt} = -\sigma\alpha \frac{\lambda_1}{x_3(t)} = -\sigma\alpha \frac{K_1}{m(t)}$$

- 1 commutation au plus en t_c
- Pour $t_0 \rightarrow t_c \ u^*(t) = 0$ et pour $t_c \rightarrow t_f \ u^*(t) = 1$

riangle Etude de l'arc de trajectoire $0 o t_c, \ u = 0$:

$$\dot{x}_{1}^{*}(t) = x_{2}^{*}(t) \Rightarrow x_{1}^{*}(t) = -\frac{gt^{2}}{2} + v_{0}t + h_{0}
\dot{x}_{2}^{*}(t) = -g \Rightarrow x_{2}^{*}(t) = -gt + C_{1} = -gt + v_{0}
\dot{x}_{3}^{*}(t) = 0 \Rightarrow x_{3}^{*}(t) = m(0) = M + F$$

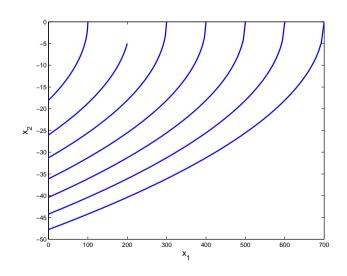
$$x_1^*(t) = h_0 + \frac{(v_0^2 - x_2^{*2}(t))}{2g}$$

riangle Conditions finales au point t_c :

$$x_{1c}^{*} = -\frac{gt_{c}^{2}}{2} + v_{0}t_{c} + h_{0}$$

$$x_{2c}^{*} = -gt_{c} + v_{0}$$

$$x_{3c}^{*} = M + F$$



riangleq Etude de l'arc de trajectoire $t_c o t_f, \ u=1$:

$$\dot{x}_{1}^{*}(t) = x_{2}^{*}(t) \Rightarrow
x_{1}^{*}(t) = -\frac{gt^{2}}{2} + v_{0}t + h_{0} + \frac{\alpha m(0)}{\sigma} + \frac{\alpha m(0)}{\sigma} \left[1 - \frac{\sigma(t - t_{c})}{m(0)} \right] \left[\log \left| 1 - \frac{\sigma(t - t_{c})}{m(0)} \right| - 1 \right]
\dot{x}_{2}^{*}(t) = -g + \frac{\sigma \alpha}{x_{3}(t)} \Rightarrow x_{2}^{*}(t) = -gt + v_{0} - \alpha \log \left| \frac{m(0) - \sigma(t - t_{c})}{m(0)} \right|
\dot{x}_{3}^{*}(t) = -\sigma \Rightarrow x_{3}^{*}(t) = -\sigma t + C_{3} = -\sigma t + m(0) + \sigma t_{c} = -\sigma(t - t_{c}) + m(0)$$

riangle Conditions finales : m_f^* , t_f^* , t_c

$$0 = -\frac{gt_f^{*2}}{2} + v_0 t_f^* + h_0 + \frac{\alpha m(0)}{\sigma} + \frac{\alpha m(0)}{\sigma} \left[1 - \frac{\sigma(t_f^* - t_c^*)}{m(0)} \right] \left[\log \left| 1 - \frac{\sigma(t_f^* - t_c^*)}{m(0)} \right| - 1 \right]$$

$$0 = -gt_f^* + v_0 - \alpha \log \left| 1 - \frac{\sigma(t_f^* - t_c^*)}{m(0)} \right|$$

$$m_f^* = -\sigma(t_f^* - t_c^*) + m(0)$$

MATLAB:

```
>> [mf,tc,tf] = solve('mf+(50*(tf-tc))-1500=0','-(1.63*tf)-(200*log(1-((tf-tc)/30)))=0',...'-(0.815*tf^2)+6100+((6000*(1-((tf-tc)/30)))*(log(1-((tf-tc)/30))-1))')
```


riangleq Equations de la surface de commutation : $m(0)/\sigma>\theta^*=t_f^*-t_c^*>0$

$$x_{1c}^* = -\frac{g\theta^{*2}}{2} - \alpha\theta^* - \frac{\alpha m(0)}{\sigma} \log \left| 1 - \frac{\sigma\theta^*}{m(0)} \right|$$

$$x_{2c}^* = g\theta^* + \alpha \log \left| 1 - \frac{\sigma\theta^*}{m(0)} \right|$$

Nota:

