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Periodic Memory State-feedback Controller: New
formulation, analysis and design results

Jean-François Trégouët, Dimitri Peaucelle, Denis Arzelier, and Yoshio Ebihara

Abstract—This paper proposes a unified setup for robust
stability and performance analysis and synthesis for periodic
polytopic discrete-time systems. Relying on a general formulation
for state-feedback periodic memory controllers and a new time-
lifting, new sufficient LMI conditions for the existence of robust
stability certificates and H2 guaranteed cost control laws are
derived. Comparisons of the efficiency of different controller
structures illustrate these developments on a numerical example.

Index Terms—Linear periodic systems, LMIs, State feedback
with memory, H2 guaranteed cost

I. INTRODUCTION

IT is widely recognized that extending Linear Time-
Invariant (LTI) robust synthesis tools to Linear Time-

Varying (LTV) models is a very challenging and promising
research field [13]. For instance, robust analysis and control
of periodic systems has known a renewed interest, mainly due
to the variety and the originality of the possible applications
[1], [19], [4], [25]. For recent work on this class and some
background for the present work, we refer the reader to [3] and
the references therein. Convex synthesis methods have been
proposed recently, that yield such periodic controllers when
the uncertain periodic discrete-time model is assumed to be
affected by polytopic uncertainties [7], [11], [10]. In particular,
in [10], a further attempt was made to significantly outperform
previous results by introducing a new class of controllers. The
usual family of periodic static control laws is extended by
incorporating memorized past states of the plant. Different
control structures, characterized by their specific use of the
state memory, have then been proposed (see [10], [21], [23],
[8] and [22]).

The first objective of this paper is to give a general setup
for robust state-feedback periodic memory controllers design
unifying all these previous results. This new framework is
used to highlight features of the different control structures
characterized by a sequence of insightful parameters for the
designer. This sequence of parameters may be viewed as a
way to manage additional degrees of freedom and complexity
of the designed control laws. In addition, we propose new
robust LMI conditions for stability and performance analysis
and synthesis of periodic discrete time systems affected by
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polytopic uncertainties under this general formulation. Tech-
nically, these conditions are obtained by applying classical
results on a specific time-invariant reformulation. Time-lifting
procedure has therefore been generalized in the context of
memory periodic model and a new descriptor-like lifting has
been introduced in this paper for the first time. Even though
descriptor-like lifting is briefly introduced in [10] for the
autonomous case, the authors there derived LMI synthesis
conditions of a specific periodic memory controller by relying
on the classical time-lifting and involved matrix manipulation.
It is hard to deal with general periodic memory controller
synthesis in the same direction, and this difficulty can be
circumvented successfully by a rigorous treatment of the
descriptor-like lifting.

Finally, the general duality theory of LTI systems developed
in [14] has been revisited and applied to this particular lifted
representation.

In the last section, numerical examples illustrate these
results and confirm that adding some degrees of freedom to the
control law contributes to effectively decrease conservatism.
Furthermore, it is shown that some particular configuration of
the memory allows to drastically reduce the conservatism of
the synthesis conditions.

We use the following notations in this paper. The symbols
1n and 0m×n stand for the identity and zero matrices of dimen-
sions n×n and m×n, respectively. When the dimensions are
clear from the context, they are omitted. The set of symmetric
matrices and positive-definite symmetric matrices of size l are
denoted by Sl and Sl+ respectively. For a real square matrix
A, we define He {A} = A + AT . Let also Sq {A} = AAT .
The operator ’diag’ builds block-diagonal matrix from input
arguments. The convex hull of the collection of L elements
A[1], · · · , A[L] is denoted by co

{
A[1], · · · , A[L]

}
. σ stands

for the shift operator forward in time: σxNq = xN(q+1) The
standard operator of modular arithmetic is referred as ’mod’.
The Kronecker product is denoted by ⊗.

II. A GENERAL FORMULATION FOR STATE-FEEDBACK
MEMORY CONTROLLERS

A. Preliminaries

Throughout this paper, rather than considering each instant
time, periods are treated globally via liftings. To this end, every
time instant is expressed as τ +Nq + k with 0 ≤ k ≤ N − 1
such that q ∈ N characterizes the considered period which
starts at τ +Nq and ends at τ +Nq +N − 1 = τ +N(q +
1)−1. As it has already been pointed out in [12], conservatism
of robust analysis results may depend on the choice of τ .
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However, without loss of generality, this paper focuses on the
special case where τ = 0. Some guidelines about the influence
of the choice of τ ∈ {0, · · · , N − 1} are provided. Future
works will investigate this issue in more details.

Consider the linear discrete-time N -periodic system Σ(θ)
described by

Σ(θ) :

[
xNq+k+1

zNq+k

]
=

[
Ak(θ) Bk(θ) Qk(θ)
Ck(θ) Dk(θ) Rk(θ)

]
︸ ︷︷ ︸

Mk(θ)

xNq+kwNq+k
uNq+k

 (1)

with Mk+N (θ) = Mk(θ) and where1 xNq+k ∈ Rn, wNq+k ∈
Rm, uNq+k ∈ Rmu and zNq+k ∈ Rp. In addition, the model
Σ(θ) is subject to polytopic uncertainties gathered in θ such
that for all θ in the uncertain domain Θ defined as the unit
simplex: M0(θ)

...
MN−1(θ)

 ∈ co



M

[1]
0
...

M
[1]
N−1

 , · · · ,

M

[L]
0
...

M
[L]
N−1


 (2)

In the nominal case (i.e when there is no uncertainty
in the system matrices), it is known that a static periodic
state-feedback, described by uNq+k = KkxNq+k, allows
to arbitrarily shape the dynamics of the closed-loop system
within the reachability domain via pole assignment [3]. This is
not true anymore when the system is affected by uncertainties.
This is the reason why, this basic control law was enriched in
[10] by letting the controlled input uNq+k depend not only on
the current state xNq+k, but also on the state history. In line
with these works, this paper is concerned with the design of
controllers described by

uNq+k = Kk,0xNq+k+Kk,1xNq+k−1+· · ·+Kk,αk
xNq+k−αk

(3)
The sequence {αk}N−1

k=0 is composed of the numbers of past
states required to evaluate uNq+k for every 0 ≤ k ≤ N − 1.
It characterizes the control structure. Among every possible
choice allowed by this general structure, the three following
cases characterized by κ ∈ N are particularly remarkable:
• αk = 0: Classical memoryless Periodic State-Feedback

Controller (PSFC);
• αk = k + κ: Periodic Full Memory Controller (PFMC)

of order κ;
• αk = κ: Periodic FIR Controller (PFIRC) of constant

order κ.
Referring to this new terminology, [7], [10] and [21] deal
respectively with the following structures: PSFC (or PFIRC
of order 0), PFMC of order 0 and PFIRC of order N − 1.
Thus, the controller (3) can be regarded as a unifying way
for combining existing results on discrete-time periodic state-
feedback controllers.
Remark. Changing τ , the starting point of the considered
period, while keeping the same control structure gives rise to
different controllers. Reversely, changing τ imposes to change

1Although only signals of constant dimensions are considered in this paper,
every result may easily be extended to allow n, m, mu and p to vary along
the period.

the structure to keep the same controller. As an example, con-
sider a 2-periodic control law with structure {α0, α1} = {0, 2}
for τ = 0. In a new time frame starting at τ = 1, the same
controller has structure {α0, α1} = {2, 0}.

