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Convergence Rate Analysis of Multi-Agent Positive Systems under
Formation Control:

An Efficient Algorithm by Exploiting Positivity

Yoshio EBIHARA ∗, Dimitri PEAUCELLE ∗∗, and Denis ARZELIER ∗∗

Abstract : This paper is concerned with convergence rate analysis of multi-agent positive systems under formation con-
trol. Recently, we have shown that very basic multi-agent systems under formation control can be modeled as intercon-
nected positive systems, and desired formation can be achieved by designing interconnection matrices appropriately. In
such formation control, the resulting convergence performance (i.e., convergence rate) varies according to the intercon-
nection matrices and this fact motivates us to develop an efficient algorithm for the analysis of the convergence rate. In
this paper, assuming that the dynamics of agents are positive and homogeneous, we conceive such an algorithm by prob-
lem decomposition. We show that the decomposition to smaller size problems and drastic reduction of computational
burden become possible by making full use of the positivity of the agents.
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1. Introduction
A linear time-invariant (LTI) system is said to be positive

if its state and output are both nonnegative for any nonneg-
ative initial state and nonnegative input [1],[2]. The theory
of positive system is deeply rooted in the theory of nonneg-
ative matrices [3]–[5], and celebrated Perron-Frobenius theo-
rem [5] has played a central role in analysis and synthesis. Re-
cently, positive system theory has gained renewed interest from
the viewpoint of convex optimization, and fruitful results have
been obtained along this line, see, e.g., [6]–[11]. On the other
hand, Valcher and Misra [12] and Ebihara et al. [13]–[16] focus
on the study of multi-agent systems assuming that the agents
are all positive. From broad perspective, we could say that
the information exchanged by agents is often physical quan-
tity being intrinsically nonnegative and this is the motivation to
consider multi-agent positive systems. Another motivation is
the fact that simple dynamical systems such as integrator and
first-order lag and their series/parallel connections are all pos-
itive, and these are typical dynamics of moving objects. It is
known that large-scale systems constructed from those subsys-
tems exhibit complicated behavior and deserve investigation in
the study area of consensus/formation control of multi-agent
systems [17]–[19]. Motivated by these facts, we dealt with
multi-agent positive systems by modeling such a system as
an interconnected system constructed from positive subsystems
and a nonnegative interconnection matrix. In particular, in the
context of formation control, we showed an efficient method to
design a communication scheme (i.e., the interconnection ma-
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trix) over the agents to achieve prescribed formation [15],[20].
This result naturally leads us to develop an efficient algorithm
to analyze the convergence performance (i.e., convergence rate)
by actively using positivity.

Since the multi-agent positive system of interest is LTI, its
convergence rate under formation control can be determined by
the dominant pole of the corresponding interconnected positive
systems. (The dominant pole is often called algebraic con-
nectivity in the study area of multi-agent systems [17].) Even
though we can compute the dominant pole by directly com-
puting all of the eigenvalues of the coefficient matrices of the
interconnected system, such a straightforward method is com-
putationally demanding especially when the dimension/number
of agents becomes larger. In this paper, we therefore propose
an efficient algorithm for dominant pole computation assum-
ing that the dynamics of positive agents are homogeneous. We
conceive the algorithm by decomposing the original large size
problem into small size problems and exploiting the positivity
of each agent. It turns out that, under a mild condition that the
interconnection matrix has positive eigenvalues, the computa-
tion can be streamlined drastically. We illustrate by numerical
examples that the proposed algorithm is definitely efficient.

A conference version of the present paper has been published
in [21]. In the current paper we totally rewrite this section by
citing latest papers published recently. We also include a com-
plete proof of Theorem 2 that plays a very important role in
developing the efficient algorithm. The proof relies on strong
results on stability and H∞ norm of (discrete-time) positive sys-
tems and clearly illustrate how the positivity of subsystems can
be exploited to conceive the efficient algorithm.
Notations:

R (C): the set of real (complex) numbers.
D: D := {ν ∈ C : |ν| ≤ 1}.
R

n: the set of real vectors of size n.
R

n
+: the set of nonnegative vectors of size n.
R

n
++: the set of strictly positive vectors of size n.
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R
n×m: the set of real matrices of size n × m.
R

n×m
+ : the set of nonnegative matrices of size n × m.
H

n: the set of Hurwitz stable matrices of size n × n.
M

n: the set of Metzler matrices of size n × n.
σ(A): the set of the eigenvalues of A ∈ Cn×n.
κ(A): the largest real part of σ(A).
κ2(A): the second largest real part of σ(A).
ρ(A): the spectral radius of A ∈ Cn×n.
ZN : ZN := {1, · · · ,N}.
Note that a matrix A ∈ Rn×n is said to be Metzler if its off-

diagonal entries are all nonnegative, i.e., Ai j ≥ 0 (i � j).

