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LMI - Linear Matrix Inequality

F (x) = F0 +
n∑
i=1

xiFi � 0

- Fi ∈ Sm given symmetric matrices
- xi ∈ Rn decision variables

Fundamental property: feasible set is convex

S = {x ∈ Rn : F (x) � 0}
S is the Spectrahedron

Nota : � 0 (� 0) means positive semidefi-
nite (positive definite) e.g. real nonnegative
eigenvalues (strictly positive eigenvalues) and
defines generalized inequalities on PSD cone

Terminology coined out by Jan Willems in 1971

F (P ) =

[
A′P + PA+Q PB + C′

B′P + C R

]
� 0

”The basic importance of the LMI seems to be largely unappre-
ciated. It would be interesting to see whether or not it can be
exploited in computational algorithms”



Lyapunov’s LMI

Historically, the first LMIs appeared around 1890
when Lyapunov showed that the autonomous
system with LTI model:

d

dt
x(t) = ẋ(t) = Ax(t)

is stable (all trajectories converge to zero) iff
there exists a solution to the matrix inequalities

A′P + PA ≺ 0 P = P ′ � 0

which are linear in unknown matrix P

Aleksandr Mikhailovich Lyapunov
(1857 Yaroslavl - 1918 Odessa)



Example of Lyapunov’s LMI

A =

[
−1 2
0 −2

]
P =

[
p1 p2
p2 p3

]

A′P + PA ≺ 0 P � 0[
−2p1 2p1 − 3p2

2p1 − 3p2 4p2 − 4p3

]
≺ 0

[
p1 p2
p2 p3

]
� 0

Matrices P satisfying Lyapunov LMI’s

[ 2 −2 0 0
−2 0 0 0
0 0 1 0
0 0 0 0

]
p1+

[ 0 3 0 0
3 −4 0 0
0 0 0 1
0 0 1 0

]
p2+

[ 0 0 0 0
0 4 0 0
0 0 0 0
0 0 0 1

]
p3 � 0



Some history (1)

1940s - Absolute stability problem: Lu’re, Post-
nikov et al applied Lyapunov’s approach to
control problems with nonlinearity in the ac-
tuator

ẋ = Ax+ bσ(x)

Sector-type nonlinearity

- Stability criteria in the form of LMIs solved
analytically by hand

- Reduction to Polynomial (frequency depen-
dent) inequalities (small size)



Some history (2)

1960s: Yakubovich, Popov, Kalman, Anderson
et al obtained the positive real lemma

The linear system ẋ = Ax+Bu, y = Cx+Du is passive
H(s) +H(s)∗ ≥ 0 ∀ s+ s∗ > 0 iff

P � 0

[
A′P + PA PB − C ′
B′P − C −D −D′

]
� 0

- Solution via a simple graphical criterion (Popov,

circle and Tsypkin criteria)
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Some history (3)

1971: Willems focused on solving algebraic

Riccati equations (AREs)

A′P + PA− (PB + C′)R−1(B′P + C) +Q = 0

Numerical algebra

H =

[
A−BR−1C BR−1B′

−C′R−1C −A′+ C′R−1B′

]
V =

 V1

V2


Pare = V2V

−1
1

By 1971, methods for solving LMIs:

- Direct for small systems

- Graphical methods

- Solving Lyapunov or Riccati equations



Some history (4)

1963: Bellman-Fan: infeasibility criteria for
multiple Lyapunov inequalities (duality theory)
On Systems of Linear Inequalities in hermitian Matrix Variables

1975: Cullum-Donath-Wolfe: Optimality con-
ditions, nondifferentiable criterion for multiple
eigenvalues and algorithm for minimization of
sum of maximum eigenvalues
The minimization of certain nondifferentiable sums of eigenvalues

of symmetric matrices

1979: Khachiyan: polynomial bound on worst
case iteration count for LP ellipsoid algorithm
of Nemirovski and Shor
A polynomial algorithm in linear programming
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Some history (5)

1981: Craven-Mond: Duality theory
Linear Programming with Matrix variables

1984: Karmarkar introduces interior-point (IP)
methods for LP: improved complexity bound
and efficiency

1985: Fletcher: Optimality conditions for non-
differentiable optimization
Semidefinite matrix constraints in optimization

1988: Overton: Nondifferentiable optimiza-
tion
On minimizing the maximum eigenvalue of a symmetric matrix

1988: Nesterov, Nemirovski, Alizadeh, Kar-
markar and Thakur extend IP methods for con-
vex programming
Interior-Point Polynomial Algorithms in Convex Programming

1990s: most papers on SDP are written (con-
trol theory, combinatorial optimization, approx-
imation theory...)



Mathematical preliminaries (1)

A set C is convex if the line segment between

any two points in C lies in C

∀ x1, x2 ∈ C λx1+(1−λ)x2 ∈ C ∀ λ 0 ≤ λ ≤ 1

.
.

The convex hull of a set C is the set of all

convex combinations of points in C

co C = {
∑
i

λixi : xi ∈ C λi ≥ 0
∑
i

λi = 1}

.

.

.

.
.

.

.

.

.

.
.



Mathematical preliminaries (2)

A hyperplane is a set of the form:

H =
{
x ∈ Rn | a′(x− x0) = 0

}
a 6= 0 ∈ Rn

A hyperplane divides Rn into two halfspaces:

H− =
{
x ∈ Rn | a′(x− x0) ≤ 0

}
a 6= 0 ∈ Rn

x

a

x1

0

x2

x

Hyperplane and halfspace
x ∈ H, x1 6∈ H−, x2 ∈ H−



Mathematical preliminaries (3)

A polyhedron is defined by a finite number of
linear equalities and inequalities

P =
{
x ∈ Rn : a′jx ≤ bj, j = 1, · · · ,m, c′ix = di, i = 1, · · · , p

}
= {x ∈ Rn : Ax � b, Cx = d}

A bounded polyhedron is a polytope
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Polytope as an intersection of halfspaces

• positive orthant is a polyhedral cone
• k-dimensional simplexes in Rn

X = co {v0, · · · , vk} =


k∑
i=0

λivi λi ≥ 0
k∑
i=0

λi = 1





Mathematical preliminaries (4)

A set K is a cone if for every x ∈ K and λ ≥ 0

we have λx ∈ K. A set K is a convex cone if it

is convex and a cone

.

