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Abstract— We focus on the problem of satellite rendezvous
between two spacecraft in elliptic orbits. Using a linearized
model of the relative dynamics, we first propose a periodic
similarity transformation based on Floquet-Lyapunov theory,
leading to a set of coordinates under which the free motion
is linear time-invariant. Then we address the problem of
impulsive control of satellite rendezvous as a hybrid dynamical
system, and we show that the arising elegant representation
enables designing impulsive control laws with different trade-
offs between computational complexity and fuel consumption.
The adopted hybrid formalism allows us to prove suitable
stability properties of the proposed controllers. The results are
comparatively illustrated on simulation examples.

I. INTRODUCTION

Considering the increasing need for satellite servicing in
space, the capability of operating an active spacecraft, the
follower denoted by F, in close proximity of a satellite, the
leader denoted by L will be crucial for fulfilling complex safe
space missions objectives comprising inspection, repairing,
refueling or monitoring [6]. The whole relative spacecraft
maneuvering process composes what is known as the ren-
dezvous and proximity operations which mainly consists in
getting the follower from one orbit to a box near the leader
(close range rendezvous) [10], [5] and then in beginning
the proximity operations required by the mission objectives.
When dealing with the preliminary planning phase of space
missions, it is usual to approximate actual finite-thrust pow-
ered phases of finite duration by impulsive maneuvers. The
impulsive approximation for the thrust means that instanta-
neous velocity increments are applied to the chaser when
firing, whereas its position is continuous. This assumption,
made in this paper, has proved to be very useful in reducing
the complexity of guidance and control design and has been
widely used in the literature dedicated to rendezvous (see
[6], [3], [5] and the references therein).

In this article, we are mainly interested by the first phase
for which it is highly recommended to design fuel efficient
impulsive maneuvers guiding the follower, from one point
to a specified tolerance region in the proximity of the leader
where the relative motion of the follower will be periodic and
bounded. It is well known that, under Keplerian assumptions,
the relative motion between spacecrafts is bounded [8].
Different conditions for the periodicity of the linearized
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equations of the nonlinear relative motion have been given
in the literature. For instance, the authors of [1] state that
the identity of the semi-major axis of the spacecraft orbits
is a necessary and sufficient condition for periodicity while
Inalhan in [9] proposed a periodicity condition at perigee,
for the linearized relative motion and for arbitrary eccen-
tricity in a Cartesian and local framework. The well-known
energy-matching condition, given by Gurfil in [8] involves a
sixth degree polynomial equation. It is important to notice
that different parametrizations (Cartesian coordinates, orbital
elements) of the relative motion have been used in these
previous developments. Recently, a new set of parametric
expression for the relative motion has been given in the
reference [3] and used to characterize in a very simple way
periodic relative motions. In a linearized context, any relative
periodic trajectory is defined by 6 constant parameters with
the first one equal to 0.

Building on the result presented in [3], the contribu-
tion of the present paper is twofold. First, we propose a
new coordinate transformation which leads to a simplified
characterization of periodic trajectories when applied to the
Tschauner-Hempel equations of the elliptic linearized rela-
tive motion. Second, three different hybrid feedback-control
laws are designed by taking advantage of the particular
formulation of the rendezvous problem. Indeed, in recent
years, a novel framework has been proposed [7] for repre-
senting nonlinear hybrid dynamical systems whose solutions
exhibit continuous evolution and impulsive behavior. In that
context, suitable results about robust asymptotic stability
of compact attractors have been proven. We adopt here
that formalism, which allows us to state and prove suitable
stability properties of the proposed impulsive control laws
(including, e.g., the one originally presented in [5]) when
applied to the linear time-varying dynamics of the closed-
loop satellite rendezvous system.

Notations: e, ν and T are respectively the eccentricity,
the true anomaly and the period of the leader’s orbit. f ′

represents the derivation of the function f with respect to the
true anomaly ν. Given a set A ⊂ Rn, |x|A = infz∈A |x− z|
denotes the distance of x from A. In is the identity matrix
of dimension n. For a set S, S̄ denotes the closure of the set
S.