2. Basics of Interconnected Positive Systems

Consider the linear system described by

G :

{
ẋ = Ax + Bw,
z = Cx + Dw

(1)

where A ∈ Rn×n, B ∈ Rn×nw , C ∈ Rnz×n, and D ∈ Rnz×nw .
The definition and a basic result of positive systems are now
reviewed.

Definition 1 [1] The linear system (1) is said to be positive if
its state and output are both nonnegative for any nonnegative
initial state and nonnegative input.

Proposition 1 [1] The system (1) is positive if and only if A ∈
M

n, B ∈ Rn×nw
+ , C ∈ Rnz×n

+ , and D ∈ Rnz×nw
+ .

In this paper, we deal with multi-agent systems where the dy-
namics of each agent, or say, subsystem, is positive. Consider
the positive subsystem Gi (i ∈ ZN) given by

Gi :

{
ẋi = Aixi + Biwi,

zi = Cixi,

Ai ∈ Mni ∩ Hni , Bi ∈ Rni×nwi
+ , Ci ∈ Rnzi×ni

+ .

(2)

As clearly shown in (2), we assumed that Gi (i ∈ ZN) are all
stable. With these positive subsystems, we define positive and
stable system G by G := diag(G1, · · · ,GN). The state space
realization of G is given by

G :

{ ˙̂x = Ax̂ + Bŵ,
ẑ = Cx̂

(3)

where

A := diag(A1, · · · , AN), B := diag(B1, · · · , BN),
C := diag(C1, · · · ,CN),

(4)

x̂ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1
...

xN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rnx̂ , ŵ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w1
...

wN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rnŵ , ẑ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
z1
...

zN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ Rn̂z ,

nx̂ :=
N∑

i=1

ni, nŵ :=
N∑

i=1

nwi , n̂z :=
N∑

i=1

nzi .

The multi-agent positive system of interest in this paper is noth-
ing but the interconnected system G � Ω defined by ŵ = Ω̂z,
where Ω ∈ Rnŵ×n̂z

+ is a given interconnection matrix.

3. Formation Control of Multi-Agent Positive Sys-
tems

The goal of this paper is to give an efficient method to ana-
lyze the convergence rate performance of multi-agent positive
systems under formation control. In this section, we review our
preceding results on formation control of multi-agent positive
systems and show that a practical formation control of moving
agents can be cast as a formation control of multi-agent positive
systems.

3.1 Basic Results for Formation Control

The next result forms an important basis for the formation
control of the interconnected system G � Ω with respect to the
output ẑ.

Theorem 1 [15],[20] Consider the case where every stable
positive subsystem Gi represented by (2) is SISO. Suppose
Gi (i ∈ ZN) and given interconnection matrix Ω ∈ RN×N

+ sat-
isfy the following conditions:

(i) (Ai, Bi) is controllable and (Ai,Ci) is observable for all i ∈
ZN .

(ii) G1(0) = · · · = GN(0) =: γ(> 0) holds for Gi(s) := Ci(sI −
Ai)−1Bi (i ∈ ZN).

(iii) Ω ∈ RN×N
+ is irreducible (i.e., the directed graph of Ω,

denoted by Γ(Ω), is strongly connected).
(iv) Ωvobj = (1/γ)vobj holds for given vobj ∈ RN

++.

Then, the output of interconnected system G �Ω satisfies

ẑ∞ = γα(x̂(0))vobj, ẑ∞ := lim
t→∞ ẑ(t) (5)

where

α(x̂(0)) := ξTL x̂(0)/ξTLξR ∈ R,
ξR = −A−1Bvobj ∈ Rnx̂

++, ξL = −A−TCT vL ∈ Rnx̂
++

(6)

and vL ∈ RN
++ is a left-eigenvector of Ω with respect to the

eigenvalue 1/γ, i.e., vL satisfies vT
LΩ = (1/γ)vT

L. Namely, for
any initial state x̂(0) ∈ Rnx̂

+ \{0}, we can achieve the convergence
of output ẑ(t) = [ z1(t) · · · zN(t) ]T to γα(x̂(0))vobj ∈ RN

++.

This theorem implies that, for a given vobj ∈ RN
++ that repre-

sents the desired formation of N-agents, we can enforce their
outputs (positions) to converge to (a positive scalar multiple
of) vobj by designing the interconnection matrix Ω so that the
conditions (iii) and (iv) are satisfied. Even though we skip
the technical details, this result can be seen as a generaliza-
tion of a well-known consensus algorithm that has been basi-
cally applied to interconnected systems constructed from inte-
grators [17]. See [20] for details.