.
0

.

.

.
0

0 .

.

K ⊆ Rn is called a proper cone if it is a closed

solid pointed convex cone

a ∈ K and − a ∈ K ⇒ a = 0



Lorentz cone Ln

3D Lorentz cone or ice-cream cone

x2 + y2 ≤ z2 z ≥ 0

arises in quadratic programming



PSD cone Sn+

2D positive semidefinite cone[
x y
y z

]
� 0 ⇐⇒ x ≥ 0 z ≥ 0 xz ≥ y2

arises in semidefinite programming



Mathematical preliminaries (5)

Every proper cone K in Rn induces a partial

ordering �K defining generalized inequalities on

Rn

a �K b ⇔ a− b ∈ K

The positive orthant, the Lorentz cone and the

PSD cone are all proper cones

• positive orthant Rn+: standard coordinatewise

ordering (LP)

x �Rn+
y ⇔ xi ≥ yi

• Lorentz cone Ln

xn ≥

√√√√√n−1∑
i=1

x2
i

• PSD cone Sn+: Löwner partial order



Mathematical preliminaries (6)

The set K∗ =
{
y ∈ Rn | x′y ≥ 0 ∀ x ∈ K

}
is called

the dual cone of the cone K

• (Rn+)∗ = Rn+

• (Sn+)∗ = Sn+

• Ln =
{

(x, t) ∈ Rn+1 | ‖x‖ ≤ t
}

, then

(Ln)∗ =
{

(u, v) ∈ Rn+1 | ‖u‖∗ ≤ v
}

with

‖u‖∗ = sup
{
u′x | ‖x‖ ≤ 1

}
K∗ is closed and convex, K1 ⊆ K2 ⇒ K∗2 ⊆ K

∗
1

�K∗ is a dual generalized inequality

x �K y ⇔ λ′x ≤ λ′y ∀ λ �K∗ 0



Mathematical preliminaries (7)

f : Rn → R is convex if domf is a convex set

and ∀ x, y ∈ domf and 0 ≤ λ ≤ 1

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

If f is differentiable: domf is a convex set and

∀ x, y ∈ domf

f(y) ≥ f(x) +∇f(x)′(y − x)

If f is twice differentiable: domf is a convex

set and ∀ x, y ∈ domf

∇2f(x) � 0

Quadratic functions:

f(x) = (1/2)x′Px+q′x+r is convex if and only

if P � 0



Convex function y = x2

Nonconvex function y = −x2

Mind the sign !



LMI and SDP formalisms (1)

In mathematical programming terminology

LMI optimization = semidefinite programming

(SDP)

LMI (SDP dual) SDP (primal)

min c′x

under F0 +
n∑
i=1

xiFi ≺ 0

min −Tr(F0Z)
under −Tr(FiZ) = ci

Z � 0

x ∈ Rn, Z ∈ Sm, Fi ∈ Sm, c ∈ Rn, i = 1, · · · , n

Nota:

In a typical control LMI

A′P + PA = F0 +
n∑
i=1

xiFi ≺ 0

individual matrix entries are decision variables



LMI and SDP formalisms (2)

∃ x ∈ Rn | F0 +
n∑
i=1

xiFi︸ ︷︷ ︸
F (x)

≺ 0 ⇔ min
x∈Rn

λmax(F (x))

The LMI feasibility problem is a convex and
non differentiable optimization problem.

Example :

F (x) =

[
−x1 − 1 −x2
−x2 −1 + x1

]

λmax(F (x)) = 1 +
√

(x2
1 + x2

2)
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LMI and SDP formalisms (3)

min c′x
s.t.

b−A′x ∈ K

min b′y
s.t.

Ay = c
y ∈ K

Conic programming in cone K

• positive orthant (LP)

• Lorentz (second-order) cone (SOCP)

• positive semidefinite cone (SDP)

Hierarchy: LP cone ⊂ SOCP cone ⊂ SDP cone



LMI and SDP formalisms (4)

LMI optimization = generalization of linear

programming (LP) to cone of positive semidef-

inite matrices = semidefinite programming (SDP)

Linear programming pioneered by
• Dantzig and its simplex algorithm (1947, ranked in
the top 10 algorithms by SIAM Review in 2000)
• Kantorovich (co-winner of the 1975 Nobel prize in
economics)

George Dantzig
(1914 Portland, Oregon)

Leonid V Kantorovich
(1921 St Petersburg - 1986)

Unfortunately, SDP has not reached maturity of LP or
SOCP so far..



Applications of SDP

• control systems

• robust optimization

• signal processing

• sparse Principal Component Analysis

• structural design (trusses)

• geometry (ellipsoids)

• Euclidean distance matrices (sensor network

localization, molecular conformation)

• graph theory and combinatorics (MAXCUT,

Shannon capacity)

• facility layout problem (single-row facility lay-

out problem, VLSI floorplanning)

and many others...

See Helmberg’s page on SDP

www-user.tu-chemnitz.de/∼helmberg/semidef.html

http://www-user.tu-chemnitz.de/~helmberg/semidef.html


Robust optimization (1)

In many real-life applications of optimization
problems, exact values of input data (constraints)
are seldom known
• Uncertainty about the future
• Approximations of complexity by uncertainty
• Errors in the data
• variables may be implemented with errors

min f0(x, u)
under fi(x, u) ≤ 0 i = 1, · · · ,m

where x ∈ Rn is the vector of decision variables
and u ∈ Rp is the parameters vector.
• Stochastic programming
• Sensitivity analysis
• Interval arithmetic
• Worst-case analysis

min
x

sup
u∈U

f0(x, u)

under sup
u∈U

fi(x, u) ≤ 0 i = 1, · · · ,m



Robust optimization (2)