II. LTI STATE-SPACE FOR THE LINEARISED RELATIVE
EQUATIONS OF MOTION

The proximity operations between two spacecraft are
characterized by the use of relative navigation since the
separation between spacecraft is sufficiently small. In this
framework, the relative motion of the follower is described in



the Local-Vertical-Local-Horizontal (LVLH) frame attached
to the leader body [10]. The origin of the coordinate frame
is located at the center of mass of the leader and the space is
spanned by (x, y, z) where z axis is in the radial direction
(R-bar) oriented towards the center of the Earth, y axis is
perpendicular to the leader orbital plane and pointing in the
opposite direction of the angular momentum (H-bar) while
x axis is chosen such that x = y × z (V-bar, see Figure 1).
Under Keplerian assumptions (no orbital perturbations are
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Fig. 1: Coordinates for relative spacecraft dynamics.

considered) and an elliptic reference orbit, the equation of
motion for the relative motion in the LVLH frame may
be linearized for close separation between the leader and
the follower and are known as the Tschauner-Hempel (TH)
equations [13], [12]:

ζ̇ = A0(t)ζ free motion

ζ+ = ζ +

[
03×3

I3

] t+∫
t−

f(t)

mF
dt

when applying
impulsive thrusts,

(1)

where state ζ = (x, y, z, dx/dt, dy/dt, dz/dt) represents
positions and velocities in the three fundamental axes of the
LVLH frame, matrix A0 is a suitable periodic function of
time t [13], f(t) is the thrust vector, ζ+ is the state vector
right after the jump and mF is the mass of the follower. We
may define the impulsive control input (essentially equivalent
to velocity jumps in the three axes) as:

∆v(tk) =

t+k∫
t−k

1

mf

fx(t)
fy(t)
fz(t)

 dt, (2)

where tk is a generic firing time, which is directly associated
to the fuel consumption.

In order to simplify the TH equations, classical derivations
correspond to applying a change of independent variable
from time t to true anomaly ν, noting that:

dν

dt
=

n

(1− e2)3/2
(1 + e cos ν︸ ︷︷ ︸

ρ(ν)

)2 =: k2ρ(ν)2, (3)

where n = 2π/T is the mean motion of the leader orbit,

satisfying for any fixed ν0, t0:

ν − ν0 = 2π ⇒ n(t− t0) = 2π. (4)

This leads to the following hybrid representation for a new
state ξ(ν), replacing ζ(t):

ξ′ = A(ν)ξ free motion

ξ+ = ξ +
1

k2ρ(ν)2

[
03×3

I3

]
︸ ︷︷ ︸

=:B(ν)

u
when applying

impulsive thrusts, (5a)

where u = ∆v represents the applied impulse, state ξ =
(x, y, z, dx/dν, dy/dν, dz/dν) represents positions and ve-
locities with respect to ν, and matrix A is given by (see
[13], [12]):

A(ν) =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
ecν
ρ 0 −2 esνρ 2 esνρ 0 2

0 − 1
ρ 0 0 2 esνρ 0

2 esνρ 0 2+ρ
ρ −2 0 2 esνρ

 ,
(5b)

where the dependence on ν has been omitted for brevity’s
sake and where we used cν = cos(ν) and sν = sin(ν).

Previous work [13], showed the usefulness of the follow-
ing coordinate change for simplifying expression of dynam-
ics (5):

T (ν) =

[
ρ(ν)I3×3 03×3

ρ(ν)′I3×3 ρ(ν)I3×3

]
. (6)

In this article, we propose the two following additional trans-
formations, the first one arising from similar observations
to those in [5], and the second one arising from a suitable
Floquet-Lyapunov derivation:

C(ν) := (7)

0 cν 0 0 −sν 0
0 sν 0 0 cν 0

1 0 − 3esν(1+ρ)
ρ(e2−1)

esν(1+ρ)
e2−1 0 ρ2−ecν−3

e2−1

e 0 −3sν sν(1 + ρ) 0 cνρ

0 0 3(cν+e)
e2−1 − cν(1+ρ)+e

e2−1 0 sνρ

0 0 − 3(3ecν+e2+2)
e2−1

3ρ2

e2−1 0 − 3esνρ
e2−1



S(ν) :=



1 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0
σ(ν)

(1− e2)3/2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (8)

where we introduced the function:

σ(ν) = (ν − ν̃)− n(t− t̃)
= (ν − ν̃)− (M − M̃)

= ∆ν −∆M, (9)

based on an arbitrary true anomaly value ν̃ (in our simula-
tions we select ν̃ = 0) corresponding to a specific time value



t̃ (in our simulations we select t̃). Function σ in (9) is clearly
periodic and bounded, due to the geometric dependence of ν
and M when the leader follows a Keplerian elliptic motion.

The following result establishes a first contribution of this
paper showing that the dynamics (5) can be transformed
to a convenient linear time-invariant form by exploiting
transformations (6), (7), and (8). The proof of the lemma
is omitted as it follows from straightforward (even though
lengthy) mathematical derivations.