- En éliminant θ^* , on obtient la surface de commutation $F(x_{1c}^*,x_{2c}^*)=0$
- $\sigma\theta^*/m(0)$ est la proportion de masse initiale consommée
- riangle Approximation de la surface de commutation : pour $\dfrac{\sigma \theta^*}{m(0)} \leq 0.25$

$$\log \left| 1 - \frac{\sigma \theta^*}{m(0)} \right| \sim -\frac{\sigma \theta^*}{m(0)} - \frac{\sigma^2 \theta^{*2}}{2m(0)^2}$$

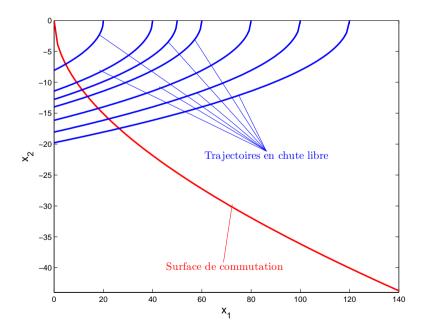
$$x_{2c}^* = \left(g - \frac{\alpha\sigma}{m(0)}\right)\sqrt{\frac{2x_{1c}^*}{\frac{\alpha\sigma}{m(0)} - g}} - \frac{\alpha\sigma^2}{m(0)^2} \frac{x_{1c}^*}{\frac{\alpha\sigma}{m(0)} - g}$$

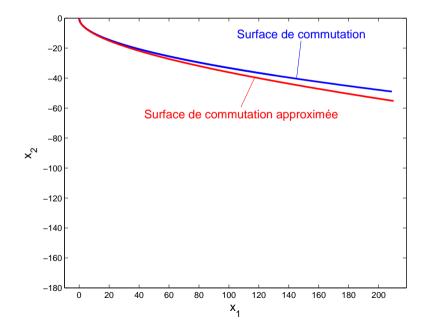
Nota :
$$\frac{\alpha\sigma}{m(0)} \ge g$$
 et $\theta^* = \sqrt{\frac{2x_{1c}^*}{(\frac{\alpha\sigma}{m(0)} - g)}}$

Espace réalisable :

$$\frac{\sigma\theta^*}{m(0)} \le 0.25 \quad \Rightarrow \quad \begin{cases} 0 \le x_{1c} \le 0.25^2 a \frac{m^2(0)}{\sigma^2} \\ -0.5a \frac{m(0)}{\sigma} - 0.25^2 b \frac{m^2(0)}{\sigma^2} \le x_{2c} \le 0 \end{cases}$$

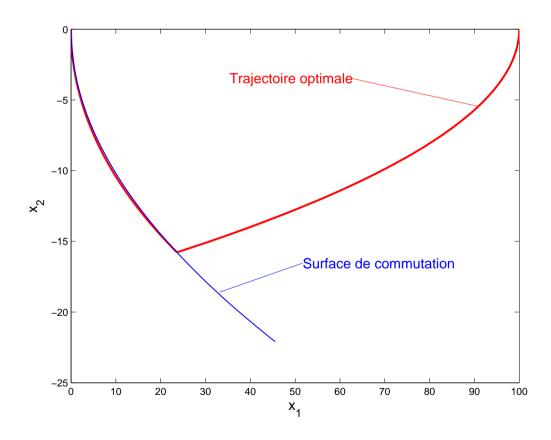
où $a=0.5(\frac{\alpha\sigma}{m(0)}-g)$ et $b=\frac{\alpha\sigma^2}{2m^2(0)}$ et la surface de commutation approximée : $f(x_{1c},x_{2c})=bx_{1c}+2a^2\sqrt{\frac{x_{1c}}{a}}+ax_{2c}=0$





Données numériques :

$$h_0 = 100 \text{ m}$$
 $m(0) = 1500 \text{ kg}$ $g = 1.63 \text{ m/s}^2$
 $\sigma = 50 \text{ kg/s}$ $\alpha = 200 \text{ m/s}$



$$t_f^* = 12.61 \text{ s}$$
 $t_c^* = 9.68 \text{ s}$
 $m_f^* = 1353, 5 \text{ kg}$ $J^* = 146.5 \text{ kg}$
 $x_{1c}^* = 23.63 \text{ m}$ $x_{2c}^* = -15.78 \text{ m/s}$
 $0 \le x_{1c} \le 141.65 \text{ m}$ $-44 \text{ m/s} \le x_{2c} \le 0$

Nota : la surface de commutation et la trajectoire $(t_c o t_f)$ optimale sont distinctes

Le problème de commande optimale étudié est défini par :

$$\min_{u(t) \in \mathcal{U}} J(x, u) = \int_{t_0}^{t_f} L(t, x(t)) + M^T(t, x(t)) u(t) dt + \psi_0(t_f, x(t_f))$$
sous
$$\dot{x}(t) = f(t, x(t)) + G(t, x(t)) u(t), \ x(t_0) = x_0$$

