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Foreword

Toulouse January 22, 2022.

PMS is an international workshop series devoted to Project Management and Scheduling.
It was inaugurated by the European Working Group on Project Management and Scheduling
(EURO - EWG Project management and scheduling), originally coordinated by Prof. Jan
Weglarz from the Poznari University of Technology (Poland) and now coordinated by Prof.
Erik Demeulemeester (KU Leuven, Belgium) and Prof. Joanna Jozefowska (Poznan University
of Technology, Poland).

The EWG decided to organize a workshop every two years. The workshops provide an ideal
opportunity to discuss recent and important issues in the field of project management (planning,
scheduling, control) and machine scheduling (single and parallel machine problems, flow shop,
job shop, etc.).

The first workshop was held in Lisbon in July 1988. The successor workshops were held
in Compiegne (1990), Como (1992), Leuven (1994), Poznan (1996), Istanbul (1998), Osnabriick
(2000), Valencia (2002), Nancy (2004), Poznan (2006), Istanbul (2008), Tours (2010), Leuven
(2012), Munich (2014), Valencia (2016), Rome (2018).

The PMS 2020 workshop should have been held in Toulouse Business School, located in
the heart of Toulouse, France, famous for its unique architecture which earned it the nickname
la Ville Rose (”the Pink City”) and counts two UNESCO World heritage sites: the Canal du
Midi and and the Basilica of St. Sernin, the largest remaining Romanesque building in Europe
(https://www.toulouse-visit.com/), not to mention its famous South West French cooking and
vibrant nightlife.

Due to the COVID-19 coronavirus pandemic, it was impossible to organize the event in
2020. It was postponed to April 21-23 2021, and then named PMS 2020/2021. Unfortunately
the pandemic persistence forced us to turn the workshop in a full online event, the first online
PMS !

The PMS 2020/2021 workshop is co-organised by researchers from LAAS-CNRS (https:
//www.laas.fr/), Toulouse Business School (https://www.tbs-education.fr) and ISAE-Supaero
(https://www.isae-supaero.fr/) under the scientific supervision of the EURO EWG-PMS Inter-
national committee.

The Workshop covers the following but non exhaustive list of project management and
scheduling areas:

e Project Management: Network modeling, Project scheduling, Resource management, Due-
date management, Project risk management, Project scheduling under uncertainty, Proac-
tive/reactive project scheduling, Multicriteria project scheduling, Applications, Software

e Machine Scheduling: Shop scheduling, Scheduling with additional constraints, Machine
assignment and scheduling, Flexible/robust scheduling, Grid scheduling, Multicriteria


https://www.toulouse-visit.com/
https://www.laas.fr/
https://www.laas.fr/
https://www.tbs-education.fr
https://www.isae-supaero.fr/

scheduling, Applications, Software.

Methodological /theoretical papers related to Operational Research, Artificial Intelligence/Machine
Learning models, exact and heuristic algorithms for scheduling problems were presented, as well
as papers dealing with data-driven approaches, practical applications and industrial case studies.

Overall, 101 extended abstracts were received and 85 extended abstracts were accepted
after a peer-review process. More than 23 nationalities are represented among the authors, as
displayed below.

France 41 Canada 1
Belgium 11 Portugal 1
Germany 11 Turkey 1
Ttaly 7 Netherlands 1
United-Kingdom 5 Philippines 1
Russian federation 5 Brazil 1
Switzerland 4 Norway 1
Israel 4 Czech Republic 1
Australia 2 Colombia 1
Spain 2 Algeria 1
USA 2 Ukraine 1
Poland 2 TOTAL 107

As a new record for PMS, 216 participants registered to the workshop !

Not less than 23 extended abstracts applied to the Best Student Paper Award and 6 finalists
were selected to present their work in 2 dedicated sessions. Prizes were awarded by EURO and
Springer. Congratulations to Adele Pass-Lanneau (First Prize), Quentin Fabry (2nd Prize) and
Miri Gilenson (3rd Prize).

Last but not least, we had the pleasure to listen to four plenary talks by Marjan van den Akker,
Philippe Laborie, Mario Vanhoucke and Stéphane Dauzere-Péres.

You will find in these proceedings :

e The member list of the Organization Committee,

e The member list of the Program Committee,

e The finalists and the winners of the Best Student Paper Award,

e The conference program,

e The plenary talk abstracts and a short bio of each plenary speaker,

e The extended abstracts sorted by alphabetical order of the first author,
e The list of participants,

e The list of sponsors,

e The author index.

We warmly thank all the participants and the international program committee who greatly
contributed to the large success of the workshop!

The organizing Committee.
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Best student paper award

The following extended abstracts were finalists of the best student paper award.

Quentin Fabry, Alessandro Agnetis, Lotte Berghman, Cyril Briand
On the complexity of the crossdock truck-scheduling problem

e Miri Gilenson, Dvir Shabtay
Multi-Scenario Scheduling with Rejection Option to Minimize the Makespan Criterion

e Mareike Karnebogen, Jiirgen Zimmermann
A Generation Scheme for the Resource-Constrained Project Scheduling Problem with Par-
tially Renewable Resources and Time Windows

e Adele Pass-Lanneau, Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux
Mixed-Integer Programming Formulations for the Anchor-Robust Project Scheduling Prob-
lem

e Alexis Robbes, Yannick Kergosien, Virginie André, Jean-Charles Billaut
Minimizing the costs induced by perishable resource waste in a chemotherapy production
unit

e Claudio Szwarcfiter, Avraham Shtub, Yale T. Herer
Mazximizing value and Minimizing Waste: Modeling and solving lean project management

The jury is made of the whole International Program Committee, except those involved in
the phD thesis.

e The first prize (500€) was awarded by EURO to Adéle Pass-Lanneau (Sorbonne Uni-
versité and EDF R&D, France)

e The second prize (300€) was awarded by EURO to Quentin Fabry (LAAS-CNRS and
Toulouse Business School, France)

e The third prize was awarded to (200€) was awarded by EURO to Miri Gilenson (Ben-
Gurion university of the Negev, Israel)

Books were also offered to the winners by Springer.
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9 AM - 9:20 AM: Welcome session

9:20 AM — 10:20AM: Plenary session 1
Robustness in Scheduling by Marjan van den Akker

chair: Erwin Pesch

10:20 AM - 10:40 AM: Coffee break

10:40 AM — 12:20 PM: Parallel session W1

Room 1: RCPSP 1
chair: Stefan Creemers
A New Lower Bound Approach for the Multi-mode Resource Constrained
Project Scheduling Problem
Christian Stuerck

The Resource-Constrained Project Scheduling Problem: New Benchmark
Results
Stefan Creemers

A new solution procedure for multi-skilled resources in resource-
constrained project scheduling
Jakob Snauwaert and Mario Vanhoucke

Multi-project scheduling problems with shared multi-skill resource
constraints
Meya Haroune, Cheikh Dhib, Emmanuel Néron, Ameur Soukhal, Hafedh

Solving large, long-horizon resource constrained multi project scheduling
problems with genetic algorithms
Brendan Hill, Adam Scholz, Lachlan Brown and Ana Novak
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chair: llya Chernykh

A Conjunctive-disjunctive Graph Modeling Approach for Job-Shop
Scheduling Problem with Changing Modes
Xavier Delorme, Gérard Fleury, Philippe Lacomme and Damien Lamy

Generating instances for the two-stage multi-machine assembly
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Carla Talens, Victor Fernandez-Viagas and Paz Perez-Gonzalez

The Group Shop Scheduling
Damien Lamy and Simon Thevenin

Optima Localization for the Routing Open Shop: Computer-aided Proof
Illya Chernykh and Olga Krivonogova

Ultimate Instance Reduction for the Routing Open Shop
llya Chernykh

12:20 PM — 1:30 PM: Lunch break

1:30 PM — 3:10 PM: Parallel session W2

Room 1: Risk management
chair: Mario Vanhoucke

An analytical model for budget allocation in risk prevention and risk
protection

Xin Guan and Mario Vanhoucke

Conditional Value-at-Risk of the Completion Time in Fuzzy Activity
Networks
Carlo Meloni, Marco Pranzo and Marcella Sama

Reference Class Forecasting to improve time and cost forecasts: Empirical
and statistical analysis
Tom Servranckx, Mario Vanhoucke and Tarik Aouam

The impact of limited budget on the corrective action taking process
Jie Song, Annelies Martens and Mario Vanhoucke

Using exponential smoothing to integrate the impact of corrective actions
on project time forecasting
Annelies Martens and Mario Vanhoucke

Room 2: Best student paper 1 (30 min slots)

chair: Joanna Jozefowska
Mixed-Integer Programming Formulations for the Anchor-Robust Project
Scheduling Problem
Adéle Pass-Lanneau, Pascale Bendotti, Philippe Chrétienne and Pierre
Fouilhoux

Multi-Scenario Scheduling with Rejection Option to Minimize the
Makespan Criterion
Miri Gilenson and Dvir Shabtay

On the complexity of the crossdock truck-scheduling problem
Quentin Fabry, Alessandro Agnetis, Lotte Berghman and Cyril Briand

3:10 PM — 3:30 PM: Coffee break

3:30 PM — 4:30 PM: Industrial plenary talk
Industrial project and machine scheduling with Constraint Programming by Philippe Laborie

chair: Pierre Lopez
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4:30 PM — 5:50 PM: Parallel session W3

Room 1: Single machine scheduling
chair: Vincent T'kindt
A column generation algorithm for the single machine parallel batch
scheduling problem
Onur Ozturk

Adversarial bilevel scheduling on a single machine
Federico Della Croce and Vincent T'kindt

Exact and heuristic methods for characterizing optimal solutions for the
1| |tmax
Tifenn Rault, Ronan Bocquillon and Jean-Charles Billaut

Minimizing Flow Time on a Single Machine with Job Families and Setup
Times
Arnaud Malapert and Margaux Nattaf

Room 2: Robust scheduling 1
chair: Marcello Urgo

Robust scheduling for target tracking with wireless sensor network
considering spatial uncertainty
Florian Delavernhe, André Rossi and Marc Sevaux

A two-stage robust approach for minimizing the weighted number of
tardy jobs with profit uncertainty
Henri Lefebvre, Frangois Clautiaux and Boris Détienne

A Discrete Time Markov Decision Process to support the scheduling of re-
manufacturing activities
Alessio Angius, Massimo Lanzini and Marcello Urgo

Buffer Sizing in Critical Chain Project Management by Network
Decomposition
Bingling She, Bo Chen and Nicholas Hall

9 AM — 10:40 AM: Parallel session T1

Room 1: Constraint programming
chair: Christian Artigues

A constraint programming approach for planning items transportation in
a workshop context

Valentin Antuori, Emmanuel Hébrard, Marie-José Huguet, Siham
Essodaigui and Alain Nguyen

Embedded vision systems buffer minimization with energy consumption
constraint
Khadija Hadj Salem, Tifenn Rault and Alexis Robbes

Solution Repair by Inequality Network Propagation in LocalSolver
Léa Blaise, Christian Artigues and Thierry Benoist

Solving the Multi-mode Resource Investment Problem with Constraint
Programming
Patrick Gerhards

Structural and Experimental Comparisons of Formulations for a Multi-
Skill Project Scheduling Problem with Partial Preemption
Christian Artigues, Pierre Lopez and Oliver Polo

Room 2: Best student paper 2 (30 min slots)
chair: Erik Demeulemeester

A Generation Scheme for the Resource-Constrained Project Scheduling
Problem with Partially Renewable Resources and Time Windows
Mareike Karnebogen and Jurgen Zimmermann

Maximizing value: Modeling and solving lean project management
Claudio Szwarcfiter, Avraham Shtub and Yale T. Herer

Minimizing the costs induced by perishable resource waste in a
chemotherapy production unit

Alexis Robbes, Yannick Kergosien, Virginie André and Jean-Charles Billaut

10:40 AM — 11:00 AM: Coffee break

11:00 AM — 12:20 PM: Parallel session T2

Room 1: Resource-unit focused project scheduling
chair: Norbert Trautmann

Index merge in application to multi-skill project scheduling
Dimitry Arkhipov and Olga Battaia

Metric Estimations for a Resource Leveling Problem With Variable Job
Duration
llia Tarasov, Alain Hait, Olga Battaia and Alexander Lazarev

A Continuous-Time Model for the Multi-Site Resource-Constrained Project
Scheduling Problem
Mario Gnaegi and Norbert Trautmann

A Novel Matheuristic for the Multi-Site Resource-Constrained Project
Scheduling Problem
Tamara Bigler, Mario Gnaegi and Norbert Trautmann

Room 2: Complexity results and Approximation algorithms
chair: Alessandro Agnetis

An FPTAS for Scheduling with Piecewise-Linear Nonmonotonic Convex
Time-Dependent Processing Times and Job-Specific Agreeable Slopes
Helmut A. Sedding

Duplication and sequencing of unreliable jobs
Alessandro Agnetis, Paolo Detti, Ben Hermans and Marco Pranzo

On a Polynomial Solvability of the Routing Open Shop with a Variable
Depot
Antonia Khramova and Ilya Chernykh

Near-Linear Approximation Algorithms for Scheduling Problems with
Setup Times
Max Deppert and Klaus Jansen

12:20 PM - 1:30 PM: Lunch break
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1:30 PM — 3:10 PM: Parallel session T3

Room 1: Flexible scheduling

Room 2: Applications: Logistics

chair: Nadia Brauner
A Benders decomposition for the flexible cyclic jobshop problem
Félix Quinton, Idir Hamaz and Laurent Houssin

A Serial Schedule Generation Scheme for Project Scheduling in Disaster
Management
Niels-Fabian Baur and Julia Rieck

Computational Experiments for the Heuristic Solutions of the Two-Stage
Chain Reentrant Hybrid Flow Shop and Model Extensions
Lowell Lorenzo

Scheduling problems with processing time dependent profit: applications
and a nice polynomial case
Florian Fontan, Nadia Brauner and Pierre Lemaire

The generalised resource-constrained project scheduling problem with
flexible resource profiles
Matthew Bold, Burak Boyaci, Marc Goerigk and Chris Kirkbride

chair: Roel Leus
A mixed integer programming approach for scheduling aircraft arrivals at
terminal airspace fixes and runway threshold
Sana Ikli, Catherine Mancel, Marcel Mongeau, Xavier Olive and Emmanuel
Rachelson

Minimizing Delays in Aircraft-Landing Scheduling
Marie-Sklaerder Vie, Nicolas Zufferey and Roel Leus

Scheduling and Routing Workers Teams for Ground Handling at Airports
with Column Generation
Giacomo Dall'olio and Rainer Kolisch

Heuristics for Scheduling Pipe-laying Support Vessels: An Identical Parallel
Machine Scheduling Approach

Victor Abu-Marrul, Davi Mecler, Rafael Martinelli, Silvio Hamacher and
Irina Gribkovskaia

A Comparison of two MILP formulations for the resource renting problem
Max Reinke and Jurgen Zimmermann

3:10 PM — 3:30 PM: Coffee break

3:30 PM — 4:30 PM: Plenary session 3
Data driven Project Management by Mario Vanhoucke

chair: Sigrid Knust

4:30 PM — 5:30 PM: Parallel session T4

Room 1: Applications: Manufacturing
chair: Jan Weglarz

Modular equipment optimization in the design of multi-product
reconfigurable manufacturing systems

Abdelkrim R. Yelles-Chaouche, Evgeny Gurevsky, Nadjib Brahimi,
Alexandre Dolgui

Scheduling loads injection during flows merging in a collector
Blandine Vacher, Antoine Jouglet, Dritan Nace, Stephane Pietrowicz and
Marwane Bouznif

Scheduling of battery charging tasks with limited common power source
Tomasz Lemanski, Rafal Rozycki, Grzegorz Waligéra and Jan Weglarz

Room 2: Lower bounds, dominance and formulations
chair: Safia Kedad-Sidhoum
Computing lower bounds for the cumulative scheduling problem
Jacques Carlier, Antoine Jouglet and Abderrahim Sahli

Linear inequalities for neighborhood based dominance properties for the
common due-date scheduling problem

Anne-Elisabeth Falg, Safia Kedad-Sidhoum and Pierre Fouilhoux
Open shop problem with agreement graph: new results

Nour Elhouda Tellache, Mourad Boudhar and Farouk Yalaoui

5:30 PM —5:50 PM

: Best student paper award
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9 AM — 10:40 AM: Parallel session F1

Room 1: Robust RCPSP Room 2: Multicriteria scheduling
chair: Rainer Kolisch chair: Helena Brozova

A comparison of proactive and reactive scheduling approaches for the Decomposition approach for fixed jobs multi-agent scheduling problem on
RCPSP with uncertain activity durations parallel machines with renewable resources
Pedram Saeedi and Erik Demeulemeester Zahout Boukhalfa, Ameur Soukhal and Patrick Martineau
An Experimental Investigation on the Performance of Priority Rules for Efficiency and Equity in the Multiple Organization Scheduling Problem
the Dynamic Stochastic Resource Constrained Multi-Project Scheduling Martin Durand and Fanny Pascual
Problem
Philipp Melchiors, Rainer Kolisch and John Jack Kanet Why and how to evaluate the task threatness

Helena Brozova, Tomas Subrt, Jan Rydval and Petra Pavlickova
Evaluation of Scheduling Policies for the SRCPSP in a Dynamic Multi-

Project Environment How to find Critical Mass of Task Threatening the Projects

Hendrik Weber and Rainer Kolisch Tomas Subrt and Helena Brozova

Solving the stochastic multimode resource-constrained project scheduling Multi-Objective Robotic Assembly Line Balancing Problem: A NSGA-II
problem Approach Using Multi-Objective Shortest Path Decoders

Claudio Szwarcfiter, Avraham Shtub and Yale T. Herer Youssef Lahrichi, Laurent Deroussi, Nathalie Grangeon and Sylvie Norre

Towards the Optimisation of the Dynamic and Stochastic Resource-
Constrained Multi-Project Scheduling Problem
Ugur Satic, Peter Jacko and Christopher Kirkbride

10:40 AM — 11:00 AM: Coffee break
11:00 AM — 12:20 PM: Parallel session F2

Room 1: Robust scheduling 2 Room 2: Applications: health care and external resources
chair: lzack Cohen chair: Jurgen Zimmermann
Adaptive Robust Parallel Machine Scheduling Local Search Algorithm to Solve a Scheduling Problem in Healthcare
Izack Cohen, Krzystof Postek and Shimrit Shtern Training Center

Simon Caillard, Laure Brisoux Devendeville and Corinne Lucet
Search space reduction in MILP approaches for the robust balancing of

transfer lines Planning problem in Healthcare domain

Aleksandr Pirogov, André Rossi, Evgeny Gurevsky and Alexandre Dolgui Olivier Gérard, Laure Brisoux Devendeville and Corinne Lucet

Decision trees for robust scheduling Optimization of order for containers placement schedule in rail terminal
Tom Portoleau, Christian Artigues and Romain Guillaume operations

Nadiia Kalaida, Remy Dupas and Igor Grebennik
A Stochastic Programming Model to Schedule Projects under Cash Flow
Uncertainty
Berfin Kutlag, Nazli Kalkan Nazli, Serhat Gul and Oncu Hazir

12:20 PM - 1:30 PM: Lunch break
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1:30 PM — 3:10 PM: Parallel session F3

Room 1: Flowshop scheduling
chair: Federico Della Croce
An acceleration procedure for several objective functions in the
permutation flow shop scheduling problem
Victor Fernandez-Viagas, José M. Molina-Pariente, Carla Talens and José
M. Framifidn

An Inclusion-Exclusion based algorithm for the permutation flowshop
scheduling problem
Olivier Ploton and Vincent T'kindt

Exact solution of the two-machine flow shop problem with 3 operations
Federico Della Croce, Fabio Salassa and Vincent T'kindt

Non-dominated sorting genetic algorithm for a bi-objective flexible flow
shop problem. A Case Study

Ibeth Rodriguez Grattz, José-Fernando Jiménez, Eliana Marvé Gonzalez,
Eduardo Puerto, Yenny Paredes and Juan Caballero

Scheduling to minimize maximum lateness in tree data gathering
Joanna Berlinska

Room 2: RCPSP 2
chair: Massimiliano Caramia

New benchmark datasets for the RCMPSP
Rob Van Eynde and Mario Vanhoucke

A new tool for analysing and reporting solutions for the RCPSP and
MMRCPSP
José Coelho, Mario Vanhoucke and Ricardo Amaro

An analysis of critical alternatives in the RCPSP-AS

Tom Servranckx and Mario Vanhoucke

Adapting the RCPSP framework to Evacuation Problems

Christian Artigues, Alain Quilliot, Héléne Toussaint and Peter Stuckey

On the Activity Criticality in Project Scheduling with Generalized
Precedence Relationships
Lucio Bianco, Massimiliano Caramia and Stefano Giordani

3:10 PM — 3:30 PM: Coffee break

3:30 PM — 4:30 PM: Plenary session 4
Modeling and solving complex job-shop scheduling problems by Stéphane Dauzere-Pérés

chair: Chris Potts

4:30 PM — 5:00 PM: Closing session
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Plenary Talk: Robustness in Scheduling

Marjan van den Akker (Utrecht University, The Netherlands)

Wednesday, April 21, 9:20 am-10:20 am (UTC+2:00)
Chair: Erwin Pesch (Universitit Siegen, Germany)

Abstract Traditionally, scheduling is based on the assumption that all input parameters are
deterministic. Since in real-life situations uncertainty is unavoidable, recently more attention
has been given to scheduling with stochastic processing times. Our goal is to obtain robust
solutions for stochastic scheduling problems. To the best of our knowledge, no universal formal
definition of robustness exists. An intuitive definition is: a schedule which does not significantly
degrade in the face of disruption is called robust. In this presentation we discuss different models
and algorithms for robustness in scheduling with an emphasis on parallel machine scheduling
with precedence constraints.

About Marjan After her PhD in scheduling algorithms supervised by Jan Karel Lenstra, Mar-
jan van den Akker has worked CORE (Louvain-la-Neuve) as postdoc and at the Netherlands
Aerospace Centre NLR as expert on modelling, optimization, and simulation in Air Traffic Man-
agement and Electronic Road Pricing. Since 2000, she is at the Department of Information and
Computing Sciences at Utrecht University. Her research area is advanced algorithms, robust-
ness and simulation. In her research characteristics from practice are combined with state of
the art theoretical models. When solving optimization problems, important side-constraints are
included as much as possible, even though this increases the complexity: the goal is to push
the boundary of what is computable as far as possible. To achieve this, her research includes
the application of LP-based decomposition techniques such as column generation, as well as
approaches using local search. The last few years, she has focused on planning and scheduling
under uncertainty. Traditionally, scheduling and planning problems were modeled as problems
with fixed (deterministic) data. Since in real-life situations disturbances occur frequently, ro-
bustness is receiving an increasing amount of attention. The purpose is to develop algorithms
for finding solutions that, either remain valid in case of a disturbance, or can easily be adjusted
to a feasible solution without having to solve the problem all over again. The question is “How
can we capture uncertainty as well and efficient as possible in a deterministic model?” Her work
includes applications in energy networks and public transportation, where she is supervising
different PhD students including projects with companies. Her work is published in well-known
international journals and conferences in Computer Science and Operations Research. She is a
board member of the Dutch Network on the Mathematics of Operations Research (LNMB).
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Industrial Plenary Talk: Industrial project and machine schedul-
ing with Constraint Programming

Philippe Laborie (IBM France Lab, Gentilly, France)

Wednesday, April 21, 3:30 pm-4:30 pm (UTC+2:00)
Chair: Pierre Lopez (LAAS-CNRS, Toulouse, France)

Abstract More often than not, project and machine scheduling problems are addressed either
by generic mathematical programming techniques (like MILP) or by problem-specific exact or
heuristic approaches. MILP formulations are commonly used to describe the problem in math-
ematical terms and to provide optimal solutions or bounds to small problem instances. As they
usually do not scale well, one usually resorts to using heuristics for handling large and complex
industrial problems. Though constraint programming (CP) techniques represent the state of
the art in several classical project and machine scheduling benchmarks and have been used for
almost 30 years for solving industrial problems, they are still seldom considered as an alternative
approach in the scheduling community. A possible reason is that, for years, in the absence of
efficient and robust automatic search algorithms, CP techniques have been difficult to use for
non-CP experts. We will explain why we think this time is over and illustrate our arguments
with CP Optimizer, a generic system, largely based on CP, for modeling and solving real-world
scheduling problems. CP Optimizer extends linear programming with an algebraic language
using simple mathematical concepts (such as intervals, sequences and functions) to capture the
temporal dimension of scheduling problems in a combinatorial optimization framework. CP
Optimizer implements a model-and-run paradigm that vastly reduces the burden on the user to
understand CP or scheduling algorithms: modeling is by far the most important. The automatic
search combines a wide variety of techniques from Artificial Intelligence (constraint program-
ming, temporal reasoning, learning etc.) and Operations Research (mathematical programming,
graph algorithms, local search, etc.) in an exact algorithm that provides good performance out
of the box and which is continuously improving.