Lemma 1: Consider matrices in (6), (7), and (8). Then the
following operation:

ξ̂ = R(ν)ξ := S(ν)C(ν)T (ν)ξ , (10)

is a linear time-varying coordinates change, namely R(ν) is
invertible for all ν and R and R−1 are uniformly bounded.
Moreover, R is periodic and transforms A(ν) into the fol-
lowing time-invariant form:

Â = R′(ν)R−1(ν) +R(ν)A(ν)R−1(ν)

=


0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 (1− e2)−3/2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (11)

From the peculiar structure (quasi Jordan form) of the
dynamic matrix Â, it is observed (as already emphasized
for similar coordinate changes in [4], [5]), that any periodic
free motion of the original dynamics (1) can be suitably
parametrized by specific selections of the state ξ̂ with the last
component being zero. It is therefore convenient representing
the system in terms of the error with respect to a desired
motion ξref :

ξref := [ξref1 ξref2 ξref3 ξref4 ξref5 0]T , (12)

so that one may analyze the dynamics of the mismatch ξ̃ =
ξ̂ − ξref between the coordinate ξ̂ in (10) and a constant
reference value in (12), representing a desired target periodic
motion.

III. IMPULSIVE CONTROL OF THE RELATIVE DYNAMICS

The coordinate transformation presented in Lemma 1 of
the previous section is a useful means for suitably designing
an impulsive control law.

Assigning the firing times tk in (2) and also the corre-
sponding selections of ∆v(tk). Among others one objective
is to reduce as much as possible the fuel consumption well
characterized in [11] when firing is achieved by 6 identical
thrusters rigidly mounted to the satellite, and corresponding
to the cost function J =

∑
tk∈T |∆vx(tk)| + |∆vy(tk)| +

|∆vz(tk)| =
∑
tk∈T |∆v(tk)|1, where T is the set of the

times when impulsive thrusts are applied and | · |1 denotes
the 1-norm. A more convenient expression of J is given in
terms of the representation in (2) and corresponds to:

J =
∑
νk∈V

|u(νk)|1, (14)

with V being the set of firing instants. Based on (14) we
may formulate our control design problem as follows:

Problem 1: Given plant (1) and its equivalent form (5),
design a state feedback impulsive control law selecting the
firing instants νk, k ∈ N and the corresponding inputs u(νk)
such that

(i) for any selection of reference (12), the point{
ξ = ξref

}
is globally asymptotically stable for the

closed loop dynamics;
(ii) the cost J is minimized over a family of possible input

selections.
To solve Problem 1, in this section we will propose hybrid

control laws relying on the presence of a timer τ in charge of
the sequencing of the impulsive control actions. Then, using
the hybrid systems notation in [7] and state ξ̃ = ξ̂ − ξref ,
we may write the following general dynamic description of
the closed loop, enjoying the desirable property that timers
ν and τ evolve in the compact set [0, 2π] and that the flow
equation for ξ̃ is ξ̃′ = Âξ̂, because Âξref = 0: ξ̃′ = Âξ̃,

ν′ = 1,
τ ′ = −1,

(ξ̃, ν, τ) ∈ C, (15a)

 ξ̃+ = ξ̃,
ν+ = 0,
τ+ = τ,

(ξ̃, ν, τ) ∈ Dν (15b)


ξ̃+ = ξ̃ + B̂(ν)γu

(
ξ̃, ν
)

ν+ = ν,

τ+ = γτ

(
ξ̃, ν
)
,

(ξ̃, ν, τ) ∈ Du, (15c)

In equation (15), the impulsive control law has been selected
as a feedback controller:

u = γu(ξ̃, ν). (16)

Moreover, according to the coordinate change given in
(10), and to the results of Lemma 1, matrix B̂(ν) =
R(ν)B(ν), is a periodic function of ν arising from com-
bining the similarity transformation in (10) with the input
matrix in (5), and corresponds to the matrix reported in (13)
at the top of next page.

Equation (15) is a compact representation of the impulsive
feedback control action as a set of dynamical constraints
that solutions should satisfy for their correct evolution. In
particular, using an overall state η = (ξ̃, ν, τ), this dynamics
falls into the general class of systems studied in [7]:

η ∈ C, η̇ = F (η),
η ∈ D, η+ ∈ G(η).