Case study by Ben Tal and Nemirovski:
[Math. Programm. 2000]
90 LP problems from NETLIB + uncertainty
quite small (just 0.1%) perturbations of ”ob-
viously uncertain” data coefficients can make
the ”nominal” optimal solution x∗ heavily in-
feasible
Remedy: robust optimization, with robustly
feasible solutions guaranteed to remain feasi-
ble at the expense of possible conservatism
Robust conic problem: [Ben Tal Nemirovski
96]

min
x∈Rn

c′x

s.t. Ax− b ∈ K, ∀ (A, b) ∈ U

This last problem, the so-called robust coun-
terpart is still convex, but depending on the
structure of U, can be much harder that origi-
nal conic problem



Robust optimization (3)

Uncertainty Problem Optimization Problem

polytopic LP LP
ellipsoid SOCP
LMI SDP

polytopic SOCP SOCP
ellipsoid SDP
LMI NP-hard

Examples of applications:

Robust LP: Robust portfolio design in finance

[Lobo 98], discrete-time optimal control [Boyd

97], robust synthesis of antennae arrays [Le-

bret 94], FIR filter design [Wu 96]

Robust SOCP: robust least-squares in

identification [El Ghaoui 97], robust synthesis

of antennae arrays and FIR filter synthesis



Robust optimization (4)

Robust LP as a SOCP

Robust counterpart of robust LP
min
x∈Rn

c′x

s.t.
a′ix ≤ bi, i = 1, · · ·m,
∀ ai ∈ Ei
Ei = {ai + Piu | ||u||2 ≤ 1 and Pi � 0}

Note that

max
ai∈Ei

a′ix = a′ix+ ||Pix||2 ≤ bi

SOCP formulation
min
x∈Rn

c′x

s.t.
a′ix+ ||Pix|| ≤ bi, i = 1, · · ·m,



Robust optimization (5)

Example of Robust LP

J∗1 = max
x,y

2x+ y

s.t. x ≥ 0, y ≥ 0
x ≤ 2
y ≤ 2
x+ y ≤ 3

J∗2 = max
x,y

2x+ y

s.t. x ≥ 0, y ≥ 0√
x2 + y2 ≤ 2− x√
x2 + y2 ≤ 2− y√
x2 + y2 ≤ 3− x− y

(x∗, y∗) = (2,1) (x∗, y∗) = (0.8284,0.8284)
J∗1 = 5 J∗2 = 2.4852

E1 = E2 =
{[

1 0
]T

+ 12u | ||u||2 ≤ 1
}

E3 =
{[

1 1
]T

+ 12u | ||u||2 ≤ 1
}



Combinatorial optimization (1)

Combinatorics: Graph theory, polyhedral com-
binatorics, combinatorial optimization, enumer-
ative combinatorics...
Definition: Optimization problems in which the
solution space is discrete (finite collection of
objects) or a decision-making problem in which
each decision has a finite (possibly many) num-
ber of feasibilities

Depending upon the formalism
- 0-1 Linear Programming problems: 0-1 Knap-
sack problem,...
- Propositional logic: Maximum satisfiability
problems...
- Constraints satisfaction problems: Airline crew
assignment, maximum weighted stable set prob-
lem...
- Graph problems: Max-Cut, Shannon or Lo-
vasz capacity of a graph, bandwidth problems,
equipartition problems...



Combinatorial optimization (2)

SDP relaxation of QP in binary variables

(BQP ) max
x∈{−1,1}

x′Qx

Noticing that x′Qx = trace(Qxx′)
we get the equivalent form

(BQP ) max
X

trace(QX)

diag(Xii) = e =
[

1 · · · 1
]′

s.t. X � 0
rank(X) = 1

Dropping the non convex rank constraint leads

to the SDP relaxation:

(SDP ) max
X

trace(QX)

s.t. diag(Xii) = e =
[

1 · · · 1
]′

X � 0

Interpretation: lift from Rn to Sn



Combinatorial optimization (3)

Example

(BQP ) min
x∈{−1,1}

x′Qx = x1x2 − 2x1x3 + 3x2x3

with Q =

 0 0.5 −1
0.5 0 1.5
−1 1.5 0


SDP relaxation

(SDP ) min
X

trace(QX) = X1 − 2X2 + 3X3

s.t. X =

 1 X1 X2
X1 1 X3
X2 X3 1

 � 0

X∗ =

 1 −1 1
−1 1 −1
1 −1 1

 rank(X∗) = 1

From X∗ = x∗x∗
′
, we recover the optimal so-

lution of (BQP)

x∗ =
[

1 −1 1
]′



Combinatorial optimization (4)

Example (continued)

Visualization of the feasible set of (SDP) in
(X1, X2, X3) space :

X =

 1 X1 X2
X1 1 X3
X2 X3 1

 � 0

Optimal vertex is
[
−1 1 −1

]
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Duality

- Versatile notion

- Theoritical results and numerical methods

- Certificates of infeasibility

Lagrangian duality has many applications and

interpretations (price or tax, game, geome-

try...)

Applications of SDP duality:

• numerical solvers design

• problems reduction

• new theoretical insights into control problems

In the sequel we will recall some basic facts

about Lagrangian duality and SDP duality



Lagrangian duality

Let the primal problem

p? = min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0 i = 1, · · · ,m
hi(x) = 0 i = 1, · · · , p

Define Lagrangian L(., ., .) Rn × Rm × Rp → R

L(x, λ, µ) = f0(x) +
m∑
i=1

λifi(x) +
p∑

i=1

µihi(x)

where λ, µ are Lagrange multipliers vectors or

dual variables

Let the Lagrange dual function

g(λ, µ) = inf
x∈D

L(x, λ, µ)

- g is always concave

- g(λ, µ) = −∞ if there is no finite infimum



Lagrangian duality (2)

A pair (λ, µ) s.t. λ � 0 and g(λ, µ) > −∞ is

dual feasible

For any primal feasible x and dual feasible pair

(λ, µ)

g(λ, µ) ≤ p∗ ≤ f0(x)

min
x

x4 − 3x2 − x
under x(x+ 1) ≤ 0



Lagrangian duality (3)

Lagrange dual problem

d? = max
λ,µ

g(λ, µ)

s.t. λ � 0

The Lagrange dual problem is a convex opti-

mization problem

Primal Dual

inf
x∈Rn

sup
λ,µ

L(x, λ, µ)

s.t. λ � 0

sup
λ,µ

inf
x∈Rn

L(x, λ, µ)

s.t. λ � 0

A Lagrangian relaxation consists in solving the

dual problem instead of the primal problem



Weak and strong duality

Weak duality (max-min inequality):

p? ≥ d?

because

g(λ, µ) ≤ f0(x)+
m∑
i=1

λi fi(x)︸ ︷︷ ︸
≤0

+
p∑

i=1

µi hi(x)︸ ︷︷ ︸
=0

≤ f0(x)

for any primal feasible x and dual feasible λ, µ

The difference p?− d? ≥ 0 is called duality gap

Strong duality (saddle-point property):

p? = d?