About Philippe Philippe Laborie is a Principal Scientist at IBM. He is one of the main de-
signers of the mathematical modeling language for scheduling problems offered in CPLEX Opti-
mization Studio and a significant contributor to the underlying automatic search algorithm. He
graduated from Telecom ParisTech in 1992, and received a PhD in Artificial Intelligence from
LAAS/CNRS (Toulouse) on the integration of Artificial Intelligence Planning and Scheduling
in 1995. Before joining IBM/ILOG in 1998, he worked at Electricité de France (Paris) and IN-
RIA/IRISA (Rennes) on the Supervision and Diagnosis of complex systems (telecommunication
and power distribution networks). His main scientific interests include planning, scheduling,
supervision and diagnosis of complex systems and more generally, all decision problems deal-
ing with time. He received the 2011 ICAPS Influential paper award. Philippe is member of
the editorial board of the Journal of Artificial Intelligence Research and serves in the Program
Committee of many conferences in AI (IJCAI, AAAI, ECAI, ICAPS, CP, CPAIOR, ...).
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Plenary Talk: Data driven Project Management

Mario Vanhoucke (Ghent University, Belgium)

Thursday, April 22, 3:30 pm-4:30 pm (UTC+2:00)
Chair: Sigrid Knust (Universitat Osnabriick, Germany)

Abstract This presentation will give an overview of the past endeavours and the recent trends
in integrated project management and control, with a focus on linking scheduling to risk and
control management. The presentation will show the relevance of using artificial and real project
data for both research and practice. It will be shown that not many organisations have as much
data as they often claim, and researchers therefore have to fall back on the use of artificial
project data. Consequently, an overview of the most important artificial project datasets (each
with advantages and disadvantages) will be given, and also a new set of empirical projects (freely
available to researchers) will be presented. Some recent research trends will be highlighted, il-
lustrating that the integrated use of empirical data and advanced techniques (machine learning)
might lead to promising results, and should therefore define the path for future research. Ref-
erences to a literature overview of project control will be given to outline the future research on
integrated project management and control. During my talk, I will also present my nice team
of young researchers to you!

About Mario Prof Dr Mario Vanhoucke is a Full Professor at Ghent University (Belgium),
Vlerick Business School (Belgium) and UCL School of Management (University College London,
UK). He teaches "Project Management”, ” Applied Operations Research” and ”Decision Mak-
ing for Business”. He obtained a Master’s Degree in Business Engineering (1996) and a PhD
in Operations Management (2001), and he was director of EVM Europe (www.evm-europe.eu)
and partner at the company OR-AS (www.or-as.be) until 2018. Mario is responsible for various
research projects in the field of Integrated Project Management and Control, which has led to
more than 60 papers in international journals, five Project Management books published by
Springer, three free online books (www.or-as.be/books), three computerised business games and
an online learning platform known as PM Knowledge Center (www.pmknowledgecenter.com).
His research has received multiple awards, including awards from PMI Belgium (Belgium, 2007),
International Project Management Association (Italy, 2008) and the American Accounting As-
sociation (USA, 2010) and multiple awards from Belgian companies. He currently has a team of
410 enthusiastic PhD students who are jointly working on improving decision making in project
management, with a strong focus on (1) developing methods to improve project scheduling, (2)
analysis risk in projects and (3) validating current and newly developed statistical methods for
project control.
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Plenary Talk: Modeling and solving complex job-shop scheduling
problems

Stéphane Dauzére-Péres (Ecole des Mines de Saint-Etienne, France)

Friday, April 23, 3:30 pm-4:30 pm (UTC+2:00)
Chair: Chris Potts (University of Southampton, Great Britain)

Abstract This talk focuses on the flexible job-shop scheduling problem, first extensively studied
in the 1990’s, which was later extended to include additional constraints and criteria to become
complex job-shop scheduling problems. The complexity related to the problems is first discussed,
in particular by differentiating with the classical job-shop scheduling problem. The main char-
acteristic of the flexible job-shop scheduling problem is that operations can be performed on
several resources, i.e. that operations must be both assigned to and sequenced on resources.
Modelling choices and solution methods will be surveyed, including some recent contributions
related to the consideration of batching constraints, sequence-dependent setup times and mul-
tiple criteria. Some of the results are based on a long-term collaboration of more than 15 years
with two manufacturing sites of the French-Italian semiconductor company STMicroelectronics.

About Stéphane Stéphane Dauzere-Péres is Professor at Mines Saint-Etienne in its site of
Gardanne, France, and Adjunct Professor at BI Norwegian Business School, Norway. He received
the Ph.D. degree from Paul Sabatier University in Toulouse, France, in 1992 and the H.D.R.
from Pierre and Marie Curie University, Paris, France, in 1998. He was a Postdoctoral Fellow at
the Massachusetts Institute of Technology, U.S.A.; in 1992 and 1993, and Research Scientist at
Erasmus University Rotterdam, The Netherlands, in 1994. He has been Associate Professor and
Professor from 1994 to 2004 at the Ecole des Mines de Nantes, France, where he headed the team
”Production and Logistic Systems” between 1999 and 2004. He was invited Professor at the
Norwegian School of Economics and Business Administration (NHH), Norway, in 1999. Since
March 2004, he is Professor at Mines Saint-Etienne, where he headed the research department
”Manufacturing Sciences and Logistics” from 2004 to 2013. His research interests broadly include
modeling and optimization of operations at various decision levels (from real-time to strategic)
in manufacturing and logistics, with a special emphasis on production planning (lot sizing)
and scheduling and on semiconductor manufacturing. He has published nearly 80 papers in
international journals and has contributed to more than 200 communications in national and
international conferences. Stéphane Dauzere-Péres has coordinated numerous academic and
industrial research projects, including 4 European projects and 24 industrial (CIFRE) PhD
theses, and also six conferences. In particular, he co-organized in 2010 the first edition of the
International Workshop on Lot Sizing which was held in Gardanne, France. In 2014, he created
with Bernardo Almada-Lobo (University of Porto, Portugal) the EURO Working Group on Lot-
Sizing (LOT), that he coordinated until 2018. He was runner-up in 2006 of the Franz Edelman
Award Competition, and won the Best Applied Paper of the Winter Simulation Conference in
2013. His h-index is 36.
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Heuristics for Scheduling Pipe-laying Support Vessels:
An Identical Parallel Machine Scheduling Approach

Victor Abu-Marrul!, Davi Mecler!, Rafael Martinelli', Silvio Hamacher!
and Irina Gribkovskaia?

! Industrial Engineering Department, Pontifical Catholic University of Rio de Janeiro, Brazil
{victor.cunha,davizm}@tecgraf.puc-rio.br, {martinelli,hamacher}@puc-rio.br
2 Molde University College - Specialized University in Logistics, Norway
irina.gribkovskaia@himolde.no

Keywords: Ship Scheduling, Offshore Logistics, Heuristic, Parallel Machine Scheduling.

1 Introduction and Problem Description

We address a problem that emerges in oil & gas offshore logistics where a company
needs to schedule its fleet of pipe laying support vessels (PLSV), responsible for con-
necting sub-sea oil wells to production platforms. We model it as an identical parallel
machine scheduling problem with non-anticipatory family setup times. Here, the vessels
are machines, jobs are wells, and each job includes a number of connecting operations. The
problem consists of scheduling a set O of operations from a set F of families in a set M of
machines. Each operation i € O belongs to a family (f;), has a release date (r;), a process-
ing time (p;), a load occupancy (I;), can be assigned to an eligible subset of machines (M;),
and is associated with a subset of jobs (V). Each job j € N has a weight (w;) according
to the related well production rate, and a subset O; of the operations associated with it.
Each machine k& € M has a release date (r;) and a capacity (gi). A non-anticipatory family
setup time (sy) is incurred before the first operation on each machine, whenever a machine
changes the execution of operations between families, and when the capacity of a machine
is reached. A set of operations that shares the same setup time is called a batch. Setups are
non-anticipatory since they can only start when all operations scheduled inside a batch are
released. The sum of the load occupancy of the operations assigned to a batch must respect
the machine capacity. The objective is to minimize the total weighted completion time of
jobs (3_,earw;jCj), where the completion time of job j (Cj) is the maximum completion
time of the associated operations (Cj = max;co, C;). This objective aims to complete the
connections of the most productive oil wells as soon as possible. An example of a PLSV
schedule is depicted in Figure 1 with 15 operations, 5 jobs, and 4 machines. The associated
jobs are shown in the boxes, and their completion times are marked with dotted lines.

C;
i
1

= Op.4 Op.10 H Op.1
M1 [ Sz I Job1 | s1 I Jobs2and 5 | s1 I Jobs |
= P
- 0p.9 | 0p.8 0p.11 0p.5
M2 | S3 I Jobs 1and 5 | Job2 | s Ilul) 3 | S1 Iluh 3 |
B Cs Cs
- Op.12 Op.3 H Op.13 Op.2
M3 51 I Jobs 1and 3 | s3 I Jobs 2,3 and 4 | sz I Job3 | 51 I Jobs |
= G
Op.14 0p.6 0p.15 0p.7 ;
M4 I: | 51 I/nrm«mls| Sy I Jobs 1and 3 | 53 Job3 | Jobs
t
D Setup Machine idleness
D Operations [ Machine release date

Fig. 1: PLSV Scheduling example with 15 operations, 5 Jobs and 4 machines.
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2 Solution Methods

We present several constructive heuristics to solve the PLSV scheduling problem, using
dispatching rules, and defining how to do the machine assignment and to construct batches.
The schedule construction procedure used in all heuristics is presented in Algorithm 1. To
describe the procedure, we introduce variables and sets: Sy, (Start time of the current batch
on machine k), L (Cumulative load of the current batch on machine k), Fj, (Family of the
current batch on machine k), Cj (Completion time of machine k), same (Boolean variable
that defines if the chosen operation will be assigned to the last position in the current batch
or to a new batch), By, (Set of operations assigned to the current batch on machine k) and U
(Set of unscheduled operations). The procedure returns a list of schedules o = (071, ...,0%)
for each machine k containing operations and families (representing the setup times).

Algorithm 1: Schedule Construction Procedure
1: Ck<—rk,5'k<—rk, Li <+ 0, Fj, <0, Bk<—®,0k<—®1 Vk e M
2: Cij«—o0: VieO
3: U+ O
4
5

: while there exists operations not assigned do
Select operation i* € U and machine k* € M;+ according to a chosen heuristic, defining
same as true or false

6 if same = true then

7 Skx = max(rix, Skx), Cr= < Clx + max(0,r;x — Sk=) + pi
8 Lgx < Lp+ + l;=, By < By U {Z*}

9: else

10: Spx max(ri*,C’k*), Clr max(ri*,C’k*) + Sfiw + pix
11: L= < L=, Brx {i*}, Ok* < o+ U {fl*}

12: end if

13: O+ < o U {i*}, Fpx < fi*, Cix +— C}c*, U (—Z/[\{Z*}
14: end while
15: return o

The main part of the method is defined at line 5, the decision of the next operation,
machine, and batch composition. We consider two approaches at this step. In both, when
we evaluate the insertion of an operation to an existing batch, we consider the delay on
the start time of this batch that may occur due to the inserted operation release date and
the non-anticipatory setup consideration. This delay changes the completion time of all
operations scheduled in the batch, and it is penalized using the operations weights. We
develop rules to estimate weights for the operations (w;), since weights in our problem are
related to jobs. Five rules for estimating weights are considered:

MAX: Maximum weight of associated wells, computed as w; = max;en; w;

— SUM: Sum of the weights of associated wells, computed as w; = JeN, Wi

AVG: Average weight of associated wells, computed as w; = 3, x, w;/ N;|

WAVG: Weighted average weight of associated wells, computed as w; = > JeN; Wi /1051
— WAVGA: WAVG adjusted at each iteration by the set of unscheduled operations (i.e., it
replaces subsets O; by subsets U; of unscheduled operations associated to a job j).

In the first approach, we initially select the next operation based on a dispatching rule,
and then assign an eligible machine to this operation according to the minimum weighted
completion time, as described in Algorithm 2. New variables and sets are defined: A;;
(Delay at the start time of the current batch on machine k due to the insertion of operation
i), C$P (Completion time of operation i if inserted in the current batch on machine k),
CHP (Completion time of operation i if inserted in a new batch on machine k), CB (Set
of feasible assignments cb; of operation ¢ into the current batch on machine k) and N'B
(Set of feasible assignments nb;;, of operation ¢ into a new batch on machine k).
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Algorithm 2: Operation and Machine Disjunctive Selection Procedure

1: Select operation i* € U according to a chosen dispatching rule
2: Ayxg < max(0, 7+ — Si) : Vk € M=

3: Cg]]? — Cx + Ajxp +pix = Vk € M=

4: CHP + max(ri«,Cy) + sf,. +pix : Yk € My

5: CB «+ {cbi*k =wirCER + S wilir | k€ My, Fi, = fix, L+ 1i» < qk}
€8y,

6: NB <+ < nbyp = wixCNB | ke M;=
¢ bmin < min{b: b e (CBUNB)}

7
8: Select k™ corresponding to bimin
9: if byin € CB then same < true

10: return i*, k*, same

We consider six dispatching rules for this approach. The priority value 7; indicates
the next operation to schedule. At each iteration, the operation ¢ with the largest m;
value is selected (Purasevi¢ and Jakobovié 2018). We adapt some rules by adding family
setup times, and assume that every operation will be assigned to a new batch. T; is the
minimum completion time among the eligible vessels for each operation 4, and is computed
as T; = mingem, Cr. The following dispatching rules are considered:

— ERD: Earliest Release Date m; = 1/r;.

— SPT: Shortest Processing Time m; = 1/p;.

— LPT: Longest Processing Time m; = p;.

— MCT: Minimum Completion Time 7; = max(T;,7;) + p; + s,

WSPT: Weighted Shortest Processing Time m; = w;/p;.

WMCT: Weighted Minimum Completion Time m; = [max (T3, r;) + pi + s, ]/ w;.

The second approach extends one of the heuristics from Weng et al.(2001), by consider-
ing the PLSV scheduling properties, such as the release dates of operations and machines,
the family setup times and the batch composition, to decide at each iteration the next pair
operation/machine simultaneously (Algorithm 3). We call it WMCT-Pair.

Algorithm 3: Operation and Machine Simultaneous Selection Procedure
1: Ajg + max(0,7; — Sk): Viel, ke M;
2: CG8 « Cr+ A +pi: VieU, ke M,
3: CNP « max(ri,Cx) +spi+pi: YicU ke M,

cCB A, .
4: CB — Schipy ===+ 3 Sk |iclU, ke My, Fr, = fi, Ly + i < q
! ieB,

chB .
5: NB <+ { nby, = ik |IGU7]€€MZ'

Wiy

: bmin < min{b: b e (CBUNDB)}

: Select ¢* and k™ corresponding to bmin
. if byin € CB then same < true

: return i*, k*, same

© 00 N>

3 Computational Experiments

We introduce in total 19 heuristics, where 4 do not consider weights and 15 combine the
dispatching rules and the ways of estimating the operations’ weights. We tested all of them
on a set of 72 PLSV instances® with |[M| = {2,4}, and |O] = {15,25,50}. We performed

3 available at https://doi.org/10.17771/PUCRio.ResearchData.45799
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the experiments on a computer with 64 GB of RAM and Intel Core i7-8700K CPU of
3.70GHz, using C++ for coding the heuristics and running Linux. The results of tests, in
terms of the average relative deviations from the best generated solutions, are presented in
Table 1. Each instance group, defined by the number of operations and machines, contains
12 instances. The relative deviation is computed as RD" ., = TWC! ./ TWC?!  where
TWC?, ., is the total weighted completion time of heuristic h € #H applied to instance
inst € T, and TWCY?! is the best solution obtained for a given instance. The best result
for each instance group is shown in bold. All heuristics run in less than 0.1 seconds. Last
column (#BKS) accounts how many times each heuristic yields the best solution.

Table 1: Average deviations from the best solutions.

Instance Group (|O| — |M|)

. All
Heuristic 15-4 15-8  25-4 25-8  50-4 50-8  Instances 7 DES
ERD 1212 1198 1245 1.190  1.261 1.250 1.226 2
SPT 1278 1217 1363 1296  1.442 1.392 1.331 1
LPT 1.347 1153 1412 1.265 1471 1.398 1.341 0
MCT 1226 1.165  1.268 1248  1.254 1.295 1.243 0
WSPT-MAX 1161 1.079 1224 1173  1.299 1.255 1.198 1
WSPT-SUM 1156 1.066  1.181 1.141  1.280 1.241 1.178 0
WSPT-AVG 1181 1.085  1.266 1.187  1.327 1.204 1.223 1
WSPT-WAVG 1124 1.076  1.184 1.124 1234 1.196 1.156 0
WSPT-WAVGA 1.085 1.041 1112 1.067  1.138 1.114 1.093 3
WMCT-MAX 1.084 1.040  1.070 1.088  1.046 1.096 1.071 7
WMCT-SUM 1.063 1.046  1.093 1.082  1.158 1.132 1.096 3
WMCT-AVG 1101 1.027 1123 1118 1150 1.147 1111 4
WMCT-WAVG 1.065 1.036  1.041 1.059 1111 1.084 1.066 5
WMCT-WAVGA 1.023 1.021 1.013 1.016 1.027 1.003 1.017 34
WMCT-Pair-MAX 1.086 1.043  1.063 1.082  1.036 1.091 1.067 9
WMCT-Pair-SUM 1.063 1.043  1.087 1.071 1151 1.124 1.090 4
WMCT-Pair-AVG 1101 1.027 1123 1.107  1.136 1.136 1.105 2
WMCT-Pair-WAVG ~ 1.060 1.035  1.045 1.050  1.100 1.076 1.061 7
WMCT-Pair-WAVGA  1.029 1.023  1.024 1.018 1.026 1.005 1.021 19

Note that among the heuristics, WCMT-WAVGA generated the best average solutions for 5
of 6 groups with the best average deviation of 1.003, achieved on group 50-8. This heuristic
also found the highest number of best solutions, on 34 of 72 instances.

4 Conclusions

We studied an identical parallel machine scheduling problem with non-anticipatory
family setup times, derived from a ship scheduling problem in the offshore o0il & gas logistics.
Tests of the 19 heuristics presented on all instances show that the heuristic WCMT-WAVGA
performs better, with an average deviation of 1.017 from the best solutions. For future
work, local searches and meta-heuristics will be developed.
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1 Introduction

This paper considers a scenario in which a given set of n jobs must be processed
on a machine subject to possible breakdowns. If a breakdown occurs, the remaining jobs
(including the job currently being processed) cannot be performed and are therefore lost.
On the other hand, if job j is successfully completed, a revenue r; is gained. We denote
the success probability of job j as p;. No rescheduling or reactions are possible, hence a
preventive disruption management perspective is adopted (Qi et al. 2006), and the problem
is to decide the job sequence before the beginning of the actual execution of the sequence, in
such a way that the expected revenue is maximized. In what follows, we denote this problem
as 1IERM (i.e., expected revenue maximization on a single machine). Given a sequence o
of jobs on the machine, and denoting the i-th scheduled job as o(¢), the expected revenue
ER]Jo] is given by

ER[0] = po1)To(1) + Po(1)Po2)To2) + -+ +Po1) - - Po(n—1)Po(n)To(n)- (1)

It is known that 1IERM can be solved at optimality (Mitten 1960) by sequencing jobs
from the greatest to the smallest Z-ratio:

bjTj
=y ?

Here we address an extension of 1IERM in which there are m (identical) machines in
charge of job processing. In order to hedge against unrecoverable interruptions, we adopt
the technique of duplicating work on different machines, which is a common strategy in
many computing centers (Zhou et al. 2016, Benoit et al. 2013). In particular, this means
that there are m copies of each job, one to be executed on each machine. The revenue
r; is gained if at least one copy of j is successfully carried out, i.e., even if all copies are
completed, the revenue is attained only once. When no job duplication is allowed, problems
on parallel machines have been addressed in (Agnetis et al. 2017, Agnetis et al. 2009, Lee
and Yu 2008).

The problem addressed here may arise when considering the execution of a set of tasks
on a multi-processor environment, composed by different servers geographically distributed.
In general we can assume that servers may fail, connections can be broken and outages
may occur. A strategy to increase reliability is to duplicate the execution of the tasks on
two or more independent servers possibly in different geographical locations so that in case
of failure of a server the computation is still carried out on the other servers. In any case,
the revenue is gained only once when one of the computations is over.

Specifically, we address the following problems.
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Definition 1. EXPECTED REVENUE MAXIMIZATION WITH TWO MACHINES (2ERM)
— Given n jobs {1,2,...,n}, each having success probability p; and revenue r;j, and two
identical machines My and Ms, find a sequence of the n jobs on My and Ms so that the
expected revenue of attaining at least one copy of each job is maximized.

Definition 2. KIT AVAILABILITY MAXIMIZATION (mKAM) — Givenn jobs {1,2,...,n},
each having success probability p;, and m identical machines, find a sequence of the n jobs

on each machine so that the probability of attaining at least one copy of each job is maxi-
mized.

We discuss the problem complexity and introduce a rule based on a modified Z-ratio
(2) that, given the sequence on machine M, allows to derive an optimal sequence for M.
Furthermore, when the Z-ratios (2) of the jobs are all equal to 1, the rule allows to easily
build an optimal solution for 2ERM.

2 The Expected Revenue Maximization Problem with two machines

We let P = [[;_, p; and assume that p; < 1 for all j (if for some job p; = 1, such a
job is obviously processed first with no consequence on the other jobs). Let us first state
a result concerning the following situation. Suppose that a job sequence &; has been fixed
on M, and we let p; denote the cumulative probability up to job j on M; in sequence &1,

ie.,
pj = H Dk-

kik=<j
Moreover, we denote by ZJ’- the modified Z-ratio of job j, defined as

Zj = Z;(1 = pj)- 3)

The problem of finding the optimal sequence on M; given &7 is solved as shown in the
following lemma:

Lemma 1. If a job sequence &1 is fized on My, expected revenue is mazimized sequencing
the jobs on Ms by nonincreasing values of

Z; = Z;j(1 - pj). (4)

Proof. The proof uses an interchange argument. Consider a sequence o5 on Ms, and let P;
be the cumulative success probability of job i in o9, i.e., P; = p; [[;.,-; Pr- (Note that P;
includes the probability of job i itself.) Given a fixed sequence &; on M; and the associated
probabilities p; and p;, assume that in oo there are two consecutive jobs j and ¢ such that
j =iand Z] > Z}. Let 05 be the sequence obtained swapping i and j in 0. The expected
revenue of (71,0%) can be expressed as

ER(G1,09) = A+ ri(P; + p; — Pip;) + rj(P;p; + p; — Pip;b;) + B

while
ER(&l, 0‘2) =A+ T‘j(Pj +p; — Pjﬁj) + Ti(Pjpi +pi — Pjpiﬁi) + B,
where A and B denote the contribution of jobs preceding and respectively following
i and j on My in the two schedules. Denoting with ) the cumulative probability of jobs
preceding ¢ and j on My, in (61, 0%) one has P; = Qp; and in (61, 02), P; = Qpj, one has
that ER(G1,04) — ER(G1,02) > 0 if and only if

ripi — riPibi + 1ipipj — Tipip;P; — (rjp; — 1ipiDj + ripipi — ribpibi) > 0,
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ie.,
ripi(1 = pi)(1 = p;) > rip; (1 = pj)(1 = pi),
and hence
Zi(1 = pi) > Z;(1 - pj),
which holds since Z] > Z J’ By repeatedly applying the above argument, the thesis follows.

O
A consequence of Lemma 1 is the following.

Lemma 2. Consider an instance of 2ERM in which Z; =1 for all jobs j = 1,...,n. Then
any schedule in which the jobs are reversely sequenced on the two machines is optimal.
(]

Regarding the computational complexity of the problem, we recall that when dupli-
cations are not allowed, the problem with 2 machines and unreliable jobs is known to be
strongly NP-hard (Agnetis et. al. 2009). Concerning 2ERM, it is possible to prove the
following result.

Theorem 1. 2ERM s strongly NP-hard.
O
The proof consists in showing that the combinatorial problem PRODUCT PARTITION
can be polynomially reduced to 2ERM. PRODUCT PARTITION was proved strongly NP-hard
by (Ng et al. 2010).

3 The Kit Availability Maximization Problem
The following results can be established for KAM.

Theorem 2. When there are two machines and n job types (2KAM), the problem can be
solved in O(n).

The problem in which there are m machines and only two job types (1 and 2) consists
in deciding the number x of machines that follow the sequence 12, so that m — z will follow
the sequence 21. The following result can be established.

Theorem 3. mKAM with two job types can be solved in O(logm).
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1 Introduction and problem statement

Rotor blades are one of the most expensive components in gas turbines for power gen-
eration due to the specific materials used and the complex manufacturing process needed.
For this reason, turbine blades are one of the component whose re-manufacturing is eco-
nomically viable during the maintenance of gas turbines. Nevertheless, rework activities
are subject to a considerable degree of uncertainty due to the unpredictable degree of dam-
age affecting the blades. The wear of the rotor blades could usually occur in term of lack
of material or the presence of cracks whose depth is difficult to estimate in advance. The
repair process consists in the removal of the hard coating and of the damaged parts, and
the addition of the missing material through additive manufacturing processes. Then, the
blades have to undergo a material removal process to obtain the final desired shape. This
material removal process is executed through Electrical Discharge Machining technology
(EDM), operating to lots of turbine blades belonging to the same stage of the gas turbine
and, thus, sharing the same geometrical features. To be able to process a lot of blades, the
EDM machine has to undergo a set-up to mount the right electrode. The duration of the
processing of a lot also entails a certain degree of uncertainty. Some of the blades, in fact,
during the rework process, results having damages that are not possible to repair and, thus,
have to be discarded. For this reason, the number of blades to be manufactured in a lot
cannot be known in advance. Once the lot of blades have been manufactured in the EDM
shop, it undergoes further process steps, it is integrated with new blades to complement
the missing ones and then shipped to the customer’s premises to be made available to the
turbine, thus defining a due date to be respected.