(17)

In particular, for our model, the following selections are
made:

Dν := R6 × {2π} × [0, 2π], (18a)
Du := R6 × [0, 2π]× {0}, (18b)
D := Dν ∪ Du, (18c)
C := (R6 × [0, 2π]× [0, 2π]) \ D, (18d)

which, due to (18c), is a choice that prioritizes jumps. In



B̂(ν) =
1

k2ρ2(1− e2)



0 −(1− e2)ρsν 0

0 (1− e2)ρcν 0

−e(1 + ρ)ρsν −
3σρ3

(1− e2)3/2
0

3σeρ2sν
(1− e2)3/2

− ρ3 + ρ2 − 2ρ

(1− e2)(1 + ρ)ρsν 0 (1− e2)ρ2cν

(1 + ρ)ρcν + eρ 0 −ρ2sν

−3ρ3 0 3eρ2sν


(13)

particular, based on (15), functions F and G in (17) are
selected as:

F (η) =

Âξ̃1
−1

 ; G(η) =
⋃

i∈{u,ν} s.t. η∈Di
Gi(η) (19a)

Gν(η) =

ξ̃0
τ

 ; Gu(η) =


ξ̃ + B̂(ν)γu

(
ξ̃, ν
)

ν

γτ

(
ξ̃, ν
)

 . (19b)

The proposed hybrid model (15), (18) (or its equivalent
compact form in (17), (18), (19)), corresponds to the follow-
ing intuitive behavior of our solutions.

• Timer ν is used as an additional state to keep track of
the periodic time-varying nature of the dynamics. Using
the jump set in (18a) ensures that the timer is reset to
zero each time it reaches the value 2π, thereby being
confined 1 to the compact set [0, 2π];

• Thrusters are fired according to (15c) whenever η ∈ Du,
namely when the timer τ crosses zero (see (18b)). Then,
at each time during the evolution of the dynamics, state
τ captures the information about how long we need to
wait until the next impulsive control action.

• Each time an impulsive control action is triggered, the
associated control law corresponds to the value of the
two functions

γu : R6 × [0, 2π]→ R3,
γτ : R6 × [0, 2π]→ [0, 2π],

(20)

the first one assigning the current selection of the
impulsive input u (based on (16)), and the second one
preassigning the time to wait until the next impulsive
input should be applied. Note that the range of γτ is
bounded so that solutions will only take values of τ in
the bounded set [0, 2π].

• Within the proposed hybrid context, the stability goal
formulated in item (i) of Problem 1 is well characterized
in terms of the stability properties of the bounded
attractor:

A := {0} × [0, 2π]× [0, 2π], (21)

1To avoid situations where arbitrarily small noise may cause solutions
to stop because they exit C ∪ D, it may be useful to replace {2π} by
[2π, 2π + δ] for any positive δ in (18a).

which may be analyzed using the tools of [7, Chapter
7], because selections (18), (19) satisfy the hybrid basic
conditions of [7, Assumption 6.5].

IV. CONTROL LAWS

In this section, we propose three different selections for
the impulsive control law (20) solving Problem 1. These
selections are different in terms of performances trade-offs
and are comparatively illustrated on the example studies of
Section V.

A. Periodic norm-minimizing control

While formulation (15), (20) is general enough to allow for
aperiodic optimized sampling, the simplest possible selection
of function γτ in (20) is given by periodic thrusters firing,
corresponding to a certain period ν̄ ∈ [0, 2π] fixed a priori.
This is equivalent to the following constant selection:

γτ (ξ̃, ν) = ν̄, (22)

encoding the fact that each pair of consecutive jumps has a
fixed angular distance of ν̄.

Regarding the selection of the stabilizer γu, to be evaluated
periodically, we make here a conservative selection leading
to the useful feature that after each impulse, the state ξ̃6 = ξ6
is driven to zero, so that in the absence of noise the spacecraft
evolves through periodic (therefore bounded) motions. In
particular, the following optimal selection is chosen:

u? = arg min
u

|ξ̃+|2, subject to:

ξ̃+ = ξ̃ + B̂(ν)u, ξ̃+
6 = 0. (23)

Due to the specific structure of matrix function B̂ in (13)
at the top of the page, we may provide an explicit form of
the minimizer in (23) after defining the following quantities:

b̂6(ν) =
1

k2

 3ρ
e2−1

0
3e sin(ν)

1−e2

 , B̂⊥6 (ν) =

e sin(ν) 0
0 1

ρ(ν) 0

 , (24a)

which clearly satisfy b̂6(ν)T B̂⊥6 (ν) = 0 because matrix
B̂⊥6 (ν) generates the orthogonal complement of b̂6(ν).

With these definitions in place, we may write the explicit



expression of the proposed control law as:

γu(ξ̃, ν) = u6 − B̂⊥6 (ν)(B̂(ν)B̂⊥6 (ν))−L(ξ̃ + B̂(ν)u6)

with u6 = − b̂6(ν)

|b̂6(ν)|2
ξ̃6, (24b)

where M−L = (MTM)−1MT denotes the left pseudo-
inverse of matrix M . The effectiveness of selection (24b)
is stated in the next proposition.

Proposition 1: For any value of ν, the inverses in function
(24) always exist and selection (24) coincides with the
minimizer in (23), namely γu(ξ̃, ν) = u?.