Sometimes, constraint qualifications ensure that
strong duality holds
Example: Slater’s condition = strictly feasible
convex primal problem

fi(x) < 0, i = 1, · · · ,m hi(x) = 0, i = 1, · · · , p



Geometric interpretation of duality (1)

Consider the primal optimization problem

p? = min
x∈R

f0(x)

s.t. f1(x) ≤ 0

with Lagrangian and dual function

L(x, λ) = f0(x) + λf1(x) g(λ) = inf
x
L(x, λ)

The dual problem is given by:

d? = max
λ

g(λ)

s.t. λ � 0



Geometric interpretation of duality (2)

Set of values G = (f1(x), f0(x)), ∀ x ∈ D

L(x, λ) = f0(x) + λf1(x) =
[
λ 1

] [ f1(x)
f0(x)

]

g(λ) = inf
x∈D

L(λ, x) = inf
x∈D

{[
λ 1

] [ u
v

]
(u, v) ∈ G

}
Supporting hyperplane with slope −λ[

λ 1
] [ u

v

]
≥ g(λ) (u, v) ∈ G



Geometric interpretation of duality (3)

Three supporting hyperplanes, including the

optimum λ? yielding d? < p?

No strong duality here

p∗ − d∗ > 0

Duality gap 6= 0



Geometric interpretation of duality (4)

B = {(0, s) ∈ R× R : s < p∗}

- Separating hyperplane theorem for G and B
- The separating hyperplane is a supporting
hyperplane to G in (0, p∗)
- Slater’s condition ensures the hyperplane is
non vertical



Optimality conditions

Suppose that strong duality holds, let x? be

primal optimal and (λ?, µ?) be dual optimal,

f0(x?) = g(λ?, µ?)

= inf
x

f0(x) +
m∑
i=1

λ?i fi(x) +
p∑

i=1

µ?ihi(x)


≤ f0(x?) +

m∑
i=1

λ?i fi(x
?) +

p∑
i=1

µ?ihi(x
?)

< f0(x?)

λ?i fi(x
?) = 0 i = 1, · · · ,m

This is complementary slackness condition

λ?i > 0 ⇒ fi(x
?) = 0 or fi(x

?) < 0 ⇒ λ?i = 0

In words, the ith optimal Lagrange multiplier

is zero unless the ith constraint is active at the

optimum



KKT optimality conditions

fi, hi are differentiable and strong duality holds

hi(x
?) = 0, i = 1, · · · , p, (primal feasible)

fi(x
?) ≤ 0, i = 1, · · · ,m, (primal feasible)
λ?i � 0, i = 1, · · · ,m, (dual feasible)

λ?i fi(x
?) = 0, i = 1, · · · ,m, (complementary)

∇f0(x?) +
p∑

i=1

λ?i∇fi(x
?) +

p∑
i=1

µ?i∇hi(x
?) = 0

Necessary Karush-Kuhn-Tucker conditions

satisfied by any primal and dual optimal pair

x? and (λ?, µ?)

For convex problems, KKT conditions are also

sufficient



Feasibility of inequalities (1)

∃ x ∈ Rn :

{
fi(x) ≤ 0 i = 1, · · · ,m
hi(x) = 0 i = 1, · · · , p

Dual function: g(., .) : Rm × Rp → R

g(λ, µ) = inf
x∈D

m∑
i=1

λifi(x) +
p∑

i=1

µihi(x)

The dual feasibility problem is

∃ (λ, µ) ∈ Rm × Rp :

{
g(λ, µ) > 0
λ � 0

Theorem of weak alternatives

At most, one of the two (primal and dual) is

feasible

If the dual problem is feasible then the primal

problem is infeasible



Feasibility of inequalities (2)

Proof of the theorem of alternatives

Suppose x ∈ D is a feasible point for the primal

problem

g(λ, µ) = inf
x∈D

m∑
i=1

λifi(x) +
p∑

i=1

µihi(x)

≤
m∑
i=1

λi fi(x)︸ ︷︷ ︸
≤0

+
p∑

i=1

µi hi(x)︸ ︷︷ ︸
=0

∀ (λ, µ) ∈ Rm × Rp

and so g(λ, µ) ≤ 0 for all λ � 0

If fi are convex functions, hi are affine func-

tions and some type of constraint qualification

holds:

Theorem of strong alternatives

Exactly one of the two alternative holds

A dual feasible pair (λ, µ) gives a certificate

(proof) of infeasibility of the primal



Feasibility of inequalities (3)
Geometric interpretation

2f (x) = v

f (x) = u1

−λ

G

H λ

P

P =

{
(u, v) ∈ R2 :

[
u
v

]
� 0

}

Hλ =

{
(u, v) ∈ R2 : λ′

[
u
v

]
= g(λ)

}
If g(λ) > 0 and λ � 0 then Hλ is a separating
hyperplane for P from

G =
{[

f1(x) f2(x)
]

: x ∈ Rn
}



Conic duality (1)

Let the primal:

p? = min
x∈Rn

f0(x)

s.t. fi(x) �Ki 0 i = 1, · · ·m

Lagrange dual function: g(.) : Rm → R

g(λ) = inf
x∈D

f0(x) +
m∑
i=1

λ′ifi(x)

Lagrange dual problem:

d? = max
λ∈Rm

g(λ)

s.t. λi �K∗i 0, i = 1, · · · ,m



Conic duality (2)

• Weak duality
• Strong duality:
- if primal is s.f. with finite p? then d? is reached
by dual
- if dual is s.f. with finite d? then p? is reached
by primal
- if primal and dual are s.f. then p? = d?