3.2 Synthesis of Interconnected Matrices

It is meaningful to show a concrete way to design a desired
Ω ∈ RN×N

+ satisfying Ωvobj = (1/γ)vobj and Γ(Ω) = Γ for a
prescribed vector vobj ∈ RN

++ and a graph structure Γ. For il-
lustration, we repeat the arguments in [15],[20] and consider
the cases where Γ is schematically shown in Figs. 1 and 2 for
N = 3.

For the graph structure ΓA, any interconnection matrix Ω ∈
R

N×N
+ satisfying Ωvobj = (1/γ)vobj and Γ(Ω) = ΓA can be

parametrized by

Ω =
1
γ
Ω(vobj, p) ∈ RN×N

+ (7)
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Fig. 1 Graph structure ΓA.

Fig. 2 Graph structure ΓB.

where

Ω(vobj, p)i, j=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−p1)
vobj,1

vobj,N
(i, j)= (1,N),

pi
vobj,i

vobj, j
(1 ≤ i ≤ N, j= i + 1),

(1−pi)
vobj,i

vobj, j
(1 ≤ i ≤ N, j= i−1),

pN
vobj,N

vobj,1
(i, j)= (N, 1),

0 otherwise.

(8)

Here, the parameter vector p ∈ RN
++ can be chosen arbitrar-

ily over 0 < p < 1N where 1N ∈ RN stands for the all-ones
vector. On the other hand, for the graph structure ΓB, any in-
terconnection matrix Ω ∈ RN×N

+ satisfying Ωvobj = (1/γ)vobj

and Γ(Ω) = ΓB can be parametrized again by (7) and (8)
where p ∈ RN

+ can be chosen such that p1 = 1, pN = 0, and
0 < pi < 1 (i ∈ ZN \ {1,N}). In both cases, we can confirm
that the resulting interconnection matrix is irreducible (since
ΓA and ΓB are both strongly connected). When N = 3, matrices
Ω(vobj, p) for ΓA and ΓB can be given respectively as follows:

Γ(Ω) = ΓA

Ω(vobj, p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 p1
vobj,1

vobj,2
(1−p1)

vobj,1

vobj,3

(1−p2)
vobj,2

vobj,1
0 p2

vobj,2

vobj,3

p3
vobj,3

vobj,1
(1−p3)

vobj,3

vobj,2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Γ(Ω) = ΓB

Ω(vobj, p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
vobj,1

vobj,2
0

(1 − p2)
vobj,2

vobj,1
0 p2

vobj,2

vobj,3

0
vobj,3

vobj,2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We finally note that the eigenvalues of Ω(vobj, p) ∈ RN×N
+

depend solely on p ∈ RN
+ and do not depend on vobj ∈ RN

++.
This can be easily confirmed if we note

Ω(vobj, p) = diag(vobj,1, · · · , vobj,N)Ω(1N , p)
×diag(vobj,1, · · · , vobj,N)−1.

3.3 Concrete Examples of Formation Control

In this section, we show that a practical formation con-
trol problem can be cast as a formation control problem of
multi-agent positive systems as discussed in the preceding
subsections. Consider the formation control problem of N
agents that move over the (x, y)-plane. We denote by (zi,x(t),

zi,y(t)) the position of agent i. Furthermore, we define ẑ j :=
[z1, j · · · zN, j]T ( j = x, y) by stacking the coordinates of all
agents.

We assume that agent i has independent dynamics along the
x- and y-axes, denoted by Pi,x(s) and Pi,y(s), respectively, and
independent control inputs ui,x(t) and ui,y(t). Suppose Pi,x(s)
and Pi,y(s) are typical dynamics of moving agents given by

Zi, j(s) = Pi, j(s)Ui, j(s),

Pi, j(s) =
ki, j

s(s + ai, j)
(i ∈ ZN , j = x, y)

where ki, j, ai, j > 0. Roughly speaking, our goal here is to de-
sign communication schemes (interconnection matrices) over
N-agents along x- and y-axes independently so that prescribed
formation can be achieved asymptotically.

Before designing interconnection matrices over the agents,
we apply the local feedback

ui, j(t) = − fi, j(zi, j(t) − wi, j(t)) (i ∈ ZN , j = x, y)

with 0 < fi, j ≤ a2
i, j/4ki, j, where wi, j (i ∈ ZN , j = x, y) is the

exogenous input kept for the interconnection. Then we have

Zi, j(s) = Gi, j(s)Wi, j(s),

Gi, j(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−bi, j 1 0

0 −ci, j bi, jci, j

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
bi, j + ci, j = ai, j, bi, jci, j = fi, jki, j.