In this paper, we will focus on the EDM shop where both new and repaired blades have
to be processed. New blades follow the standard manufacturing process and the associated
production plans. Repaired blades arrive as soon as the repair process has been completed
and compete for the same resources, i.e., an EDM machine. Thus, a proper approach is
needed to schedule the processing of both the classes of blades. We model the presence
of multiple EDM machines where an already defined production plan sequences the lot of
new blades to be processed while a set of lots of repaired blades is known to be about to
require the same machines to be processed. The scheduling approach considers the need of
a set-up to be able to process a new lot of blades and aims at minimizing the tardiness of
both lots of new and repaired blades.

2 The model
The model under investigation considers K machines processing two classes of pro-

duction lots: production and repair. The main difference between the two classes is that
production lots are immediately available and can be scheduled on machines in advance.
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On the contrary, the arrival of repair lots is uncertain, thus, any decision about their pro-
cessing is delayed to the moment they become available. The production of a lot is never
preempted, hence, a machine must finish the production of a lot before processing a new
one. A set-up is needed to move from the production of a lot to a new one.

The model considers a time interval [0,7] where P production lots are produced by
knowing in advance that M repair lots will require to be processed. The scheduling of the
production lots is defined and conveniently described by a vector S = |s1, ...s;| where lots
between 1 and s; will be produced in sequence on the first machine, lots between s; + 1
and sy will be produced by the second machine, and so on. Each lot is associated to a due
date d.; and size l.; where c indicates the class and ¢ the index of the lot.

The model assumes that the M repair lots arrive together into the system with the same
due date and only one arrival is possible in [0, T]. The state of the system is defined by a
vector |ki, ... kx,lp1,. . lppylm 1, lmy| with K + P+ M entries, where k; € {R, S}
(Running and Set-up) refers to the state of each machine; I,,; € [1, K] U {D} represents
the state of the ith production lot that can be assigned to a machine or completed (Done).
Similarly, I, ; € [1, K]U{D, NA, A} represents the ith repair lot, where the two additional
states NA and A (Not Arrived and Arrived) are necessary to discriminate if the lot has
arrived or not. A repair lot can be assigned to a machine only if it has been arrived.

The initial state of the system consider all the machines as running and working the
firsts lots assigned in the schedule S, e.g., with K = 3 we will have [, =1, l;, 5,41 = 2 and
lp,s;+1 = 3, and all the repair lots marked as NA. The model divides the time in units and
assumes a syncronous system, hence, in each time unit more than one change can occur in
the system. Each transition is the consequence of several events due to the the change of
state of the machines and the arrival of repair lots. The arrival of repair lots changes their
state from N A to A. Instead, the change of state of a machine k from R to S leads to the
completion of a lot. This transition will move the system in a state where the machine will
be in the state S and the corresponding lot will change state in D. In this case, if exist a
lm,j =k, 1< j <M, then the machine was processing a repair lot, otherwise the machine
was processing the first production lot not in the state D, by following the sequence in S.
Vice-versa, a machine can return to the state R from the state S. Whenever this transition
is performed with both production and repair lots available, a decision must be taken, i.e.,
the machine has to decide if it has to follow the schedule or choose a repair lot. If machine
k decides to process a repair lot, then the chosen lot will move from the state A to the
state k.

The probability driving the system transitions are assumed distributed according to
phase-type distributions (PH). It is determined by a vector «, which gives the initial prob-
abilities of the transient states and a matrix A containing the intensities of the transitions
among the transient state (see (Horvath, A. 2002)). The rates toward the absorption state
are collected in a firing vector f = —A1 where 1 is a vector of ones having the same size of
the matrix A. This class of distributions is able to approximate any general distribution on
the positive axis with a pre-determined accuracy whilst the overall process preserves the
Markovian property. This allows us to model the distribution of the lot completion time
in a statistically sound manner (as described in (Angius et. al. 2018)). In the following,
the time that machine k requires to complete the lot i of class ¢ follows a PH distribu-
tion represented by (o c.i, Ak i) and a firing vector fy ;. Similarly, the set-up times and
repair arrival are distributed according to a PH distribution represented by (o, As) and
(s Ap).-

Since transitions from a state z to a state 2’ are always combinations of events that
involve the machines and the arrival of repair lots, any transition probability is the result
of a Kronecker product of the form By(z,2') @5 | Bi(z,2'). The function Ba(z,2) is
equal to A,, if the repair lots are not arrived in both z and 2/, it is equal to the firing
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vector if the repair lots arrived in 2/, and it is equal to 1 otherwise. Instead, the function
By(Z', 2') describes the dynamic of machine k in state z. If the machine is processing a
lot, this function behaves as Ba(z,z’) by using the corresponding values (ou,c i, Ak c.i)-
Otherwise, if the machine is performing the set-up, the function Ba(z,z’) takes values
from (as, As) and a behaviour similar to the previous case, but starting the execution of
a new lot after the completion of the set-up. This is done by multiplying the firing vector
by the initial vector of the corresponding lot to be processed. The firing of the set-up
coincides with a decision every time a machine has to choose between a production and a
repair lot. Because of the presence of non-deterministic decisions, the underlying process
is a Discrete Time Markov Decision Process (DTMDP) which is fully characterized by a
matrix P containing all the dynamics that do not depend on decisions and a set of matrices
Dy, ..., Dy describing the different strategies in selecting the next lot to be processed in
each machine.

3 Problem definition

Given the DTMDP described in Section 2, the aim of this work is to analyze the
tardiness of each lot as a function of a scheduler. We define a scheduler W = |wy, ..., wr]|
as a sequence of T entries w; € [1,...,V] that determine which decision matrix has to
be used in each ¢t € [1,T]. Given a scheduler W, the distribution 7 (¢) of the DTMDP
evolves on time according to the formula 7(t) = 7(t — 1)(P + Dy,,_,,) starting from an
initial vector having all the probability mass in the initial state. Let us denote the random
variable describing the completion of the ith production lot as X, ;, computed as follows:

dp,i
Pri{Xp; >dpi} =1- > w(t—1)Fri<>P (P4 D

t=1

YFUri==P) | 1

w(i_1)

where F<¢°"4> ig a filtering matrix whose entries are equal to one on the diagonal only if the state

satisfies the boolean condition < cond >. Filtering matrices exploit basic linear algebra to select
only the transitions of interest from the matrix used to catch the moment in which a production
lot completes its execution. For this reason, the filtering matrix on the lhs selects only the source
state in which lot 4 is still under processing (Ip,; <> D), while the matrix on the rhs selects the
destination states in which the lot i is completed (I,; == D). This guarantees that the process
performs only those transitions that lead to the completion of the considered lot. Instead, the
summation over ¢t and the multiplication by 1 are used to evaluate all the time units until the due
date, and to generate a scalar number from the distribution vector.

The computation of the time for the completion of a repair lot is slightly more complicated
because the arrival is stochastic and, as a consequence, the due date is shifted on time. Thus, the
calculations involve also the isolation of the moment in which the lot arrives into the system. By
denoting the completion of the ith repair lot with X, ;, we have that:

Pr{Xm > dmni} =1 (S0 7t = DFOn V(P g Dy, Y= x

d

TI ) (P D)) x FUma NN i) (P D, ) FUmi == 1

w(t—1)

The first term isolates only those transitions starting from a state in which the repair lot is not
arrived (Im,; <> NA) and ending in a state where it is (Im,; == A), while the second term carries
on the process for d,,,; — 1 time units. The third term is used to catch only the moment in which
the lot processing is completed ((Im,; <> NA) A (Im,; <> A)) as already done for the production
lots.

4 Numerical example

In this section we show the importance of the problem under investigation by means of a
numerical example. We performed an experiment by assuming a system having K = 3 machines
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that has to produce 7 production lots and is waiting for 4 repair lots. The scheduling is such
that the first three lots are scheduled at the first machine, the fourth and the fifth are scheduled
at the second machine and the remaining lots are scheduled at the third machine. The sizes of
production lots are equal to |30, 20, 10, 30, 20, 30, 20| whereas repair lots are all composed of 30
parts each. Each part requires on average 1 time unit (TU) for being produced whereas set-ups
require 1.25 TU on average. The probability that repair lots arrive in the next time unit is 0.5.
In order to underline the strong impact that different policies have on the tardiness of each lot,
we defined two matrices, D1 and Ds, that represent the two extreme cases. We defined matrix
D; in such a way that it always selects the next production lot. On the contrary, matrix Dy gives
always precedence to repair lots. We performed an experiment by four different schedulers: the
first scheduler uses constantly matrix D;p; the second always uses matrix Ds; finally, the other
two schedulers select randomly D1 or Da. We expect that the tardiness of production lots will be
minimized by the first scheduler and maximized by the second. Vice versa, the second scheduler
will minimize the tardiness of the repair lots and maximizes the one of the production lots. The
third and fourth schedulers are expected to provide results in between the two extremes. Figure
1 shows the probability of the tardiness of the third production lot and the third repair lot as
function of the due date. It is possible to notice that the results confirms the expectations. In fact,
the probability to complete the third production lot on time is maximized by the first scheduler
and minimized by the second. On the contrary, the second scheduler provides the best results
for the repair lot whereas it is detrimental for the production lot. Furthermore, as expected, the
trajectories referring to the random schedulers can be found between the trajectories of generated
by the first and second scheduler.
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Second scheduler 098
—— Third scheduler

—— Fourth scheduler
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Fig. 1. Probability of the tardiness of the third production lot and the third repair lot as function
of the due date.

5 Conclusive Remarks and Future Works

The paper presents a DTMDP that provides the tools for optimizing the scheduling of lots
whose arrival into the system is uncertain and cannot be planned in advance. We tested two
different scheduling strategies affecting the tardiness function in different ways and validating the
model. Future works will regard the identification of optimal scheduling policies.
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1 Introduction and related works

We are interested in transporting items in a workshop, from their production spots, to
their consumption spots. For each type of items, there is one consumption machine, one
production machine and four dedicated carriage trolleys, of limited capacity. Initially, there
is one full trolley and one empty trolley in front of each machine. This problem comes from
a real industrial problem, in the context of a car manufacturer workshop. When a trolley
is full, an operator must transport it. He can transport several trolleys at the same time,
making a train with them, but there is a limit on the maximal size on the train he can form.
The production rate, and the consumption rate for a type of item is the same, therefore,
when a carriage is full at a production spot, another carriage is empty at the associated
consumption spot. The operator is also in charge of bringing back empty trolleys from their
consumption machines, to production machines. The production rate, and the capacity of
the trolley, permit to define a production cycle for each pair of machine. A production
cycle is the time taken by a production (resp. consumption) machine, to fill (resp. empty)
a trolley. The end time of a production cycle correspond to the beginning of the next cycle.
For each pair of machines, and for each of their cycles considered until the time horizon,
the goal is to deliver the trolleys which have been filled during the previous cycle to their
consumption spots, and the trolleys which have been emptied during the previous cycle to
their production spots.

The aim is to plan a route of the operator in order to satisfy pickup and delivery
requests with time windows constraints. A particularity of this problem is the periodicity
of the requests. Indeed, all the pickups and deliveries of a given item are almost completely
sequenced. However, the relative order of pickups and deliveries of distinct items still need
to be decided, potentially over a very long planning horizon.

This problem can be seen as a Pickup and Delivery Problem, with a single capacited
vehicle and time windows. It is part of the one-to-one pickup and delivery family (which
means that each pickup has a unique destination and conversely, each delivery has a unique
source)(Cordeau et al. 2008). The single vehicle case comes from a Traveling Salesman
Problem (TSP) in which precedences were added between clients. Since then, several ad-
ditional constraints have been considered, such as time windows, limited capacity or LIFO
loading (deliveries must respect a last-in-first-out rule). One can find complete survey on
pickup and delivery problem in (Parragh et al. 2008) and (Berbeglia et al. 2007). There
are temporal specificities in our problem. Indeed, each request has a twin request with the
same time window: for each request from point A to point B to transport a full (resp.
empty) trolley, there is a request from B to A for the empty (resp. full) trolley to do during
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the same time. Moreover, each request is repeated over time until the horizon, that is, each
due date corresponds to a release date for the next request on the same pair of machine.
Routing problems can often be seen as scheduling problems with sequence-dependent
setup times. In fact, time windows and precedences constraints, as well as the fact that there
is no objective to optimize might suggest that the problem more adapted to scheduling
technologies (Beck et al. 2003). From a scheduling point of view, it is a single resource (the
driver of the train) scheduling problem. We have 4 types of activities: pickup and delivery
of a full and an empty trolley which can’t overlap. There is a precedence between a pickup
and its delivery, and each activity has a time window. Travel times between two activities
are then sequence-dependent. Finally the length of the train can be seen as a reservoir
resource with limited capacity, which is filled by pickups, and emptied by deliveries.

2 Constraint Models

We propose two constraint models to deal with this problem. One TSP-oriented based
on next variables, and one scheduling oriented. In the scheduling model, for each operation
1 €T ={1,2,...,n}, we define the variable start; as the starting date of the operation .
Moreover we introduce for each pair of operations 7,j € T, a Boolean variable x;; which
represent, the relative ordering of the two operations. The link between these two sets of
variables is made with with the following constraint:

g — 1 & start; > start; + tt;; + p;
7 0 & start; > start; + ttj; + p;

with t¢;;, the travel time between operation 7 and j, and p; the processing time of 7. In
fact, we do not need a Boolean variable for every pair of tasks, and can easily reduce the
model. For all pair of operation ¢, j € T, such as i precede j, we avoid creating the variable
245, and directly post the following constraint : start; > start; + tt;; + p;.

Since production cycles are often much shorter than the planning horizon, the problem
involves a lot of precedences. Therefore, we can drastically reduce the size of the model.
Moreover, we observe that there are only two sensible ways to schedule the four activities
of a production cycle (pickup of the full trolley, pickup of the empty trolley, and the
corresponding deliveries). First, obviously pickups must precede their respective deliveries.
Second, since the second pickup and the first delivery take place at the same spot, it is
always preferable (w.r.t. the capacities and the time windows) to do the first delivery before
the second pickup. Therefore, there are only two possible orders: the operator may either
first pickup and deliver the full trolley, or first pickup and deliver the empty trolley. Hence,
only one variable is needed for these four tasks. In order to deal with the constraint on the
length of the train, we use the balance constraint introduced in (Laborie 2003).

The other model is inspired by the constraint model for TSP with time windows pro-
posed in (Ducomman et al. 2016). For each operation i, there is a variable next; that
indicates which operation directly follows i. Additional variables are needed in order to
post redundant constraints. pos; indicates the position of the operation 4 in the sequence
of operations, and x;; has the same semantic than in the first model. We add another
variable trainL; which represent the length of the train before the operation i. Our model
only differ by the adding of the following constraints :

trainLyeqgt, = trainL; +1; Vi e TU{0} (1)
trainLo =0 (2)
DOSdel; > POS; Vie P (3)
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with I;, the length of the trolley of the operation ¢ (negative length for delivery), del; is the
associate delivery of the operation ¢, and P is the set of pickup operations. Constraint (1)
and (2) represent the accumulation on the train length during the sequence of operations
and use the ELEMENT constraint. The last constraint (3) ensures that each pickup precedes
its delivery. In addition, we use the CIRCUIT constraint to enforce the Hamiltonian circuit.

3 Experiments

In order to compare the two models, and in addition to the industrial instances, we
generated random instances '. We tried to generate only feasible instances, but we cannot
guaranty that all instances are. There are 4 categories of instances (A, B, C, D). Instances
A contain the least dense instances, i.e. with the least number of operations. They have
also more pairs of machines with the same production cycle. Conversely, instances D are
the most dense, and most asynchronous. We generate 10 instances of each category, and for
each of them we consider 3 different temporal horizons, leading to 120 instances in total.
The two models were implemented in the constraint solver Choco 2.

We observed that variable orderings following the chronological sequence tend to be
more efficient. For instance, in the TSP model, building a tour by selecting the nodes
from the first to be visited (posi) to the last to be visited (pos,) was more effective
than assigning the positions in a different order. In the case of the scheduling model,
we use the following strategy: we say z;; dominate zx, iff min(start;) < min(starty) and
man(start;) < min(start;) with at least one strict inequality or min(start;) < min(start;)
and min(start;) < min(starty) with at least one strict inequality, with min(start;) the
minimum value of start;. When choosing a variable to assign, we look for the boolean
variables which is not dominated by any other variables, ties are broken randomly. We
noticed a slight improvement when in addition we gave priority to the variables which
order operations in the same pair of machines before the other ones. That is, we don’t
deal with a variable x;; if the variable ordering the three remaining activities linked to
operation ¢, and the variable ordering the three remaining activities linked to operation j
are not instantiated. Generic heuristics such as dom/wdeg (Boussemart et al. 2004) were
significantly less effective than these simple orderings.

Similarly, we explore first the branch that minimizes the start time of the next operation.
In the TSP model, it means assigning pos; to j such that the minimum value of start; is
minimal. In the scheduling model, it means assigning z;; to 1 iff minimum value of start;
is lower than the minimum value of start;. For both, and thanks to the propagation on
the start’s variables, this heuristic acts more or less like a nearest neighborhood approach
and takes advantage of the travel time between activities.

We ran each instance 10 times with randomized heuristics: if there are ties, they are
broken randomly, and if not, one of the two best choices is chosen randomly with equal
probabilities. We also used a restart strategy (the Luby sequence (Luby et al. 1993)) to
improve the result. Each run has a timeout of 1 hour.

Table 1 shows the results. The first column denotes the category of the instance and
second column denotes the temporal horizon. For the two models (denoted by Scheduling
and TSP), 3 indicators are given, the number of solved instances (in average on 10 runs), the
average time, and the numbers of fails for solved instances. We observe that the scheduling-
based model can solve more instances in every category, and is faster in average. The average
number of fails for the TSP model shows the relative slowness of that model. Most of the
instances are unsolved.

! Available on https://github.com/AntuVal/SPDPTW
2 Prud’homme, C., Fages, J.-G. & Lorca, X. (2017), Choco Documentation.
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Table 1. Comparison of the two models on the generated instances

Scheduling TSP
NbSolve| Time |NbFail|NbSolve| Time |[NbFail
15000, 9.3 44.11 |174195| 9.0 18.39 | 13081 10
A |25000| 8.5 52.74 [143564| 7.9 140.92 | 9445 10
40000| 8.0 36.48 | 29665 7.1 149.71 | 3803 10
15000, 4.8 390.61 (301231 2.1 943.88 | 18340 10
B [25000f 2.5 381.94 [203849| 0.7 |1017.76| 2015 10
40000| 2.0 402.88 [419479| 0.1 |1929.71| 283 10
15000 4.3 534.60 (387635 2.0 541.68 | 14549 10
C [25000f 1.4 [1264.03|352172| 0.1 [1693.80| 1521 10
40000| 0.0 - - 0.0 - - 10
15000, 2.2 495.55 (112918 0.8 |1271.75| 9484 10
D |25000| 0.2 |2565.44| 45153 0.0 - - 10
40000| 0.0 - - 0.0 - - 10

Cat.| Hor. Nb Inst.

4 Conclusions

We introduced a one machine scheduling problem with several additional constraints.
That problem is not new in the definition of its constraints, but the temporal structure of
the instances makes it challenging. We proposed a randomly generated set of benchmark
instances, whose a large number stay unsolved. We observed that a light model based on
ordering pair of activities works better than a TSP-based model, which does not scale to
industrial instances.

As a large number of the generated instances remains unsolved, there are still works to
do. We are currently working on a Large Neighborhood Search (LNS) in order to improve
these results. In this scheme, we relax the due date of each task, and instead we minimize
the maximum lateness. Then during a LNS move, a subset of operations can be withdrawn
from the sequence and re-inserted so as to minimize this objective. We also aim to deal
with the entire problem, which is the team sizing for the whole shop. The goal is to plan
a route through the pair of machines, minimizing the number of trains in the shop.
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1 Introduction

In this research the index merge method is proposed to decrease the number of variables
of Multi-Skilled Resource Constraint Project Scheduling Problem (MSRCPSP). This prob-
lem was formulated in (Neron E. and Baptista B. 2002) It generalizes Resource-Constraint
Project Scheduling Problem (RCPSP) which is proved to be NP-hard in the strong sense
(Garey M. and Johnson D. 1975). In (De Bruecker P. et. al. 2015) the survey of approaches
to solve this problem is presented. Integer and mixed-integer statements of MSRCPSP are
compared in (Almeida B.F. et. al. 2019).

The problem can be formulated as follows. There is a set of tasks N, set of workers W
and a set of specialities S. If the worker w; has skill s; than h; = 1, otherwise h;; = 0. For
each task j € N the following parameters are given: p; — processing time and a;;, — required
number of workers with speciality s,. Precedence relation e;; can be defined for a pair of
tasks, means that the task ¢ has to be completed before the task j starts. The objective is
to process all tasks without preemptions in the shortest time. For easier understanding of
presented method non-human resources are not considered in this extended abstract.

The very important difference between MSRCPSP and RCPSP: it is necessary to assign
workers not only to tasks but also the speciality for which this worker is responsible for.
The following short example describes it. There is a task j which needs one worker with
speciality s; and one with speciality so, a set of workers W = {w1, w2, w3} and a set
of specialities S = {s1, s2,53}. Worker w; has specialities s; and sa, wa — s3, w3 — $1.
Suppose that there is a binary variable x;; which equals 1 if the worker ¢ is assigned to
task j, otherwise z;; = 0. Suppose that speciality constraints are modelled as resources,
ie.

3
Vl:1,2 lezhvlzl (1)
=1

— there are enough workers for each speciality required for processing task j. The problem
is that inequality (1) allows to assign workers w; and ws to the task j in feasible solu-
tion, which is not correct. In this case worker w; have to act as a specialist s; and so
simultaneously, which is not possible.

This means that the variable with three indices (task, worker, speciality) have to be
introduced together with variables related to the start times of tasks. Such a large number
of variables makes the problem very hard to solve.
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2 Proposed approach

We propose a data-preprocessing method to decrease the number of variables by index
merge. To solve MSRCPSP it is necessary to set task processing intervals and to assign
workers to tasks. For each worker the speciality under which he operates the task has to be
chosen. In the paper (Stadnicka D. et. al. 2017), the Hall’s marriage theorem was used in
integer linear programming (ILP) model to formalize operator assignments. In this work,
we propose an approach based on the creation of task processing scenarios.

Let we call scenario 2 — the assignment list of workers z = {zf,...,zfy}, 2 = L.
If scenario z is correct for task j € N, then it is possible to assign the set of workers
W, = {w;|zf = 1} to all specialities required for processing j. The set of all correct
scenarios for task j is denoted by Z;. To decrease the number of scenarios in Z;, only those
with the number of workers not exceeding the required number for task j are considered.

2.1 The correctness of task scenario

The problem to verify the correctness of scenario z for task j can be formulated as
follows.

Problem 1. There is a set of workers defined by scenario z and a set of specialists
required for job j. Each worker can have several specialities. How to verify that there is
an assignment of workers to required specialities, such that each worker is assigned to the
speciality he has and for each speciality the required number of workers are assigned?

Let S; — the ordered set of specialities, which includes a;; elements of speciality k. Note
that |S;| = |[W.|. Then, problem 1 means that the set of workers W, can be paired with
the set of S;. In terms of graph theory this problem is equivalent to the perfect matching
problem in bipartite graph.

Problem 2. There is a bipartite graph with two disjoint sets of vertices related to W;
and S;. Vertex i € W; is connected to vertex 5? € S; related to speciality s if and only if
his = 1. Is there a perfect matching for this graph?

If there is a perfect matching, then we can assign workers to specialities they are
matched with. If there is no perfect matching, then the workers cannot be assigned to
specialities and task j cannot be processed under scenario z. Verification of scenarios for
the example, presented in the previous section is illustrated on the Fig. 1.

Scenarios for task j {1, 1,0} {1,0, 1} {0, 1, 1}
Graph representation to w1 S1 w1 S1 wWo e e Sq
find a perfect matchin;

P €1 wa. : o w3 : So W3 e o 89
Is this scenario correct? No Yes No

Fig. 1. Example: scenario verification.

Problem 2 can be solved by the Hopcroft—Karp algorithm (Hopcroft J. and Karp
R. 1973) in O(|W.|*/?) operations. Therefore the complexity of the verification of the
correctness of scenario z for task j is the same.

39



2.2 Creation of correct scenarios

To create the set of correct scenarios Z; the following algorithm can be used.
Algotithm 1.

1. Calculate the number of workers k; = ¢ a;s required for processing task j € N.

2. Generate all the scenarios of k; workers.

3. Cycle all generated scenarios and check each scenario if it is correct for processing task
j- If yes, add it to Z;.

Number of scenarios to be verified — C’W]V | = W which is not more than
§ SOW= k)1

C‘QVV;ZV 2, By the Stirling’s formula this value can be asymptotically approximated by

v _ oW |+1/2
w=1/21 " "

Then, subject to Hopcroft—Karp algorithm, the complexity of Algorithm 2 can be evaluated
as O(21"=11W, |2) operations. Creation of the correct scenarios for entire set of tasks N takes

Om2WI|w2).

2.3 Using scenarios in MSRCPSP models

In case of Mixed-Integer Linear Programming models the variable with one index (task
scenario) can be used instead of the variable with three indices (task, worker, speciality). In
Constraint Programming models, interval variables associated with optional task scenarios
can be used as follows.