• Complementary slackness:

λ?
′
i fi(x

?) = 0

λ?i �K?i 0⇒ fi(x
?) = 0

fi(x
?) ≺Ki 0⇒ λ?i = 0

• KKT conditions:

fi(x
?) �Ki 0

λ?i �K?i 0

∇f0(x?) +
m∑
i=1

∇fi(x?)′λ?i = 0



Example of conic duality

Consider the primal conic program

min x1

s.t.

 x1 − x2

1
x1 + x2

 �L3 0⇔ x1 + x2 > 0
4x1x2 ≥ 1

with dual

max −λ2

s.t.

 λ1 + λ3 = 1
−λ1 + λ3 = 0
λ ∈ L3

⇔ λ1 = λ3 = 1/2

1/2 ≥
√

1/4 + λ2
2

The primal is strictly feasible and bounded below with
p? = 0 which is not reached since dual problem is infea-
sible d? = −∞



SDP duality (1)

Primal SDP:

p? = min
x∈Rn

c′x

s.t. F0 +
n∑
i=1

xiFi � 0

Lagrange dual function:

g(Z) = inf
x∈D

(
c′x+ tr ZF (x)

)
=

{
tr F0Z if tr FiZ + ci = 0 i = 1, · · · , n
−∞ otherwise

Dual SDP:

d? = max
Z∈Sm

tr F0Z

s.t. tr FiZ + ci = 0 i = 1, · · · , n
Z � 0

Complementary slackness:

tr F (x?)Z? = 0⇐⇒ F (x?)Z? = Z?F (x?) = 0



SDP duality (2)

KKT optimality conditions

F0 +
n∑
i=1

xiFi + Y = 0 Y � 0

∀ i trace FiZ + ci = 0 Z � 0

Z?F (x?) = −Z?Y ? = 0

Nota:

Since Y ? � 0 and Z∗ � 0 then

trace F (x?)Z? = 0⇐⇒ F (x?)Z? = Z?F (x?) = 0

Theorem:

Under the assumption of strict feasibility for

the primal and the dual, the above conditions

form a system of necessary and sufficient op-

timality conditions for the primal and the dual



Example of SDP duality gap

Consider the primal semidefinite program

min x1

s.t.

 0 x1 0
x1 −x2 0
0 0 −1− x1

 � 0

with dual

max −z6

s.t.

 z1 (1− z6)/2 z4
(1− z6)/2 0 z5

z4 z5 z6

 � 0

In the primal x1 = 0 (x1 appears in a row with
zero diagonal entry) so the primal optimum is
x?1 = 0

Similarly, in the dual necessarily (1− z6)/2 = 0
so the dual optimum is z?6 = 1

There is a nonzero duality gap here (p? = 0) >
(d? = −1)



Conic theorem of alternatives

fi(x) �Ki 0 Ki ⊆ Rki

Lagrange dual function

g(λ) = inf
x∈D

m∑
i=1

λ′ifi(x) λi ∈ Rki

Weak alternatives:

1− fi(x) �Ki 0 i = 1, · · · ,m

2− λi �K?i 0 g(λ) > 0

Strong alternatives:

fi Ki-convex and ∃ x ∈ relintD

1− fi(x) ≺Ki 0 i = 1, · · · ,m

2− λi �K?i 0 g(λ) ≥ 0



Theorem of alternatives for LMIs

For the LMI feasible set

F (x) = F0 +
∑
i

xiFi ≺ 0

Exactly one statement is true
1- ∃ x s.t. F (x) ≺ 0
2- ∃ 0 6= Z � 0 s.t.
trace F0Z ≥ 0 and trace FiZ = 0 for i = 1, · · · , n

Useful for giving certificate of infeasibility of

LMIs

Rich literature on theorems of alternatives for

generalized inequalities, e.g. nonpolyhedral con-

vex cones

Elegant proofs of standard results (Lyapunov,

ARE) in linear systems control



S-procedure (1)

S-procedure: also frequently useful in robust

and nonlinear control, also an outcome of the

theorem of alternatives

1- if x′A1x ≥ 0, · · · , x′Amx ≥ 0

then x′A0x ≥ 0 ∀ x ∈ Rn

2- ∃ τj ≥ 0 s.t. x′A0x−
m∑
j=1

τjx
′Ajx ≥ 0

The S-procedure consists in replacing 1 by 2

The converse also holds (no duality gap)

• when m = 1 for real quadratic forms and

∃ x | x′A1x > 0 (from the theorem of alterna-

tives)

• when m = 2 for complex quadratic forms



S-procedure (2)
Sketch of the proof for m = 1

Dines theorem:
For (A0, A1) ∈ Sn then

K =
{

(u, v) = (x′A0x, x
′A1x) : x ∈ Rn

}
is a closed convex cone of R2

K

u

v

� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �

Q

Suppose if v = x′A1x ≥ 0 then u = x′A0x ≥ 0
Defining Q = {v ≥ 0, u < 0} then K ∩Q = ∅

Separating Hyperplane Theorem:

τ1u− τ2v < 0 (u, v) ∈ Q τ2 ≥ 0 τ1 > 0
∀ (u, v) ∈ K ∃ τ = τ2/τ1 ≥ 0 u− τv ≥ 0



S-procedure (3)

Counter-example m = 3 and n = 2

Let the quadratic forms

f1(x, y) = −x2 + 2y2 f2(x, y) = 2x2 − y2

f0(x, y) = xy

then

Q = {(x, y) | f1(x, y) ≥ 0 and f2(x, y) ≥ 0}

=

{
(x, y) | 1/

√
2 ≤

∣∣∣∣∣xy
∣∣∣∣∣ ≤ √2

}
and

(x, y) = (1,1) | f1(x, y) > 0 and f2(x, y) > 0

f0(x, y) ≥ 0 ∀ (x, y) ∈ Q

But 6 ∃ (τ1, τ2) � 0 s.t.