(9)

It follows that Gi, j (i ∈ ZN , j = x, y) are stable positive sys-
tems (in the realization (9)) with Gi, j(0) = 1 (i ∈ ZN , j = x, y).
The latter property is a natural consequence from the fact that
each open-loop transfer function Pi, j(s) (i ∈ ZN , j = x, y)
includes an integrator. For description simplicity, we define
ŵ j := [w1, j · · · wN, j]T ( j = x, y).

Suppose that N-agents independently communicate their x
and y positions. Then, we can restate our goal as in designing
Ωx and Ωy such that, under the interconnection with Ωx and Ωy

for (̂zx, ŵx) and (̂zy, ŵy), respectively, the following formation
can be achieved:

lim
t→∞[ ẑx(t) ẑy(t) ] = [ αx(x̂x(0))vobj,x αy(x̂y(0))vobj,y ].

(10)

Here, (vobj,x, vobj,y) are given vectors that specify the desired for-
mation. On the other hand, x̂x(0) and x̂y(0) stand for the initial
states of the corresponding interconnected systems, and αx and
αy are linear functions. It is obvious that we can readily solve
this problem by following Theorem 1.

For a concrete and concise illustration, consider the case
where the dynamics are homogeneous over the agents and
(x, y)-coordinates as well by letting ai, j = a = 50, ki, j = k = 1
and fi, j = 0.8 × a2/4k (i ∈ ZN , j = x, y). We let N = 20 and[

vobj,x vobj,y

]
i
= [2 + cos(2πi/N) 2 + sin(2πi/N)] .

Namely, the vectors (vobj,x, vobj,y) are chosen to form a circle.
Under this setting, we designed two pairs of (ΩA,x,ΩA,y) and
(ΩB,x,ΩB,y) detailed below:

(A) Γ(ΩA,x) = Γ(ΩA,y) = ΓA,
ΩA,x = Ω(vobj,x, pA,x), ΩA,y = Ω(vobj,y, pA,y).
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(B) Γ(ΩB,x) = Γ(ΩB,y) = ΓB,
ΩB,x = Ω(vobj,x, pB,x), ΩB,y = Ω(vobj,y, pB,y).

Here we choose parameters pA,x ∈ RN
++ and pB,x ∈ RN

+ so that
there exists vL,x ∈ RN

++ satisfying

vT
L,xΩ(vobj,x, pA,x) = vT

L,xΩ(vobj,x, pB,x) = vT
L,x.

Similarly, we choose parameters pA,y ∈ RN
++ and pB,y ∈ RN

+ so
that there exists vL,y ∈ RN

++ satisfying

vT
L,yΩ(vobj,y, pA,y) = vT

L,yΩ(vobj,y, pB,y) = vT
L,y.

Such parameters can be computed by solving linear equations
along the line in [15]. From (6), we can confirm that the output
[̂zx(t) ẑy(t)] converges to the same value under the interconnec-
tions (ΩA,x,ΩA,y) and (ΩB,x,ΩB,y).

In Figs. 3–10, we show the plots of [̂zx(t) ẑy(t)] for the cases
(A) and (B). In both cases, we took exactly the same initial
states as implied by Figs. 3 and 7. In both cases, we success-
fully achieved exactly the same circular formation (scaled along
x- and y-axes independently) as expected. However, the conver-
gence performance is quite different between (A) and (B): it is
clear from Figs. 4 and 8 that the convergence of case (A) is
much faster than case (B).

Note that the dynamics of G � Ω can be represented by
˙̂x = (A + BΩC)x̂. Then, if the system G � Ω is under for-
mation control, i.e., if the conditions (i)–(iv) in Theorem 1 are
satisfied, we know from [15],[20] that the matrixA+BΩC has
eigenvalue 0 that is algebraically simple, and the real parts of
the other eigenvalues are strictly negative. Therefore, the real
part of the dominant pole of G � Ω, i.e., the second largest real
part of the eigenvalues ofA + BΩC denoted by κ2(A + BΩC),
is a reasonable measure for the convergence rate performance.
Of course the computation of the dominant pole can be done by
simply computing all the eigenvalues ofA+BΩC and compar-
ing their real parts. By this simple procedure, we know in the
above examples that

(κ2(A + BΩA,xC), κ2(A + BΩA,yC))
= (−0.3719,−0.4890)
(κ2(A + BΩB,xC), κ2(A + BΩB,yC))
= (−0.0951,−0.1501).

(11)

These results surely validates the fact that the convergence of
case (A) is much faster than case (B).