Proof: The existence of the inverses easily follows from
the fact that

det
(

(B̂(ν)B̂⊥6 (ν))T (B̂(ν)B̂⊥6 (ν))
)

= (1− e)2 + 2e(1 + cos(ν)) > 0

|b̂6(ν)|2 =
9ρ4(ρ2 + e2 sin(ν)2)

(1− e2)2
> 0,

which clearly indicates that the left inverse in the first line
of (24b) and u6 in the second line of (24b) can be evaluated.

To show that (24) coincides with the minimizer in (23),
first notice that constraint ξ̃+

6 = 0 is automatically ensured
by b̂6(ν)T B̂⊥6 (ν) = 0, which implies ξ̃+

6 = b̂T6 (ν)u6 = 0.
Therefore, noting that B̂⊥6 (ν) is the orthogonal complement
of b̂6(ν), all possible inputs guaranteeing that ξ̃+

6 = 0 are
parametrized by v? in:

u = u6 + B̂⊥6 (ν)v?. (25)

Therefore, the solution to (23) corresponds to (25) with
v? being the solution to the following unconstrained least
squares problem:

v? = arg min
v
|ξ̃ + B̂(ν)u6 + B̂(ν)B̂⊥6 (ν)v|2. (26)

Then, as is well known (see, e.g., [2, Ex.1 pg 92]), the
minimizer v? is given by:

v? = −(B̂(ν)B̂⊥6 (ν))−L(ξ̃ + B̂(ν)u6),

which, substituted in (25), gives (24b), as to be proven.
Remark 1: Based on Proposition 1, a desirable property

of control law (22) (24) is that it instantaneously minimizes
the norm of ξ̃ constrained to the fact that the subsequent
motion be periodic. Since the norm of b̂6 in (24a) is never
zero, then clearly, equation (24b) is always well-posed and
ensures that ξ̃+

6 = 0. In addition to this, instantaneously
minimizing the norm of ξ̃ also ensures the best possible
decrease at the specific fixed instant of time enforced by
the rigid periodic selection. With this logic in place, we can
guarantee stability of the closed-loop but not convergence.
Indeed, we can guarantee non-increase of |ξ̃| across jumps
but there is no guarantee of obtaining a strict decrease. As
a result, we anticipate a slow convergence (if any) in our
simulation section when using this controller. Despite this
fact, the choice (22) (24) is still an interesting one because
it ensures that approaching between the two satellites is
performed through periodic (bounded) motions, leading to
some degree of fault tolerance (in case of malfunctioning,

the satellite is on a stable orbit). ◦
The following theorem certifies that the proposed con-

troller solves part of item (i) of Problem 1.
Theorem 1: Given control law (22) (24), the attractor A

is uniformly globally stable along the arising closed-loop
dynamics with (15).

Proof: First notice that |(ξ̃, ν, τ)|A = |ξ̃|. Recall that
solutions (µ, j) 7→ ξ̃(µ, j) to hybrid systems have a domain
dom ξ̃ parametrized by a flowing direction (here represented
by the amount µ of true anomaly elapsed since the initial
condition, as opposed to continuous time t for a classical
hybrid systems representation) and by a jumping direction j
(see [7, Chap. 2] for details). We first realize that before the
first impulse, all solutions evolve in free motion along the
LTI flow dynamics in (15), leading to:

|ξ̃(µ, 0)| ≤ | exp(2πÂ)||ξ̃(0, 0)|. (27)

Notice now that Proposition 1 ensures that γu(ξ̃, ν) = u?.
In particular, after the first jump the state ξ̃6 remains at zero
for all (hybrid) times. Then during all subsequent flows, the
state ξ̃ remains constant due to the structure of Â. Moreover,
across jumps, the control law is the minimizer of (23), clearly
satisfying |ξ̃+| ≤ |ξ̃|. As a consequence, we get

|ξ̃(µ, j)| ≤ | exp(2πÂ)||ξ̃(0, 0)|, (28)

for all (µ, j) ∈ dom ξ̃, which establishes uniform global
stability.

B. Periodic bi-impulsive control

A second selection that we propose for the controller
in (20) is once again periodic, thereby corresponding to
selection (22) for γτ . However, it corresponds to a wiser
selection of γu (in terms of envisioned fuel consumption),
performed in similar ways to what is proposed in [5], by
focusing on the overall effect on the state ξ̃ of two impulses
performed at a distance of ν̄ from one another. In particular,
using straightforward computations, if two impulses u1 and
u2 happen at times µ1 and µ2 = µ1 + ν̄, we obtain, along
the corresponding solution:

Φ(−ν̄)ξ̃(µ2, j + 2) = ξ̃(µ1, j)

+
[
B̂(ν1) Φ(−ν̄)B̂(ν1 + ν̄)