xy − τ1(−x2 + 2y2)− τ2(2x2 − y2) ≥ 0



Finsler’s (Debreu) lemma (1)

The following statements are equivalent

1− x′A0x > 0 ∀ x 6= 0 ∈ Rn, n ≥ 3, s.t. x′A1x = 0

2− A0 + τA1 � 0 for some τ ∈ R

Theorem of alternatives

1− ∃ τ ∈ R | τA1 +A0 � 0

2− ∃ Z ∈ Sn+ : tr(ZA1) = 0 and tr(A0Z) ≤ 0

Paul Finsler
(1894 Heilbronn - 1970 Zurich)



Finsler’s (Debreu) lemma (2)

Counter-examples

Counter-example 1:

f0(x) = x2
1 − 2x2

2 − x
2
3 f1(x) = x1 − x2

f0(x) ≤ 0 if f1(x) = 0

But, no τ exists s.t. f0(x) + τf1(x) ≤ 0

x′

 1 0 0
0 −2 0
0 0 −1

x+ τ
[

1 −1 0
]
x ≤ 0

Pick out x =
[

4 0 0
]′

and x =
[

0 1 0
]′

Counter-example 2:

f0(x) = 2x1x2 f1(x) = x2
1 − x

2
2

f0(x) > 0 for x | f1(x) = 0 but no τ ∈ R exists

s.t.

f0(x) + τf1(x) = x′
[
τ 1
1 −τ

]
x > 0



Elimination lemma

The following statements are equivalent

1− H⊥AH⊥∗ � 0 or HH∗ � 0

2− ∃ X | A+XH +H?X? � 0

Theorem of alternatives

1− ∃ X ∈ Cm×n | HX + (XH)∗+A � 0

2− ∃ Z ∈ Sn+ : ZH = 0 and tr(AZ) ≤ 0

Nota: For H ∈ Cn×m with rank r, H⊥ ∈ C(n−r)×n

s.t.

H⊥H = 0 H⊥H⊥∗ � 0
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Geometry of LMI sets

Given Fi ∈ Sm we want to characterize the

shape in Rn of the LMI set

S = {x ∈ Rn : F (x) = F0 +
n∑
i=1

xiFi � 0}

Matrix F (x) is PSD iff its principal minors fi(x)

are nonnegative

Principal minors are multivariate polynomials

of indeterminates xi

So the LMI set can be described as

S = {x ∈ Rn : fi(x) ≥ 0, i = 1, . . . , n}

which is a semialgebraic set

Moreover, it is a convex set



Example of 2D LMI feasible set

F (x) =

 1− x1 x1 + x2 x1
x1 + x2 2− x2 0
x1 0 1 + x2

 � 0

Feasible iff all principal minors nonnegative

System of polynomial inequalities fi(x) ≥ 0

1st order minors

f1(x) = 1− x1 ≥ 0

f2(x) = 2− x2 ≥ 0

f3(x) = 1 + x2 ≥ 0



2nd order minors

f4(x) = (1− x1)(2− x2)− (x1 + x2)2 ≥ 0

f5(x) = (1− x1)(1 + x2)− x2
1 ≥ 0

f6(x) = (2− x2)(1 + x2) ≥ 0



3rd order minor

f7(x) = (1 + x2)((1− x1)(2− x2)− (x1 + x2)2)
−x2

1(2− x2) ≥ 0



LMI feasible set = intersection of

semialgebraic sets fi(x) ≥ 0 for i = 1, . . . ,7



Example of 3D LMI feasible set

LMI set

S = {x ∈ R3 :

 1 x1 x2
x1 1 x3
x2 x3 1

 � 0}

arising in SDP relaxation of MAXCUT

Semialgebraic set

S = {x ∈ R3 : 1 + 2x1x2x3 − (x2
1 + x2

2 + x2
3) ≥ 0,

x2
1 ≤ 1, x2

2 ≤ 1, x2
3 ≤ 1}



Intersection of LMI sets

Intersection of LMI feasible sets

F (x) � 0 x1 ≥ −2 2x1 + x2 ≤ 0

is also an LMI

 F (x) 0 0
0 x1 + 2 0
0 0 −2x1 − x2

 � 0



Reformulations
Linear LMI constraint = projection in subspace

Using explicit subspace basis, more efficient
formulations (less decision variables) can be obtained

Example: original problem

max 2x1 + 2x2

s.t.

[
1 + x1 x2

x2 1− x1

]
� 0

with dual

min trace

[
1 0
0 1

]
Z

s.t. trace

[
−1 0
0 1

]
Z = 2

trace

[
0 −1
−1 0

]
Z = 2

Z � 0



Reformulations (2)

Denoting

Z =

[
z11 z21

z21 z22

]
the linear trace constraints on Z can be written[

−1 0 1
0 −2 0

] z11

z21

z22

 =

[
2
2

]
Particular solution and explicit null-space basis z11

z21

z22

 =

 −1
−1
1

+

 1
0
1

 z̄
so we obtain the equivalent dual problem
with less variables

min 2z̄

s.t.

[
z̄ − 1 −1
−1 z̄ + 1

]
� 0

and primal

max trace

[
1 1
1 −1

]
X̄

s.t. trace

[
1 0
0 1

]
X̄ = 2

X̄ � 0



Nonlinear matrix ineqalities

Schur complement

We can use the Schur complement to convert

a non-linear matrix inequality into an LMI

A(x)−B(x)C−1(x)B′(x) � 0
C(x) � 0

⇐⇒[
A(x) B(x)
B(x) C(x)

]
� 0

C(x) � 0

Issai Schur
(1875 Mogilyov - 1941 Tel Aviv)
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History

Convex programming

• Logarithmic barrier function [K. Frisch 1955)]
• Method of centers ([P. Huard 1967]

Interior-point (IP) methods for LP

• Ellipsoid algorithm [Khachiyan 1979]
polynomial bound on worst-case iteration count
• IP methods for LP [Karmarkar 1984]
improved complexity bound and efficiency - About
50% of commercial LP solvers