Even though we obtained (11) by directly computing all the
eigenvalues of A + BΩC, such a straightforward method is
computationally demanding especially when the total number
of agents becomes larger. Moreover, such a method does not
give any insights on how we can accelerate the convergence by
appropriately designingΩ. Motivated by these facts, in the next
section, we propose an efficient algorithm for the computation
of κ2(A+BΩC) by decomposing the original large size problem
into small size problems and exploiting the positive property of
each agent. Note that the real part of the dominant pole is often
called algebraic connectivity in the study area of multi-agent
systems [17]–[19],[22],[23]. In the case where the dynamics
of agents are simple as in the case of integrators, the algebraic
connectivity can be determined solely by the interconnection
matrix but this is not the case in general. Our objective is to es-
tablish an efficient algorithm by exploiting the positive property
of each agent.

Fig. 3 [̂zx(t) ẑy(t)] for t = 0 s under (ΩA,x,ΩA,y).

Fig. 4 [̂zx(t) ẑy(t)] for t = 10 s under (ΩA,x,ΩA,y).

Fig. 5 [̂zx(t) ẑy(t)] for t = 20 s under (ΩA,x,ΩA,y).

Fig. 6 [̂zx(t) ẑy(t)] for t = 30 s under (ΩA,x,ΩA,y).
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Fig. 7 [̂zx(t) ẑy(t)] for t = 0 s under (ΩB,x,ΩB,y).

Fig. 8 [̂zx(t) ẑy(t)] for t = 10 s under (ΩB,x,ΩB,y).

Fig. 9 [̂zx(t) ẑy(t)] for t = 20 s under (ΩB,x,ΩB,y).

Fig. 10 [̂zx(t) ẑy(t)] for t = 30 s under (ΩB,x,ΩB,y).

From now on we assume that the dynamics of all agents are
homogeneous. This assumption is indispensable in construct-
ing the efficient algorithm.

Remark 1 Before getting into the details of the efficient algo-
rithm, we give some remarks on the simulation results shown
in Figs. 3–10. In these examples, since the interconnected sys-
tems along x- and y-axes are both positive, and since we chose
the initial states x̂x(0) and x̂y(0) to be both positive, the moving
region of agents is limited to the first quadrant. If we do not re-
strict x̂x(0) and/or x̂y(0) to be positive, however, it is of course
true that the agents can go outside the first quadrant and sat-
isfy (10). These are obvious from the linearity of the dynamics
along x- and y-axes. The positivity of agents under formation
control would be useful for those cases where the allowable
moving region of agents is physically restricted to be the first
quadrant (possibly with appropriate coordinate changes).

4. Efficient Algorithms for the Computation of κ2(A+
BΩC)

In this section, we propose an efficient algorithm for the com-
putation of (the real part of) the dominant pole of multi-agent
positive systems under formation control. As noted previously,
we assume that the dynamics of all agents are homogeneous
and thus

Ai = A ∈ Mn ∩ Hn, Bi = B ∈ Rn×1
+ ,

Ci = C ∈ R1×n
+ (i ∈ ZN)

(12)

holds in (2). In the following we further assume that Gi = G (i ∈
ZN) and Ω ∈ RN×N

+ satisfy the conditions (i)–(iv) in Theorem 1
with γ = 1 (as in Subsection 3.3).

4.1 Basic Algorithm by Problem Decomposition

The next lemma is instrumental for the decomposition of the
computation of κ2(A + BΩC) into smaller size computation
problems. We do not claim that this lemma is new, and sim-
ilar results can be found, for instance, in [24]. Still, we give the
proof for the completeness of the discussion.

Lemma 1 For given Ω ∈ RN×N and P,Q ∈ Rm×m, we have

σ (IN ⊗ P+Ω ⊗ Q)= {λ ∈ σ(P+νQ) : ν ∈ σ(Ω)} . (13)

Proof of Lemma 1: The Schur’s unitary triangularization the-
orem [Theorem 2.3.1 of [4]] ensures that there exists a unitary
matrix U ∈ Cn×n such that U∗ΩU(=: ΔΩ) is upper triangular.
By applying a similarity transformation with this U, we have

(U ⊗ Im)∗ (In ⊗ P + Ω ⊗ Q) (U ⊗ Im)
= (In ⊗ P + ΔΩ ⊗ Q)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P + ν1Q ∗ · · · · · · ∗
0 P + ν2Q . . .

...
...

. . .
. . .
. . .

...
...

. . .
. . . ∗

0 · · · · · · 0 P + νnQ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where σ(Ω) = {ν1, · · · , νn} including algebraic multiplicities.
The above equality clearly shows that (13) holds.

The next result readily follows from Lemma 1.
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Proposition 2 For given Ω ∈ RN×N andA ∈ MNn, B ∈ RNn×N
+ ,

C ∈ RN×Nn
+ given by (2), (4) and (12), we have

σ (A + BΩC) = {λ ∈ σ(A + νBC) : ν ∈ σ(Ω)} . (14)

Proof of Proposition 2: Note that

A + BΩC = IN ⊗ A + (IN ⊗ B)Ω(IN ⊗C)
= IN ⊗ A + (IN ⊗ B)(Ω ⊗C)
= IN ⊗ A + Ω ⊗ BC.