]︸ ︷︷ ︸
M(ν1,ν̄):=

[
u1

u2

]
(29)

where µ1, µ2 denote the (angular) times, j denotes the
number of elapsed thruster firings, Φ(µ) = eÂµ =[ 1 0 0 0 0

0 1 0 0 0
0 0 1 0 µ(1−e2)−3/2

0 0 0 1 0
0 0 0 0 1

]
is the state transition matrix of the

(LTI) flow dynamics in (15), and ν1 = ν(µ1, j).
Based on relation (29), and to the end of selecting u1, u2

in such a way that ξ̃(µ2, j + 2) is zero, it is important to
study the invertibility properties of matrix M(ν, ν̄), which is
done in the following conjecture. The result of the conjecture
restricts the set of possible selections of ν̄ in (22).

Conjecture 1: For any value of ν ∈ [0, 2π], matrix
M(ν, ν̄) in (29) is invertible if and only if ν̄ 6= kπ, k ∈ Z.



Fig. 2: Determinant of matrix M(ν, ν̄) with e = 0.4.

Conjecture 1 is motivated by numerical experience and its
formal proof is regarded as future work. In support of the
conjecture, we report in Figure 2 the value of the determinant
of M(ν, ν̄) for different values of ν (represented by the color
code) and ν̄ (represented by the horizontal axis). The plot
corresponds to the value e = 0.4. If Conjecture 1 holds,
for any selection ν̄ ∈ (0, 2π) \ {π}, equation (29) can be
inverted to compute the unique pair of inputs u?1, u

?
2 ensuring

ξ̃(µ2, j + 2) = 0 (namely that the state ξ̃ is driven to zero
after two impulses separated by ν̄ times). Then, following
a receding horizon type of paradigm, we may apply the
first pulse and re-evaluate the control law at the next pulse.
The above control design paradigm leads to the following
selection:

γu(ξ̃, ν) = − [ I 0 ]M(ν, ν̄)−1ξ̃. (30)

Then, the overall control strategy (22), (30) guarantees
item (i) of Problem 1 as established in the next theorem.

Theorem 2: Given ν̄ ∈ (0, 2π) \ {π}, assume that matrix
M(ν, ν̄) is invertible for any value of ν ∈ [0, π].

Then, control law (22), (30) ensures that attractor A in
(21) is uniformly globally asymptotically stable along the
arising closed-loop dynamics with (15).

Proof: The proof is carried out by exploiting the
following global version of [7, Prop. 7.5] (its proof is
straightforward, taking µ → ∞ in the semiglobal version
of [7, Prop. 7.5], and is actually therein implicitly used for
establishing the result in [7, Ex. 7.6]).

Proposition 2: Given a nominally well-posed hybrid sys-
tem H, suppose that the compact set A in (21) is strongly
forward invariant and globally uniformly attractive for H.
Then, it is uniformly globally asymptotically stable for H.

To apply Proposition 2 in our case, we first notice that
the data of hybrid system (15), (22), (30) satisfies the hybrid
basic conditions in [7, As. 6.5], therefore, from [7, Thm 6.8],
it is nominally well-posed. Concerning forward invariance of
A (namely, all solutions starting in A remain in A for all
times), it follows from the fact that the flow dynamics of ξ̃ is
linear (so the origin is an equilibrium) and the jumps guaran-
tee non-increase of ξ̃ (see the proof of Theorem 1). Finally,
global uniform convergence is a straightforward consequence

of a stronger property of uniform finite-time convergence
enjoyed by closed-loop (15), (22), (30). In particular, all
solutions converge in finite time to A after two impulses.
Indeed, consider two subsequent impulses associated to the
control selections uj = [ I 0 ]

[ uj,1
uj,2

]
= uj,1 and uj+1 =

[ I 0 ]
[ uj+1,1
uj+1,2

]
= uj+1,1. Then, due to the property that[ uj,1

uj,2

]
brings the state to zero after two impulses, it follows

that selection
[ uj+1,1
uj+1,2

]
= [ uj,20 ] is a feasible one for the

second impulse. As a consequence of uniqueness, arising
from relation (29), this is the only possible solution and we
must have ξ̃+ = 0 after the second impulse, which implies
uniform finite-time convergence to A, as to be proven.