- $\mathcal{U} = \{ u(t) \in \mathbb{R}^m : \underline{u}_i \le u_i \le \overline{u}_i \ \forall \ i = 1, \dots, m \}$
- La commande "entre" linéairement dans le problème
- \implies Hamiltonien : fonction linéaire de u

$$H(t, x(t), u(t), \lambda(t)) = L(t, x) + M^{T}(t, x)u(t) + \lambda^{T}(t) [f(t, x) + G(t, x)u(t)]$$

Principe de Pontryagin :

$$u_i^*(t) = \begin{cases} \underline{u}_i & \text{si} \quad \left[M^T(t, x) + \lambda^T(t) G(t, x) \right]_i > 0 \\ \overline{u}_i & \text{si} \quad \left[M^T(t, x) + \lambda^T(t) G(t, x) \right]_i < 0 \end{cases}$$

La commande optimale $u^*(t)$ est une commande bang-bang

Equations canoniques de Hamilton et problème aux deux bouts :

$$\dot{x}(t) = f(t, x(t)) + G(t, x(t))u(t), \ x(t_0) = x_0$$

$$\dot{\lambda}(t) = -\frac{\partial L(t, x)}{\partial x} - \frac{\partial M^T(t, x)}{\partial x}u(t) - \frac{\partial f^T(t, x)}{\partial x}\lambda(t) - \lambda^T(t)\frac{\partial G(t, x)}{\partial x}u(t), \ \lambda(t_f) = \lambda_f$$

Z Exemple 6 modèles linéaires et temps minimum

$$\min_{-1 \le u(t) \le 1} t_f$$
sous
$$\dot{x}(t) = A(t)x(t) + b(t)u(t)$$

$$x(t_0) = x_0, \ x(t_f) = 0$$

- riangleq Hamiltonien : $H(t,x(t),u(t),\lambda(t))=\lambda^T(t)A(t)x(t)+\lambda^T(t)b(t)u(t)$
- Principe de Pontryagin :

$$u^*(t) = \begin{cases} 1 & \text{si } \lambda^T(t)b(t) < 0 \\ -1 & \text{si } \lambda^T(t)b(t) > 0 \end{cases} \quad \lambda^T(t)b(t) \text{ fonction de commutation}$$

- \triangle Condition de transversalité : $\lambda^T(t_f)(A(t_f)x(t_f)+b(t_f)u(t_f))+1=0$
- riangleq Equation d'état adjointe : $\dot{\lambda}(t) = -A^T(t)\lambda(t)$

Arcs singuliers

 $\ \, \triangle \ \, \text{Condition de singularit\'e} \ / \ \, \text{commande} \ i : \left[M^T(t,x^*) + \lambda^T(t) G(t,x^*) \right]_i = 0$

$$H(t, x^*, \lambda^*) = L(t, x^*) + \sum_{j \neq i}^m M_j(t, x^*) u_j^*(t) + \lambda^{*T}(t) \left[f(t, x^*) + \sum_{j \neq i}^m G_j(t, x^*) u_j^*(t) \right]$$

 u_i^* est un élément optimal singulier du vecteur de commande optimale u.

▼ Définition 1 solution singulière

Pour un vecteur $u^*(t)$ dont les composantes sont singulières, si la condition $\frac{\partial H(t,x^*,\lambda^*)}{\partial u} = 0 \text{ est vérifiée sur un intervalle de temps fini alors } u^*(t) \text{ est une solution singulière (arc singulier) totale (partielle) sur } [t_0,t_f] ([t_1,t_2])$

☐ Théorème 4 condition généralisée de Legendre-Clebsch

Une condition nécessaire d'optimalité de l'arc singulier de commande $u^{st}(t)$ est

$$\frac{\partial}{\partial u} \frac{d^p H_u}{dt^p} = 0 \ \forall \ t \in [t_0, t_f] \quad \text{et} \quad (-1)^q \frac{\partial}{\partial u} \frac{d^{2q} H_u}{dt^{2q}} \succeq 0 \ \forall \ t \in [t_0, t_f]$$

pour p pair et q l'ordre de singularité de $u^*(t)$

$$\min_{u} \quad \psi_0(x(t_f))$$
sous
$$\dot{x}(t) = f(x) + g(x)u , u \in \mathbb{R}, \ x(0) \text{ donn\'e}$$