Therefore (14) holds from Lemma 1.
Note that Proposition 2 holds only if G is SISO. This proposi-

tion implies that we can compute the eigenvalues ofA+BΩC ∈
R

Nn×Nn by computing the eigenvalues of A + νiBC ∈ Rn×n re-
peatedly over νi ∈ σ(Ω). Based on this fact, we can conceive
the following algorithm that is expected to be efficient if N is
large.
Algorithm I (Basic Algorithm)

Step 0: Sort the distinct eigenvalues of Ω with nonnegative
imaginary part in descending order with respect to their
absolute values and denote them by λ1, · · · , λM (M ≤ N).
From the underlying assumption on Ω we have λ1 = 1.

Step 1: Let κ� = κ2(A + λ1BC) = κ2(A + BC) and i = 2.
Step 2: Compute κ(λi) := κ(A + λiBC) and let κ� :=

max(κ(λi), κ�).
Step 3: If i = M, exit. Else, let i := i + 1 and go to Step 2.

The efficiency of this algorithm can be validated by the
computational complexity analysis results in matrix eigenvalue
computation. When we deal with the eigenvalue computation
of a matrix of size n, the computational complexity is O(n3) for
the reduction to Hessenberg form, and O(n2) for a single step in
QR iteration [25]. Therefore, Algorithm I is expected to be very
efficient since it reduces the size of the matrix to be examined
from Nn to n.

Still, in Algorithm I, we need to compute the eigenvalues of
A+ λiBC repeatedly over i ∈ ZM and thus this algorithm leaves
room for improvement. In fact, if we focus on the positivity of
G, i.e., if we exploit the fact that A ∈ Mn, B ∈ Rn

+ and C ∈ R1×n
+ ,

we can drastically reduce the number of eigenvalues λi ∈ σ(Ω)
to be examined. This is the key idea for conceiving a much
more efficient algorithm as detailed in the next subsection.

4.2 Efficient Algorithm by Exploiting Positivity

The next theorem is very important for enhancing the effi-
ciency of Algorithm I.

Theorem 2 For given A, B ∈ Rn×n
+ , we have

ρ(A + νB) ≤ ρ(A + B) ∀ν ∈ D. (15)

The proof of this theorem is given in the appendix. As noted
in Section 1, the proof relies on strong results on stability and
H∞ norm of (discrete-time) positive systems and clearly illus-
trate how positivity of subsystems can be exploited to conceive
the efficient algorithm.

Next corollary follows directly from this theorem.

Corollary 1 For given A ∈ Mn and B ∈ Rn×n
+ , we have

κ(A + νB) ≤ κ(A + B) ∀ν ∈ D. (16)

Proof of Corollary 1: Since A ∈ Mn, there exists α ∈ R such
that A + αI ∈ Rn×n

+ . Then, from Theorem 2 and the facts that
κ(M) ≤ ρ(M) for M ∈ Cn×n and ρ(M) = κ(M) for M ∈ Rn×n

+ [4],
we have for any ν ∈ D that

κ(A + αI + νB) ≤ ρ(A + αI + νB)
≤ ρ(A + αI + B)
= κ(A + αI + B)

where we used (15) to prove the second inequality. This clearly
shows that (16) holds.

In relation to the computation of κ2(A+BΩC) along the line
of Algorithm I, Corollary 1 shows that we can reduce the num-
ber of eigenvalues λi ∈ σ(Ω) to be examined. Indeed, by pay-
ing attention to the fact that λ1, . . . , λM (M ≤ N) are sorted in
descending order with respect to their absolute values, we can
include the following stopping condition to Algorithm I:

(i) If κ(λi) := κ(A + |λi|BC) is not larger than the tentative
value κ�, we can let κ2(A + BΩC) = κ� and exit the algo-
rithm.

(ii) If λi ∈ R++, we can let κ2(A + BΩC) = max(κ�, κ(A +
λiBC)) and exit the algorithm.

We are now ready to give the efficient algorithm for the com-
putation of κ2(A + BΩC).
Algorithm II (Efficient Algorithm)

Steps 0 and 1: The same as Algorithm I.
Step 2: Compute κ(λi) := κ(A + |λi|BC). If κ(λi) ≤ κ�, exit.

If λi ∈ R++, let κ� := max(κ(λi), κ�) and exit. Else, go to
Step 3.

Step 3: Compute κ(λi) := κ(A + λiBC) and let κ� :=
max(κ(λi), κ�).

Step 4: If i = M, exit. Else, let i := i + 1 and go to Step 2.