Constraint programming MSRCPSP model.

Task processing optional interval variables: Vj € N,z € Z; : int, with size |int,| = p;.
Constraints:

- VjeN: Zzezj presenceO f(int,) — for each task only one scenario is presented in
the solution;

— Let f;(t) — cumulative function defined for all i € W by the number of intervals
associated with scenarios z € Z which involves the worker ¢ (7 = 1). Then the number
of tasks processed simultaneously be the worker i can be modelled by f;(¢) < 1.

— Ve € E,z1 € Zs, 20 € Zj : endOf(int.,) < startOf(int,,) — precedence relations
have to be satisfied.

Objective — minimal makespan:

min max endO f (int).
z2€Z

3 Numerical experiments & analysis

In numerical experiments, we compared the presented model with CP model based on
the IBM ILOG example: /examples/opl/sched sequence. Both models were implemented
using IBM CP Optimizer 12.6.2 and tested on Intel(R) Core(TM) i7-7700 HQ 2.8 GHz with
8 Gb RAM. We generated 800 random instances with 10, 20, 30 and 40 tasks and different
number of workers, precedences and skills. Time limit for instances with 10 and 20 jobs
was equal to 120 seconds and for instances with 30 and 40 jobs — 600 seconds. For 100%

of generated instances proposed method gave better results. The results are presented in
Table 1.
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Table 1. Numerical experiments result.

Without scenarios With scenarios
Tasks|Solutions found %|Optimum proved %|Solutions found %|Optimum proved %
10 53 26 100 89
20 44 19 100 63
30 18 6 100 39
40 6 0 100 0

The presented approach can be applied for other models to merge the variable indices
and decrease the number of variables. Method allows to decrease the number of variables
by considering constraints on the pre-processing stage and works especially efficiently if
the pre-processing eliminates a large number of indices combinations as it is shown by
numerical experiments.

The proposed idea has the following weaknesses.

— A larger number of constraints. In comparison with classic models, all constraints
involving index 7 have to be applied to all merged combinations of indices including .

— The need to store scenarios and a large number of constraints leads to the large amount
of memory required.

— It is necessary to develop fast pre-processing procedures to eliminate the forbidden
combinations of indices.

4 Conclusion

In this paper, an index merge method was presented and applied to MSRCPSP. The
efficiency of the proposed model was evaluated theoretically and by a comparative analysis
with default IBM ILOG CP model.
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1. Introduction

In the context of the H2020 GEOSAFE European project [7], we have been working on the
late evacuation problem, that means the evacuation of people and eventually critical goods facing
a natural disaster (flooding, wildfire..).

We did it accordingly to the 2-step approach currently favored by practitioners [2, 4, 7]: the
first step (pre-process) computes the routes that evacuees will follow; the second step, to be
performed in real time, schedules the evacuation of estimated late evacuees along those routes. In
practice, performing this last step requires forecasting the evolution of the disaster, rather difficult
in the case of wildfires, because of their dependence to topography and meteorology [4]. But we
consider here this issue as resolved and focus on the priority rules and evacuation rates which have
to be imposed to evacuees [3]. Our model non preemptive Tree evacuation planning problem
(NPETP) is equivalent to the model proposed in [1] evacuees have been clustered into groups with
same original location and pre-computed route, and once a group starts moving, it keeps on at the
same rate until reaching his target safe area (non preemption. This last hypothesis derives from
practical concerns and aims at avoiding any panic effect during the evacuation process. The pre-
computed evacuation routes are supposed to define a tree, with evacuee groups located at the
leaves of the tree and the safe target place at its anti-root. While [1] addresses the problem through
a discretization of both time and rate domains and constraint programming techniques, we make it
here appear as a RCPSP: Resource Constrained Project Scheduling Problem variant, [5,6]), and
use this RCPSP reformulation in order to get accurate optimistic bounds (lower bounds) and
design an efficient network flow based heuristic.

The paper comes as follows: Section 2 provides the NPETP model. Section 3, 4 are devoted to
optimistic bounds and algorithms. Section 5 proposes numerical tests.

2. The RCPSP Oriented NPETP Model

We consider here a tree A, oriented from its leaves towards its anti-root (safe target node),
which is the extremity of a single arc Root. The leaf set is denoted by J = {1..N} : every j € J is
provided with an evacuee population P(j) which has to be brought until the safe target anti-root.
We indistinctly talk about j as an evacuation node and an evacuation job. Arcs e are provided with
both a capacity CAP(e) and a length (or duration) L(e). This induces that the path I'(j) which
connect j to the anti-root has a length A(j). Values CAP(e) increase as long as we advance along
path T'(j). For any arc e, J(e) denotes the subset of J defined by all j such that e e T'(j).

With every population j is associated a deadline A(j) : evacuation of j must be achieved no
later than time A(j). The evacuation time of population j is determined by its speed, which is
supposed to be the same for all evacuees, and by its evacuation rate (number of people/time unit)
vj, which is imposed to be independent on the time. It comes that the duration of evacuation job j is
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equal to A(j) + P(j)/v; We want to schedule the evacuation process, while meeting the following
requirements:
- Every evacuation job j is achieved at time TE”dj no later than deadline A(j) ;
- For any arc e, the sum of the evacuation rates v;, taken for all j which are concurrently
entering on e, does not exceed CAP(e); (E1)
- The global safety margin M = Inf; (A(j) - T¥"%,) is the largest possible.

In order to cast our NPTEP problem into the RCPSP framework, we identify every evacuation
job j with the entering process defined by the arrival of evacuees of j on the arc Root. Let us
denote by T; the starting time of this process and by T*; its ending time. Then we get a schedule if
we decide, for every j e J, starting time T;, ending time T*;, and evacuation rate v;, in such a way
that:

= T, is no smaller than the release date R(j) = distance in the tree A from node j to the
origin of Root;

= T*% =T; + P@)/v; < A(j) — L(Root), which becomes the deadline D(j) of job j. We
deduce that v; should be no smaller than vmin(j) = P()/(D(j) — R()).

= Above capacity constraints (E1) are never violated.

Because of the Non Preemption hypothesis, entering process j should take place in a
continuous way between time T; and time T*j, and define an interval. So we simplify the
formulation of (E1) by introducing a vector Z = (Z;y, j,k = 1..N) 1..N) such that Z;, = 1 iff j
precedes k. This allows to get our RCPSP oriented NPTEP model as follows:

NPTEP Model: {Compute vectors T = (T;, j = 1..N), T* = (T*;,j = 1..N), v= (v;, j = 1..N)
>0, and {0,1}-valued vector Z = (Z;y, j,k = 1..N) such that:
o  Zjx=1iffjprecedes k: we say that j and k overlap if Z;, + Z,; = 0;
o  Temporal constraints:
= Foranyj, Tj+ P()/v; =T* < D(j) ;
= Foranyj, Tj> R();
= Foranyj, k, Zj=1->T*% < Ty;
o  Resource constraints:
=  Foranyarc e, and any clique C < {1..N} in the overlap sense,
z jedeync Vi< CAP(e). (E2)
o  Safety Margin Criterion: Maximize M = Inf; (D(j) - T*))}

3. Optimistic Upper Bounds

We propose 2 upper bounds, both derived from the relaxation of the Non Preemption
constraint from the NPTEP model. We get upper bound UB-Tree while keeping all constraints but
the Non Preemption Constraint; we get upper bound UB-Arc while also relaxing all constraints
(E2) but those related to the final arc Root and those related to the arcs e(j) whose origins are the
leaves j = 1..N and whose capacities CAP(e(j)) are upper bounds values for the evacuation rates v;.
Computing both UB-Arc and UB-Tree follows the same algorithmic scheme:

Start from time value t = 0;

At any time t, consider all (entering) jobs j which have not been achieved yet and which
are such that t > R(j); Denote by Q(j) the population which remains to enter into the arc
Root;

Compute, for any such a job j, its current optimistic safety margins M;, which means the
safety margin D(j) - T*j = D(j)— Q(j)/CAP(e(j)) which would be achieved if constant rate
v; = CAP(e(j)) were applied to job j from t on;

Make run jobs j with higher value M;, which are assigned values v; in such a way that
values M; evolve at the same pace for those jobs with highest priority;
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Compute smallest time value t* which fits some of the 3 following situations: (a) some
job j gets to its end; (b) t coincides with the release date R(j) of a job j which could not
be started before; (c) the priority order related to safety margins M; has been modified.
Update t: t <- t*.

4. Algorithms

We propose here 2 algorithms. The first one is a fast insertion algorithm which relies on the
Network Flow approach which was implemented in [6] in the case of RCPSP. The second one was
already described in [1] and involved the use of IBM CP Optimizer Software.

4.1. A Network Flow Oriented Heuristic NPETP.

The key idea here is to consider the arcs e of the tree A as resources, likely to be exchanged by
evacuation jobs i, j whose paths 77i) and 77j) share arc e. According to this purpose, we extend
above NPETP model by introducing, for any pair (i,j) and any arc e in the set Arc(i,j) = 7{i) N
ITj), the part w;;, of access rate to e which is given by i to j. We see that resulting vector w has to
comply with the following flow constraints (E3):

o Foranyj=1.N,ein 7Ti): 2 jsuchthat e e Arcixy) Wije = Vi= Z isuchthat e  ArcGi) Wisier  (E3)

We see that the main difficulty here is that we must choose between assigning high rates v; to
jobs j and let them monopolize the access to transit arcs of A, or conversely restricting v; in order
to make j share its arcs. In order to deal with it we design a 2 step NPETP approach:

NPETP Algorithmic scheme:
First step (conservative approach):
Starts from deadlines D(j), j = 1..N; Not Stop;
While Not Stop do
Look for a feasible Schedule (T, v, T*);
If Fail then Stop Else decrease deadlines D(j), j = 1..N, in order to force values
T%; to decrease and so improve the Safety Margin criterion.
Second step: Improve the solution by making evacuation rates v; increase (and so dates
T%*; decrease), through resolution a specific linear program on vectors w and v.

Then the core of NPETP Algorithm is related to the “Look for a feasible Schedule (T, v, T*)”
instruction of the “While” loop of the first step. We do it while relying on above flow vector w
and providing every job with no more than what it needs in order to be achieved in time:

Start from some linear ordering o defined on N; Not Success; Not Failure;
While Not Success and Not Failure do
Scan o: jo being current job, values v;, T; and I1(j,e) = access level to arc e that job j
can transmit to j, have been computed for any j prior to j, in s;
Then:
(1) : Scan path 7Tjo): for any e in 7Tjo), compute flow values w;jjqe, j prior to jo
in o, in such a way T*jo< D(jo); Derive vjo = Sup ¢ (Z jW;jo,.) and related arc ey;
(2) : Increase the w;jo for e = e in order to make job jo run at the same rate for
all arcs e of 7{jo).
If Not Success then modify o accordingly and update Failure.

4.2. A Constraint Programming Approach for a Discrete Version of the NPTEP Model.
This approach associates with every variables v;, T;, j = 1..N, finite discrete domains, and apply
the constraint propagation techniques which are at the core of the IBM CP Optimizer Software. All

details are provided in [1]. Because of the rounding of values vj, T;, j = 1..N, it is also a heuristic
approach.
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5. Numerical Experiments

Purpose/Technical context: Algorithms were implemented C++, Windows 10, Visual Studio
2017, on PC with 16Go de RAM, Intel Core i5-8400 CPU @ 2.80GHz. Our goal was to evaluate
both ability of the NPETP algorithm to yield good solutions and the accuracy of the optimistic
upper bounds of Section 111, while using results obtained in [1] through constraint programming
(CPO Optimizer) as reference results.

Instances/outputs: They are as in [1]. The main characteristics of an instance is the number N
of populations. We consider several instance packages, with, for any package, the number S which
denotes the number of instances inside the package.

Outputs: For every instance package, we compute:
. resCPO = reference value through IBM-CPO in no more than 100 s (CPU).
e  0optCPO = number of instances such that IBM-CPO could achieve optimality of the discrete
approximation of NPETP.
e NPETP = Value obtained through NPETP Algorithm; cpuNPEP = Related CPU time.
e  UBL = Optimistic (upper) bound UB-Arc; UB2 = Optimistic bound UB-Tree.

CPU times for the computation of both UB1 and UBZ2, since they never exceed 0.1 s.

Then the following table provides a summary of our results:

N | S [ resCPO | optCPO | NPETP | cpuNPETP(s) UB1 UB2

10 | 15 | 10400 | 12,00 97,96 0,56 112,16 107,16
15 | 16 | 69,81 12,00 65,14 0,79 78,53 73,94
20 | 11 | 40,09 8,00 42,36 1,30 51,28 43,58
S 8,40 0,00 43,80 117 70,30 49,20

Comments: The model handled by IBM-CPO is an approximation of NPETP model, and so
NPETP algorithm obtains in some cases better results that IBM-CPO, even when IBM-CPO
concludes to optimality. In any case, NPETP, whose computation times are very small,
outperforms IBM-CPO as soon as the size of the problem increases. We also see that the Tree
Upper Bound UB2 provides us with a very efficient estimation of the optimal NPETP value, since
the gap between UB2 and Inf(resCPO, NPETP) is in average 5% (it tends to increase with the size
of the instance).
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1 Problem statement

Preemptive scheduling problems assume that all resources are released during preemp-
tion periods, and that they can be used to perform other activities. However, in certain
cases, constraints require that a subset of resources remains allocated to the activity when
it has been interrupted, to ensure safety for example. Suppose one must execute an exper-
imental activity that requires an inert atmosphere for its execution. In practice, one can
stop this activity and allow the technicians and some of the equipment to be used in other
activities. However, safety and operational constraints force us to preserve the inert atmo-
sphere even when the activity is stopped (before its end). In other words, one cannot release
the equipment that ensures the inert atmosphere during the preemption periods. Tradi-
tional preemptive schedule models cannot represent this behaviour since they assume that
all resources are released during the preemption periods. Until now, the only way to model
this activity, while respecting safety requirements, was to declare it as “non-preemptive”.
However, this decision can increase the project makespan, especially when the activities
have restrictive time windows and the availability /capacity of the resources vary over time.
We call partial preemption the possibility of only releasing a subset of resources during the
preemption periods.

We are concerned here in multi-skill project scheduling problem (MSPSP) (Bellenguez
and Néron 2012). We present in this extended abstract a new variant of the MSPSP that
uses the concept of partial preemption. The variant of the problem under study is then
called Multi-Skill Project Scheduling Problem with Partial Preemption (MSPSP-PP). To
the best of our knowledge, it has not been studied yet in the scientific literature.

In the MSPSP-PP, if an activity is interrupted, we release only a subset of resources
while seizing the remainder. We can then classify the set I of activities to be scheduled into
three types according to the possibility of releasing the resources during the preemption
periods: 1) Non-preemptive activities (N P), if none of the resources can be released; 2)
Partially preemptive activities (PP), if a subset of resources can be released; and 3) Pre-
emptive activities (P), if all resources can be set free. In our case, the partial preemption
is only related to mono-skilled resources, and we made the hypothesis that resources can
always be released during preemption periods.

Our objective in the MSPSP-PP is to find a feasible schedule that minimises the to-
tal duration of the project (Cpmax). Finding a solution consists in determining the periods
during which each activity is executed and also which resources will execute the activity in
every period; all this, while respecting the resources capacity and the activities character-
istics. We must schedule these activities on renewable resources with limited capacity; they
can be cumulative mono-skilled resources (machines or equipment) or disjunctive multi-
skilled resources (technicians) mastering a given number of skills. Multi-skilled resources
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can respond to more than one skill requirement per activity and may execute it partially
(except for non-preemptive activities where technicians must perform the whole activity).
An activity is defined by its duration (D;), its precedence relationships (set E), its require-
ments of resources, its requirements of skills, the minimum number of technicians needed
to perform it, and the subset of preemptive resources. Activities might or not have either a
deadline or a release date. Figure 1 illustrates an example of an MSPSP-PP instance and
a possible solution.

Dead | Release
Duration | Skill needed | Machi Activit
uration | Skill neede achine| " o ivity type
Act1 4 (S1,1) (M1,1) - - Preemptive
Act 2 2 (53,1),(54,1) | (M1,1) 5 3 Non-preemptive

Partially preemp (M1 can

Act 3 4 52,1 ML1 - —
(2.4 ( ) not be released)

Skills mastered by Tech 1: {S1, 53} Machine 1 capacity: 2

Skills mastered by Tech 2: {S2, 54}
Tech1 _
Act3

Tech 2
Act2 i = ‘ A G A3

Act1
= Machinelb
1 2 3| 4 5/ 6 7 o

Fig. 1. Example of an MSPSP-PP instance.

The complexity of the MSPSP with partial preemption can be established using the
classical RCPSP (Resource-Constrained Project Scheduling Problem) as a starting point.
For each instance of the RCPSP, we can match an instance of the MSPSP with partial pre-
emption, where all resources are mono-skilled, and none of the resources can be preempted.
Thus, we can define the RCPSP as a particular case of the MSPSP with partial preemp-
tion. Since the RCPSP has been proved to be strongly NP-hard (Blazewicz et al. 1983),
we can, therefore, infer that the MSPSP with partial preemption is also strongly NP-hard.

We propose five formulations for the MSPSP-PP using Mixed-Integer /Linear Program-
ming (MILP) and Constraint Programming (CP).

2 MILP formulations

We present below five time-indexed formulations of the problem over a discretized
horizon H. These formulations generalize the ones presented in (Polo et al. 2018) and
(Polo et al. 2019). All models are based on on/off binary variables Y;; stating whether an
activity ¢ is in process in time period ¢, on/off binary variables O, ;+ = 1 if technician j is
assigned to activity ¢ during period ¢, binary variable S;; = 1 if technician j is assigned to
non-preemptive activity 4 (this variable is used to express that any technician assigned to
a non-preemptive activity must remain assigned until its completeness). For any partially
preemptive activity ¢, an on/off binary variable Pp;; = 1 if activity ¢ is preempted in time
period t. For the three first models, step binary variable Z; ; = 1 if partially preemptive or
non-preemptive activity ¢ starts in time period ¢ or before and step binary variable W; , =1
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if partially preemptive or non-preemptive activity ¢ ends in time period ¢ or after. We only
provide a subset of the constraints of the first model (MSPP1a): precedence constraints
(1) and the constraints (2-8) that link variables Y, Pp, Z, W, S, O and Ciyax, the project
makespan. The other constraints are standard resource constraints and operator availability
constraints.

H
Dix(1-Y,)> Izlym/ v(i,l) € E,Nt € H (1)
t'=t
Zip 2 Yip Vi¢ P,Vte H V' <t (2)
Wi =Yy Vi¢ P,Vte HVt' >t (3)
Ppiv=2Ziy + Wiy —Yig— 1 Vie PPVt e H (4)
Zit+Wip—Yip =1 Viec NP,Yte H (5)
Ojit =28 +Yis—1 Vie NP,Vje J,vtc H (6)
Ojit <S5 Vie NP.YjeJVte H (7)
Crax >t %Yy VieI,Vte H (8)

Given the variables W; , and Z;;, we can replace the precedence constraints (1) by a
disaggregated version below, yielding the second model (MSPP1b), while the third model
(MSPP1c) includes both constraints (1) and (9).

Zl,t + Wi,t <1 V(Z,l) S E, Vte H (9)

We also propose two mixed continuous-time/discrete-time models (MSPP2a and
MSPP2b), replacing binary variables W, ; and Z;; by continuous time variables G; and
F; representing the start and completion times of activity i, respectively. We replace con-
straints (1-5) by:

F+1<G v(i,l) e E (10)

Ppiy < 1Y, Vie PP,Vte H (11)

F;—Gi+1<D;+)Y Ppy Vi € PP (12)
teH

F,-G;+1<D; Vie NP (13)

F,>txY;, VieILVte H (14)

Gi<t*xY 4+ (1—Y;,)« H| Viel (15)

It remains to express the fact that partial preemption variables Pp; ; must be equal to 0
outside the execution interval of . We either use the following constraints using variables Y’
(MSPP2a):

t |H]| o o
Ppis <Y Yie; Ppiu<) Yie ViePPVteH (16)
t'=1 t'=t
or the following ones using variables F' and G (MSPP2b):
Fizt*Ppiyt; Gigt*Ppi,t—(l—Ppi,t)*|ﬁ| ViGﬁ,VtEF (17)

In Section 3, we compare the proposed MILP formulations in terms of LP relaxation
strength and we provide a computational comparison with the constraint programming
formulation described in (Polo et al. 2019).
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3 Structural and computational comparisons

3.1 Structural comparison of the MILP formulations

Using the transformation G; = [H| — Yoerm Zip+1and Fy; = Y7, .57 Wi, we show that
the constraints in model MSPP2 involving the F; and G; variables are all implied by the
constraints of model MSPP1 augmented with the transformation. As the computational
experiments show that there are instances where MSPP1 has a strictly better LP relaxation
than MSPP2, this yields the following result:

Theorem 1. Formulation MSPP1b is tighter than formulations MSPP2a and MSPP2b.

We could not prove a dominance relation between MSPP1la and MSPP1b, which was
corroborated by the experiments fox which some bounds provided by the MSPPla re-
laxation are better than those provided by the MSPP1b relaxation and vice-versa, which
justifies the proposal of MSPP1ec.

3.2 Computational experiments on the MILP and CP formulations

For computational tests, we use CPLEX 12.7 and CP Optimizer 12.7 for solving the
MILP models and the CP models, respectively (using the default configuration and limiting
the number of threads used by the solvers at 8). The computation time was limited to 10
minutes. We use the four sets of 30 activities instances of (Polo et al. 2019), each of
them having 50 instances and a different proportion of preemption types. The activity
durations are between 5 to 10 time units. There are up to 15 skills, 8 cumulative resources,
8 technicians (multi-skilled resources) divided into two teams, 20% of activities with time
windows, the density of precedence relationships is low, and an average optimum Chax
between 70 and 90 time units.

First of all, the MILP formulations are only efficient when the number of preemptive
activities is high. For these instances, model MSPP1b provides the larger number of op-
timal solutions but model MSPP2b is faster and has a better average gap. There was no
perceptible advantage for the integrated model MSPP1c. These computational results con-
firm one more time that a theoretically stronger formulation does not necessarily imply
better practical performance. The MILP MSPP2b model outperforms the CP one when
the percentage of preemptive activities is high, proving the optimality of a higher number
of instances, and giving a lower average gap. CP, on the other hand, gives better results
when this percentage is low. One could then say that the two methods are complementary.

Future research should be done in order to develop a hybrid method that better exploit
the characteristics of each instance.
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1 Project Scheduling in Disaster Management

Due to climatic changes and a concomitant accumulation of extreme weather events,
natural disasters, e.g., hurricanes and floods are a growing threat worldwide. According to
the survey of Altay and Green, disasters can be described as large-scale events that pose an
unusually high threat to life and health as well as to material assets. A particular challenge
is the uncertainty of the events as well as the difficulty to predict a disasters impact.
Four phases can be identified in the lifecycle of disaster management (i.e., mitigation,
preparedness, response, and recovery). In particular, the response phase (post-disaster),
where activities must be coordinated and information exchanged quickly, is considered in
the literature, e.g., in the fields of infrastructure protection and medical care (Altay and
Green 2006). Here, models and decision support systems can be used to directly reduce
the impact of disasters. Therefore, the response phase is addressed in the following.

Using governmental emergency plans, necessary activities can be pre-defined that have
to be carried out immediately after a disaster. For successful planning, it makes sense to
visualize their precedence constraints by a project with a corresponding network. However,
the execution of the activities requires suitable resources, the emergency forces. When
responding to a disaster, it is helpful to have as many workforces as possible to carry out
the necessary relief measures. Volunteers can constitute important resources and therefore
be an effective complement to the professional forces in disaster relief. Hence, a successful
response should integrate voluntary helpers. They must be assigned to activities and start
times of activities must be determined. Consequently, a combined workforce and project
scheduling problem arises. Due to the high complexity of the resulting problem, we have
developed a serial schedule generation scheme (SGS) that finds feasible solutions even for
large problem instances in reasonable time.

2 Problem Definition and Solution Approach

As described in Section 1, we consider a combined workforce and project scheduling
problem (cf. Baur and Rieck 2019 for the mathematical model). It is assumed that projects
with n real activities 4,5 = {0,...,n+ 1} and a set of reasonable precedence constraints
E can be predefined. All real activities (e.g., fill sandbags and carry sandbags) require
volunteers k € K to be carried out. Whether a volunteer can be assigned to an activity
depends on two important aspects. Since voluntary helpers constitute partial renewable
resources, each one has a defined time interval in which it is available. A resource k can be
assigned to an activity at time ¢ if 8, = 1 applies. The other precondition for an assignment
is that the resource is suitable for an activity. Every activity has a corresponding set of skills
S; that are needed to process it. Exemplary skills are physical fitness and driving licenses.
A volunteer has to declare an associated level Ls for all predefined skills S O S;, which
indicates to what extent the skill is mastered. According to Mansfield, the levels range
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from “not demonstrated” (i.e., Lys = 0) to “outstanding” (i.e., Lis = 2). A volunteer with
a low skill level needs more time for the same workload (Mansfield 1996). Consequently,
only if at least one volunteer with required skills is available, an activity can be processed.
It is completed when the estimated total workload D; is reached for every required skill.