B. The special case of PFMCs

If αk refers to the number of past states required to evaluate
uNq+k and is constant all along the period for the cases
PSFC and PFIRC, its significance is richer when dealing
with the PFMC structure. As an illustration, consider a 3-
periodic PFMC of order κ = 1 corresponding to the sequence
{α0, α1, α2} = {1, 2, 3}. Control inputs can be written down
over the period q as: u3q =

[
K0,0 K0,1

]
ηq

u3q+1 =
[
K1,0

]
β3q+1+

[
K1,1 K1,2

]
ηq

u3q+2 =
[
K2,0 K2,1

]
β3q+2+

[
K2,2 K2,3

]
ηq

(4)

with

β3q+1 =
[
x3q+1

]
, β3q+2 =

[
x3q+2

x3q+1

]
, ηq =

[
x3q

x3q−1

]
(5)

Thus, state memory required to compute u3q+k is composed of
the vector ηq , of constant size and made of l = κ + 1 states,
and of β3q+k which dimension is varying over the period.
More precisely, β3q+k incorporates, at each step of the period,
the current state of the system, x3q+k. On the other side, ηq
contains the state memory of the system prior to the period.
Note that, when considering the general class of controllers
(3), different sequences αk lead to the same definition of β3q+k

and ηq . As an example, the 3-periodic controller characterized
by the sequence {α0, α1, α2} = {0, 2, 0} can be written down
as (4) with K0,1 = K2,1 = K2,2 = K2,3 = 0. In fact, PFMCs
offer the largest number of degrees of freedom for a given
knowledge about past states of the plant defined by the order
κ. The name of this class of controller originates from this
observation.

Consequently, every control structure (even PSFC or
PFIRC) can be worked out as a particular structured PFMC
of order κ = l − 1 where l is defined by

l = max
k∈[0,··· ,N−1]

αk − k + 1 ≥ 1 (6)

Therefore, instead of (3), PFMCs of order κ formalized as:

uNq+k =

κ+k∑
j=0

Kk,jxNq+k−j =

l−1+k∑
j=0

Kk,jxNq+k−j (7)

are particularly considered and all robust synthesis results will
be formulated for this particular class of controllers.

C. Problems statement

The periodic autonomous system with memory Σcl(θ) aris-
ing from the closed-loop of (1) with (7) is described by

Σcl(θ) :

[
xNq+k+1

zNq+k

]
=

l−1+k∑
j=0

[
Ak,j(θ)
Ck,j(θ)

]
xNq+k−j

+

[
Bk(θ)
Dk(θ)

]
wNq+k

(8)
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where Ak,j and Ck,j are given by

[
Ak,j(θ)
Ck,j(θ)

]
=


[
Ak(θ) +Qk(θ)Kk,0

Ck(θ) +Rk(θ)Kk,0

]
, (j = 0)[

Qk(θ)Kk,j

Rk(θ)Kk,j

]
, (1 ≤ j ≤ l − 1 + k)

(9)

Remark. The dynamics of Σcl(θ) can be more easily visual-
ized by rewriting (8) using a formulation similar to (4) and
requiring the definition of the vectors ηq and βq . It will be
seen in the following that the properties of these vectors have
some consequence for the robust analysis of Σcl(θ).

This paper is first concerned with robust stability and H2

performance analysis of Σcl(θ).

Problem 1 (Robust Analysis). Provide a certificate assessing
the robust stability of Σcl(θ). If it exists, find anH2 guaranteed
cost γg ≥ γwc where γwc is defined as the squared worst-case
H2 norms of Σcl(θ):

γwc = max
θ∈Θ
‖Σcl(θ)‖22 (10)

Remark. In the sequel, time-invariant reformulations relying
on time lifting are intensively used. This requires to specify τ .
As it has already been pointed out by [12], this specification
may have a large influence on the conservatism of subsequent
robust analysis results. However, this very difficult issue is
only considered in the numerical experiments for illustration.
Theoretical developments on this topic are left for further
investigations.

In a second stage, the corresponding synthesis problem is
considered:

Problem 2 (Robust Synthesis). Find a controller (3) charac-
terized by a given sequence {αk}N−1

k=0 which robustly stabilizes
Σcl(θ) and minimizes a guaranteed upper bound of γwc.

Remark. In the remaining of the paper, notations are some-
times simplified by omitting the dependency of matrices with
respect to the uncertain vector θ.

III. ROBUST ANALYSIS

It is well-known that time-invariant reformulations may of-
fer a suitable way to analyze periodic systems [2], [3]. Indeed,
the analysis condition stated for the time-invariant model can
be utilized for the periodic one as this transformation preserves
stability and input/output relationship. Among procedures pro-
vided in [2], [3], time-lifting is probably the most classical one.
Consider model (1) where uNq+k = 0. The time-invariant re-
formulation of (1), called the lifted system at time τ , is a state-
sampled representation of (1) with state vector ητq = xNq+τ
and with augmented input ŵτq = [wTNq+τ · · · wTN(q+1)+τ−1]T

and output ẑq = [zTNq+τ · · · zTN(q+1)+τ−1]T . Details of
the corresponding state-space matrices are omitted for space
reasons and may be found in [2], [3]. In the sequel, except
for the numerical section, we consider lifted systems at time
τ = 0 where the dependence upon τ is omitted.

In the context of periodic models with memory this refor-
mulation can be obtained by recasting Σcl(θ) as a memoryless
model with time-varying dimensions. However, when dealing

with uncertain polytopic periodic models, usual time-liftings
destroy this underlying geometry preventing to express simple
LMI conditions for robust analysis. To overcome this difficulty,
this paper proposes a new lifting procedure based on a peculiar
descriptor-like formulation. The next subsection is dedicated to
the presentation of the general strategy utilized to get tractable
LMI conditions for robust stability.

A. A general strategy for robust analysis via time-liftings

In order to make this discussion clearer and with lighter
notations, consider the memoryless periodic model (1) for
N = 2 and where the control input ûq has been removed
for simplicity. The lifted system is given by:

[
ηq+1

ẑq

]
=

A1(θ)A0(θ) B1(θ) A1(θ)B0(θ)
C1(θ)A0(θ) D1(θ) C1(θ)B0(θ)
C0(θ) 0 D0(θ)

[ ηq
ŵq

]
(11)

where2

ŵq =
[
wT2q+1 w

T
2q

]T ∈ R2m, ẑq =
[
zT2q+1 z

T
2q

]T ∈ R2p (12)

and ηq = xNq .
The widely used formulation (11) makes this model suitable

for establishing nominal design and analysis results [24].
Unfortunately, as this example clearly shows, the polytopic
dependence of the matrices of (11) is lost through this partic-
ular lifting procedure.

To address this problem, the same periodic model can be
alternatively formulated as:
−1 A1(θ) 0 B1(θ) 0 0 0
0 −1 A0(θ) 0 B0(θ) 0 0
1 0 −σ1 0 0 0 0
0 C1(θ) 0 D1(θ) 0 −1 0
0 0 C0(θ) 0 D0(θ) 0 −1


 x̂qŵq
ẑq

 = 0 (13)

where x̂Tq = [xT2q+2, x
T
2q+1, x

T
2q] and σx2q = x2(q+1) = x2q+2

as previously defined in the notations paragraph of the intro-
duction. Even though the polytopic structure of the original
periodic uncertain model is preserved, the unconventional
structure of (13) makes its analysis tricky. In the following,
this new reformulation is coined as descriptor lifting while the
procedure leading to (11) is referred to as monodromy lifting
since the so-called monodromy matrix appears explicitly in
the LTI representation (matrix A1(θ)A0(θ) in (11)).

The strategy proposed in this paper can then be regarded as
a way to take advantage of both time-invariant reformulations
in order to derive tractable analysis conditions for the periodic
model with memory Σcl(θ). The strategy is the following:

1) Obtain an equivalent state-space formulation of Σcl(θ)
via the monodromy lifting.

2) Establish a first set of robust analysis conditions.

2The convention is such that ŵq stacks wq’s from the bottom to the top
when going forward in time along the period although the opposite way is
sometimes used in the literature.
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Ψ = ΦN,0 , B =
[
B̄N−1 ΦN,N−1B̄N−2 · · · ΦN,1B̄0

]

C =


C̄N−1ΦN−1,0

...
C̄1Φ1,0

C̄0

 , D =



D̄N−1 C̄N−1B̄N−2 · · · C̄N−1ΦN−1,2B̄1 C̄N−1ΦN−1,1B̄0

0
. . . . . .

...
...

...
. . . . . . C̄2B̄1 C̄2Φ2,1B̄0

...
. . . D̄1 C̄1B̄0

0 · · · · · · 0 D̄0


(16)

3) Derive the new descriptor lifting and exhibit the linear
map existing between ηq and x̂q which, for the previous
2-periodic example, corresponds to[

ηq+1

ηq

]
=

[
1 0 0
0 0 1

]
x̂q. (14)

4) Using this correspondence, derive tractable LMI condi-
tions of robust analysis for Σcl(θ).