$$\psi(x(t_f)) = 0, \ t_f \text{ fix\'e}$$

- $riangleq ext{Hamiltonien}: H = \lambda^T (f(x) + g(x)u)$
- $\ \, \text{ \ \ } \, \text{Système d'état adjoint} : \dot{\lambda} = -f_x^T \lambda g_x^T \lambda u$
- riangle Conditions de transversalité : $\lambda(t_f) = \nabla_{x_f} \psi_0 + \psi_{x_f}^T \nu$
- \triangle Condition d'optimalité : $H_u = \lambda^T g(x) = 0$
- ☼ Conditions de singularité :

$$\frac{d}{dt}[H_u] = \lambda^T g_x(f(x) + g(x)u) - \lambda^T (f_x + g_x u)g(x) = 0$$
$$= \lambda^T (g_x f(x) - f_x g(x)) = \lambda^T q(x) = 0$$

$$\frac{d^{2}}{dt^{2}}[H_{u}] = -\lambda^{T} f_{x} q(x) - \lambda^{T} g_{x} q(x) u + \lambda^{T} q_{x} (f(x) + g(x) u) = 0$$
$$= u(\lambda^{T} q_{x} g(x) - \lambda^{T} g_{x} q(x)) + \lambda^{T} (q_{x} f(x) - f_{x} q(x)) = 0$$

riangle Commande singulière : si $(\lambda^T q_x g(x) - \lambda^T g_x q(x)) \neq 0$

$$u = -\frac{\lambda^T (q_x f(x) - f_x q(x))}{\lambda^T (q_x g(x) - g_x q(x))}$$

riangle Surface singulière dans l'espace (λ, x) : (dimension 2n-2)

$$\lambda^T g(x) = 0$$
$$\lambda^T (g_x f(x) - f_x g(x)) = 0$$

Nota

- Si $\frac{\partial H}{\partial t} = 0$ et t_f libre alors la dimension de la surface singulière est 2n-3

$$H = \lambda^{T} (f(x) + g(x)u) = \lambda^{T} f(x) = 0$$

- Si n=3 alors l'équation de la surface singulière est donnée par :

Le problème de commande optimale étudié est défini par :

$$\min_{\substack{|u(t)| \le 1}} \quad J = \frac{1}{2} \int_0^2 x^2 dt$$

sous $\dot{x}(t) = u(t), \ x(0) = 1, \ x(2) = 0$

- \Rightarrow Hamiltonien : $H(x, u, \lambda) = \frac{x^2}{2} + \lambda u$

$$\dot{x}^*(t) = u^*(t), \ x^*(0) = 1$$

 $\dot{\lambda}^*(t) = -x(t), \ x^*(2) = 0$

Principe de Pontryagin :

$$u^{*}(t) = -\operatorname{sign}(\lambda^{*}(t)) = \begin{cases} -1 & \operatorname{si} \quad \lambda^{*}(t) > 0\\ 1 & \operatorname{si} \quad \lambda^{*}(t) < 0\\ \operatorname{singulière} & \operatorname{si} \quad \lambda^{*}(t) = 0 \end{cases}$$

Arcs singuliers: exemple (suite)

 \triangle Analyse des arcs singuliers : $\lambda(t) = 0, \ \forall \ t \in [t_1, t_2] \subset [0, 2]$

$$\lambda(t) = 0 \implies \dot{\lambda}(t) = 0 \implies x(t) = 0 \implies u(t) = 0$$

Nota: une commutation se produit en t_1 si $x(t_1) = 0$

Discussion :

- $\lambda^*(t) < 0 \Rightarrow u^*(t) = -\mathrm{sign}(\lambda^*) = 1 \Rightarrow x^*(t) = t+1$ donc pas de commutation et solution impossible
- $\lambda^*(t) > 0 \Rightarrow u^*(t) = -\operatorname{sign}(\lambda^*) = -1 \Rightarrow x^*(t) = 1 t \Rightarrow t_c = 1 \text{ alors}$ $\lambda^*(t) = \frac{t^2}{2} - t + \lambda(0) \text{ avec } \lambda(0) = 0.5$