Even if all predecessors Pred(i) of activity 7 have been completed, a delay of the start
S; may be necessary, if there is not at least one suitable volunteer available. If an activity
i already started but is not yet finished and no resource can be assigned at any time, the
activity must be interrupted. Figure 1 shows exemplary interruptions of activity i = 1. It
starts when the first resource is assigned at ¢ = 1. At time ¢ = 2 and ¢ = 4 interruptions
occur, as no suitable worker can be selected. After six time periods (i.e., Py = 6), the total
processing time of Dy = 4 is covered and the activity is completed.

/ i=1 \ /k D= 10 \

resource

amount

\ 13 14 15 16 17 18 19 ZOJ

Fig. 1. Interruptions of an activity Fig. 2. Multiple assignments to an activity

If more than one resource is available at a given time, a team of several volunteers
with different skill levels can be assigned to an activity. This would lead to a reduction
of the expected activity duration P;, which is variable and no deterministic parameter.
The size of the assigned team is not constant during the processing time of an activity
i what can be seen in Figure 2. It visualizes another example, where five resources are
assigned simultaneously during the execution of activity ¢ = 2. Although the estimated
total processing time is Do = 10, the activity can be completed within four time units (i.e.,
P, = 4). Note that the number of resources assigned to ¢ = 2 differs over time. While in
period 14 only three volunteers are assigned, in period 15 there are five resources working in
total. Therefore, the problem under consideration is a problem with flexible resource profiles
(cf. (Naber and Kolisch 2014)). Besides the considered skills and the possible interruptions
of an activity, the multiple resource assignments and variable activity duration are the
most important characteristics of the problem. These properties make the problem more
realistic, but also more difficult to solve. For this purpose, we implemented the SGS shown
in Algorithm 1 to create feasible solutions even for large instances in decent time.

In the initialization step, the fictitious project start ¢ = 0 is scheduled and added to the
set of already completed activities C. The schedule of all completed activities ST contains
the corresponding start time Sy = 0. Furthermore, the predecessors Pred(i) of all nodes
i € V are determined. The main step from line 3 is executed until all activities have been
completed. At the beginning of his step, the eligible set £ of activities is determined from
which all predecessors have already been completed. The earliest start times ES; of all
activities j € £ are calculated in line 5. The activity with the highest priority is selected
for the further procedure. The priority rule of the earliest start time (EST) was applied for
first computational studies. For the selected activity j, the set o of all skills for which the
required working time D; has not yet been reached is defined. T; describes the set of time
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periods ¢ at which j is actively processed by one or more resources and D} represents the
number of working hours remaining for each skill.

Algorithm 1 Serial Schedule Generation Scheme

1: set C := {0}, ST := (0);
2: determine set of all predecessors Pred(i) for activities ¢ € V' \ {0};
3: while C #V do

4: determine & := {i € C|Pred(i) C C};

5: calculate earliest start ES; := max;c preq(i)(STi + Pi) of all j € &;
6: choose j € £ with highest priority;

T determine o := {s € S;}, Tj := 0 and D} = Dj for all s € o;
8: while o # () do

9: for t = ES; to d do

10: for k € K with 0y = 1A . Lrs >0 do

11: set 7kt =1, Ope := 0 and T} := T; U {t};

12: for s € o with Lrs > 0 do

13: calculate D7 := D; — Lys;

14: if D] <0 then

15: set o:=0\ {s} and P; :=t+1— STy;

16: set C:=CU{j} and ST; := minser, t;
return ST°.

The inner loop starting from line 8 is executed until ¢ is an empty set, thus the required
total working hours for each skill have been met (D <0, Vs € o). From the earliest start
until an activity can be completed or the maximum planning horizon is reached, all available
resources k that have at least one of the required skills (3, Lrs > 0) are considered one
after the other. If no resource is available, the procedure continues with the next period. In
line 11, the first resource found is assigned to the activity j at the current time ¢ (r;p: = 1
applies). Consequently, the volunteer is no longer available for other activities in this period
(i.e., Okt := 0). The lines 12-15 update the number of working hours still needed for each
skill that is mastered by resource k and required for activity j. Once the total working
time for a skill has been reached, the skill is removed from set o and no longer needs to
be considered. If o is an empty set, activity j can be terminated and added to the set
C in line 16. The start time of the activity j is defined as the time of the first resource
assignment to j. When all activities are completed, the procedure terminates and returns
the schedule of all start times.

3 Computational Results

For our computational study, we created 20 instances with n = {30, 60} real activities
on the basis of the PSPLIB benchmark (Kolisch and Sprecher 1996). The instances are
supplemented by problem-specific parameters. For example, the number of considered skills
is randomly set from 3 to 5. Under the assumption that the default skill level Ly, = 1 is the
most common in reality, it gets the highest generation probability. The levels Lys = 0 and
Lyis = 2 are the least likely. The availability of resources is randomly determined within
{8,9,...,18} time units without breaks. The SGS was implemented in C++ with Visual
Studio 2019. The comparison results were generated with CPLEX 12.9 in GAMS 25.1
within a time limit of 7200 seconds. The tests were carried out on a server (two 2.1 GHz
processors and 384 GB of RAM) using up to 16 threads.
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Table 1 shows the obtained results. Instances with numbers 1 to 10 include 30 real
activities. Instances 11 to 20 include 60 real activities. The SGS found feasible solutions
for all instances within 100 s, which can be seen in the column “CPU”, whereas CPLEX
has only found a solution for five instances with 30 activities and no solution for the larger
instances. The objective function values of the procedures can be taken from the columns

Table 1. Comparison of SGS and CPLEX solutions for instances with n = 30 and n = 60

SGS CPLEX SGS CPLEX
no. F(z) CPU [s] F(z) CPU [s| Gap |%] no. F(z) CPU [s] F(z) CPU [s] Gap [%]
1 46 42 - 7229 - 11 50 30 - 7883 -
2 29 27 - 7212 - 12 43 72 - 7807 -
3 33 36 - 7223 - 13 51 25 - 8065 -
4 21 24 21 2890 0.0 14 52 70 - 7876 -
5 38 60 38 7230 0.0 15 78 22 - 7954 -
6 22 4 20 2228 10.0 16 37 15 - 8168 -
7 42 7 26 7215 61.5 17 81 27 - 8121 -
8 29 7 - 7228 - 18 48 16 - 8097 -
9 27 26 26 3519 3.8 19 100 76 - 8009 -
10 32 5 - 7247 - 20 59 24 - 8089 -

F'(z). The objective is to minimize the project duration and thus to cope with the disaster
as soon as possible. The column “Gap” shows the deterioration of the solution found by the
SGS compared to the solution of CPLEX. For instances 4 and 5, the SGS found an equally
good solution after 24 respectively 60 s, as CPLEX did after 7200 s. Only for instance 7,
the SGS found a clearly worse (61.5%) solution than CPLEX.

4 Conclusion and Outlook

The abstract introduces a serial schedule generation scheme for a particular problem
with skills, skill levels, possible interruptions of activities, and variable activity durations.
The results of the procedure were compared to the results of CPLEX. The next step
is the development of a metaheuristic, which is able to improve the found solution in
reasonable time. In addition, the problem should be adapted to the dynamic and stochastic
characteristics of a disaster by transforming the currently static and deterministic model
into a dynamic formulation with stochastic components.

References

Altay, N., Green, W.,G., 2006, “OR/MS research in disaster operations management”’, European
Journal of Operational Research, Vol. 175, pp. 475-493.

Baur, N.-F., Rieck, J., 2019, “Project Management with Scarce Resources in Disaster Response”,
submitted to Operations Research Proceedings 2019.

Kolisch, R., Sprecher, A., 1996, “PSPLIB — A project scheduling problem library”, European Jour-
nal of Operational Research, Vol. 96, pp. 205-216.

Mansfield, R.S., 1996, “Building competency models: Approaches for HR professionals”, Human
Resource Management, Vol. 35, pp. 7-18.

Naber, A., Kolisch, R., 2014, “MIP models for resource-constrained project scheduling with flexible
resource profiles”, Furopean Journal of Operational Research, Vol. 239(2), pp. 335-348.

53



Scheduling to minimize maximum lateness in tree data
gathering networks

Joanna Berliriska

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznaii, Poland
Joanna.Berlinska®@amu.edu.pl

Keywords: scheduling, data gathering network, maximum lateness, hybrid flow shop.

1 Introduction

Scheduling for data gathering has been attracting increasing attention in recent years.
Choi and Robertazzi (2008) and Moges and Robertazzi (2006) constructed algorithms for
partitioning the total amount of measurements between the nodes of a wireless sensor
network in order to gather the data in the shortest possible time. Algorithms minimizing
schedule length were also proposed for networks with data compression (Berlinska 2015, Luo
et al. 2018), and with limited memory (Berliniska 2020). Scheduling with maximum lateness
criterion in star networks was studied by Berlinska (2018), Berlinska (2019).

In this paper, we analyze minimizing maximum lateness in 2-level tree networks. The
data gathering application consists of three partially overlapping stages. First, each of the
leaf nodes of the network has to transfer acquired data to an appropriate intermediate
node. In the second stage, datasets are preprocessed by the intermediate nodes. Finally,
they are transferred from the intermediate nodes to a single base station. It is assumed
that an intermediate node can receive at most one dataset at a time, and it can process
at most one dataset at a time. Therefore, a subnetwork consisting of an intermediate node
and all leaves that communicate with it, can be seen as a sequence of two machines working
in a flow shop mode. The base station can also receive at most one dataset at a time, and
hence, the third stage consists in executing a sequence of jobs on a single machine. Thus,
our network is a three-machine hybrid flow shop with m dedicated machines in the first
stage and the second stage, and one machine in the last stage. Hybrid flow shops with
dedicated machines were studied mostly in two-machine setting (see the survey Hwang
and Lin (2018)). Three-machine hybrid flow shop with one machine in the first and the
third stage, and two dedicated machines in the second stage, was studied by Riane et al.
(1998). The case of two dedicated machines in the last stage, and one machine in the first
and the second stage was analyzed by Bedhief and Dridi (2019). To our best knowledge,
three-machine hybrid flow shops with multiple dedicated machines in more than one stage
were not studied in the earlier literature.

2 Problem formulation and complexity

The data gathering network consists of n leaf nodes, m intermediate nodes and a single
base station. Intermediate node P; (1 < j < m) collects data from n; leaf nodes Pjg,
where k =1,...,n;. Thus, n; + ... 4+ ny = n. Leaf node Pj, acquires dataset Dy, of size
aji at time 7. The due date for receiving this dataset at the base station is denoted
by dji. The time necessary to transfer one unit of data is denoted by C. Thus, dataset
Djy, is sent from Pjj, to P; in time Cajy. After receiving the whole dataset, node P; has
to preprocess it, which takes time Aa,. During this process, the dataset size changes to
~oyk, where 7 is a given application parameter. Afterwards, the dataset has to be sent to
the base station, which takes time Cyoy;,. Each node can receive at most one dataset at
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a time. An intermediate node can simultaneously receive one dataset, preprocess another
dataset, and send yet another dataset to the base station. Preemptions are allowed both
in communication and computation.

Let T}, be the time when dataset Dj; arrives at the base station. The lateness of Dy,
is Ljr = Tjr — dji. Our goal is to organize dataset transfer and processing so that the
maximum lateness Lyq, = maxjL, maxZi 1{Ljx} is minimized.

When m =1 and v = 0, our scheduling problem becomes equivalent to minimizing the
maximum dataset lateness in a star network with datasets processed at the base station,
which was proved to be strongly NP-hard by Berliiska (2019). Thus, the problem analyzed
in this work is also strongly NP-hard.

3 Algorithms

In this section, we propose heuristic algorithms for solving our scheduling problem.
Note that if a schedule for the first two stages of the application is fixed, an optimum
schedule for the last stage can be easily found. Indeed, for each dataset Djj, the time
r}k when it becomes available for transfer to the base station is known, and it remains
to solve an instance of problem 1|r;, pmtn|Ly,q,, which can be done using the preemptive
earliest due date first rule (Horn 1974). Therefore, our algorithms concentrate on building
a good schedule for transferring datasets to intermediate nodes and preprocessing them,
separately for each of the m subnetworks.

Firstly, we implement an exponential algorithm BB, which uses the branch-and-bound
technique to obtain a schedule which minimizes the maximum dataset lateness after two
stages of the application. A detailed description of this algorithm can be found in Berliriska
(2019). Note that a partial schedule that minimizes the maximum lateness after the first
two stages, does not necessarily result in the optimum schedule for the whole application.
Thus, although algorithm BB uses an enumerative approach, it does not guarantee finding
optimum solutions.

Secondly, we propose algorithms that build a communication schedule first, and after
fixing it, construct a schedule for dataset preprocessing. For each of these two stages, we
use one of the following rules:

— FIFO: choose datasets in the order in which they are released (no preemptions);

— EDD: select an available dataset with the smallest due date (possible preemptions);

— SRT: choose an available dataset with the shortest remaining transfer/preprocessing
time (possible preemptions).

An algorithm which uses Rulel for dataset transfer, and Rule2 for dataset preprocessing,
will be called Rulel-Rule2. We study all possible combinations of the above rules, resulting
in 9 different algorithms. Each of these algorithms finds a schedule for the j-th subnetwork
in O(njlogn;) time, for j = 1,...,m. After fixing subnetwork schedules, a schedule for
sending datasets to the base station is computed in O(nlogn) time. Since n = ny+. . .+n,y,,
the total algorithm running time is also O(nlogn).

4 Experimental results

In this section, we compare the performance of the proposed heuristics. The algorithms
were implemented in C++ and run an Intel Core 15-3570K CPU @ 3.40 GHz with 8GB
RAM. Due to limited space, we report here only on a subset of the obtained results. In the
experiments presented here, the network consisted of m = 5 subnetworks, containing n; =
10 leaf nodes each. Note that if m > 1, A is small in comparison to C, and = is large, then
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the third stage of the application dominates the whole schedule, i.e. it takes a significantly
longer time than each of the first two stages, and hence, it has the largest impact on the
obtained maximum lateness. Since the last stage is always scheduled optimally, building
good solutions is easy in this case. Therefore, in order to construct demanding instances, we
used C =1, A € {1,2,3} and v € {0.01,0.1,0.5}. Dataset release times r;; were generated
separately for each subnetwork j as follows. The release time of the first dataset was r;; = 0.
The remaining release times were computed from the formula rj, = r; x—1 + 0;%, with ;i
chosen randomly from interval [1,10], for each j and k independently. Due dates d;; were
selected randomly from interval [0, 100], and dataset sizes «j, from interval [1, 15]. For each
analyzed combination of parameters A and ~, 30 instances were generated and solved.

Since the optimum solutions for the test instances were not known, in order to assess
the schedule quality we computed a lower bound

LB = max ax {rjr+ (C(1+~)+ Ao, —d;i}. (1)
j=1,....mk=1,...,n;

Measuring schedule quality for the L,,q, criterion may be problematic, as the optimum
value can be positive, zero or negative, which precludes using relative measures. Therefore,
we measure solution quality by the difference between the maximum lateness delivered by
a given algorithm and the lower bound LB.

Table 1. Average distance of the solutions from the lower bound.

v =0.01 v=0.1 v=0.5
Algorithm | A=1 A=2 A=3]| A=1 A=2 A=3]| A=1 A=2 A=3
BB 2.201 42.858 119.080 | 1.313 39.883 124.100 | 49.900 59.550 124.400

FIFO-FIFO | 32.784 101.835 171.999 | 34.127 99.437 180.550 | 50.450 97.783 179.500
FIFO-EDD | 28.299  44.493 120.244 | 29.027 43.243 125.040 | 50.350 59.550 125.017
FIFO-SRT | 31.901  98.147 173.014 | 31.463 95.050 172.930 | 51.150 95.533 177.200
EDD-FIFO 5.731  52.349 124176 | 6.183 48.993 129.527 | 51.000 54.050 128.483
EDD-EDD 3.602  49.125 123.044 | 3.197 46.710 129.527 | 51.217 57.633 127.617
EDD-SRT 18.915  95.982 172.949 | 19.417 91.010 173.167 | 52.917 95.183 176.383
SRT-FIFO | 30.856  97.945 172.479 | 28.157 94.933 177.153 | 50.883 97.250 178.517
SRT-EDD 27.891  48.163 120.943 | 25.143 45.720 127.367 | 50.633 58.750 126.633
SRT-SRT 31.324 100.948 173.217 | 30.500 95.207 175.857 | 51.467 94.933 175.633

The average quality of the obtained solutions is presented in Table 1. The distances from
LB obtained by all algorithms grow with A. The main reason for this is that the distance
between LB and the actual optimum increases with A. Algorithm BB delivers the best
results for all settings except A = 2, v = 0.05. However, BB has high computational costs.
Its average running time ranged from about 7 seconds for A = 1, v = 0.5 to approximately
2075 seconds for A = 3, v = 0.5, while the remaining heuristics needed about 0.004 seconds
in all analyzed settings. All algorithms return similar results when A = 1 and v = 0.5.
This illustrates the mentioned above fact that the combination of small A and big v leads
to easy instances.

Let us now compare the performance of the fast heuristics in the remaining settings.
When A =1 and v € {0.01,0.1}, algorithm EDD-EDD is the winner. When A = 3, the
best results are obtained by FIFO-EDD, for all values of ~. For tests with A = 2, the
best results are returned by algorithm FIFO-EDD when v € {0.01,0.1}, and by EDD-
FIFO when v = 0.5. It seems that the choice between the EDD and FIFO rules should
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be based on the expected durations of the three stages of our application. When A = 2
and v € {0.01,0.1}, or when A = 3, the second stage dominates, and the best strategy
is to use FIFO in the first stage. For A = 2 and v = 0.5, the third stage is the longest
(because m = 5), and FIFO should be applied in the second stage. In the remaining cases,
the best strategy is to use only EDD rule. We infer that if stage ¢ dominates the schedule
(i = 2,3), then the FIFO rule should be applied in stage ¢ — 1 in order to pass some data
to stage i as soon as possible, and EDD should be used in the remaining stages. If there is
no dominating stage, algorithm EDD-EDD seems the best choice.

5 Conclusions

In this work, we analyzed minimizing maximum lateness in tree data gathering net-
works. As the problem is computationally hard, we proposed several heuristic algorithms.
Computational experiments showed that algorithm BB usually delivers the best results, but
at a high computational cost. Good schedules can be obtained in polynomial time using an
adequate combination of EDD and FIFO rules. Future research may include investigating
theoretical performance guarantees of the proposed algorithms.
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1 Introduction

It is well known that a project network with Generalized Precedence Relations (GPRs),
due to the presence of maximum and minimum times lags, may contain cycles and a critical
path may contain cycles of zero length (De Reyck, 1998). Consequently, it may happen that
the project duration increases when the duration of a critical activity is shortened. This phe-
nomenon was firstly studied by Wiest (1981). In another seminal paper, Elmaghraby and
Kamburowski (1992) further studied this anomaly under GPRs. They introduced five dif-
ferent criticality types (i.e., start-critical, finish-critical, backward-critical, forward-critical,
and bi-critical) and the new concept of flexibility. Later, De Reyck (1998) in his doctoral
thesis, revisited these concepts adapting them to an Activity on Nodes (AON) representa-
tion of the project network and proposed a method for recognizing criticalities and inflex-
ibilities of an activity, based on the types of its ingoing and outgoing precedence relations.
Since the Ph.D. work of De Reyck appears not to be present in the open literature, the
reader may find the analysis of De Reyck in the book by Demeulemeester and Herroelen
(2002). To the best of our knowledge, the analysis made by De Reyck has been widely
accepted and not revised by any point of view in the last twenty years.

In this work, starting from some concerns related to the criticality definitions of the
activities and potential failures of De Reyck’s method for the analysis of activity critical-
ities and flexibilities, we propose a new method. Section 2 provides some definitions and
notations. In Section 3, by means of one example, we show some potential failures of the De
Reyck’s method, giving in Section 4 new results. Similar remarks can also be made for the
method proposed by Elmaghraby and Kamburowski (1992). In Section 5 we provide a brief
outline of the new method after having redefined and discussed the types of criticalities.

2 Definitions and notations

Accordingly to De Reyck (1998) and to Demeulemeester and Herroelen (2002), hereafter
we assume that a project is modeled by means of an AON network N = (V| A;d, ). V is the
set of nodes, with V' = V"U{1,n}, where V" = {2,...,n—1} is the set of n—2 real activities,
d; is the duration of activity ¢ € V", and nodes 1 and n are two additional dummy activities,
with duration equal to zero, representing project beginning and completion, respectively;
without loss of generality, we assume the real activity durations being integers and positive.
A is the set of arcs representing GPRs between pairs of activities. An arc may model a
start-to-start (SS), a start-to-finish (SF), a finish-to-start (FS) and a finish-to-finish (FF)
precedence relation with minimum or maximum time lags for an overall number of eight
relations that may be represented, i.e., SS7(6), SS;7*%(8), SF/7™(6), SF{**(8), FS7™(6),
ES[e%(8), FF7™(8), FFj7%%(5), where § is the minimum or maximum time lag. It is well
known (see e.g., Demeulemeester and Herroelen, 2002) that a GPR with maximum time
lag is equivalent to a GPR with minimum time lag with opposite direction and opposite
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time lag, i.e., SSij“m(é) = S;’;m(—é), SFa(6) = FS;’Zm(—(S), FSa(6) = 8 JTi”(—5),
and FF[%(6) = FF}*"(—d). Hence, we can always model the project activities and their
relationships with a GPRs AON network with only minimum time lag, but the resulting
network may contain cycles, due to maximum time lag. Therefore, without loss of generality,
in the following we assume that the project has only GPRs with minimum time lags.

It is well known that with the transformations of Bartush et al. (1988) we can represent
the project network in a so called standardized form where there are, for example, only
GPRs of type SSZT;””(Z). This standardized network allows to calculate the project duration
as the length of the longest path form node 1 to node n, i.e., the length of a critical path.
Moreover, it allows to determine the critical activities and the critical arcs (i.e., critical
precedences among critical activities).

3 An example showing potential failures

We show a project network example for which the method proposed by De Reyck fails in
determining some activities’ criticalities. Analog failures can also be shown on the method
by Elmaghraby and Kamburowski. Let us consider the project network with GPRs in
Figure la, with node weights being activities” durations. The standardized network (with
only SS{?’:”(K) precedences) is shown in Figure 1b, with arcs’ weights being time lags. Let
us consider the critical path (1,2,3,4,5,4,6,7) with length equal to 20 (note that the path
contains a cycle of length equal to zero). All the activities belong to the critical path. The
criticalities according to De Reyck’s method (see the definitions and Table 6 at page 124 of
the book of Demeulemeester and Herroelen, 2002) are: activity 2, forward-critical; activity
3, finish-critical; activity 4, bi-critical; activity 5, start-critical; activity 6, finish-critical.

5
10| |-10
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Fig. 1. The project network with GPRs of the example (a) and its standardized network (b)

Actually, the criticalities of activities 3, 4, and 5 are different, as the flexibility analysis
reveals. Indeed, if it was d3 = 6, it would be /23 = —1 and /34 = 6, with ¢;; being the
length of arc (i,7) in the standardized network. In this case, the length of the longest
path from node 1 to node 3 would be negative and hence we need to add arc (1,3) of
length /13 = 0 to the standardized network, which corresponds to add precedence SS72(0)
between activities 1 and 3 (and the related arc to the original network), to force activity 3
to start not before time 0. On the standardized network, the critical path would change to
(1,3,4,5,4,6,7) of length 21. If it was d3 = 4, it would be ¢33 = 1, ¢34 = 4, and the critical
path would not change. Therefore, activity 3 is backward-flexible and forward-inflexible,
and, hence, it is also forward-critical. Similarly, if it was ds = 6, the length of the longest
path from node 5 to node 7 would be less than ds, and hence we need to add arc (5,7) of
length f57 = ds to force the start time of dummy activity 7 (i.e., the project makespan)
to be not less than the finish time of activity 5, which corresponds to add precedence
FSZ™(0) between activities 5 and 7 (and the related arc to the original network). On the
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standardized network, the critical path would be (1,2,3,4,5,7) of length 21. Therefore,
activity 5 is forward-inflexible, meaning that it is also forward-critical. Finally, activity 4
is both start- and forward-critical, because it is backward-flexible since we can decrease
its duration without increasing the length of the critical path (1,2,3,4,5,4,6,7). These
results show possible failures of the De Reyck’s method.

4 New general results
Referring to the previous analysis, it is possible to prove that:

Proposition 1. Given a critical activity © such that the longest path in the standardized
network from node 1 to node i is equal to 0, if the critical precedence relations ingoing
activity i are only of type XE;™ and the critical precedence relations outgoing activity i
are of type FX{?“L (SX[?M), then activity i is not only finish-critical (backward-critical) as
induced by the De Reyck’s method but also forward-critical (start-critical).

Proposition 2. Given a critical activity i whose duration d; is equal to the longest path
from node © to node n in the standardized network, if the critical precedence relations
outgoing activity i are only of type SX{?W and the critical precedence relations ingoing
activity i are of type XSy™ (XF™"), then activity i is mot only start-critical (backward-
critical) as induced by the De Reyck’s method but also forward-critical (finish-critical).

These results suggest further corrections to the standardized network and consequently
to the original network. In particular, in the previous example, if we add arc (1,3) with
l13 = 0 and arc (5,7) with £57 = d5 to the standardized network, that correspond to
precedence relations SST3™(0) and FSFX™(0), respectively, we obtain that by applying the
De Reyck’s method we identify the correct criticality of activities 3 and 5. However, the
criticality of activity 4, involved in the cycle (4,5,4), remains incorrect. The conclusion
is that, apart from the corrections, it is necessary a new method to define on a generic
project network the right criticality and flexibility of each single activity.