The approach, outlined above, is now detailed for the solution
of the robust stability analysis problem in 1 while the case of
H2 performance will be dealt with more concisely.

B. Robust analysis using monodromy lifting

By recasting Σcl(θ) as a memoryless periodic model, the
monodromy lifting procedure recalled in [3] can be readily
applied to arrive at the following proposition.

Proposition III.1 (Monodromy lifting). The polytopic peri-
odic model Σcl(θ) given by (8) can always be lifted to the
following time-invariant formulation, denoted by Γm(θ):

Γm(θ) :

[
ηq+1

ẑq

]
=

[
Ψ(θ) B(θ)
C(θ) D(θ)

] [
ηq
ŵq

]
with ηq ∈ Rnl (15)

where Ψ, B, C and D are polynomial functions of θ and are
defined by (16) where the transition matrix Φk,j associated to
Ā is such that

Φk,j =

{
1 , (k = j)
Āk−1Āk−2 · · · Āj , (k > j)

(17)

and

Āk =


[

Àk
1n(l+k)

]
, (0 ≤ k ≤ N − 2)[

ÀN−1[
1n(l−1) 0

]] , (k = N − 1)

(18)

Àk =
[
Ak,0 · · · Ak,l+k−1

]
, B̄k =

[
Bk
0

]
C̄k =

[
Ck,0 · · · Ck,l+k−1

]
, D̄k = Dk

(19)

Proof of proposition III.1 is provided in Appendix A.

Remark. Ψ may be regarded as the generalization of the
monodromy matrix for periodic models with memory Σcl.

The time-invariant structure of Γm(θ) allows to readily
apply well-known stability and worst case H2 theorems to
analyze the periodic model Σcl(θ).

Theorem III.1 (Stability using Γm). The polytopic periodic
model Σcl(θ) is robustly stable if and only if the following
condition holds, ∀θ ∈ Θ:

∃P (θ) ∈ Snl+ :

[
ηq+1

ηq

]T [
P (θ) 0

0 −P (θ)

] [
ηq+1

ηq

]
< 0

s.t.
[
−1 Ψ(θ)

] [ηq+1

ηq

]
= 0

(20)

Theorem III.2 (Worst case H2 cost using Γm). The worst
case H2 analysis problem is equivalent to the following
optimization problem:

γwc = max
θ∈Θ

min
P (θ)∈Snl

+ , Z(θ)∈SmN
γ s.t. (21)

ΨT (θ)P (θ)Ψ(θ)− P (θ) + CT (θ)C(θ) ≺ 0 (22)
BT (θ)P (θ)B(θ) + DT (θ)D(θ)− Z(θ) ≺ 0 (23)

trace(Z(θ)) < γ (24)

Unfortunately, these results are not useful to derive tractable
LMI conditions of robust stability and worst case H2 analysis
due to the non polytopic dependence of the matrices of Γm. It
is therefore necessary to resort to a different lifted LTI model
of Σcl(θ).

C. The new descriptor lifting

As the proof of Prop III.1 makes it clear, the polytopic
nature of Σcl is destroyed by the monodromy lifting procedure
when dropping some the states of Σcl. For this reason, we
propose a new time-lifting procedure which mainly relies on
the concatenated extended state vector x̂q . The origins of this
new lifting can be traced back to [17]. In this paper, it is
formally expressed for the first time for periodic models with
memory Σcl. The relationships between Γm and the descriptor
lifted model are also clarified.

Proposition III.2 (Descriptor lifting). Γe(θ), given by (25),
defines a polytopic lifted time-invariant formulation of the
polytopic uncertain periodic model Σcl(θ) described by (8).

Γe(θ) :

 [
E(θ) A(θ)

]
B(θ) 0[

1nl 0
]
− σ

[
0 1nl

]
0 0[

C1(θ) C2(θ)
]
D(θ) −1pN

x̂qŵq
ẑq

 = 0 (25)

where E ∈ RnN×nN , A ∈ RnN×nl, B ∈ RnN×mN ,
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C1 ∈ RpN×nN , C2 ∈ RpN×nl, D ∈ RpN×mN are

E =


AN−1,N−1 AN−1,N · · · AN−1,l+N−2

AN−2,N−2 AN−2,N−1 · · · AN−2,l+N−3

...
...

A1,1 A1,2 · · · A1,l

A0,0 A0,1 · · · A0,l−1



A =



−1n AN−1,0 AN−1,1 · · · AN−1,N−2

0n −1n AN−2,0 · · · AN−2,N−3

...
. . .

. . .
. . .

...
...

. . . −1n A1,0

0n · · · · · · 0n −1n



(26)

C1 =



0p×n CN−1,0 · · · · · · CN−1,N−2

...
. . . CN−2,0 · · · CN−2,N−3

...
. . .

. . .
...

...
. . . C1,0

0p×n · · · · · · · · · 0p×n



C2 =


CN−1,N−1 CN−1,N · · · CN−1,l+N−2

CN−2,N−2 CN−2,N−1 · · · CN−2,l+N−3

...
...

C1,1 C1,2 · · · C1,l

C0,0 C0,1 · · · C0,l−1



(27)

B = diag{BN−1, · · · , B0}
D = diag{DN−1, · · · , D0}. (28)

By construction, both state vectors ηq and x̂q corresponding
respectively to Γm and Γe are composed of some of the
internal variables involved in the dynamical equation of Σcl
such that

ηTq = [xTNq, · · · , xTNq−l+1], x̂Tq = [xTNq+N , · · · , xTNq−l+1].
(29)

Relying on this observation, the following constant linear
mapping between ηq and x̂q may be easily deduced.[
ηq+1

ηq

]
= T x̂q with T =

[[
1nl 0nl×nN

][
0nl×nN 1nl

]] ∈ R2nl×n(N+l).

(30)

Remark. From the dimensions of T , it appears that the
monodromy representation Γm derives from the descriptor rep-
resentation Γe by contraction when l < N and by expansion
when l > N .

This transformation allows to derive new tractable robust
analysis conditions for problem 1.

D. New robust analysis conditions

For clarity reasons, the robust stability case is treated first
by carefully following the strategy given by subsection III-A.
Then, as the guaranteed cost problem for H2 worst-case
analysis can be tackled along the same lines, only the final
formulation of the LMI conditions will be given for concise-
ness reasons.

1) Robust stability conditions: A new robust stability anal-
ysis condition for the lifted descriptor system Γe (and therefore
for Σcl) may be easily obtained by applying the constant linear
mapping defined by (30) to the condition (20).

Theorem III.3 (Robust stability via Γe). The polytopic un-
certain periodic model Σcl(θ) is robustly stable if and only if
the following condition holds, ∀ θ ∈ Θ:

∃P (θ) ∈ Snl+ ,∃F(θ) ∈ Rn(N+l)×nN :
−P(P (θ)) + He{F(θ)

[
E(θ) A(θ)

]
} ≺ 0

(31)

where the operator P(P ) ∈ Rn(l+N) is defined as follows:

P(P ) =

[
−P 0

0 0nN

]
+

[
0nN 0

0 P

]
(32)

Proof: Since T is a full rank matrix, the use of (30) allows
to rewrite the condition (20) as

x̂Tq T
T

[
P (θ) 0

0 −P (θ)

]
T x̂q < 0 s.t.

[
E(θ)A(θ)

]
x̂q = 0 (33)

Noticing that P(P ) = TTdiag{−P, P}T and applying elim-
ination Lemma [20] leads to (31) without conservatism.

For N = 1 and α0 = 0, these robust stability analysis
conditions reduce to the well-known extended LMIs for LTI
system analysis [15], [16]. Therefore, the same strategy can be
employed to derive tractable LMI robust analysis conditions:
Condition (31) may be relaxed by enforcing F(θ) to be
independent of the uncertain vector θ and choosing a polytopic
parameter-dependent Lyapunov function P (θ) =

∑L
i=1 θiPi.

Finally, applying the usual vertexization trick, the following
sufficient LMI robust stability conditions may be expressed.