Algorithm II is efficient particularly whenΩ ∈ RN×N
+ has only

real eigenvalues (e.g., this happens when Ω is symmetric). In
such a case, if Ω has a positive eigenvalue λ, then we do not
need to test the eigenvalues whose absolute values are less than
or equal to λ. By following this line, we can analytically write
down κ2(A+BΩC) for some specific interconnection matrices.

For example, consider the interconnection matrix ΩA,0 :=
Ω(1N , pA,0) where pA,0 := 1

2 1N . In this case, Γ(ΩA,0) = ΓA

holds and

σ(ΩA,0) =

{
cos

(
2π(i − 1)

N

)
: i ∈ ZN

}
. (17)

It follows that

κ2(A + BΩA,0C) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
max (κ2(A + BC), κ(A + λ2BC), κ(A + λK+1BC))

N = 2K + 1
max (κ2(A + BC), κ(A + λ2BC), κ(A − BC))

N = 2K

(18)

where K ∈ Z+ and

λ2 := cos

(
2π
N

)
, λK+1 := cos

(
2Kπ

2K + 1

)
.

On the other hand, we see that ΩB,0 := Ω(1N , pB,0) with
pB,0 := [ 1 1

2 1T
N−2 0 ]T satisfies γ(ΩB,0) = ΓB and
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Table 1 Average CPU time (n = 2).

N Algorithm 0 Algorithm I Algorithm II

10 0.3907 × 10−3 0.2983 × 10−3 0.2541 × 10−3

100 0.0319 0.0074 0.0065
1000 8.4881 1.2354 1.2269

Table 2 Average CPU time (n = 3).

N Algorithm 0 Algorithm I Algorithm II

10 0.5488 × 10−3 0.3709 × 10−3 0.2798 × 10−3

100 0.0756 0.0076 0.0067
1000 27.9230 1.2339 1.2230

Table 3 Average CPU time of Algorithms I and II (n = 2).

Algorithm I Algorithm II
N Steps 0,1 Steps 2, 3 Steps 2, 3, 4

10 0.1647 × 10−3 0.1336 × 10−3 0.0894 × 10−3

100 0.0064 0.9208 × 10−3 0.1205 × 10−3

1000 1.2266 0.0088 0.0003

Table 4 Average CPU time of Algorithms I and II (n = 3).

Algorithm I Algorithm II
N Steps 0, 1 Steps 2, 3 Steps 2, 3, 4

10 0.1786 × 10−3 0.1923 × 10−3 0.1012 × 10−3

100 0.0067 0.0012 0.0002
1000 1.2225 0.0114 0.0004

σ(ΩB,0) =

{
cos

(
π(i − 1)
N − 1

)
: i ∈ ZN

}
(19)

for N ≥ 3. Therefore we have

κ2(A + BΩB,0C)

= max
(
κ2(A + BC), κ(A − BC), κ

(
A + cos

(
π

N−1

)
BC

))
.

(20)

It follows that in the cases Ω = ΩA,0 and Ω = ΩB,0 we can
compute κ2(A + BΩC) very efficiently irrespective of N.

5. Numerical Examples
In this section, we demonstrate the efficiency of Algorithms

I and II by numerical examples. For given n and N, we ran-
domly generated A ∈ Mn ∩Hn, B ∈ Rn×1

+ and C ∈ R1×n
+ (i ∈ ZN)

satisfying G(0) = −CA−1B = 1 and irreducible Ω ∈ RN×N
+

satisfying λF(Ω) = 1. Then, we computed κ2(A + BΩC) by
direct computation of σ(A + BΩC) (this method is denoted by
Algorithm 0 for simplicity) and Algorithms I and II. The av-
erage computation time over 10 tested cases for each setting
N = 10, 100, 1000 with n = 2 and 3 are shown in Tables 1
and 2, respectively (in Tables 1–4, the unit for CPU time is
second). These tables show that Algorithms I and II are much
more efficient than Algorithm 0. This is due to the fact that in
Algorithms I and II we can avoid the eigenvalue computation
of matrices of large size Nn.

On the other hand, from these tables we cannot see clearly
the efficiency of Algorithm II over Algorithm I. This is due to
the fact that in both algorithms most of computation time is
consumed by the common steps, Steps 0 and 1, i.e., the com-
putation of the eigenvalues of Ω. To compare the efficiency of
Algorithms I and II in more detail, we show in Tables 3 and 4
the computation times of Algorithm I needed for Steps 0 and 1,
and for the remaining steps, Steps 2 and 3. Similarly, we show
in these tables the computation times of Algorithm II needed

Table 5 Average number of examined eigenvalues of Ω (n = 2).

N Algorithm I Algorithm II

10 7.4 3.2
100 54.6 7.9

1000 514.2 13.3

Table 6 Average number of examined eigenvalues of Ω (n = 3).