5 Our proposal

Before outline a new method for analyzing activity criticalities and flexibilities, we
redefine activity criticalities, independently from the project network representation.

Definition 1. An activity is critical if its earliest and latest start (finish) times are equal.

Definition 2. An activity is start-critical if it is critical and the project duration increases
only if we delay the activity start time.

This means that, given a start-critical activity, if we maintain fixed its start time and
vary (either increase or decrease) its duration, and, hence, vary (either increase or decrease)
its finish time, the project duration does not change, meaning that a start-critical activity
is bi-flexible. In addition, the finish time of a start-critical activity is not constrained.

Definition 3. An activity is finish-critical if it is critical and the project duration increases
only if we delay the activity finish time.

This means that, given a finish-critical activity, if we maintain fixed its finish time
and vary (increase or decrease) its duration, and, hence, vary (increase or decrease) its
start time, the project duration does not change, meaning that a finish-critical activity is
bi-flexible. In addition, the start time of a finish-critical activity is not constrained.

60



Definition 4. An activity is forward-critical if it is critical and the project duration in-
creases whether we delay its start time, while maintaining fixed its duration, or we increase
its duration while maintaining fived its start time (apart from project time-infeasibility).

Therefore, in anyone of the above two cases, also the activity finish time increases, mean-
ing that the forward-criticality dominates the finish-criticality. Moreover, apart from the
project time-infeasibility, an increase of the duration of a forward-critical activity increases
the project duration, meaning that a forward-critical activity is forward-inflexible.

Definition 5. An activity is backward-critical if it is critical and the project duration in-
creases whether we delay its finish time, while maintaining fixed its duration, or we decrease
its duration while maintaining fived its finish time (apart from project time-infeasibility).

Hence, in anyone of the above two cases, also the activity start time increases, that is,
backward-criticality dominates start-criticality, and, apart from the project time-infeasibility,
a decrease of the duration of a backward-critical activity increases the project duration,
that is, a backward-critical activity is backward-inflexible. Our definitions differ from those
by De Reyck for which “an activity is forward-critical (backward-critical) if (a) it is start-
critical (finish-critical), and (b) when the project duration increases when activity’s dura-
tion is increased (decreased)” (cfr. p. 124 of Demeulemeester and Herroelen, 2002).

Definition 6. An activity is bi-critical if it is both forward-critical and backward-critical.

Therefore, a bi-critical activity is bi-inflexible.
We propose the following approach for analyzing activity criticalities and flexibilities,
whose correctness is formally proved:

1. Adopt the AON project network representation with minimum time lags.

2. Convert the network into the standardized network (with only SS?*"(£) precedences).

3. Correct the standardized network, if necessary, with the addition of new arcs outgoing
from source node 1 and/or ingoing to sink node n, also on the basis of Propositions 1
and 2. Consequently, additional precedence relations of type SSJ"(0) outgoing from

node 1 and/or of type F, ]”}IZ”(O) ingoing to node n might have to be considered.

4. Find on the (corrected) standardized network the critical subnetwork composed by all
the critical nodes (activities) and all the critical arcs on the standardized network.

5. Trace back the critical nodes and the critical arcs on the original AON project network
in order to consider only its critical subnetwork.

6. Determine the types of criticality of each critical activity ¢ on the basis of the precedence
types of the couples of critical ingoing and outgoing arcs of ¢ and the existence or not
of elementary critical paths passing through these arc couples.

7. Determine possible project time-infeasibility of each critical activity ¢ on the basis of
the existence or not of elementary cycles traversing node 7 on the critical subnetwork.

8. Analyze the flexibility of non-critical activities in order to detect possible project time-

infeasibility due to duration changing for these activities.
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1 Introduction

In the well-known resource-constrained project scheduling problem (RCPSP), a set of
precedence-related project activities must be scheduled such that the project makespan is
minimized subject to limited resource availabilities. We consider a planning problem that
extends the RCPSP by involving different sites. Some of the renewable resource units are
mobile and can be transferred between sites while others are permanently located at one
site. It is assumed that the mobile resource units are available at the site at which they
are used for the first time. Transportation times apply a) when a mobile resource unit is
transferred from one site to another or b) when the output of an activity is transferred to
another site where one of its successor activities will be processed. In the latter case, the
successor activity can only start once the outputs of all predecessor activities have arrived
at the respective site. These transfers enable the sharing of resources among sites, e.g., the
sharing of medical staff among hospitals. As activities from multiple sites are scheduled
simultaneously in the multi-site RCPSP, the number of activities to be scheduled is often
greater than in the single-site RCPSP.

The literature comprises some exact and heuristic approaches for this planning problem.
Laurent et al. (2017) introduced a discrete-time mathematical model that they applied to
instances involving 5 to 30 activities. Because their model did not seem to scale well,
they developed four metaheuristics, which are based on an activity list and a site list
representation of the solution. One metaheuristic conducts a local search, one metaheuristic
is based on simulated annealing, and two metaheuristics perform an iterated local search.
They applied the four metaheuristics to instances comprising 30 to 120 activities. It turned
out that the iterated local search and the simulated annealing metaheuristics perform best.
Gniégi and Trautmann (2019; 2021) formulated a continuous-time mathematical model that
they applied to the same instances as Laurent et al. (2017) comprising 30 activities. Their
model was able to derive a large number of new best known solutions for these instances.

In this paper, we propose a novel matheuristic for the multi-site RCPSP. In the matheuris-
tic, the activities are scheduled by performing the following two steps in an iterative man-
ner. First, a subset of activities that will be scheduled in the next iteration is selected based
on standard priority rules from the literature. Second, the selected activities are scheduled
by solving a relaxation of the model of Gnégi and Trautmann (2019; 2021). The matheuris-
tic obtains high-quality solutions for instances comprising 30 activities and 2 or 3 sites.
Among the 960 tested instances from the literature, it derives new best known solutions
for 164 instances.

The remainder is structured as follows. In Section 2, we illustrate the planning problem
with an example. In Section 3, we outline the novel matheuristic. In Section 4, we report
the computational results. In Section 5, we conclude and give an outlook on future research.
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Fig. 1. Example: activity-on-node network (left) and an optimal solution (right)

2 Illustrative example

In this section, we illustrate the planning problem with an example that comprises
seven real activities {2,...,8}. The fictitious activities 1 and 9 represent the project start
and completion, respectively. The left part of Figure 1 shows an activity-on-node network.
Each node in the network represents one activity and each arrow represents one precedence-
relationship. Moreover, the example includes two sites A and B between which we assume
a transportation time of one time unit. Each of the two resource types k = 1 and k = 2
comprises two resource units v = 1 and u = 2. Both resource units of resource type k =1
are non-mobile and permanently located at site A. One unit (u = 2) of resource type k = 2
is mobile, and the other unit (u = 1) is permanently located at site B. The activity-on-
node network further shows for each activity i its resource requirement r;; for the two
resource types and its duration p;. The right part of Figure 1 shows an optimal solution
for the illustrative example. Each line represents a resource unit u of a resource type k,
and the rectangles represent the activities. Each real activity is assigned to at least one
resource unit and exactly one site. The activities {2,5,7,8} are executed at site A while
the activities {3,4,6} are executed at site B. The resource transfers are indicated by a
dash-dotted arrow, e.g., between activities 6 and 5 which take place at a different site;
thus, the commonly used resource unit v = 2 of resource type k = 2 must be transferred
from site B to site A. The output transfers are indicated by a dotted arrow, e.g., between
activities 4 and 8, which are precedence-related and take place at a different site; thus, the
output of activity 4 must be transferred from site B to site A before activity 8 can start.

3 Novel matheuristic

In this section, we describe the novel matheuristic in more detail and illustrate it with
the example from Section 2. The matheuristic is based on the continuous-time sequencing/
natural-date model of Gnégi and Trautmann (2019), subsequently referred to as GT19.
The model involves continuous start-time variables that indicate the start time of an ac-
tivity, and binary site-selection variables that represent the execution site for each activity.
Moreover, it includes binary resource-assignment variables that assign the activities to the
resource units, and binary sequencing variables y;; that indicate the sequence between pairs
of activities ¢ and j. Hence, y;; = 1 means that activity ¢ is scheduled before activity j.

Our matheuristic is based on a variant of GT19, in which some sequencing variables are
relaxed, i.e., they can take any fractional value between 0 and 1, and some activities are
locked, i.e., the site-selection and resource-assignment variables of these activities as well
as the sequencing variables between all pairs of these activities are fixed to their values in
the current solution of the relaxation. Before the first iteration, the matheuristic derives
promising initial values for the site-selection variables by solving a relaxation of GT19,
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Fig. 2. Example: schedule after Iteration 1 (left) and schedule after Iteration 2 (right)

in which all sequencing variables are relaxed. Then, the matheuristic iteratively schedules
changing subsets of activities in a rolling-horizon manner as follows. First, 2b activities
are selected based on the latest starting time (LST) priority rule and the latest finishing
time (LFT) priority rule as a tie breaker. Second, a relaxation of GT19 is solved, in which
only the sequencing variables among and between the 2b selected and the locked activities
are defined as binary; all remaining sequencing variables are relaxed. Moreover, the initial
values for the site-selection variables of the 2b selected activities are provided. The solu-
tion of this relaxation provides a schedule in which the sequence of the 2b selected and
the locked activities is determined. The remaining activities (subsequently referred to as
eligible activities), however, may overlap among each other as well as with the selected and
the locked activities. Finally, the initial values for the site-selection variables are updated
based on the current solution of the relaxation, and the b activities with the highest priority
(according to the combined LST and LFT priority rule) among the 2b selected activities are
locked. Consequently, b activities remain selected. Then, the next iteration starts by select-
ing b additional activities from the eligible activities based on the combined LST and LFT
priority rule. If there are no eligible activities to select in this step, the matheuristic stops.

In the illustrative example, we set b = 3. Figure 2 illustrates the resulting two iterations.
The selected activities are marked in bold, the eligible activities are transparent, and
the locked activities are not highlighted. In Iteration 1, the activities {1,3,2,4,5,7} are
selected. Figure 2 (left) shows the schedule obtained in Iteration 1, in which some of the
eligible activities {6, 8,9} overlap with some of the selected activities. This is feasible in this
iteration because all sequencing variables between the eligible activities and the selected
activities are relaxed. Next, the activities {1, 3,2} are locked and the activities {6, 8,9} are
selected in addition to the already selected activities {4,5,7}. As all activities are either
selected or locked in Iteration 2, the sequencing variables between all activities are defined
as binary and the conflicts between the activities {5, 6}, {5, 8}, and {7, 8} must be resolved.
Figure 2 (right) illustrates the schedule obtained in Iteration 2. Compared to Iteration 1,
activity 4 is scheduled at a different time, at a different site, and on a different resource
unit. Without the site change of activity 4 in Iteration 2, an additional transportation time
would apply, which would delay the project makespan by one time unit. After performing
Tteration 2, there are no eligible activities and the matheuristic stops.

4 Computational results

In this section, we present the computational results. The matheuristic was tested on
960 instances comprising 30 activities and 2 or 3 sites that belong to the test set MSj30.
This set has been adapted to the multi-site context by Laurent et al. (2017) from the
instances of the PSPLIB by Kolisch and Sprecher (1996). We implemented the matheuristic
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Table 1. Computational results

Overall Laurent et al. (2017)  Gnégi and Trautmann (2021)

# Sites # New BKS # Better @ Gap %] +# Better @ Gap [%]
2 63 110 0.70 94 0.38

3 101 143 0.53 144 -0.57

in Python 3.7 and used the Gurobi 9.1 solver. We prescribed a time limit of 300s to the
Gurobi solver in each iteration. Moreover, we set b = 5.

Table 1 summarizes the results obtained. The solutions of the matheuristic are compared
to the best known solutions that Laurent et al. (2017) published for their metaheuristics
on their website and to the solutions Gnégi and Trautmann (2021) reported for their
continuous-time mathematical model. We group the results by the number of sites (2 or 3).
The column # New BKS corresponds to the number of instances for which the matheuristic
found a new best known solution. The columns # Better report the number of instances
for which the matheuristic obtained a better solution than the approaches of Laurent et al.
(2017) or Gnégi and Trautmann (2021), respectively, and the columns @ Gap report the
average gap of the matheuristic solutions to the solutions of the approaches of Laurent et al.
(2017) or Gnégi and Trautmann (2021), respectively. Even though the average gap to the
benchmark approaches is overall slightly positive, our matheuristic is able to derive 164 new
best known solutions in a shorter average running time than the benchmark approaches.

5 Conclusions and outlook

In this paper, we studied a variant of the RCPSP that involves multiple sites. This ex-
tension allows for resource pooling among sites and introduces two types of transportation
times that must be considered. We developed a matheuristic for this problem that derives
high-quality solutions for a standard test set of instances with 30 activities and 2 or 3 sites.

In future research, the matheuristic could be extended by an LP-based improvement step
involving the so-called justification technique. This technique has been shown to improve
schedules considerably while running times increase only slightly (cf. Valls et al., 2005).
Also, the planning problem could be extended to take into account resources that are re-
quired for the transfer of the output of an activity to another site (Kriiger and Scholl, 2010).

References

Gnigi, M., and Trautmann, N., 2019, “A continuous-time mixed-binary linear programming for-
mulation for the multi-site resource-constrained project scheduling problem.”, In: Wang, M.,
Li, J., Tsung, F., and Yeung, A. (eds.): Proceedings of the 2019 IEEE International Conference
on Industrial Engineering and Engineering Management (IEEM), Macau, pp. 382-365.

Gnégi, M., and Trautmann, N.; 2021, “A continuous-time model for the multi-site resource-
constrained project scheduling problem”, In: Proceedings of the 17th International Conference
on Project Management and Scheduling (PMS), Toulouse, to appear.

Kolisch, R., and Sprecher, A.; 1996, “PSPLIB-a project scheduling problem library.”, European
Journal of Operational Research, Vol. 96(1), pp. 205-216.

Kriiger, D., and Scholl, A., 2010, “Managing and modelling general resource transfers in (multi-
)project scheduling”, OR Spectrum, Vol. 32(2), pp. 369-394.

Laurent, A., Deroussi, L., Grangeon, N., and Norre, S., 2017, “A new extension of the RCPSP
in a multi-site context: Mathematical model and metaheuristics.”, Computers & Industrial
Engineering, Vol. 112, pp. 634-644.

Valls, V., Ballestin, F., and Quintanilla, S., 2005, “Justification and RCPSP: A technique that
pays.”, European Journal of Operational Research, Vol. 165(2), pp. 375-386.

65



Solution Repair by Inequality Network Propagation in
LocalSolver

Léa Blaise'?, Christian Artigues', Thierry Benoist?

! LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France
2 LocalSolver, 36 Avenue Hoche, 75008, Paris, France
lblaise@localsolver.com

Keywords: constraint propagation, inequality networks, local search, solution repair, solver,
disjunctive scheduling.

1 Introduction and context

This paper introduces a solution repair algorithm based on constraint propagation,
designed to overcome the difficulties met by small neighborhood search on a family of
tightly constrained problems.

LocalSolver is a mathematical programming solver, whose goal is to offer a model-and-
run approach to optimization problems, including combinatorial, continuous, and mixed
problems, and to offer high quality solutions in short running times, even on large instances.
It allows OR practitioners to focus on the modeling of the problem using a simple formalism,
and then to defer its actual resolution to a solver based on efficient and reliable optimization
techniques, including local search (but also linear, non-linear, and constraint programming).
The local search algorithms implemented in LocalSolver are described in Gardi et. al. (2014).

This paper focuses on problems whose constraints include a network of two-variable
inequalities. More precisely, it focuses on problems whose constraints comprise either
linear inequalities between two variables or disjunctions of such inequalities. Many such
problems arise in the field of scheduling: for example the Job Shop Problem (Fisher
and Thompson 1963) and the Bridge Building Problem (Bartusch 1983), which are both
characterized by generalized precedences and disjunctive resource constraints. However, this
kind of structure is also typical of packing, layout, and mining problems.

These problems are highly constrained: in a good solution of a Job Shop or Bridge
instance, the precedences and disjunctive resource constraints are often very tight. Because
of that, moving from a solution of makespan x to a solution of makespan = — 1 requires a
lot of small changes on many integer variables — the start times of the tasks. Being able to
move from a good feasible solution to another using random small neighborhoods is then
very unlikely: one would have to randomly target the right set of integer variables and to
randomly shift them all by the right amount. For these reasons, the algorithms described in
Gardi et. al. (2014) encounter serious difficulties on these problems. In the vast literature on
job-shop scheduling by local search, these difficulties are overcome by exploiting higher level
dedicated solution representations, such as the disjunctive graph (Vaessens et. al. 1994). In
this work, we aim at keeping the modeling elements simple and we wish to target other
problems as well. Hence, we focus on the direct integer variable representation.

2 Solution repair

The solution that we envisioned and implemented in LocalSolver to tackle this problem
is a kind of constraint propagation: a promising but infeasible solution is gradually repaired
one constraint at a time. This gradual procedure might remind one of the min-conflicts
heuristic, used to repair an inconsistent assignment for the variables of a CSP, or of ejection
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chains algorithms, both recently studied in the context of scheduling problems, respectively
in Ahmeti and Musliu (2018) and Ding et. al. (2019).

Before the search, specific constraints (such as generalized precedences and disjunctive
resource constraints) are detected in the model and made into a constraint network. Those
constraints will be the ones on which the repairing algorithm will apply when necessary.
Let’s consider any iteration of the local search, and let’s assume that the current solution S
is feasible. A local transformation is applied to the solution (for example, modification of a
few start times), rendering it infeasible (S). In the simplest case, the repair phase is similar
to the classic constraint propagation of Constraint Programming (Rossi et. al. 2006), but
has a few singularities. First, while constraint propagation generally aims at reducing the
variables’ domains, here the constraints are only propagated when they are violated and
need repairing. Indeed, our only concern here is to build a feasible solution S’ as close to S
as possible. Then, we impose that, during the local move and along the successive constraint
repairs, the variables must always be shifted in the same direction: if a variable’s value was
increased, it can still be increased further when repairing a constraint, but it can never be
decreased, and reciprocally. This ensures that all the decisions taken during the current
iteration (during the successive constraint repairs, and more importantly during the local
move) are respected. This way, the successive repairs “follow the move’s direction” they
lead to finding a feasible solution as close as possible to S, by amplifying the move rather
than by cancelling it. At the end of the propagation, the algorithm was either able to repair
all the constraints, and thus found a feasible solution &', or found a constraint that could
not be repaired. In the latter case, all the changes are cancelled and the whole procedure
starts over: the current solution is set back to Sy, and a new move is applied.

2.1 Two-variable linear inequalities
We consider inequalities of the form
aX +bY <e¢

where X and Y are integer or floating point variables, and a, b, and ¢ are any constants.
When a = 1 and b = —1, these inequalities correspond to the generalized precedence
constraints encountered in scheduling problems, but the following algorithm is not limited
to this specific case.

Let’s assume that the inequality a X + bY < c is violated. Since the initial solution was
feasible, at least X or Y has already been shifted in the “wrong” direction, and therefore
cannot be shifted now in the repair direction. At most one variable (X by symmetry) can
then be shifted in the repair direction: there exists only one way to repair the constraint,
which consists in shifting X just enough (X «+ %) This is a necessary decision, as in
every feasible solution following the move’s choices, X is at least (resp. at most) C_aby.

When the only repairable constraints in the model are inequalities, the repair phase is
equivalent to a particular kind of constraint propagation, which will be referred to as “half
bound consistency” in the remainder of the paper. The reduction of a variable X’s domain
is propagated only if it excludes its current support z (only if the constraint is violated and
needs repairing). After repairing the constraint, the new support of X is written ’. When
propagating the reduction of X’s domain, only one of its bounds is modified: either 2’ > z
(then X’s value can no longer be decreased) and 2’ is its new lower bound, or ' < x and
z' is its new upper bound. Since each variable must always be shifted in the same direction,
one of its bounds at most can be modified throughout the propagation.

An interesting property when the only repairable constraints in the model are inequalities
is that, if there exists a feasible solution that respects the decisions of the local move, the
algorithm is guaranteed to find one at the end of the propagation.
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2.2 Disjunctions of two-variable linear inequalities

We consider disjunctions of inequalities of the form

\/ (@;: X; +b,Y; < ¢)

%

where the X; and Y; are integer or floating point variables, and the a;, b;, and ¢; are
any constants. When a; = 1 and b; = —1 Vi, these disjunctions correspond to disjunctive
resource constraints (disjunctions of size 2), or packing constraints in higher dimensions.
However, the algorithm is not limited to this specific case here either.

Let’s assume that a disjunction is violated. We will try to repair it in a non deterministic
way. Since a priori none of the generalized precedences of the disjunction should prevail
over the others, the algorithm chooses one at random and tries to repair it. If it cannot be
repaired, it tries to repair the following one, and so forth. If none of them could be repaired,
the propagation fails.

Let aX +0Y < ¢ be the inequality that was randomly chosen for repair in the disjunction.
If only one of its variables can be shifted in the repair direction, then the constraint is
repaired as described in 2.1. It is also possible that both variables can be shifted in the
repair direction, since the chosen inequality may not have been the one that was respected
in the initial feasible solution Sy. If so, the algorithm randomly chooses how to shift them.
Let A be the distance to feasibility: A = aX + bY — ¢, and let dx and dy be the shares
of the repair respectively attributed to X and Y, verifying éx + 0y = A. There are four
possible ways for the algorithm to repair the constraint: either X repairs it alone (dx = A),
or Y repairs it alone (dy = A), or X and Y equitably share the repair (§x = dy = %), or
X and Y randomly share the repair (§x = random(1l, A — 1) and dy = A — dx).

Since the repair procedure of a disjunction is non deterministic, the previous properties,
of half bound consistency and guarantee to find a feasible solution, do not hold anymore
when such constraints are detected among the repairable constraints in the model. However,
if there exists a solution that respects the decisions of the move, there is always a non-zero
probability that the propagation leads to finding one, depending on whether the algorithm
always takes the “right” random decisions when repairing a disjunction.

3 Application to scheduling problems

This method of solution repair by constraint propagation dramatically improves the
performances of LocalSolver on problems with a network of two-variable linear inequalities.

3.1 Results on the Bridge Building Problem

The optimum value of the Bridge Building Problem is 104. Without our repair mechanism,
within ten seconds of search, LocalSolver 9.0 is only able to find solutions of value 115 on
average, and virtually never finds an optimum solution. But with the integrated repair
mechanism, it always finds a solution of value 104 within four seconds of search, and very
often finds one in less than one second.

3.2 Results on the Job Shop Problem

We compared the performances of LocalSolver 9.0 with and without this repair mech-
anism on three classic Job Shop instance classes: the FT class by Fisher and Thompson
(1963), the LA class by Lawrence (1984), and the ORB class by Applegate and Cook (1991).
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Table 1. Evolution of the gap between the average solution found by LocalSolver and the optimum
solution, in 10 seconds and in 60 seconds, on different Job Shop instance classes

Gap 10s Gap 60s
Instance class | No repairs With repairs | No repairs With repairs
FT 73% 7% 15% 3%
LA 246% 10% 91% 4%
ORB 120% 6% 22% 4%

As shown above in table 1, our repair mechanism enables LocalSolver not only to find
very good solutions of many Job Shop instances, but also to find good solutions very quickly:
less than 10% from the optimum within 10 seconds of search.

4 Conclusion

In this paper, we considered a family of problems, whose constraints comprise a network
of two-variable linear inequalities. Although small neighborhood search algorithms may
encounter serious difficulties on these problems, we introduced a solution repair algorithm
based on constraint propagation, overcoming the difficulties met by small neighbourhood
search. The two main specificities of our propagation algorithm are that a domain reduction
is only propagated if it excludes the current support of the variable, and that each variable
must always be shifted in the same direction. Its integration into LocalSolver dramatically
improves its performances on the targeted problems, not only on classic scheduling problems
such as the Job Shop Problem, but also on some 3D packing and mining industrial instances
of our test base.
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1 Introduction

The classical resource-constrained project scheduling problem (RCPSP) consists of
scheduling a set of activities, subject to resource and precedence constraints, in order
to minimise the project makespan. The applicability of the RCPSP, however, is limited by
the following two assumptions: 1. only finish-to-start, zero time-lag precedence relation-
ships exist between activities, and 2. the resource requirements of each activity are fixed
and constant throughout its duration. In practice, rarely do these assumptions hold true.

The extension of the RCPSP to include generalised precedence relationships addresses
the first limiting assumptions, and is a well studied problem for which a number of exact
(Bartusch, Mohring & Radermacher 1988, De Reyck & Herroelen 1998, Schutt, Feydy,
Stuckey & Wallace 2013) and heuristic (Franck, Neumann & Schwindt 2001, Ballestin,
Barrios & Valls 2011) solution methods have been developed. We refer to this problem as
the generalised resource-constrained project scheduling problem (GRCPSP).

More recently, the resource-constrained project scheduling problem with flexible re-
source profiles (FRCPSP) has been introduced to address the second limiting assumption
of the RCPSP. This problem assumes only that the total amount of resource that is re-
quired to complete each activity is known, and that, as well as the start time, the resource
allocation for each activity must be determined. Whilst heuristic approaches have provided
the most success in solving the FRCPSP (Fiindeling & Trautmann 2010, Tritschler, Naber
& Kolisch 2017), a number of exact mixed-integer programming (MIP) formulations have
also been developed (Naber & Kolisch 2014, Naber 2017).