Theorem III.4 (Robust Stability Analysis). The polytopic
periodic model Σcl(θ) is robustly stable if there exist L
matrices P [i] ∈ Snl+ and a matrix F ∈ Rn(N+l)×nN such
that

∀i ∈ [1, · · · , L], −P(P [i]) + He{F
[
E [i] A[i]

]
} ≺ 0 (34)

where the operator P(P [i]) is defined by (32).

Proof: Summing the conditions as follows
∑L
i=1 θi(34)

implies (31) with P (θ) =
∑L
i=1 θiP

[i], E(θ) =
∑L
i=1 θiE [i],

A(θ) =
∑L
i=1 θiA[i].

The condition (34) is exactly the dual condition of the one
proposed in [10]. When coming to the synthesis problem 2 in
the sequel, this relation of duality will be explicitly presented
and generalized to the descriptor representation.

2) Guaranteed cost for worst-case H2 analysis: Following
roughly the same line, the following theorem can be stated.

Theorem III.5 (Guaranteed cost for worst-case H2 Analysis).
The solution γg of the following semidefinite program is a
guaranteed cost of the worst case H2 cost, i.e. γwc ≤ γg.

γg = min
P [i], F1, F2, Z[i]

γ (35)
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Γde(θ) :


[
ĂT (θ) ĔT (θ)

] [
C̆T2 (θ) C̆T1 (θ)

]
0

σ−1
[
1nl 0

]
−
[
0 1nl

]
0 0

0 σ−1
[
1p(l−1) 0

]
−
[
0 1p(l−1)

]
0[

0 B̆T (θ)
] [

0 D̆T (θ)
]

1mN


[x̂dqw̆dq

]
z̆dq

 = 0 (40)

such that, for i ∈ [1, · · · , L],

−P(P [i]) + Sq

{[
C[i]

1 C[i]
2

]T}
+He

{
F1

[
E [i] A[i]

]}
≺ 0

(36)

Z(P [i], Z [i]) + Sq

{[
(C[i]

1 )T

(D[i])T

]}
+He

{
F2

[
E [i] B[i]

]}
≺ 0

(37)

trace(Z [i]) < γ (38)

where Z(P,Z) ∈ S(n+m)N is given by

Z(P,Z) =

[ 1nN
0nl×nN

]T [
P 0
0 0nN

] [
1nN

0nl×nN

]
0

0 −Z

 (39)

and P [i] ∈ Snl+ , F1 ∈ Rn(N+l)×nN , F2, Z [i] ∈ SmN

A detailed proof is given in appendix III.5.
As will be seen in the next section for synthesis purpose,

a dual SDP of the program presented in theorem III.5 has
to be derived. In the classical LTI case, robust state-feedback
controller synthesis with reduced conservatism is one of the
striking achievement of the results arising from the extended
LMI formulation [5], [6]. In order to make analysis conditions
applicable for such a purpose, it is known that system duality
is a key issue and that the structure of additional variables
contained in F or F1 and F2 has to be restricted somehow.
In the context of this paper, one has to face two issues:
• how to construct the dual model Σdcl of the periodic model

with memory Σcl ?
• how to define the additional matrix variables to ensure

that the designed control laws have the desired structure
?

The next subsections deal with the former question while the
next section is dedicated to an extended discussion providing
a way to tackle the latter issue and to the derivation of new
synthesis conditions.

E. System duality for memory periodic models

As system duality is in general well-known in the time-
invariant framework, this subsection first presents a dual
version of Γe, denoted by Γde , as an intermediate step. To this
end, l ≥ 1, given by (6), is decomposed as l = bN + r such
that 1 ≤ r ≤ N and b ∈ N.

Proposition III.3 (Dual of Γe). A dual model of Γe(θ),
given by (25), is defined by (40) with x̂dq ∈ Rn(N+l)+p(l−1),
w̆dq ∈ RpN and z̆dq ∈ RmN . All matrices involved in (40) are

polytopic functions of θ with B̆ =

[
V(B)

0n×mN

]
and D̆ = V(D),

referring to the operator V(·), defined by

V(X) ={
diag{XN−2, · · · , X0} (r = 1)
diag{XN−r−1, · · · , X0, XN−1, · · · , XN−r+1} (r > 1)

(41)
In addition, Ă ∈ Rnl×nN , Ĕ ∈ RnN×nN , C̆2 ∈ Rp(l−1)×nN

and C̆1 ∈ RpN×nN are defined by

[
ĂT ĔT

]
=

[
A T

b+1 · · · A T
1

[
0

A T
0,0

]]
[
C̆T2 C̆T1

]
=

[
C T
b+1 · · · C T

1

[
0

C T
0,0

]] (42)

with

[
A0

C0

]
=


0 A0,0

0n(N−r) 0
0 C0,0

0p(N−r+1)×n(N−r+1) 0

 (43)

A0,0 =


−1n AN−1,0 · · · AN−1,r−2

0n −1n
. . .

...
...

. . .
. . . AN−r+1,0

0n · · · 0n −1n

 (44)

C0,0 =


CN−1,0 · · · · · · CN−1,r−2

0p×n
. . .

...
...

. . .
. . .

...
0p×n · · · 0p×n CN−r+1,0

 (45)

A1 =

AN−1,r−1 · · · AN−1,N−2AN−1,N−1 · · · AN−1,N+r−2

...
...

...
...

AN−r,0
...

...
...

−1n
. . .

...
...

...
. . . A1,0

...
...

0 −1n A0,0 · · · A0,r−1


(46)

C1 =

CN−1,r−1 · · · CN−1,N−2 CN−1,N−1 · · · CN−1,N+r−2

...
...

...
...

CN−r,0
...

...
...

0p×n
. . .

...
...

...
...

. . . C1,0

...
...

0p×n · · · 0p×n C0,0 · · · C0,r−1


(47)
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and with (2 ≤ j ≤ b+ 1)

Aj =

AN−1,(j−1)N+r−1 · · · AN−1,jN+r−2

...
...

A0,(j−2)N+r · · · A0,(j−1)N+r−1



Cj =

CN−1,(j−1)N+r−1 · · · CN−1,jN+r−2

...
...

C0,(j−2)N+r · · · C0,(j−1)N+r−1


(48)

The proof is given in the appendix C.
By reversing the lifting procedure, it is possible to build a

periodic model with memory, Σdcl, from Γde . Thus, Γde can be
considered as the descriptor lifted model of Σdcl which itself
can be regarded as the dual of Σcl. Decomposing signals of
Γde as

x̂dq =



xdNq+l−r−1

· · ·
xdN(q−1)−r
wdNq+l−r−1

...
wdNq−r+1


,

w̆dq =

 wdNq−r
...

wdN(q−1)−r+1

 , z̆dq =

 zdNq−r
...

zdN(q−1)−r+1


(49)

we get the next theorem.

Theorem III.6. A dual model of Σcl, given by (8), is described
by

Σdcl :



xdNq−k−r−1 =

l−1+k∑
j=0

(
ATϑ(j,k+r),jx

d
Nq−k−r+j

+ CTϑ(j,k+r),jw
d
Nq−k−r+j

)
zdNq−k−r = −BTϑ(0,k+r)x

d
Nq−k−r

−DT
ϑ(0,k+r)w

d
Nq−k−r

(50)
for 0 ≤ k ≤ N − 1 and with ϑ(j, k) = j − k (modN).

To our best knowledge, this result extending system duality
for periodic systems with memory is new.

F. Robust analysis condition for the dual model

Derivation of LMI tractable analysis conditions for Σdcl can
be carried out following roughly the same lines as previously.
Yet, two important differences have to be pointed out: First,
time goes backward for Σdcl. Second, dynamic equation of
the model Σdcl involves past inputs. The implications of such
differences are brought to light in the proof given in the
appendix D.

The dual set of robust stability and worst case H2 analysis
conditions follows.

Theorem III.7 (Stability Analysis - Dual). The polytopic
periodic model Σcl(θ) is robustly stable if there exist L

matrices X [i] ∈ Snl+ and a matrix F ∈ RnN×n(N+l) such
that

∀i ∈ [1, · · · , L], P(X [i]) + He

{[
Ă[i]

Ĕ [i]

]
F
}
≺ 0 (51)

where the operator P(X) is defined by (32).