C. Non-periodic bi-impulsive control

With the goal of minimizing the fuel consumption, a main
drawback of the strategies proposed in the two previous
sections is the fact that the (angular) time elapsed between
two consecutive impulses is fixed and equal to ν̄. This is
indeed a direct consequence of the simplified selection (22).
In this section, we propose a different control paradigm, cor-
responding to an increased computational complexity, where
the bi-impulsive control paradigm in (30) is combined with
an optimized selection of the waiting time τ+ before the next
impulse. In particular, the overall control law corresponds to:

γτ (ξ̃, ν) = arg min
ν̄∈[0,2π]

∣∣∣M(ν, ν̄)−1ξ̃
∣∣∣
1

= arg min
ν̄∈[0,2π]

J, (31a)

γu(ξ̃, ν) = − [ I 0 ]M(ν, γτ (ξ̃, ν))−1ξ̃. (31b)

The new control law (31) corresponds to selecting an
optimal elapsed time µ before the next impulse, accord-
ing to the fuel consumption index (14). In particular, the
corresponding optimization is nonlinear and, because of
Conjecture 1, corresponds to minimizing the argument in
the two intervals (0, π) and (π, 2π) where matrix M(ν, ·)
is invertible. Then, the minimum can be selected as the
minimum of the two minimizers. For illustration purposes,
Figure 3 shows the values of M(ν, ν̄) for the three first initial
conditions considered in the simulations of Section V. Notice
that in the first two cases the functions are rather similar.
Instead, the third case (lower plot of Figure 3) corresponds to
a significantly different function where the global minimum
is obtained in the first interval.

As compared to the previous controllers, control law (31)
is associated with an increased computational complexity.
Indeed, at each impulse time a numerical optimization pro-
viding the solution to (31a) needs to be performed. Nonethe-
less, the advantages in terms of fuel consumption are clearly
illustrated by the simulation results of the next section. It
should be emphasized that the minimization is carried out
over a compact set [0, 2π], so it may be easily performed
following some heuristics. Numerical evidence reveals that
the functions in Figure 3 are strictly convex in the intervals
(0, π) and (π, 2π). Formally proving this property (which is
subject of future work) may allow for very efficient convex
optimization methods to evaluate control law (31).
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Fig. 3: Value of the function at the right hand side of (31a)
for the three first initial conditions considered in Section V.

The following result can be established by similar deriva-
tions to those in the proof of Theorem 2, relying on the
uniqueness of the solution to the inverse of equation (29).
This, together with the optimal selection of γτ in (31)
provides a solution to both items (i) and (ii) of Problem 1.

Its proof is omitted due to this similarity to that of
Theorem 2.

Theorem 3: Control law (31) ensures that attractor A in
(21) is uniformly globally asymptotically stable along the
arising closed-loop dynamics with (15).

V. SIMULATIONS

In this section, we present the simulation results obtained
with the control laws designed in Section IV and system (15)
(equivalently (17)–(19)) using a linearized model simulator.
In these simulations, an orbit with a semi-major axis of
7011 km and eccentricity of 0.4 will be considered for the
leader vehicle. The simulations aim at stabilizing a periodic
trajectory specified by a suitable selection of ξref in (12),
which is free to evolve inside a tolerance box B. The
tolerance box B is centered at the target’s position coordinate
ζf (expressed in the frame used in (1)) and has positive and
negative widths ζtol in the three LVLH directions, where:

ζf = [100 0 0]T m
ζtol = [150 25 25]T m.

In [3], a method is introduced to obtain the value of ξref in
(12) ensuring that the corresponding periodic evolution in the
LVLH coordinates is always contained in the tolerance box
B. The resulting values of the reference state ξref correspond
to:

ξref = [15.18 17.68 97.98 22.49 − 17.63 0]
T
,
(32)

where we emphasize that the last element is zero (a necessary
and sufficient condition for periodic motion).

For each one of the three control laws in Section IV, four
different initial conditions ζ0 for state ζ in (1) have been
used, selected as:

ζ01 = [500 400 10 0 0 0]
T
,

ζ02 = [−200 100 200 0 0 0]
T
,

ζ03 = [100 − 350 − 20 0 0 0]
T
,

ζ04 = [320 0 − 64 0 0 0]
T
,

(33)

where in (33) the first three components are meters and the
last three are meters per second. The initial relative velocity
has been selected to be zero to account for the fact that the
starting point of our trajectory may be a holding point arising
from a previous station keeping along the space mission.
Note that ζ04 is chosen to lie in the orbital plane of the
target (the second component is zero).

The four initial conditions ζ01, ζ02, ζ03 and ζ04 in (33) cor-
respond to four different initial distances from the tolerance
box B:

|ζ01|B = 512.9571 m (34a)
|ζ02|B = 314.2451 m (34b)
|ζ03|B = 325.0000 m (34c)
|ζ04|B = 326.3372 m (34d)

with the distance from the bounding box B being defined
as:

|ζ|B = |dzζtol(ζ1..3 − ζf )| , (35)

where ζ1..3 = (x, y, z) contains the first three components
of state ζ in (1) and dzζtol(x) is the decentralized vector
dead-zone function with limits ζtol.