Here, we introduce the generalised resource-constrained project scheduling problem
with flexible resource profiles (GFRCPSP) to combine these two extensions of the RCPSP
into a single model. The GFRCPSP is an NP-hard problem for which realistically sized
instances cannot be solved exactly, and hence, in addition to proposing a MIP formulation
for this problem, we also propose a genetic algorithm (GA) based on a non-greedy serial
schedule generation scheme with an unscheduling step.

2 Problem description

A project consists of a set of non-preemptive activities V = {0,1,...,n,n + 1}, where
0 and n 4 1 are dummy source and sink activities. The GFRCPSP consists of determining
a start time and resource profile of each activity, subject to a set of resource constraints
and generalised precedence relationships, in order to minimise the project makespan.

There exist four types of generalised precedence relationship: start-to-start, start-to-
finish, finish-to-start and finish-to-finish. Every generalised precedence relationship in a
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project has an associated minimal or maximal time-lag, which together create a feasible
time-window for the processing of each activity. In the GRCPSP, since the duration of each
activity is known a priori, each of the four types of relationship can be transformed into a
single type (Bartusch et al. 1988). In the GFRCPSP however, since activity durations are
variables, these transformations do not apply, and each relationship type remains distinct.
Maximal time-lags however, can be converted into negative minimal time-lags going in the
opposite direction, which allows the set of project precedence constraints to be represented
on a network, such as the one shown in Figure 1.

We define resource constraints for the GFRCPSP in the same way that Naber & Kolisch
(2014) define them for the FRCPSP. The total resource allocated to each task i € V over
its duration must at least satisfy its total resource requirement w;, whilst adhering to
upper and lower bounds on its per period resource allocation, 4, and g;, and a so-called

minimum block length, "™ (Fiindeling & Trautmann 2010), that is, the minimum number
of time periods for which the resource allocation to an activity must remain constant. All
resources r € R are assumed to be renewable, continuous, and have limited availability
R Tt is also assumed that there are three types of resource: principle, dependent and
independent. The allocation of principle resource to an activity determines the allocation of
each dependent resource to that activity through a linear resource-function. The allocation
of independent resources to an activity is fixed and independent of the allocation of the
other resources.
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Fig. 1. An example GFRCPSP network with five non-dummy activities, a I™" = 2, and a single
resource with R™** = 6. Arc labels indicate lower bounds on precedence relations. The chart
shows an optimal solution to this problem.

3 Solution approaches

The GFRCPSP can be modelled by adapting the FP-DT3 model proposed by Naber &
Kolisch (2014) for the FRCPSP. For brevity, we omit this formulation from this abstract.
Solving this MIP model becomes intractable as instance sizes get larger, and hence we also
propose a schedule generation scheme-based heuristic (Kolisch & Hartmann 1999) and GA
for finding good solutions to realistically-sized instances in a reasonable time. We outline
this scheduling heuristic and GA here.

The scheduling heuristic we propose is a non-greedy serial schedule generation scheme
(SGS) with unscheduling step. This algorithm takes an activity list as input, and constructs
a complete solution by scheduling activities one at a time in the given order. Each activity
is started as early as possible and with as much resource as possible, subject to ‘delay’



and ‘greediness’ parameters (Tritschler et al. 2017), which are used to encourage non-
greedy scheduling. This is desirable, since an optimal solution for a given instance cannot
necessarily be found using a purely greedy SGS (Fiindeling & Trautmann 2010).

If a resource constraint is violated whilst scheduling an activity, the algorithm attempts
to re-start the activity at the next resource-feasible start time. If a precedence constraint is
violated, an unscheduling step is invoked to reschedule the activities that cause either the
missed latest start or latest finish time, and start them closer to the activity with which
they have a maximum time-lag with the aim of restoring the feasibility of the schedule.
If the unscheduling step fails to feasibly reschedule the activities after a given number of
attempts, the schedule is completed infeasibly and the total number of time periods by
which precedence constraints are missed is recorded.

A GA is used to search over individual solutions, each of which consists of an activity list,
and delay and greediness parameters for each activity. An initial population of individuals
is generated randomly subject to precedence feasibility. Each individual is scheduled using
the above heuristic. The ‘fitness’ of a feasible schedule is equal to its makespan, whilst
the fitness of an infeasible schedule is equal to the total number of time periods by which
precedence relationships are missed, plus a fixed penalty. New individuals are obtained
using the adapted two-point crossover of Franck et al. (2001), which is designed to keep
activities that are related by a maximal time-lag close together in the resulting activity
list, thus increasing the likelihood of finding a feasible solution. The mutation operator
of Hartmann (1998) is applied to each offspring solution. Having produced enough new
individuals to double the original population size, the next generation is chosen using
3-tournament selection. The next generation has the same size as the original population.

4 Results and conclusions

Table 1 compares the results of the proposed GA and scheduling heuristic with the re-
sults of solving the FP-DT3-based MIP model. The two approaches are tested over five sets
containing instances with 10, 20, 30, 50 and 100 activities respectively. Each of the five sets
set contains 30 instances for three different values of resource strength (Kolisch, Schwindt
& Sprecher 1999), resulting in a total of 450 instances. Resource strength (RS) measures
the restrictiveness of the resource availability, with a smaller RS generally indicating a
more challenging problem. These instances have been created using a new GFRCPSP in-
stance generator we have developed as an extension to the ProGen/max project generator
(Kolisch et al. 1999).

Table 1 shows the average percentage gap to the critical-path based lower bound of
solutions found by the two solution methods. For each instance, the GA searched 50,000
schedules, whilst a limit of 2 hours was allowed for solving the MIP. To enable a fair
comparison between the two solution methods, the instances for which both approaches
find a feasible solution have been presented separately from those for which only the GA
finds a feasible solution. There are no instances where only the MIP finds a feasible solution.
These results show the MIP performing well on instances with 10 and 20 activities, but
dramatically worsening over the larger test sets, as expected. In contrast, the quality of
the solutions found by the GA remain roughly constant across the five test sets.

In conclusion, the GFRCPSP has been introduced to combine two existing extensions
to the RCPSP. The GFRCPSP can be solved for small instances as an MIP, whilst a new
scheduling heuristic and GA has been proposed for solving larger instances. Future work
will include the application of this new model to a real-world scheduling problem, as well
as further improvements to the metaheuristic approach proposed here, perhaps with the
introduction of a local improvement step.
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MIP & GA Only GA

Test set RS +# AMIE  AGA # AGA
0.05 30 10.90 13.14 0 -

P10 0.15 30 2.17 3.24 0 -
0.25 30 0.49 0.49 0 -

0.05 30 19.37 19.65 0 -

P20 0.15 30 0.25 0.49 0 -
0.25 30 0.00 0.00 0 -

0.05 28 150.81 13.43 2 10.71

P30 0.15 29 0.00 0.00 1 0
0.25 30 14.56 0.00 0 -

0.05 0 - - 30 25.24

P50 0.15 6 617.23  0.00 24 0.00
0.25 29 769.84 0.00 1 0.00

0.05 0 - - 30 18.81

P100 0.15 3 1029.66  0.00 27 0.00
0.25 29 1442.55 0.00 1 0.00

Table 1. Average percentage gap to the critical path-based lower bound of solutions found by the
MIP and GA. These values are denoted by AN and AG#, respectively.
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1. Introduction

Nowadays, the overwhelming majority of projects fail or end up with more or less problems. It
concerns over half of all large complex industrial projects (Aschman, 2018, Betz, 2018). The main
factors of the projects fail are budget overspending, schedule slipping, a lot of project changes
gradually requested by customers, and/or severe and continuing operational problems holding for at
least one year (Aschman, 2018).

Generally only methods and process of risk analysis are in the focus of many authors which
suggest new, more exact approaches to this analysis (Williams, 2017, APM, 2008). Almost no
authors mention the need to analyse the project in terms of the implementation of individual tasks,
of their time parameters, costs and work. Commonly, methods for creating a project schedule (based
on critical path) or determining the budget and resource requirements are only used but they are not
aimed at predicting and preparing for potential threats of individual task. The criticality of project
tasks is often defined from a time perspective only, using stochastic approaches (Bowers, 1996, Cruz
et al, 1999), fuzzy sets methods (Chen, Huang, 2007, Yakhchali, 2012) or using the findings of a
network analysis (Chanas, Zielinski 2003). Gong and Rowings (1995) mention that ignoring the
impact of non-critical tasks, which may easily become critical, is the most frequent criticism of
project duration analysis methods. Another point of view on tasks criticalness is given by the
structure of relations in the project. Bowers (1996) or Williams (1992) deal with a stochastic analysis
of a project network where the criticality of tasks in the project is derived from the relation between
task duration and the whole project, and on the basis of a number of resources used for a task and
the whole project. Another approach to analysis of the project performance is based on multiple
attribute evaluation (Koelmans, 2004, de Oliveira Moraes, Laurindo, 2013).

For these reasons we introduce the task threatness matrix, our proposed tool for analysis of the
criticalness and failureness potential of the project tasks. The main advantage of this tool is its
similarity to project risk matrix and relatively easily obtainable data.

2. Task criticalness, failureness and threatness concept

The concept of threatness of project task combines two views — task criticalness and failureness.
The task criticalness potential (Brozova et al. 2014, 2016) is suggested to provide the overall
evaluation of the task criticalness using quantitative crisp evaluation without soft knowledge about
character of the tasks (Figure 1). The task criticalness potential is based on the multiple attribute
decision making method using five indicators of the criticalness which are based on objective values
from project schedule and are transformed using linear utility function and fuzzified using fuzzy
linguistic scale:
* Duration — longer task duration means higher value of time criticalness indicator,
e Slack — shorter task slack means higher value of slack criticalness indicator,
¢ Cost - higher task cost means higher value of cost criticalness indicator,
e Work - higher task work means higher value of work criticalness indicator, and
* Topology - higher probability the activity will lie on critical pass related to the project topology
means higher value of topological criticalness indicator.

The task failureness potential (Brozova et al. 2016, 2019) is based on the expert estimation of
the possibility of task fails from different even soft aspects considering the role of human factor
which are expressed using fuzzy linguistic scale (Figure 1). The task failureness indicators are
primarily derived from the project triangle criteria respecting three key parameters (and can describe
also other parameters of project tasks):
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e Duration — higher possibility of task duration extension means higher value of time failureness
indicator,

e Cost — higher possibility of task cost increasing means higher value of cost failureness indicator,

e Quality — higher possibility of task quality deterioration means higher value of quality
failureness indicator.

i
® | ol
2 | Ext fail ss
Time Failureness Cost Failureness Quality Failureness @ Xtreme fatlureness
L L i 2 .
| Z | Strong failureness
=
Failureness = i
Potential Rather failureness
Task Threatness ﬁ
Matrix Weak failureness
Criticalness
Potential Non-failureness
r T T T 1 2 2
Topological Time Slack Cost Worlk L2822
Criti Criti Criti Criti Criti 23 g;
P e o € & 5§ Criticalness

Figure 1. Factors of task threatness and task threatness matrix

The task threatness is obtain using the fuzzy linguistic evaluation of the task criticalness and
failureness potentials as two-dimensional evaluation of task. The fuzzy values of criticalness and
failureness potential are used for placing of the tasks into cells of task threatness matrix (Figure 1)
which is inspired by Winterlink’s matrix.

3. Approaches to tasks evaluation

The evaluation of all indicators can be crisp values (numbers) or fuzzy values (actually a fuzzy
linguistic value). The first one is used for objective evaluation and the second one has its advantage
for subjective evaluation of failureness factors and for division of tasks into five groups.

The crisp evaluation of criticalness factors is based on the objective parameters obtained from
the project schedule. Each task criticalness indicator transforms the task parameter so that the best
value of this parameter corresponds to the value 0 meaning the lowest criticalness and the worst
parameter value corresponds to the value 1 showing the higher criticalness. Then the values of
criticalness indicators are fuzzified using the six step non-uniform fuzzy scale (Table 1). The fuzzy
value of each criticalness indicator is received as weighted sum of all values of linguistic variable
where the weights are the membership function values of criticalness indicator. The criticalness
potential of the task is then calculated as the weighted sum of individual fuzzy evaluation of
indicators. The weights of all indicators are set by the experts’ evaluation.

Table 1. Fuzzy linguistic terms describing intensity of task criticalness and failureness indicators

Linguistic terms Fuzzy number
Not at all critical Not at all failing (0;0;0;0.1)
Usually not critical Usually not failing (0;0.1;0.2;0.3)
Rather not critical ~Rather not failing (0.2;0.3;0.4; 0.6)

Rather critical Rather failing (0.4,0.6; 0.7, 0.8)
Usually critical Usually failing (0.7,0.8;0.9; 1)
Always critical Always failing (0.9;0.1; 1; )

The final linguistic term expressing the classification of the task criticalness potential is received
using suitable method of linguistic approximation into five step non-uniform fuzzy scale (Table 2).

The fuzzy evaluation of the task failureness is based on the expert evaluation of indicators using
the six step non-uniform fuzzy scale (Table 1). The failureness potential is calculated as sum of the
failureness indicators and using linguistic approximation is again mapped into five step non-uniform
fuzzy scale (Table 2).

Table 2. Fuzzy linguistic terms describing the task criticalness and failureness potential

Linguistic terms Fuzzy number
Non-criticalness Non-failureness (0; 0;0.05; 0.15)
Weak criticalness Weak failureness (0.05; 0.15; 0.25; 0.35)
Rather criticalness ~ Rather failureness  (0.25; 0.35; 0.5; 0.6)
Strong criticalness ~ Strong failureness  (0.5; 0.6; 0.75; 0.85)
Extreme criticalness Extreme failureness (0.75; 0.85; 1; 1)
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4. Example

The tasks threatness matrix creation is described on the following small-scale project with 7 tasks
(Table 3, Figure 2). The critical path of this project consists of the tasks B, C. D, and G.

Table 3. Project example — data from project schedule

Task Top. Dur. Slack Work Cost

A 05 2 9 4 5 - . ,-
B 05 3 0 3 5 :

C 025 8 0 12 15 v

D 075 4 0 8 22

E 025 6 6 6 18 - ¢-
F 0375 1 2 5 6 ’E

G 0625 3 0 6 4

Figure 2. Project example — AON network

The Table 4 shows the initial quantitative values of criticalness factors, which are then
transformed into fuzzy criticalness indicators and aggregated into the criticalness potential. The
Table 5 shows the experts’ evaluation of failureness indicators and their aggregation into the
failureness potential.

Table 4. Project example — Task criticalness potential

Task Criticalness factors Criticalness potential Linguistic
Top. Dur. Slack Work Cost approximation
A 05 0143 0 0.111 0.056 0.057 0.141 0215 0.324  Weak criticalness
B 0.5 0.286 1 0 0.056 0.209 0.275 0.326 0.437 Rather criticalness
C 0 1 1 1 0.611 0.586 0.696 0.725 0.772  Strong criticalness
D 1 0429 1 0.556 1 0.665 0.785 0.824 0.883  Strong criticalness
E 0 0714 0.333 0.333 0.778 0.327 0428 0.51 0.645 Rather criticalness
F 0.25 0 0778 0222 0.111 0.111 0.197 0281 0.396  Weak criticalness
G 0.75 0.286 1 0.333 0 0.294 0.375 0.433 0.557  Rather criticalness

Weights 0.189 0.164 0.129 0.230 0.288

Table 5. Project example — Task failureness potential

Task Failureness factors Failureness potential Linguistic

Times Quality Costs approximation

A Not at all fail. Rather fail. Usually fail. 0.3670.4670.5330.633 Rather failureness

B Rather fail. Always fail. Always fail.  0.7330.867 0.9 0.933 Extremely failureness

C Notatall fail.  Rather fail. ~ Usually not fail. 0.1330.233 0.3 0.4 Weakly failureness

D Rather not fail. ~ Rather fail. Rather not fail. 0.267 0.4 0.5 0.667 Rather failureness

E Rather not fail. Usually not fail. Usually not fail. 0.0670.1670.267 0.4 Weakly failureness

F  Always fail. Usually not fail. Not atall fail. 0.3 0.367 0.4 0.467 Rather failureness

G Notatall fail.  Always fail.  Rather not fail. 0.3670.4330.467 0.567 Rather failureness

The tasks are now placed into the task threatness matrix (Figure 3). In the red area there is the
highly threatening task C requiring great attention. This task is shown as the critical task by MPM
method also. In the yellow area there are all other tasks of the project. These tasks have to be
controlled to ensure the successful completion of the project regardless of their criticality or non-
criticality. The tasks in green area should not significantly influence the project. In this project, there
is no task, so in this project all task needs more or less attention, control and care.

Berit

Failureness

Weak Rather Strong Extreme

E

F A |Gcrit |Dcrit

Non

Non Weak Rather Strong Extreme
Criticalness

Figure 3. Project example — Task threatness matrix
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5. Conclusion

The proposed task threatness matrix was presented to a number of project managers who
evaluated it as an interesting, usable and useful tool to support project management. This approach
is useful for tasks evaluation with respect to the project schedule, the project management triangle
and possibly for other parameters of project tasks failureness or criticalness which have an impact
on the project success. In the large projects, the failureness can be evaluated only for selected tasks
and remaining tasks can only be arranged according to the criticalness potential in the additional
row bellow the task threatness matrix. Important advantage of suggested threatness matrix is that it
allows fuzzy assessments of the impact of individual tasks on project completion.
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1 Introduction

SimUSanté, located in Amiens, France is one of the biggest healthcare training center in
Europe. All kinds of health actors: professionals, patients, students use this center and can
meet and train together by simulating medical acts in various fields of healthcare but also
attending regular courses, for a total of more than 500 different formations. The problem
faced by SimUSanté is a scheduling problem that consists in planning a set of training
sessions respecting a set of time and resource constraints.

Scheduling problems are NP-Complete (Cooper, T.B. and Kingston, J.H. 1995). SimU-
Santé’s problem belongs to this family of problems and specifically to the Curriculum-Based
Courses Timetabling Problem (CB-CTT)(Di Gaspero L. et. al. 2007) which consists in find-
ing the best weekly assignment for university lectures, available rooms and time periods for
a set of classes under a set of hard and soft constraints. However, some features of SimU-
Santé’s problem differ from CB-CTT ones, such as resources types, skills and precedence
constraints required for activities, lunch break management, and objective function. An-
other way would be to consider CB-CTT as a variant of the Resource-Constrained Project
Scheduling Problem (RCPSP)(Brucker, P. AND Knust, S. 2001). In this case, we need
to add the followings constraints : some activities cannot be planned in parallel and each
resource can have more than one type.

We present in this paper a local search algorithm Simu LS, based on dedicated neighbor-
hood operators to solve SimUSanté’s problem. We generated adequate instances? inspired
by those used in CB-CTT. We then compared the results obtained by SimulS with those
worked out by the mathematical model implemented in CPLEX and a dedicated greedy
algorithm SimuG (Caillard S. et. al. 2020).

The paper is organized as follows: in section 2, we briefly formalize the scheduling
problem encountered by SimUSanté and describe how a solution is evaluated. In section
3 we present our local search algorithm SimuLS and give the different operators used in
order to explore the search space. Section 4 provides computational results. Finally, section
5 concludes this paper and presents some perspectives.

2 Formalization and evaluation

The problem encountered by SimUSanté is to schedule a set of training sessions S
over a determined period T'. A training session s € S is composed by a set of activities As.

* This project is supported by region Hauts-de-France and Health Simulation Center SimUSanté
3 SimUSanté instances available on: https://mis.u-picardie.fr/Benchmarks-GOC
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A = J,cqg UA; represents the set of all activities. Activity a € A has a specific duration and
requires different types and quantities of resources. Activities can be linked by precedence
constraints. In addition, there is a set of resources R which is composed by employees,
rooms and materials. Each resource r € R is associated to one or more types of resources.
For example a room can have both meeting room and classroom types.

Solution Sol is a set of triplets (a, t,, R,) where a € A is an activity, ¢, € T the starting
time slot of a, and R, C R the set of avalaible resources assigned to a, from ¢, and for its
total duration duration,. The set of scheduled activities is denoted SA = {a|(a,tq, Ry) €
Sol}, with (SA C A). The set of unscheduled activities is denoted UA = A\ SA. For
session s € S, Sol; C Sol, represents the set of triplets of the solution related to s, with
Sols = {(a,ta, R,) € Solla € Ag}. SAs = SAN Ag, is the set of scheduled activities of s,
and UA; = A, \ SA;, the set of unscheduled activities of s.

For a given session s € S, if at least one activity has been scheduled (SAs # 0), start
date tstare, = min{t,,a € SAg}, and end date tenqg, = max{t, +duration,,a € SA;} allow
to compute the corresponding makespan mks = tend, — tstart, Of session s. If no activity
has been scheduled (SA = ), then mk, = 0.

The evaluation of Sol, denoted Makespan(Sol), is the sum of the makespans of all
sessions, plus the amount of unplanned activities, multiplied by penalty «a (see equation
1). The objective is to find a valid solution with a minimum M akespan.

Makespan(Sol) = kas +|UA| X « (1)
ses

3 Local search algorithm: SimuLS

SimulLS is a local search algorithm that explores the solution space by applying neigh-
borhood operators, starting from a solution provided by a greedy algorithm, SimuG
(Caillard S. et. al. 2020). For a maximum preset limitCounter iterations, SimuLS re-
lies on saturator operator to plan unscheduled activities and when it is not possible, it
uses several operators: intra, extra and extra®. Each of these operators checks possible
movements and applies one. If the best solution ever met is not improved after a preset
nolmprov iterations, a part of the solution is destroyed by the destructor operator, in
order to escape from a local minimum.

A movement is caracterized by a couple < (a,tq,Rs) ; T >. (a,tq, R,) represents a
triplet that will be added to the current solution, with a € U A, an unscheduled activity,
t, € T, a time slot from which a could be started, and R, the set of resources assigned to
a , that exactly matches its resources requirement. In order to plan a, we need to remove a
set 1 of triplets from the solution. " = {(b1,ts,, Rb,),- -, (bn, s, , Rp, )}, n € {1,...]|S0l|}.
The set of resources R, can be composed by resources directly available over T', plus thoses
released by canceling all activities of 7. A movement respects all operational rules and
resources constraints.

The choice of a movement by an operator relies on criteria such as makespan mkg of
impacted sessions, global makespan Makespan, the number of canceled activities, etc. The
different operators present in SimuLS are:
saturators: This operator tends to place an unscheduled activity a € U A, without chang-

ing the current solution. It builds a set of movements M:{< (a,t, R,);0 >,...,<

rYar

(a,t*, R,); 0 >} so that for each movement < (a,t’,R,) ; § >€ M, with i € [1;k],

47 a.’ rYYar
[th;th 4+ durationg[N[ty; ty + durationy[= 0 V(b tp, Ry) € Sols.
intras: This operator removes one or more scheduled activities from session s in or-
der to plan an unscheduled activity a € UA;. It builds a set of movements M:{<
(a,t1, Ry); T >,...,< (a,t* R,);Y >} so that for each movement < (a,t’, R,);T > €

M, with i € [1;k] and 1" C Sol,, the following properties are verified:
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— [t&;ts + duration,[N[ty; ty + durationy[# 0, ¥(b, ty, Ry) €T

Q a
— [t4; 4 + durationg[N[te; to + durationy[= 0, V(b ty, Rp) € {Sols \ T}
extras: This operator removes one or more scheduled activities from a randomly selected
session s’ # s, in order to plan an unscheduled activity a € UA,. It builds a set of

movements M:{< (a,tl, R.);T >,...,< (a,t*, R,);T >} so that for each movement

»Yar »Va
< (a,t',R,); T >€ M, with i € [1;k] and T C Soly, the following properties are

rvar
verified:
— [tfl; té + durationg[N[ty; ty + durationy[# 0, V(b tp, Rp) €T
— [t4; 8y + duration [N[ty; tp + durationy[= 0, V(b, &y, Ry) € Sol
extra}: This operator is an extension of extras. The canceled activities can belong to a set
of sessions {s},...,s}} CS. For activity a € UA,, it builds a set of movements M:{<
(a,t1, R); T >,...,< (a,t*, R,); T >} so that for each movement < (a,t!, R,); T >¢€
M, with i € [1;k] and 1" C Sol, the properties below are verified :
— [th;th + durationg [N[te; ty + durationy[# 0, V(b, ty, Ry) € T
— [th; ! + durationg[N[te; ty + durationy[= 0, V(b, ty, Ry) € {Sols \ T}
destructor: This operator destroys a part of current solution Sol. It builds and applies
a set of movements M:{< 0 ; {(a1,ta;, Ra,} >,---,< 0 ; {(a,ta,, Ra,} > so that

Vi € [1; k], (as,tq;, Ra;) € Sol represents the triplet that will be removed from the Sol.

Algorithm 1 : SimuL.S

Input: Sol (the current solution), S (set of sessions), Vs € S,UA; (set of unscheduled activities
for session s), UA = |J,c s UAs (the set of unscheduled activities), noI'mprov, limitCounter
noBest < 0
counter < 0
Sol + saturator(UA)
bestSol < Sol
while counter < limitCounter do

if (noBest = nolmprov) then
Sol + destructor(Sol)
noBest < 0
end if
if UA # () then
a < random(U A)
s < (s/a e UAs)
Sol < selectOperator({intra, extra, extra™}, s, a)
end if
Sol + saturator(UA)
if Makespan(Sol) < Makespan(bestSol) then
noBest < 0
bestSol < Sol
else
noBest < noBest + 1
end if
counter < counter + 1
end while

In order to choose which operator to apply between intra, extra, extra™, SimuLS
uses the SelectOperator function that uses two specific counters ¢g,;,, and ¢ . .. The
first one, ¢}, counts the number of times where intra have been consecutively applied
to session s. The second one counts how many times activity a remained consecutively
unscheduled. By default, operator intra is applied, except whenever one of these counters
reaches a preset limit, selectOperator then activates the operator that corresponds to the

counter. In case of equality between the two counters, extra™ is always used first.