Theorem III.8 (Guaranteed cost for worst-case H2 Analysis -
Dual). The solution γdg of the following semidefinite program
is a guaranteed cost of the worst case H2 cost, i.e. γwc ≤ γdg .

γdg = min
X[i], F1, F2, Z[i]

γ (52)

such that, for i ∈ [1, · · · , L],[
1n(N+l)+p(l−1)

0

]T
Pd(X [i], 0)

[
1n(N+l)+p(l−1)

0

]

+Sq


0n(l−1)×mN

B̆[i]

0p(l−1)×mN

+ He


Ă[i]

Ĕ [i]

C̆[i]
2

F1

 ≺ 0

(53)

Zd(X [i], Z [i])

+Sq

{[[
0nN×n 1nN

]
B̆[i]

D̆[i]

]}
+ He

{[
Ĕ [i]

C̆[i]
1

]
F2

}
≺ 0

(54)

trace(Z [i]) < γ (55)

where operators Pd(X,Z) and Zd(X,Z) are defined as
follows for X ∈ Snl+p(l−1) and Z ∈ SpN

Pd(X,Z) = (T d)T

X 0 0
0 −X 0
0 0 −Z

T d (56)

Zd(X,Z) =


0nl×nN 0

1nN 0
0p(l−1)×nN 0

0 1pN


T

(T d)T

0nl+p(l−1) 0 0
0 X 0
0 0 −Z

T d


0nl×nN 0
1nN 0

0p(l−1)×nN 0
0 1pN


(57)

T d =


[
1nl 0nl×nN

]
0

0
[
1p(l−1) 0p(l−1)×pN

][
0nl×nN 1nl

]
0

0
[
0p(l−1)×pN 1p(l−1)

]
0

[
0pN×p(l−1) 1pN

]

 (58)

Remark. γg and γdg are guaranteed costs for the worst-case
H2 analysis problem, obtained by solving different SDP
relaxations of the original NP-hard problem. In the general
case, these primal and dual stability guaranteed costs are not
equal their relative ordering is not known a priori. A systematic
quantitative evaluation of the quality of these upper bounds,
relying on exactness verification, is possible via SDP duality
[10] as shown in the papers [18] and [9].
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IV. ROBUST SYNTHESIS

A. New robust synthesis conditions

To move on to the problem of memory controller synthesis,
open-loop matrices of Σcl are reintroduced in the analysis
conditions using (9). To this end, the following decomposition
is introduced

Ă
Ĕ
C̆2
C̆1

 =


Ăop
Ĕop

0p(l−1)×nN
C̆1op

+


Q̆2op

Q̆1op

R̆2op

R̆1op

 K̆ (59)

where Ăop ∈ Rnl×nN , Ĕop ∈ RnN×nN , Q̆1op ∈
RnN×mu(N+l−1), Q̆2op ∈ Rnl×mu(N+l−1), C̆1op ∈ RpN×nN ,
R̆1op ∈ RpN×mu(N+l−1) and R̆2op ∈ Rp(l−1)×mu(N+l−1) are
defined by

Ăop =

[
0 0n(l−1)×n(N−1)

AN−r 0

]
Ĕop = −1nN +

[
0 V(A)

0n 0

]
C̆1op = diag{CN−r,V(C)}

(60)

R̆1op =
[
0pN×mu(l−1) diag{RN−r,V(R)}

]
Q̆1op =

[
0 V(Q)

0n×mul 0

]
(61)

R̆2op = [diag{1b ⊗ diag{RN−1, · · · , R0}, RN−1

, · · · , RN−r+1}, 0p(l−1)×muN

] (62)

Q̆2op = [diag{1b ⊗ diag{QN−1, · · · , Q0}, QN−1

, · · · , QN−r}, 0nl×mu(N−1)

] (63)

where the operator V is defined by 41.
According to this definition, entries of K̆ are the gains Kk,j

of the periodic controller (7):

K̆ =


Kb+1

...
K1

0mur×n(N−r+1) K0,0

 (64)

with K0,0 ∈ Rmu(r−1)×n(r−1) and, for j = {1, · · · , b + 1},
Kj ∈ RmuN×nN are described by

K0,0 =


KN−1,0 · · · · · · KN−1,r−2

0mu×n
. . .

...
...

. . . . . .
...

0mu×n · · · 0mu×n KN−r+1,0


Kj =

KN−1,(j−1)N+r−1 · · · KN−1,jN+r−2

...
...

K0,(j−2)N+r · · · K0,(j−1)N+r−1


(65)

K1 =

KN−1,r−1 · · · KN−1,N−2KN−1,N−1 · · · KN−1,N+r−2

...
...

...
...

KN−r,0
...

...
...

0mu×n
. . .

...
...

...
...

. . . K1,0

...
...

0mu×n · · · 0mu×n K0,0 · · · K0,r−1


.

(66)
Introduction of these new expressions in the analysis con-

ditions gives rise to bilinear terms destroying the convexity
of the related optimization problem. The usual approach is
to use the dual conditions on which an invertible linearizing
changes of variable is performed after restricting the structure
of F [10]. When dealing with the lifted model of a periodic
system, special care is required when constraining the structure
of F . As noticed in [3], such a reformulation leads to a
particular class of time-invariant system. As clearly shown by
the form of K̆, the related synthesis problem amounts to solve
a particular structured controller synthesis problem for which
there is no general convex solution. Likewise what is proposed
in the reference [5], for the special case of LTI discrete-time
systems, it is always possible to impose a particular structure
to the slack variables F , F1 and F2 while keeping some of
their advantages in terms of conservatism. Considering, for
instance, the robust stabilization problem, choosing the slack
variable such that F =

[
0nN×nl G

]
allows to define the

invertible change of variables Y̆ = K̆G. Indeed, if such an F
satisfies (51) then G ∈ RnN×nN is always invertible and K̆ is
retrieved via K̆ = Y̆G−1. In addition, it is important to stress
that Y̆G−1 must comply with the structure of K̆. This issue is
now discussed for the general case and for the special case of
PFMCs via constraints imposed on the structure of G.

1) General case: Remember that for any arbitrary sequence
{αk}N−1

k=0 , the control law (3) may always be reformulated as
a structured PFMC of sufficient order like (7). This particular
structure is preserved if G is chosen to be a block-diagonal
matrix as in [21].

G = diag{GN−1, · · · , G0} with Gj ∈ RnN×nN (67)

In addition, imposing that Y̆ comply with the structure of K̆
allows to derive the following sufficient robust stabilization
condition.

Theorem IV.1 (Robust stabilization). If there exist L matrices
X [i] ∈ Snl+ , a block-diagonal matrix G ∈ RnN×nN and a
matrix Y̆ ∈ Rmu(N+l−1)×nN such that the following condition
holds

∀i ∈ [1, · · · , L], P(X [i])

+He

{
(

[
Ă[i]
op

Ĕ [i]
op

]
G +

[
Q̆[i]

2op

Q̆[i]
1op

]
Y̆)
[
0nN×nl 1nN

]}
≺ 0

(68)

then the controller (69) robustly stabilizes the polytopic un-
certain periodic model Σcl(θ).

K̆ = Y̆G−1 (69)
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[
1n(N+l)+p(l−1)

0

]T
Pd(X [i], 0)

[
1n(N+l)+p(l−1)

0

]
+ Sq


0n(l−1)×mN

B̆[i]

0p(l−1)×mN

+ He



 Ă[i]

op

Ĕ [i]op

0p(l−1)×nN

G +

Q̆
[i]
2op

Q̆[i]
1op

R̆[i]
2op

 Y̆
[

0nN×nl 1nN 0nN×p(l−1)

]}
≺ 0

(71)

Zd(X [i], Z [i]) + Sq

{[[
0nN×n 1nN

]
B̆[i]

D̆[i]

]}
+ He

{([
Ĕ [i]op

C̆[i]1op

]
G +

[
Q̆[i]

1op

R̆[i]
1op

]
Y̆

)[
1nN 0nN×pN

]
)

}
≺ 0 (72)

Remark. Note that when adding degrees of freedom to the
control law, the computational effort is increased. Indeed, any
addition of a Kk,j term modifies K̆ and therefore leads to a
matrix Y̆ involving more variables.