The initial leader true anomaly values ν0 vary from 0 to
360 degrees in equally spaced intervals of 10 degrees. All
our simulations have been performed from the initial true
anomaly ν0 up to a final true anomaly νf = ν0+20π, namely
ten orbital periods later.

Two performance indexes are considered: the fuel con-
sumption J in (14) and the true anomaly νB or angular
time in terms of orbital periods (time elapsed when whe
follower first reaches the bounding box B).Figures 4 and 5
represent respectively these two indexes fixing each one of
the initial conditions in (33) and using the three control laws
in Section IV, where:

- the orange line (− × −) refers to controller (22), (24)
of Section IV-A, with the selection ν̄ = π/2 in (22);

- the blue line (− ◦ −) refers to controller (22), (30) of
Section IV-B, with the same firing interval ν̄ = π/2;

- the green line (− C −) refers to the response using
controller (31) discussed in Section IV-C, where the
firing interval is optimized by the controller in order
to reduce the fuel consumption J .

Figure 4 shows the cost J for each control law when the
leader’s initial true anomaly ν0 varies. From this figure it is
possible so see that for every initial state ζ0 and every control
law, the minimum cost always appears in the proximities
of 180 (deg), corresponding to the apogee of the orbit.



It would be interesting therefore to perform the satellite
maneuver when the leader’s initial true anomaly ν0 lies in the
neighborhood of this value in order to minimize the amount
of dispensed fuel. As expected, controller (31) always leads
to the minimum value of J .

Fig. 4: Comparison of the cost J among the three control
laws for the initial states in (33).

Fig. 5: Comparison of the number of orbital periods νB
among the three control laws for the initial states in (33).

All Figures 4, 5, 6, 7, 8 and 9 highlight that the
speed of convergence to the bounding box B is relatively
slow when using the first control law (of Section IV-A). In
fact, from Table I, it is possible to observe that parameter νB
is much larger for this control law than the one obtained in
the two other cases. Figures 6, 7, 8 and 9 represent the
trajectories of the follower satellite for an initial leader true
anomaly of 180 (deg), and it can be seen that the trajectories
corresponding to the first control law are much longer than
the ones of the two other controls.

The periodic norm-minimizing control presents a slow
convergence, while associated to an increased fuel consump-

ζ0
Min.
value

Periodic norm-
minimizing

Periodic
bi-impulsive

Non-periodic
bi-impulsive

ζ01
J 0.7722 0.6942 0.3942
νB 3.0904 0.2230 0.1849

ζ02
J 0.9448 0.4566 0.4402
νB 3.4036 0.2013 0.2817

ζ03
J 0.4522 0.3991 0.3108
νB 0.2349 0.2306 0.1690

ζ04
J 0.3634 0.1612 0.1187
νB 1.9181 0.1592 0.2269

TABLE I: Minimum values of fuel consumption J (m/s) and
angular time νB for all the simulations presented in Figures 4
and 5.

tion. On the other hand, an advantage of this controller is that
the solution evolves along periodic motions, thereby being
fault tolerant. Instead, the two bi-impulsive solutions show
a reduced fuel consumption with a strong preference for the
non-periodic one, always leading to a more than substantial
fuel saving.

Both the bi-impulsive control laws discussed in Sec-
tions IV-B and IV-C behave better than the previous one in
terms of convergence speed. In fact the reference trajectory
is tracked after the firing period ν̄ with zero error, by design.

Fig. 6: Evolution of ζ1..3 with the three control laws from
the initial state ζ01.

VI. CONCLUSIONS

In this article, a new model, based on Floquet-Lyapunov
theory, is developed in order to obtain a linear time-invariant
free motion representation. The rendezvous problem is then
recast as a stabilization problem for a periodic trajectory in
a hybrid dynamical system framework. Two different control
laws are developed and compared to a control scheme given
in [5] which is re-interpreted in this hybrid context.

Alternative trade-offs should be investigated that adjust ν̄
within optimized fuel consumption under some constraint on
the maximum distance reached during the transient.



Fig. 7: Evolution of ζ1..3 with the three control laws from
the initial state ζ02.

Fig. 8: Evolution of ζ1..3 with the three control laws from
the initial state ζ03.

Fig. 9: Evolution of ζ1..3 with the three control laws from
the initial state ζ04.

The work presented in this paper is preliminary and a
deeper study will be done regarding the bi-impulsive control
methods. Formal proofs will also be provided in future
works, such as the strict convexity property of the function
appearing in Figure 3 that could lead to efficient convex
optimization methods to evaluate control laws similar to the
non-periodic bi-impulsive one appearing in this paper.
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