La solution optimale est donc donnée par :

$$u^{*}(t) = -1 \quad x^{*}(t) = 1 - t$$

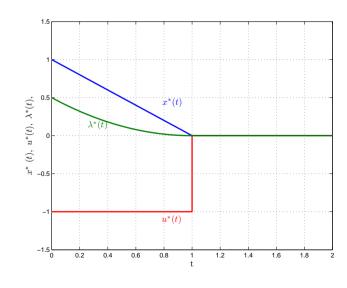
$$0 \le t \le 1$$

$$\lambda^{*}(t) = \frac{t^{2}}{2} - t + \frac{1}{2}$$

$$1 \le t \le 2$$

$$u^{*}(t) = 0 \quad x^{*}(t) = 0$$

$$\lambda^{*}(t) = 0 \quad \lambda^{*}(2) = 0$$



Le problème de commande optimale étudié est défini par :

$$\min_{u(t)\in\mathcal{U}} J = \int_{t_0}^{t_f} dt = t_f - t_0$$
sous $\dot{x}(t) = Ax(t) + Bu(t), \ x(t_0) = x_0, \ x(t_f) = 0$

- $\mathcal{U} = \{ u(t) \in \mathbb{R}^m : -1 \le u_i \le 1 \ \forall \ i = 1, \dots, m \}$
- La dynamique du sytème est supposée linéaire
- \Rightarrow Hamiltonien : $H(t, x(t), u(t), \lambda(t)) = 1 + \lambda^{T}(t) [Ax(t) + Bu(t)]$

$$\dot{x}^*(t) = Ax^*(t) + Bu^*(t), \quad x^*(t_0) = x_0, \quad x^*(t_f) = 0$$

 $\dot{\lambda}^*(t) = -A^T \lambda^*(t)$

Principe de Pontryagin :

$$u^*(t) = -\operatorname{sign}(B^T \lambda^*(t)) = \begin{cases} -1 & \text{si} \quad B^T \lambda^*(t) > 0 \\ 1 & \text{si} \quad B^T \lambda^*(t) < 0 \\ \text{singulière} & \text{si} \quad B^T \lambda^*(t) = 0 \end{cases}$$

- ☐ **Théorème 5** Le système admet une commande optimale en temps minimum singulière sur $[t_1, t_2]$ ssi le système n'est pas commandable
- Unicité de la commande optimale et nombre de commutations :
 - \Box Théorème 6 Si le système est complètement commandable alors il n'existe qu'une seule commande extrémale égale à la commande optimale en temps minimum. Dans ce cas, si ses n pôles sont réels la commande optimale $u^*(t)$ peut commuter au plus n-1 fois
- - □ Théorème 7 Si le système est complètement commandable et si les valeurs propres de A sont toutes à partie réelle non positive alors une commande optimale en temps minimum conduisant x_0 en $x(t_f) = 0 \ \forall \ x_0 \in \mathbb{R}^n$ existe toujours

Nota : si le système est temps-variant $(\dot{x}(t) = A(t)x(t) + B(t)u(t))$, l'unicité des extrémales et de la commande optimale est toujours vraie

Le problème de commande optimale étudié est défini par :

$$\min_{u(t)\in\mathcal{U}} J = \int_{t_0}^{t_f} \sum_{j=1}^{m} |u_i(t)| dt$$
sous $\dot{x}(t) = Ax(t) + Bu(t), \ x(t_0) = x_0, \ x(t_f) = x_f$

$$riangleq extstyle ext$$

Equations canoniques de Hamilton :

$$\dot{x}^*(t) = Ax^*(t) + Bu^*(t) \quad x^*(t_0) = x_0, \quad x^*(t_f) = x_f$$

 $\dot{\lambda}^*(t) = -A^T \lambda^*(t)$

Principe de Pontryagin :

$$u^{*}(t) = -\operatorname{dez}(B^{T}\lambda^{*}(t)) = \begin{cases} 0 & \text{si} \quad |B^{T}\lambda^{*}(t)| < 1\\ -\operatorname{sign}(B^{T}\lambda^{*}(t)) & \text{si} \quad |B^{T}\lambda^{*}(t)| > 1\\ 0 \le u \le 1 & \text{si} \quad B^{T}\lambda^{*}(t) = -1\\ -1 \le u \le 0 & \text{si} \quad B^{T}\lambda^{*}(t) = 1 \end{cases}$$

 \square **Théorème 8** Si le système est commandable et la matrice A n'est pas singulière :

$$\det(B_j A) \neq 0 \quad \forall \ j = 1, \dots, m \quad B = \begin{bmatrix} B_1 & \dots & B_j & \dots & B_m \end{bmatrix}$$

alors le système n'admet pas de commande optimale en consommation minimale singulière sur $[t_0,t_f]$

Unicité de la commande optimale en consommation minimale :

□ **Théorème 9** Si le système n'admet pas de commande optimale en consommation minimale singulière sur $[t_0, t_f]$ alors il existe une unique commande optimale en consommation minimale.

Structure de commande en boucle ouverte ou fermée

Nota : pas de théorème général d'existence de la loi de commande optimale en consommation minimale