Imposing F1 =
[
0nN×nl G 0nN×p(l−1)

]
and F2 =[

G 0nN×pN
]

with G of the form given by (67) leads to the
counterpart of Theorem IV.1 for guaranteed H2 synthesis of
periodic state-feedback control laws with memory.

Theorem IV.2 (Guaranteed H2 synthesis). If the following
semidefinite program has a solution:

γsg = min
X[i], G, Y̆, Z[i]

γ (70)

such that, ∀i ∈ [1, · · · , L], (71), (72) and

trace(Z [i]) < γ (73)

hold. Then the controller K̆ = YG−1 robustly stabilizes
the polytopic uncertain periodic model Σcl(θ) and γsg is a
guaranteed closed-loop cost such that γsg ≥ γdg ≥ γwc.

Proof: Reconstruction of closed-loop matrices al-
lows to recover the analysis condition with F1 =[
0nN×nl G 0nN×p(l−1)

]
and F2 =

[
G 0nN×pN

]
. This

proves closed-loop stability and performance. In addition,
restrictions on the structure of F1 and F2 imply that γdg ≤ γsg .

Obviously, these synthesis results have been obtained at the
cost of introducing some extra conservatism in the analysis
conditions.

2) The special case of PFMCs: Consider now the case of
a PFMC of order κ given by (7). K̆ described by (64) is now
an upper trapezoidal matrix like Y̆ which inherits its structure
from K̆. Note that every other controllers corresponding to
structured PFMC of the same order κ gives rise to a more
sparse Y̆ which might lead to more conservative synthesis
conditions.

In addition, for (unstructured) PFMC, it is possible to
multiply K̆ from the right by G being upper triangular while
preserving the structure of K̆. This was first proposed in [10]
where the special case of PFMC of order 0 was considered.

Theorem IV.3 (Robust synthesis via PFMC). In the case of
PFMC controllers, synthesis theorems IV.1 and IV.2 hold with
G upper triangular:

G =


GN−1,0 · · · · · · GN−1,N−1

0n
. . .

...
...

. . .
. . .

...
0n · · · 0n G0,0

 ∈ RnN×nN (74)

with Gk,j ∈ RnN×nN . Furthermore, γsmg is such that γsg ≥
γsmg ≥ γdg ≥ γwc.

This last observation suggests that PFMCs controllers ben-
efit from a particular status as it is illustrated by these
particularly appropriate synthesis conditions.

Remark. As noticed in [10], the restriction of G to a block-
diagonal structure is reasonable as it could be regarded as a
natural extension of the LTI-case results [5], [6]. However,
in our case with memory and even in the nominal case, the
resulting LMI conditions are only sufficient conditions. A
major achievement of [10] was to prove that, for the nominal
condition in the particular case of PFMC of order 0, there is no
conservatism if G is upper-triangular. It was conjectured that
this result is strongly related to causality issues. Generalization
of this non conservatism proof to the case of PFMC of order
greater than 0 is a topic for future research.

B. Some hints about the design strategy

This subsection aims at giving some guidelines for the
choice of {αk}N−1

k=0 which appears to be a trade-off between
the complexity of the control law and the reduction of the
conservatism of the corresponding synthesis condition.

From the implementation point of view, the PFIRC rep-
resents an interesting choice because of the simplicity of its
structure. In this paper synthesis conditions for this controller
has been derived by regarding it as a structured PFMC of the
same order κ. Consequently, the (unstructured) PFMC of the
same order κ decreases the conservatism of the same synthesis
theorems. Nonetheless, for this last control structure Th. IV.3
will be applied such that G will be modified to comply with
a less sparse triangular structure. To summarize, among every
PFIRC and PFMC of the same order κ, the following hierarchy
holds with respect to the conservatism of the H2 guaranteed
cost.

PFMC of order κ
from Th. IV.3 ≤ PFMC of order κ

from Th. IV.2 ≤ PFIRC of order κ
from Th. IV.2

V. NUMERICAL EXPERIMENTS

This section is organized in two different parts: The first
one is dedicated to the design of four different robust periodic
controllers and the analysis of their relative conservatism.
The second part gives some insight about the choice of the
starting point τ when applying robust analysis conditions to
one controller picked out of the four.
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TABLE I
H2 SYNTHESIS AND ANALYSIS RESULTS FOR DIFFERENT CHOICES OF αk

Controller Synthesis Analysis

id. {α0, α1, α2} Theorem
√
γsg Nb. lines Nb. var. √

γg (Th. III.5)
√
γdg (Th. III.8)

1 {1, 2, 3} Th. IV.3 8.4175 92 133 3.7897 3.8804
2 {3, 3, 3} Th. IV.2 13.3717 156 335 4.1835 3.8567
3 {3, 4, 5} Th. IV.2 12.2624 156 341 4.2654 3.9285
4 {3, 4, 5} Th. IV.3 4.5505 156 353 3.5125 3.3568

A. Enriching the control law decrease the guaranteed costs

Efficiency of the proposed analysis and synthesis results is
evaluated by using the following 3-periodic model borrowed
from [11] and reemployed in [10]

A0 =

[
−3− θ1 2
−3 3

]
, A1 =

[
−1− θ1 2

0.5 0

]
,

A2 =

[
1− θ1 2

2.5 3

]
, B0 = Q0 =

[
1
θ2

]
,

B1 = Q1 =

[
1

−0.3θ2 − 0.2

]
,

B2 = Q2 =

[
0.5(θ2 + 1)

1

]
, C0 = C1 = C2 =

[
1 0
0 0

]
,

D0 = D1 = D2 =

[
0
0

]
, R0 = R1 = R2 =

[
0

0.2

]
(75)

The two real uncertainties θ1,2 are time invariant and satisfy
|θ1| ≤ 0.6 and 0 ≤ θ2 ≤ 1. From this definition, it clearly
appears that this example can be modeled as a polytopic-type
uncertain system (1), where the number of vertices is L = 4.
Our goal here is to design robust state-feedback controllers
that minimize an upper bound of the worst-case H2 norm of
the closed-loop systems.

Periodic controllers corresponding to different choices of
αk are designed relying on Th. IV.2 and, when it is possible,
on Th. IV.3. Upper bounds of robust H2 performance of
every resulting closed-loop system are computed by means
of the related primal and dual analysis theorems. Results are
gathered in Table I where each controller is identified by a
different number. The computational effort at the synthesis
step is reported as well in terms of number of lines and number
of decision variables.

The experiments illustrate that for a given synthesis the-
orem, the addition of degrees of freedom to the control
law may be effective for reducing the conservatism of the
synthesis condition although it increases the computational
cost. Indeed, referring to their capacity of lowering

√
γsg ,

the controllers designed using Th. IV.3 can be ordered as
1 < 4 and the ones obtained by means of Th. IV.2 verify
2 < 3. Nevertheless, this remark does not hold anymore
when different synthesis theorems are employed. The value√
γsg obtained with controller 2 is larger than the one with 1

although its control structure is richer. Furthermore, from the
controller 3 to 4,

√
γsg is decreased by 63 percent although the

control structure remains the same and the computation effort
is almost identical. These two observations bring to light how
crucial is the structure of G.

When designing a state-feedback minimizing the upper
bound

√
γsg , it is, of course, intended to design a control

law that decreases
√
γwc. In order to estimate this last value,

two different guaranteed costs are provided, namely √γg and√
γdg which are different in general and closer to

√
γwc since√

γdg ≤
√
γsg . In most of the cases, ordering relationships

between control laws based on
√
γsg or on min{√γg,

√
γdg}

are consistent with each other. Table I provides an example of
this fact as controller id.4 is better than id.1, for both synthesis
and analysis guaranteed costs. Controllers id.2 and id.3 give
a counter example to this conjecture since id.3 leads to a
smaller value of

√
γsg than id.2 while the analysis step seems

to reverse this ordering. However, even if it is hard, in general
to conclude about the genuine hierarchy between the worst-
case costs

√
γwc obtained by different sufficient conditions,

the reduction of the upper bound
√
γsg appears to be a good

indicator for the reduction of conservatism.