N Algorithm I Algorithm II

10 7.0 3.4
100 54.8 7.3

1000 512.6 12.2

for Steps 0 and 1, and for the remaining steps, Steps 2, 3, and 4.
From these tables, it is clear that Algorithm II consumes very
little time for the Steps 2, 3, and 4, i.e., the computation of the
eigenvalues A+ λiBC over λi ∈ σ(Ω) that have to be examined.
To highlight this point, we show in Tables 5 and 6 the average
number of the eigenvalues of Ω examined in Algorithms I and
II. It is clear that Algorithm II successfully reduce the number
of eigenvalues to be examined by including stopping conditions
(i) and (ii) stated in Subsection 4.2. To summarize, even though
computation time reduction of Algorithm II over Algorithm I is
not significant, Algorithm II is efficient and reasonable in avoid-
ing unnecessary computations.

6. Conclusion

In this paper, we proposed an efficient algorithm for the con-
vergence rate analysis of multi-agent positive systems under
formation control. Assuming that the dynamics of all agents
are positive and homogeneous, we first showed that the domi-
nant pole of the overall interconnected positive system can be
computed by evaluating eigenvalues of matrices whose sizes
are equal to the dimension of each subsystem. Then, by ac-
tively using positive property of each subsystem, we showed
that we can drastically decrease the number of matrices to be
examined. We illustrated by numerical examples that the pro-
posed algorithm is definitely efficient.
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Appendix A Proof of Theorem 2
Proof of Theorem 2: It suffices to prove that

ρ(A + B) < γ ⇒ ρ(A + νB) < γ ∀ν ∈ D. (A. 1)

This can be rewritten equivalently as

ρ(Aγ + Bγ) < 1 ⇒ ρ(Aγ + νBγ) < 1 ∀ν ∈ D
where Aγ := A/γ and Bγ := B/γ. Therefore, for the proof of
Theorem 2, we prove (for any fixed A, B ∈ Rn×n

+ ) that the next

relation holds:

ρ(A + B) < 1 ⇒ ρ(A + νB) < 1 ∀ν ∈ D. (A. 2)

To this end, we first prove

ρ(A + B) < 1 ⇒ ρ(A + νB) < 1 ∀ν ∈ ∂D. (A. 3)

From ρ(A+B) < 1 and A+B ∈ Rn×n
+ , we see from [1] that there

exists positive definite diagonal matrix P such that[ −P P(A + B)
(A + B)T P −P

]
≺ 0.

This reduces to[ −I (AP + BP)
(AP + BP)T −I

]
≺ 0,

AP := P
1
2 AP−

1
2 , BP := P

1
2 BP−

1
2 .

Therefore ‖AP + BP‖ < 1 holds for AP, BP ∈ Rn×n
+ . This implies

that ‖G‖∞ < 1 holds for the discrete-time positive and stable
system G given by

G(z) :=

[
0 I

AP BP

]

since ‖G‖∞ = ‖G(1)‖ = ‖AP + BP‖ [11],[26]. From KYP
lemma [27] for discrete-time LTI systems, we further obtain

∃Π � 0 such that

[ −Π + AT
PAP AT

P BP

BT
PAP Π + BT

P BP − I

]
≺ 0.

It follows that[
I
νI

]∗ [ −Π + AT
PAP AT

P BP

BT
PAP Π + BT

P BP − I

] [
I
νI

]
≺ 0

∀ν ∈ ∂D
⇔ (AP + νBP)∗(AP + νBP) ≺ I ∀ν ∈ ∂D
⇔ ‖AP + νBP‖ < 1 ∀ν ∈ ∂D

⇔
[ −P P(A + νB)

(A + νB)∗P −P

]
≺ 0 ∀ν ∈ ∂D

This clearly shows ρ(A + νB) < 1 (∀ν ∈ ∂D) and hence (A. 3)
has been proved.

Next we move onto the final stage of the proof. Note that
(A. 3) (for any A, B ∈ Rn×n

+ ) implies

ρ(A + B) ≥ ρ(A + νB) ∀ν ∈ ∂D.
This further implies

ρ(A + rB) ≥ ρ(A + νB) ∀ν ∈ ∂Dr,

Dr := {ν ∈ C : |ν| ≤ r} , ∂Dr := {ν ∈ C : |ν| = r} ,
Moreover, from [Theorem 8.1.18 of [4]], we have

ρ(A + B) ≥ ρ(A + rB) ∀r ∈ [0, 1].

To summarize, we arrive at

ρ(A + B) ≥ ρ(A + νB) ∀ν ∈ ∂Dr, ∀r ∈ [0, 1]

and hence

ρ(A + B) ≥ ρ(A + νB) ∀ν ∈ D.
This completes the proof.
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