IP methods for SDP

• Self-concordant barrier functions [Nesterov,
Nemirovski 1988], [Alizadeh 1991]
• IP methods for general convex programs
(SDP and LMI)
Academic and commercial solvers (MATLAB)



Interior point methods (1)

For the optimization problem

min
x∈Rn

f0(x)

s.t. fi(x) ≥ 0 i = 1, · · · ,m
where the fi(x) are twice continuously differ-

entiable convex functions

Sequential minimization techniques: Reduction

of the initial problem into a sequence of uncon-

straint optimization problems

[Fiacco - Mc Cormick 68]

min
x∈Rn

f0(x) + µφ(x)

where µ > 0 is a parameter sequentially de-

creased to 0 and the term φ(x) is a barrier

function

Barrier functions go to infinity as the boundary

of the feasible set is approached



Interior point methods (2)
Descent methods

To solve an unconstrained optimization problem

min
x∈Rn

f(x)

we produce a minimizing sequence

xk+1 = xk + tk∆xk

where ∆xk ∈ Rn is the step or search direction and tk ≥ 0
is the step size or step length

A descent method consists in finding a sequence {xk}
such that

f(x?) ≤ · · · f(xk+1) < f(xk)

where x? is the optimum

General descent method

0. k = 0; given starting point xk
1. determine descent direction ∆xk
2. line search: choose step size tk > 0
3. update: k = k + 1; xk = xk−1 + tk−1∆xk−1
4. go to step 1 until a stopping criterion

is satisfied



Interior point methods (3)

Newton’s method

A particular choice of search direction is the

Newton step

∆x = −∇2f(x)−1∇f(x)

where

- ∇f(x) is the gradient

- ∇2f(x) is the Hessian

This step y = ∆x minimizes the second-order

Taylor approximation

f̂(x+ y) = f(x) +∇f(x)′y + y′∇2f(x)y/2

and it is the steepest descent direction for the

quadratic norm defined by the Hessian

Quadratic convergence near the optimum



Interior point methods (4)
Conic optimization

For the conic optimization problem

min
x∈Rn

f0(x)

s.t. fi(x) �K 0 i = 1, · · · ,m
suitable barrier functions are called self-concordant

Smooth convex 3-differentiable functions f with

second derivative Lipschitz continuous w.r. to

the local metric induced by the Hessian

|f ′′′(x)| ≤ 2f
′′
(x)3/2

- goes to infinity as the boundary of the cone

is approached

- can be efficiently minimized by Newton’s method

- Each convex cone K possesses a self-concordant

barrier

- Such barriers are only computable for some

special cones



Barrier function for LP (1)

For LP and positive orthant Rn+, the logarith-

mic barrier function

φ(y) = −
n∑
i=1

log(yi) = log
n∏
i=1

y−1
i

is convex in the interior y � 0 of the feasible

set and is instrumental to design IP algorithms

max
µ∈Rp

b′y

s.t. ci − aiy � 0, i = 1, · · · ,m, (y ∈ P)

φ(y) = −log
m∏
i=1

(ci − aiy) = −
m∑
i=1

log(ci − aiy)

The optimum

yc = arg
[
min
y
φ(y)

]
is called the analytic center of the polytope



Barrier function for LP (2)

Example

J∗1 = max
x,y

2x+ y

s.t. x ≥ 0 y ≥ 0 x ≤ 2

y ≤ 2 x+ y ≤ 3

φ(x, y) = − log(xy)− log(2−x)− log(2−y)− log(3−x−y)

(xc, yc) = (
6−
√

6

5
,
6−
√

6

5
)

(x  ,y  )cc



Barrier function for an LMI (1)

Given an LMI constraint F (x) � 0

Self-concordant barriers are smooth convex 3-

differentiable functions φ : Sn+ → R s.t. for

φ(α) = φ(X + αH) for X � 0 and H ∈ Sn

|φ
′′′

(0)| ≤ 2φ
′′
(0)3/2

Logarithmic barrier function

φ(x) = − log detF (x) = log detF (x)−1

This function is analytic, convex and self-concordant

on {x : F (x) � 0}

The optimum

xc = arg
[
min
x
φ(x)

]
is called the analytic center of the LMI



Barrier function for an LMI (2)

Example (1)

F (x1, x2) =

 1− x1 x1 + x2 x1
x1 + x2 2− x2 0
x1 0 1 + x2

 � 0

Computation of analytic center:

∇x1 log detF (x) = 2 + 3x2 + 6x1 + x2
2 = 0

∇x2 log detF (x) = 1− 3x1 − 4x2 − 3x2
2 − 2x1x2 = 0

x1c = −0.7989 x2c = 0.7458



Barrier function for an LMI (3)

Example (2)

The barrier function φ(x) is flat in the interior

of the feasible set and sharply increases toward

the boundary



IP methods for SDP (1)

Primal / dual SDP

min
Z
−trace(F0Z)

s.t. −trace(FiZ) = ci

Z � 0

min
x, Y

c′x

s.t. Y + F0 +
m∑
i=1

xiFi = 0

Y � 0

Remember KKT optimality conditions

F0 +
m∑
i=1

xiFi + Y = 0 Y � 0

∀ i trace FiZ + ci = 0 Z � 0

Z?F (x?) = −Z?Y ? = 0



IP methods for SDP (2)
The central path

Perturbed KKT optimality conditions = Cen-
trality conditions

F0 +
m∑
i=1

xiFi + Y = 0 Y � 0

∀ i trace FiZ + ci = 0 Z � 0

ZY = µ1

where µ > 0 is the centering parameter or bar-
rier parameter

For any µ > 0, centrality conditions have a
unique solution Z(µ), x(µ), Y (µ) which can be
seen as the parametric representation of an an-
alytic curve: The central path

The central path exists if the primal and dual
are strictly feasible and converges to the ana-
lytic center when µ→ 0



IP methods for SDP (3)

Primal methods

min
Z
−trace(F0Z)− µ log detZ

s.t. trace(FiZ) = −ci

where parameter µ is sequentially decreased to

zero

Follow the primal central path approximately:

Primal path-following methods

The function f
µ
p (Z)

f
µ
p (Z) = −

1

µ
trace(F0Z)− log det Z

is the primal barrier function and the primal

central path corresponds to the minimizers Z(µ)

of fµp (Z)

- The projected Newton direction ∆Z

- Updating of the centering parameter µ



IP methods for SDP (4)

Dual methods (1)

min
x,Y

c′x− µ log detY

s.t. Y + F0 +
m∑
i=1

xiFi = 0

where parameter µ is sequentially decreased to

zero

The function f
µ
d (x, Y )

f
µ
d (x, Y ) =

1

µ
c′x− log det Y

is the dual barrier function and the dual central

path corresponds to the minimizers (x(µ), Y (µ))

of fµd (x, Y )

Yk � 0 ensured via Newton process:

- Large decreases of µ require damped Newton

steps

- Small updates allow full (deep) Newton steps



Dual methods (2)
Newton step for LMI

The centering problem is

minφ(x) =
1

µ
c′x− log det(−F (x))

and at each iteration Newton step ∆x satisfies
the linear system of equations (LSE)

H∆x = −g

where gradient g and Hessian H are given by

Hij = trace F (x)−1FiF (x)−1Fj
gi = ci/µ− trace F (x)−1Fi

LSE typically solved via Cholesky factorization
or QR decomposition (near the optimum)
Nota: Expressions for derivatives of φ(x) = − log detF (x)
Gradient:

(∇φ(x))i = −trace F (x)−1Fi
= −trace F (x)−1/2FiF (x)−1/2

Hessian:

(∇2φ(x))ij = trace F (x)−1FiF (x)−1Fj
= µtrace

(
F (x)−1/2FiF (x)−1/2

) (
F (x)−1/2FjF (x)−1/2

)



IP methods for SDP (4)

Primal-dual methods (1)

min
x,Y ,Z

trace Y Z − µ log detY Z

s.t. −trace FiZ = ci

Y + F0 +
m∑
i=1

xiFi = 0

Minimizers (x(µ), Y (µ), Z(µ)) satisfy optimality

conditions

trace FiZ = −ci
m∑
i=1

xiFi + Y = −F0

Y Z = µI
Y , Z � 0

The duality gap:

−trace(F0Z)− c′x = trace(Y Z) ≥ 0

is minimized along the central path



IP methods for SDP (5)

Primal-dual methods (2)

For primal-dual IP methods, primal and dual

directions ∆Z, ∆x and ∆Y must satisfy non-

linear and over determined system of condi-

tions

trace(Fi∆Z) = 0
m∑
i=1

∆xiFi + ∆Y = 0

(Z + ∆Z)(Y + ∆Y ) = µI
Z + ∆Z � 0

∆Z = ∆Z′

Y + ∆Y � 0

These centrality conditions are solved approx-

imately for a given µ > 0, after which µ is

reduced and the process is repeated

Key point is in linearizing and symmetrizing the

latter equation



IP methods for SDP (6)
Primal-dual methods (3)

The non linear equation in the centrality con-
ditions is replaced by

HP (∆ZY + Z∆Y ) = µ1−HP (ZY )

where HP is the linear transformation

HP (M) =
1

2

[
PMP−1 + P−1′M ′P ′

]
for any matrix M and the scaling matrix P gives
the symmetrization strategy.

Following the choice of P , long list of primal-
dual search directions, (AHO, HRVW, KSH,
M, NT...), the most known of which is Nesterov-
Todd’s

Algorithms differ in how the symmetrized equa-
tions are solved and how µ is updated (long
step methods, dynamic updates of for predictor-
corrector methods)



IP methods in general

Generally for LP, QP or SDP primal-dual
methods outperform primal or dual methods
General characteristics of IP methods:

• Efficiency: About 5 to 50 iterations, almost
independent of input data (problem), each
iteration is a least-squares problem (well
established linear algebra)
• Theory: Worst-case analysis of IP methods
yields polynomial computational time
• Structure: Tailored SDP solvers can exploit
problem structure

For more information see the Linear, Cone and
SDP section at

www.optimization-online.org

and the Optimization and Control section at

fr.arXiv.org/archive/math

http://www.optimization-online.org
http://fr.arXiv.org/archive/math


SDP solvers

Primal-dual algorithms:

• SeDuMi (J. Sturm, I. Polik)

• SDPT3 (K.C. Toh, R. Tütüncü, M. Todd)

• CSDP (B. Borchers)

• SDPA (M. Kojima and al.)

• SMCP (E. Andersen and L. Vandenberghe)

• MOSEK (E. Andersen)

Bundle methods:

• ConicBundle (C. Helmberg)

Dual-scaling potential reduction algorithms:

• DSDP (S. Benson, Y. Ye)

Barrier method and augmented Lagrangian:

• PENSDP (M. Kočvara, M. Stingl)

• SDPLR (S. Burer, R. Monteiro)



Matrices as variables

Generally, in control problems we do not
encounter the LMI in canonical or semidefinite
form but rather with matrix variables

Lyapunov’s inequality

A′P + PA < 0 P = P ′ > 0

can be written in canonical form

F (x) = F0 +
m∑
i=1

Fixi < 0

with the notations

F0 = 0 Fi = A′Bi +BiA

where Bi, i = 1, . . . , n(n+1)/2 are matrix bases
for symmetric matrices of size n

Most software packages for solving LMIs
however work with canonical or semidefinite
forms, so that a (sometimes time-consuming)
pre-processing step is required



LMI solvers

Available under the Matlab environment

Projective method: project iterate on ellipsoid

within PSD cone = least squares problem

• LMI Control Toolbox (P. Gahinet, A. Ne-

mirovski)

exploits structure with rank-one linear algebra

warm-start + generalized eigenvalues

originally developed for INRIA’s Scilab

LMI parser to SDP solvers

• YALMIP (Y. Löfberg)

See Helmberg’s page on SDP

www-user.tu-chemnitz.de/∼helmberg/semidef.html
and Mittelmann’s page on optimization

software with benchmarks

plato.la.asu.edu/guide.html

http://www-user.tu-chemnitz.de/~helmberg/semidef.html
http://plato.la.asu.edu/guide.html