B. Impact of time-shifting

Analysis and synthesis have been obtained via the intensive
use of time lifting. To this end, the definition of extended
input/output vectors has implicitly required to define the start-
ing point of the considered period. Indeed, in the most general
case, the extended input vector ŵq is parameterized by τ such
that ŵτq =

[
wTqN+N−1+τ · · · wTqN+τ

]T
. So far, this paper

was concerned by the special case where τ = 0. Nevertheless,
cyclic re-indexation allows to consider different situations. If
the periodic model Στcl is derived from Σcl by shifting its
matrices of τ forward in time, i.e. Aτk,j = Ak+τ(modN),j ,
Bτk = Bk+τ(modN), etc, then applying previous theorems
to Στcl is equivalent to consider Σcl with τ 6= 0. The
impact of this time-shifting on the conservatism of the robust
analysis conditions is now analyzed on the same example with
controller # 1 computed for τ = 0

TABLE II
IMPACT OF TIME-SHIFTING ON THE ANALYSIS RESULTS

H2

τ
√
γg (Th. III.5)

√
γdg (Th. III.8)

0 3.7897 3.8804
1 3.9275 3.8295
2 3.7693 3.8403

Results, shown in Table II, confirm that in the general case,
modifying τ may affect the conservatism of the computed
upper bounds. It is also interesting to remark that the im-
provement is not consistent since τ = 1 is better than τ = 0

for
√
γdg but not for √γg . Thus, τ gives a way to refine the
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analysis result by retaining only the minimum of primal and
dual costs over all different starting points. Obviously, instead
of systematic computation, a rationale leading to the optimal
value of τ is desirable although probably hard to define.

VI. CONCLUSION

In this paper, we presented new LMI sufficient conditions
for robust stability analysis and robust state-feedback design
for polytopic uncertain periodic systems with memory. The
flexibility of the proposed approach allows the user to freely
add degrees-of-freedom to the control law which appears to
effectively decrease conservatism of the results. Interestingly,
numerical examples have shown that for a particular struc-
ture of controllers, the efficiency of the design theorem can
be significantly enhanced by relaxing the matrix of slack-
variables. As noticed in [21], providing deeper guidelines for
the choice of αks and for the definition of the starting point
of the considered period remain challenging topics and will
be the objective of future works.

APPENDIX

A. Proofs of Prop. III.1 (monodromy lifting of Σcl)

In order to build the monodromy lifting of Prop. III.1, the
system with memory Σcl(θ) is first recast as a memoryless
periodic model.

Proposition A.1. Σcl given by (8) is equivalent to the follow-
ing model: [

x̄qN+k+1

zqN+k

]
=

[
Āk B̄k
C̄k D̄k

] [
x̄qN+k

wqN+k

]
(76)

with x̄TNq+k =
[
xTNq+k · · · xTNq−l+1

]
∈ Rn(k+l).

Proof: The periodic model Σcl can be rewritten under the
following form:[

xNq+k+1

zNq+k

]
=

[
Àk
C̄k

]
x̄Nq+k +

[
Bk
Dk

]
wNq+k (77)

where x̄Nq+k is given above and Àk and C̄k are defined by
(19). Thus, x̄Nq+k concatenates the states history required to
evaluate xNq+k+1 and zNq+k. The current state is incorpo-
rated to this history in such a way that the dimension of
x̄Nq+k grows at each instant time along the period while being
partially reset for each new period:

x̄Nq+k+1 =

[
xNq+k+1

x̄Nq+k

]
, (0 ≤ k ≤ N − 2)

x̄N(q+1) =

[
xN(q+1)[

1n(l−1) 0
]
x̄N(q+1)−1

] (78)

From (77) and (78), the memoryless model (76) can be
easily obtained.

Using this reformulation, the monodromy lifting procedure
recalled in [3] can be readily applied which leads to Γm
defined by (15) with all matrices given by (16) and (17).

B. Proof of Th. III.5 (H2 worst-case analysis)

Proof: Applying Schur complement to (36) and (37) and
operating the convex combination of the obtained conditions
followed by another Schur complement leads to the following
conditions, ∀ θ ∈ Θ:

−P(P (θ)) + Sq
{[
C1(θ) C2(θ)

]T}
+He

{
F1

[
E(θ)A(θ)

]}
≺ 0

(79)

Z(P (θ), Z(θ)) + Sq

{[
CT1 (θ)
DT (θ)

]}
+He

{
F2

[
E(θ) B(θ)

]}
≺ 0

(80)

Invoking the elimination Lemma and using the definitions of
P and Z given by (32) and (39) allows to rewrite equiva-
lently these conditions as (dependency upon θ is dropped for
conciseness reasons):

x̂Tq

(
TT
[
P 0
0 −P

]
T + Sq

{[
C1 C2

]T})
x̂q < 0

s.t.
[
E A

]
x̂q = 0

(81)

[[
1nN 0

]
x̂q

ŵq

]T [1nN
0

]T
TT
[
P 0
0 0nl

]
T

[
1nN

0

]
0

0 −Z


+Sq

{[
CT1
DT
]})[[

1nN 0
]
x̂q

ŵq

]
< 0

s.t.
[
E B

] [[1nN 0
]
x̂q

ŵq

]
= 0

(82)
After tedious but straightforward algebraic manipulations, we
get the following conditions:

ηq+1

ηq
ŵq
ẑq


T 

P
−P

0
1



ηq+1

ηq
ŵq
ẑq

 < 0

s.t.

−1 Ψ B 0
0 C D −1
0 0 1 0



ηq+1

ηq
ŵq
ẑq

 = 0

(83)


ηq+1

ηq
ŵq
ẑq


T 

P
0
−Z

1



ηq+1

ηq
ŵq
ẑq

 < 0

s.t.

−1 Ψ B 0
0 C D −1
0 1 0 0



ηq+1

ηq
ŵq
ẑq

 = 0

(84)

Using elimination lemma leads to (22) and (23). The inequality
γg ≥ γwc comes from the enforcement for F1, F2 to be
independent of the uncertain parameter θ

C. Dual of descriptor model

Proof: To derive the dual of Γe despite its peculiar struc-
ture, the key idea is to partition x̂q ∈ Rn(N+l) in sub-vectors
of size nN giving rise to a time-invariant polynomial model
for which duality is well-known [14]. Nonetheless, since l is
not a multiple of N in the general case, a vector ξq ∈ Rn(N−r)
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defined by ξq = σ
[
0 1n(N−r) 0n(N−r)×nl

]
x̂q is appended

forward to x̂q without changing the model. Proceeding this
way allows to equivalently rewrite (25) as

0
[
E A

]
B 0

1n(N−r) −σ
[
0 1n(N−r) 0n(N−r)×nl

]
0 0

0
[
1nl 0

]
− σ

[
0 1nl

]
0 0

0
[
C1 C2

]
D −1



ξq
x̂q
ŵq
ẑq

 = 0

(85)
where the obtained extended state vector can be divided in
b + 2 terms of equal size, denoted by x̃q ∈ RnN and linked
with each others by the shift operator σ. Indeed, (85) has the
following form

A0 · · · · · · Ab+1 B 0
1nN −σ1nN 0 0

. . . . . .
...

...
1nN −σ1nN 0 0

C0 · · · · · · Cb+1 D −1




x̃q
...

x̃q−b−1

ŵq
ẑq

 = 0 (86)

where
[
0 E A

]
and

[
0 C1 C2

]
have been split in b+ 2

sub-matrices defined by (43), (46), (47), (48). From (86), it
comes that (25) is equivalent to[∑b+1

j=0 Ajσ
−j B 0∑b+1

j=0 Cjσ−j D −1pN

]x̃qŵq
ẑq

 = 0 (87)

which is a suitable form for applying the well-known theory of
duality for discrete-time time-invariant models, see e.g. [14].
The dual version of (87) is given by

[∑b+1
j=0 A T

j σ
j
∑b+1
j=0 C T

j σ
j 0

BT DT 1

]x̃dqŵdq
ẑdq

 = 0 (88)

Then, as Γe has been artificially enlarged to arrive at (87) by
incorporating ξq , (88) is now reduced. To this end, consider
first the following change of variables:

x̃
d
q+b+1

...
x̃dq

 =



[
0 1nr

]
x̆dq+b+1

x̆dq+b
...
x̆dq[

1n(N−r) 0
]
x̆dq−1

 ,

ŵ
d
q+b+1

...
ŵdq

 =



[
0 1p(r−1)

]
w̆dq+b+1

w̆dq+b
...
w̆dq[

1p(N−r+1) 0
]
w̆dq−1



(89)

where x̆dq ∈ RnN and w̆dq ∈ RpN share respectively the same
size as x̃dq and ŵdq . From these definitions, it comes that x̆dq−1

and w̆dq−1 are not involved in the state equation because of the
structure of A T

0 and C T
0 . Consequently, they can be dropped

since x̆dq−1 goes to zero when x̆dq does (the time goes backward
for the dual model).

Following the same rule for z̆dq , the output equation for the
period q and q + 1[
BT
BT
] [
x̃dq+1

x̃dq

]
+

[
DT
DT
] [
ŵdq+1

ŵdq

]
+

[
ẑdq+1

ẑdq

]
= 0 (90)

may be rewritten as

[
BT
BT
] [

0 1nr
]
x̆dq+1

x̆dq[
1n(N−r) 0

]
x̆dq−1


+

[
DT
DT
] [

0 1p(r−1)

]
w̆dq+1

w̆dq[
1p(N−r+1) 0

]
w̆dq−1


+

 [
0 1p(r−1)

]
z̆dq+1

z̆dq[
1p(N−r+1) 0

]
z̆dq−1

 = 0

(91)

which can be reduced to

B̆T
[[

0 1n
]
x̆dq+1

x̆dq

]
+ D̆T w̆dq + z̆dq = 0 (92)

with B̆ and D̆ defined in Proposition III.3.
Then, expression (40) follows if x̂dq ∈ Rn(N+l)+p(l−1)

stacks states and past inputs:

x̂dTq =

[ {[
0 1nr

]
x̆dq+b+1

}T
x̆dTq+b · · · x̆dTq{[

0 1p(r−1)

]
w̆dq+b+1

}T
w̆dTq+b · · · w̆dTq+1

] (93)

and defining Ă ∈ Rnl×nN , Ĕ ∈ RnN×nN , C̆2 ∈ Rp(l−1)×nN

and C̆1 ∈ RpN×nN as in (42).

D. Proofs for dual analysis conditions

To derive analysis conditions for Σdcl, we use the same
strategy as the one used for the primal model Σcl.

1) Monodromy lifting: In order to recast Σdcl into a memo-
ryless periodic model, not only past states but also past inputs
have to be memorized along the period. To this end, the fol-
lowing time varying vector v̄dNq−k−r described is introduced

v̄dNq−k−r =

[
x̄dNq−k−r
w̄dNq−k−r+1

]

x̄dNq−k−r =

x
d
Nq+l−r−1

...
xdNq−k−r

 , w̄dNq−k−r+1 =

w
d
Nq+l−r−1

...
wdNq−k−r+1


(94)

From this definition and keeping in mind the proof of
Prop. III.1, it is easy to check that the following proposition
holds.

Proposition A.2 (Memoryless periodic representation of Σdcl).
The following model is equivalent to Σdcl:[

v̄dqN−k−r−1

zdqN−k−r

]
=

[
Ādk C̄dk
B̄dk D̄d

k

] [
v̄dqN−k−r
wdqN−k−r

]
(95)
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with

Ād
k =




1n(l+k) 0
Àd

k C̀d
k

0 1p(l+k−1)

0 0

 , (0 ≤ k ≤ N − 2)


[
0 1n(l−1)

]
0

Àd
N−1 C̀d

N−1

0
[
0 1p(l−2)

]
0 0

 , (k = N − 1)

C̄d
k =




0n(l+k)×p

CT
ϑ(0,k),0

0p(l+k−1)×p

1p

 , (0 ≤ k ≤ N − 2)


0n(l−1)×p

CT
ϑ(0,k),0

0p(l−2)×p

1p

 , (k = N − 1)

(96)

B̄d
k =

[[
0m×n(l+k−1) −BT

ϑ(0,k)

]
0m×p(l+k−1)

]
D̄d

k = −DT
ϑ(0,k+r)

(97)

Àd
k =

[
AT

ϑ(l+k−1,k+r),l+k−1 · · · AT
ϑ(1,k+r),1 A

T
ϑ(0,k+r),0

]
C̀d

k =
[
CT

ϑ(l+k−1,k+r),l+k−1 · · · CT
ϑ(1,k+r),1

] (98)

Remember that time goes backward, then monodromy lift-
ing may be readily applied to this memoryless model, which
leads to Γdm.

ρdTq =
[
x̄dTNq−r w̄dTNq−r+1

]
=
[
ηdTq φdTq

]
(99)

Proposition A.3 (Monodromy lifting of Σdcl). The periodic
model Σdcl, given by (50), can be lifted to the following time-
invariant formulation, denoted by Γdm:

Γdm :

[
ρdq−1

z̆dq

]
=

[
Ψ̆T C̆T

B̆T D̆T

] [
ρdq
w̆dq

]
(100)

where ρdq ∈ Rnl+p(l−1) and Ψ̆, B̆, C̆ and D̆ are non linear
functions of matrices of Σdcl.

Once again, Γde and Γdm share the same input/output vec-
tors but differ by their internal representation. The following
constant linear map relates the signals involved in the repre-
sentation of Γde and Γdm. ρdq

ρdq−1

w̆dq

 = T d
[
x̂dq
w̆dq

]
(101)

where T d ∈ R2((n+p)l−p)×((n+p)(l+N)−p) is defined by (58).
It should be pointed out that, in contrast with the correspond-
ing relationship in the primal context, the inputs vector is now
involved. This is directly related to the fact that the history of
the inputs plays a role in the dynamics of Γde although it was
not the case for Γe.

An outright application of time-invariant theory to Γdm is
now possible. For conciseness reasons, only robust stability is
studied here.

Theorem A.1 (Robust stability via Γdm). The polytopic peri-
odic model Σdcl is robustly stable if and only if the following
condition holds, ∀θ ∈ Θ:

∃P (θ) ∈ Snl
+ : Ψ̆T

00(θ)P (θ)Ψ̆00(θ)− P (θ) ≺ 0 (102)

with

Ψ̆T
00(θ) =

[
1nl

0p(l−1)×nl

]T
Ψ̆T (θ)

[
1nl

0p(l−1)×nl

]
(103)

Proof: Vector ρdq is partially composed of w̄dNq−r+1,
representing history of inputs required to evaluate xdNq−r−1.
Thus, for the next period, w̄dN(q−1)−r+1 uses entries of
w̄dNq−r+1 and w̆dq to update this history. From (49) and (94),
we get

w̄dN(q−1)−r+1 =
[
0p(l−1)×pN 1p(l−1)

] [w̄dNq−r+1

w̆dq

]
(104)

Using notations of (94), the dynamic equation of Γdm, given
by (100) can be described by:[

x̄dN(q−1)−r
w̄dN(q−1)−r+1

]
= Ψ̆T

[
x̄dNq−r
w̄dNq−r+1

]
+ C̆T w̆dq (105)

Equation (104) exhibits the structure of Ψ̆T :

Ψ̆T =

[
Ψ̆T

00 Ψ̆T
01

0p(l−1)×nl Ψ̆T
11

]
(106)

where

Ψ̆T
11 =

[
0p(l−1)×pN 1p(l−1)

] [ 1p(l−1)

0pN×p(l−1)

]
=

 0p(l−1) (l ≤ N + 1)[
1p(l−1−N)

0pN

]
(l > N + 1)

(107)

Since, Ψ̆T
11 is always Schur stable, the model Γdm is stable if

and only if Ψ̆T
00 is Schur stable.

All the key ingredients have been now obtained in order to
establish dual analysis theorems III.7 and III.8 for Σdcl.
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