80



4 Experimental study

A mathematical model has been implemented under CPLEX. It provides optimal re-
sults for small instances with a running time of two hours or more. Table 4 presents the
comparison between CPLEX, SimuG and SimuLS on SimUSanté instances. Penalty « is
set to |T|. SimuLS was implemented in Java, on an Intel i7 7500U processor. The time
used to find solutions is always less than 1 second for the greedy algorithm SimuG and less
than 1 minute for SimuLS. The numbers in parentheses after some if the results, represent
the amount of unscheduled activities.

Table 1. Results for Brazill and Italyl instances
l Instance Brazill H Instance Italyl ‘

cplex[ SlmuG[SlmuLSl

[Si I l
[DoToCoAo| 81 [ 86 [ 83 [[DoToCoAo| 101 | 105 [ 102 |
[DoToC1Ao] 81 | 87 | 82 [[DoToCiAo| 101 [ 104 [ 101 |
[DoTiCoAr| 94 [232 (4)] 110 [[DoTiCoAi] 107 150 (1) 116 |
[DoTiCiA | 94 [232 (4)] 108 [[DoTiCiA,] 107 [187 (2) 115 |
[D1ToCoAo] 81 | 89 | 85 [[DiToCoAo| 101 [ 104 [ 104 |
[DiToCiAg] 81 | 94 | 90 [[DiToCido] 101 | 104 | 104 |
[DiTiCoA ] 96 [161 (2)] 107 [[DiThCoA.] 107 [150 (2)] 114 |
[DiTiC1 AL 96 \166 ) 110 [[D:ThCi A, 107 [180 (3)[ 115 |

Columns cplex, SimUG and SimU LS represent respectively the optimums, the results
of greedy algorithm and those of the local search algorithm. By the nature of a greedy
algorithm, SimUG cannot scheduled all activities (see instances DoT1CoA1, DoT1C1 A1,
D1T1CyA1, D1T1C1 Aq). In this case, a penalty « is applied, and the corresponding score
is rising up to 246% from optimality. In contrast, Cplex and SimU LG always schedule all
activities. SimU LG reaches optimality for Italy— DyTyCy Ag instance, and always improves
the results obtained by the greedy algorithm. The gap with optimality is less than 18%.

5 Conclusion

In this paper we have briefly introduced SimUSanté’s problem and proposed a local
search algorithm SimuLS to solve it. SimuLS is based on five neighborhood operators
dedicated to SimUSanté’s problem. Four of them allow to schedule activities but only one
without modify solution. The last operator destroys the solution in order to escape from
a local minimum. SimuLS is experimented on instances from CB-CTT, adapted to the
SimUSanté’s problem. The results obtained are compared to the optimal solutions provided
by CPLEX. Contrary to SimuG, all activities are scheduled by SimulLS. It is a first step
towards building an efficient metaheuristic to solve SimUSanté’s problem.
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1 Introduction

In this paper, we consider the Cumulative Scheduling Problem (Carlier 1987). An in-
stance of this problem is composed of a set of n tasks J = {1,...,n}. These tasks have
to be scheduled without preemption by a resource of a given capacity C. Each task i € J
cannot be scheduled before its release date r;, has a duration p;, is characterized by a tail
g; and needs c¢; units of the resource to be processed. A schedule consists in assigning a
starting time s; > r; to each task 4 in such a way that the capacity of the resource is never
exceeded : Vt, Z c < C.

ie{jeJ|s;<t<s;j+p;}

In this paper, we propose some algorithms to compute lower bounds for the optimisation
version of the cumulative scheduling problem (CUSP OPTIMISATION). In CUSP OPTIMISA-
TION we have to find a schedule which minimizes the makespan Cy,q, = max;e s {s; + pi + ¢ }-
Let C},,. be the optimal value of a given instance of CUSP OPTIMISATION. The special
case of CUSP OPTIMISATION where Vi € J,¢; = 1 corresponds to the m-parallel machine
scheduling problem Pm|r;, ¢;|Cpas- Several lower bounds of C, . have been described for
Pm|r;, qi|Cmax (Horn 1974, Labetoulle et. al. 1984, Carlier and Pinson 1998, Haouari 2003).
In (Carlier, Pinson, Sahli and Jouglet submitted), we provided caracterizations of some
lower bounds for CUSP OPTIMISATION to analyse their structural differences. It leaded to
the elaboration of new algorithms for Energetic Reasoning (ER) (Baptiste et. al. 2001) and
we discussed the transformation of the destructive energetic bound (the ER based checker
for CuSP Decision(Cinqz)) into constructive energetic lower bounds of C¥, .. In the re-
mainder let LBy(J) = max;ey {r; + p; + ¢;} be a trivial lower bound which can be easily
computed in O(n) time. The first constructive energetic lower bound, named LB¥T(.J),
relies on particular tasks for which there is at least an interval of the time horizon in
which they are necessarily scheduled because of their release dates and tails. Such tasks
are called crossing tasks. The concept of crossing tasks is related to core times. The second
constructive energetic lower bound, named LBF%(J) relies on ER. Both LB¥T(J) and
LBEER(J) were theoretically characterized in (Carlier J., Pinson E., Sahli A. and Jouglet
A. submitted).

Section 2 is devoted to the introduction of the energetic approach initially proposed for
the decision version of CuSP and its reformulation in the context of CUSP OPTIMISATION.
Section 3 explains the notion of crossing tasks which is the main concept used in LBYE(.J)
and which has also an important role in LB¥F(.J). We then describe an algorithm in
O(nlogn) time for LBEE(J). In Section 4, we describe an algorithm in O(n?) time and an
algorithm in O(a(n)nlog nlog(max;e s p;)) for LBEE(J), where a(n) is the inverse function
of Ackermann.

82



2 The energetic reasoning in CUSP OPTIMISATION

A lot of works of the literature considers the decision version of the CuSP in which
all tasks have to be completed before a given value of Cp,q,. Being given a value Chqaz,
we denote this problem by CUSP DECISION(Cjnaz). In CUSP DECISION(Chay), tails ¢;
are replaced by deadlines d;(Craz) = Cmaz — ¢i- Therefore, each task i has to processed
in interval [r;,d;(Cmaz)]- It can lead to unfeasible instances. The Energetic Reasoning
(ER) (Erschler and Lopez 1990) (Erschler 1991) (Baptiste et. al. 1999) is a very well
known technique to solve CUSP DECISION(C}y,q. ) allowing feasibility tests and time-bound
adjustments. Given a time interval [a, §], ER is based on the computation of the minimal
part, named energy, of the tasks that must be processed in any feasible schedule between
times « and ¢. The minimal energy required by task i over [«, d] is obtained from positions
of i that overlap as less as possible with the interval. The difference between the length of
a given interval multiplied by C' and the sum of the tasks energies is called the slack of the
interval. If we can find an interval with a negative slack, then the instance is unfeasible.
While the slack has to be non-negative on any interval, it is sufficient to test at most O(n?)
particular intervals (Baptiste et. al. 1999). It permitted to exhibit a checker which runs
in O(n?) time (Baptiste et. al. 2001). Derrien and Petit (Derrien and Petit 2014) have
later reduced the number of intervals which has to be considered. Ouellet and Quimper
(Ouellet and Quimper 2018) described an O(nlog®n) algorithm. Recently, we provided a
O(a(n)nlogn) algorithm for the checker (Carlier, Sahli, Jouglet and Pinson submitted),
where a(n) is the inverse function of Ackermann. We also provided an O(n?) algorithm for
time-bound adjustments (Carlier et. al. 2020).

In the context of CUSP OPTIMISATION, we use ER in algorithms in which the value of
Cnaz dynamically changes during the execution. Thus, the deadline d;(Ciaz) = Crmaz — ¢
of task i is also modified. Actually, it is simpler to manipulate directly tails ¢; which
are constant. Therefore, we propose a reformulation of ER with tails which manipulates
directly Cynqz- Instead of considering intervals, we now equivalently manipulate triplets
(0,7, Crnaz) which corresponds to intervals [a, 6 = Cirar — 7] in CUSP DECISION(Chaz)-

| CnLax - 'Y -« |
) 1
: N ) :
| Py (@) ! Cop () |
left shift | : : ' right shift ‘
|
i }
4
|
| | | | |
| ; ? ? ; | |
T o Ti +p7‘ dl — Di 1 dz = C’maw — Qi Cmam

Fig. 1. Intersection energy.

For given values of Craz, @ € {0,...,Cmaz} and v € {0,. .., Chas — a}, we define:
- 0= Cmax -
— Vi € J p} (@) = min(max(0,7; + p; — ), p;), p; (y) = min(max(0, g; + p; — ), p;) and
Wi(Cmaz, . 7y) = ¢ min(pj(oz),p;(’y), Cnaz — @ — ) is the energy of task .
— The total required energy by tasks is W(Chaz, @, v) = > ; Wi(Crmaz, @, y). The slack,
which is the difference between the maximum energy available over [a, Cpnar — 7] and

the total required energy by tasks, is S(Caz, @, ¥) = C(Cmazr —7—&) =W (Craz, @, 7).

There exists a schedule with makespan Cy,q, only if V(«, ) with « € {0, ..., Cpaz — 1}
and v € {0,...,Chrar — @ — 1}, we have S(Chaz, a,y) > 0. In fact, by adapting results of
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(Baptiste et. al. 1999, Derrien and Petit 2014), there are only O(n?) couples (a,7) values
to consider for a given value of Cqy-

3 LBFE(J): a constructive lower bound based on the notion of crossing-tasks

Given a makespan C),q., a task i is called a C,,q.-crossing-task if and only if there exists
an interval of time in which task 7 is necessarily scheduled, i.e. if Cyq0 — @ —pi < 75 +p;. If
a task 7 is necessarily scheduled during interval [t,t+1), ¢ is called a (Cyqs, t)-crossing-task
(t € {Crmaz — @ — Pis-- -, +pi — 1}).

We provide an algorithm to compute the lower bound LBE#(.J) which corresponds to
the smallest value of Cyq > LBy(J) for which for any time ¢ € {0, ..., Cpaz}, the sum of
capacities required by (Cynaz, t)-crossing tasks in J is lower than or equal to C. Let x(Cinaz)
be the set of Cy,qn-crossing-tasks and let x(Cinaz,t) be the set of (Cpaz, t)-crossing tasks.
Thus, note that LB ®(J) corresponds to the smallest value Cqp > max;e s (15 + pi + ;)
for which for any time ¢ € {0,..., Cpaz} we have Ziex(cmm,t) ¢ < C.

Note that a C,,4z-crossing-task i becomes crossing at time Ciq. — ¢; — p; while it is
not crossing anymore from time r; 4+ p;. Let T" be the list of dates in {r; + p;|i € J}. Our
algorithm iterates over the different ¢ € T in the non-increasing order. At each iteration of
the algorithm, we maintain an AVL-tree CT in such a way that it contains all (Chaqz, t)-
crossing-task. We also maintain a variable Cop in such a way it corresponds to the sum
of the capacities of the crossing-tasks over [t — 1,¢). At each iteration, we will verify that
Cor(Cmaz,t —1) < C. Tt allows to ensure that at the end of the algorithm C,, 4, has been
adjusted to the smallest value C),q, > LBo(J) for which for any time ¢t € {0, ... Chaz} we
have Cor(Craz,t) < C. To maintain these properties, we use a forward linked list allowing
the tasks i which are not crossing at time t — 1 > C),,00 — ¢; — p; to be known : these tasks
have to be removed from CT. We also use another forward list allows the tasks ¢ which
are crossing at time t — 1 > r; + p; to be known and which have therefore to be inserted in
CT. When Cer > C, we adjust C),4, in such a way that Cop < C. This algorithm runs in
O(nlogn) time. It is analogous to the sweep algorithm of (Beldiceanu and Carlsson 2002)
verifying the cumulative constraint. It uses additional data structures for adjusting C,,qz-

4 LB¥%: a constructive lower bound based on the energies

We also provide two algorithms to compute LB4%(.J) which corresponds to the smallest
value of Cyuar > LBEE(J) for which for any V(a,7) with a € {0,...,Cpas — 1} and
v e€{0,...,Cmax — @ — 1}, we have S(Cpaz, @,y) > 0.

Our first algorithm uses twice an adjustment procedure of C,,4,. Indeed, the r; and ¢;
play a symmetrical role. Therefore, for each given a € {r;,r; + pi, Crnaw — ¢ — pilt € J},
we check the couples (o, ) with v € {Crnax — i — Pis @i +Di, @iy ¢+ q; — 1]t € J} such that
v < Chnae — . Next, we build the instance in which the r; and the g; values are interchanged
and we apply the same procedure. It ensures that all relevant couples () identified by
(Baptiste et. al. 1999, Derrien and Petit 2014) are considered during the algorithm. The
adjustment procedure iteratively considers the different pertinent values of o in an outer
loop while. For each value of « it then considers the pertinent values of 7 in decreasing
order, allowing the right bound of the associated interval to increase iteratively while we
maintain the value of the required energies of the task in this interval. Each time it is
detected that the slack is negative on the current interval, the value of C,,, is adjusted
and our data structures are updated to continue the consideration of the other intervals.
The whole algorithm runs in O(n?) time and uses only simple data structures (arrays and
forward linked lists).
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Our second algorithm relies on the direct use of our checker described in (Carlier J.,
Sahli A., Jouglet A. and Pinson E. submitted) to do a dichotomic search on LBEFE(.J).
The complexity is theoretically attractive : O(a(n)nlognlog(max;cyp;)), where a(n) is
the inverse function of Ackermann.

A drawback is that we don’t compute the energetic balance of each classical interval
which should be useful for computing adjustments. Moreover, the checker uses very complex
data structures which makes it very hard to implement.
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1 Introduction

In the routing open shop problem a fleet of mobile machines has to process a set of
immovable jobs located at the nodes of some transportation network, described by an
undirected edge-weighted graph G = (V; E'), where each node contains at least one job,
and weight dist(u, v) represents travel times between nodes u and v. Each machine M; has
to perform an operation Oj; on each job J; in open shop environment, the processing times
pji are given. All the machines start from the same node vy referred to as the depot and
have to return to the depot after processing all the job. No restriction on the machines
traveling are in order: any number of machines can travel over the same edge of the network
simultaneously, machines are allowed to visit each node multiple times. However, machine
has to reach a node prior to be able to process jobs located there. The goal is to minimize
the makespan Ryp,.x, i-e. the completion time of the last machine’s activity (either traveling
back to the depot or performing an operation on a job located at the depot). The problem
is clearly a generalization of the metric traveling salesman problem and therefore is NP-
hard in strong sense even for single machine. On the other hand, it generalizes the classical
open shop problem, which is well-known to be NP-hard for the case of three and more
machines, and is polynomially solvable for the two-machine case (Gonzalez T.F. and Sahni
S. 1976). Surprisingly, the routing open shop is NP-hard even in the two-machine case on
the transportation network consisting of at least two nodes (including the depot) (Averbakh
I et. al. 2006). We use notation ROm||Rpyax for the routing open shop with m machines.
Optional notation G = X in the second field is used in case we want to specify the structure
of the transportation network, with X being the name of the structure (e.g. K, or tree). A
set of instances of the ROm|G = X|Ruax problem is denoted by ZX (or Z,, for a general
case of unspecified X).

The routing open shop problem was introduced by Averbakh I. et. al. (2005). In our
research we utilize the standard lower bound on the optimal makespan from the same paper:

= 0 { o+ T s s (1) + 20,0} 1)

n m
Here fmax = max ) pj;; is the maximum machine load, dmax(v) = ma(x) <Z pji) is
tog=1 JeET (v) \i=1

the maximum length of job from node v, with 7 (v) being the set of jobs located at v, while
T* is the TSP optimum on G. The problem under research is so-called optima localization
and can be described as follows: how much (by what factor) can optimal makespan differ
from the standard lower bound R for a given class of instances IC? More precisely, for some
class K we want to find

Riax (1)

a(K) =supa(l) =sup —=2—~.,
() = supall) = sup =0
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Here R, . (I) and R(I) denote optimal makespan and the value of R for I, respectively,

and «(I) is referred to as the abnormality of instance I.
It is known that for the classical two-machine open shop (which can be denoted as
RO2|G = K1|Rpax for consistency) optimal makespan always coincides with the standard

lower bound, therefore o (IzKl) = 1 (Gonzalez T.F. and Sahni S. 1976). It is not the
case for the three-machine problem, where optimal makespan can reach as much as %R
(Sevastyanov S.V. and Tchernykh I.D. 1998). The value of « (If 1) is still an open question,
however we have no evidence that it is greater than %. Needless to say, that similar research
for the routing open shop is probably harder even for m = 2, because the value « (If,f”)
might depend both on m and p. However, it was recently established that a (13{(2) = %

(Chernykh I. and Krivonogova O. 2020).
Current research for two machines up to the moment is as follows:

1. « (IQK2) = ¢ (Averbakh L et. al. 2005);
2.« (121(3) = g (Chernykh I. and Lgotina E. 2016);
3. a(Ziree) = g (Krivonogova O. and Chernykh I. 2019).

This paper addresses a natural question: how to stop this infinite series of incremental
results and still reach an ultimate goal of discovering the general value a (Z3).

2 Instance transformations

The research of some extremal (with respect to the standard lower bound) properties of
the set of instances (such as optima localization) is often based on some instance transfor-
mation procedures. Suppose we have some transformation which obtains instance I from I.
Such a procedure is called reversible if any feasible schedule for I can be treated as a feasi-
ble schedule for I. Reversibility means that R%, (I) > R, (I). The transformation I — T
is referred to as walid if it preserves the standard lower bound: R(I) = R(I). Obviously
for any valid and reversible transformation I — I we have oz(f ) = a(I). That observation
serves as a foundation for the following approach to investigate the abnormality «(Z) for
some set of instances:

1. Describe a valid reversible transformation on Z which simplifies the instance (i.e. re-
duces number of jobs to some constant, or simplifies the structure of the transportation
network).

2. Describe the image Z of Z under that transformation. Find o(Z).

There is a well-known transformation which reduces the number of jobs, referred to as job
aggregation or job grouping. The idea is to combine a set of jobs into a single one adding
up the processing times independently for each machine. Such a procedure was used, e.g.,
in (Sevastyanov S.V. and Tchernykh I.D. 1998) for the classic open shop problem, and in
(Chernykh I. and Lgotina E. 2016, Krivonogova O. and Chernykh I. 2019) for the two-
machine routing open shop. While the procedure is clearly reversible, its validity has to be
maintained explicitly. For example, it is possible to perform valid job aggregation for any
instance of Om||Cmax so that the resulting instance would contain at most 2m — 1 jobs
(Sevastyanov S.V. and Tchernykh I.D. 1998). As for RO2||Rmax, one can aggregate jobs
in such a valid manner that every node (except for at most one) has a single job, and the
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“exceptional” one (if any) contains at most 3 jobs (Chernykh I. and Lgotina E. 2016). Such
an exceptional node v is referred to as overloaded:

Alv) = Z iji > R — 2dist(vo, v).

jeI(w) i

However, it would be of the most interest to describe some valid reversible transforma-
tion to simplify the structure of G. An example of such a reduction is so-called terminal
edge contraction, which can be described as follows. Suppose G contains a terminal node
v # vy with a single job J; in J(v). Let u be the node adjacent to v, and 7 = dist(u,v).
We translate the job J; to the node u, increase its operations processing times by 27,
and eliminate the obsolete node v. Such a transformation is reversible, as one can treat
the processing of a new operation Oj; as a concatenation of traveling of M; from u to v,
processing of the initial operation and traveling back to w. It is proved in (Chernykh I.
and Lgotina E. 2019) that for any instance I € Z one can perform a valid transformation
I — I such that the transportation network in I contains at most two terminal nodes. This
helps to efficiently reduce any tree to a chain. On the other hand a graph might have a
complex structure even without terminal edges. Below we describe a new approach to the
instance reduction which allows to significantly simplify the structure of a transportation
network preserving the standard lower bound R.

Consider an instance I € Z. Let A =) pj; be the total load if I. Note that (1) implies

i,

A < 2€max < Z(R - T*) (2)

Let cycle o be an optimal solution of the underlying TSP. Any edge e ¢ o is referred to
as chord. A chord e is referred to as critical if removing it from G increases the standard
lower bound R.

Lemma 1. Any instance I € Iy contains at most one critical chord, which is incident to
the depot vg.

Proof. Note that the definition (1) does not depend on any distance between two non-
depot nodes, therefore a chord may be critical only if it is incident to vg. Suppose a chord
[vo, v] is critical and 7 is the new distance between vy and v after removing e from G. Then
R < 27 + dmax(v) < T* + dmax(v). Assume we have another critical chord [vg, u], therefore
R < T* + dpax(u). Combining those two inequalities we obtain 2R < dax () + dimax (V) +
2T* < A+ 2T*. Lemma is proved by contradiction with (2). O

Lemma 2. Let I € Iy, node v is overloaded and chord [vg,u] is critical. Then u = v.

Proof. We have A(v) > R — 2dist(vo,v) > R —T* and dax(u) > R —T*. Assume u # v,
then A > A(v) + dmax(u) > 2(R — T*). Lemma is proved by contradiction with (2). O

Theorem 1. Let I € Iy such that the depot vy is overloaded. Then o(I) = 1.

Proof. Note that A(vg) > R. It follows from Lemma 2 that I contains no critical chords,
therefore eliminating all the chords is a valid (and reversible) transformation of I. Now
let us replace all the jobs except the ones in the depot with a new single job J’ with
operations processing times p; =T*+ > pj;, and locate J' at vg. Obsolete nodes (all
Ji¢J (vo)
except vg) can now be removed from G, therefore G is transformed into a single-node graph
and instance is reduced to the classic O2||Cax problem, for which we know that optimal
makespan coincides with the standard lower bound. Such a transformation is reversible, as
soon as we can treat the processing of operations of job J’ as traveling along the optimal
cycle and processing the jobs on the way. It is therefore sufficient to prove the validity of
the transformation: Y, pi = 27 + A — A(vg) < 2T* +2(R — T*) — A(vp) < R. O
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Now we describe a chain contraction transformation. Suppose G contains a chain C' =
(v—v1 —v2 —...— v —u), all the nodes v1,...,v; are of degree 2, and none of them is
the depot. Let 7 be the length of chain (the distance between v and u along C) and J(C)
is the set of jobs from nodes vy, ..., v;. We now replace the subchain v; — ... — vy with a
new special node ve containing single job Jo with processing times pc; =7+ Y, pji,

J;€T(C)
and set weights of edges [v,v¢] and [ve, u] to zero.

Such a transformation is not reversible in general. To make it reversible we need to
apply certain restriction on schedules for the transformed instance:

1. If machine arrives at Jo from one end (say, from v), the machine is considered to be
at another end (say, u) after the completion of operation of job Je.
2. Any machine can bypass the node v, but this takes 7 time units.

We say that the chain contraction transformation is conditionally reversible, meaning that
we obtain a special node which has to be treated as described above.
The main result of this paper is the following

Theorem 2. For any instance I € I, there exists a combination of valid chord elimina-
tions and chain contractions I — I such that I contains at most 2m nodes from which at
most m are special.

Moreover, the structure of the resulting instance I is not arbitrary. For instance, for
m = 2 the most general structure we need to investigate is the cycle (vg —v1 — vy —v3 —vp)
with additional chord [vg, v2] and vy, v3 being special nodes. Our working conjecture is that
for any instance I of such a special structure (1) = £, and therefore a(Z3) = ¢. Theorem
2 can still be useful for a general ROm||Rmax problem, although the research for the tight

optima localization interval for m > 3 is difficult even for the classic Om||Cpax problem.
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1 Introduction

In the open shop problem sets of jobs J = {Ji, ..., J,} and machines M = {My,..., M,,}
are given. Each of job J; has to be processed by each machine M; in arbitrary order, and
this operation takes a given processing time p;;. The goal is to minimize the makespan
Cnax which is defined as a maximum completion time of the operation. We use notation
Om||Cpax for the problem with m machines. It is known (Gonzalez T.F. and Sahni S. 1976)
to be polynomially solvable in the case m = 2 and NP-hard for m > 3.

We consider the routing open shop problem being a generalization of the metric TSP
and the open shop problem. Routing open shop, introduced in (Averbakh I. et. al. 2006,
Averbakh 1. et. al. 2005), can be described as follows. Jobs are located at the nodes of
a transportation network described by an edge-weighted graph G = (V; E), each node
contains at least one job. The weight dist(u,v) represents the travel time of any machine
between those nodes. Mobile machines are initially located at some predefined node vy € V'
referred to as the depot. All the machines have to travel between nodes to process jobs
in an openshop-like environment, and to return to the depot after completion of all the
operations. The makespan R... is the return time moment of the last machine after
completion of all its operations, and has to be minimized. We denote this problem as
ROm||Rmax, or as ROm|G = X |Ryax in the case we want to specify the structure of the
transportation network. Problem is known to be NP-hard even in trivial cases with single
machine (equivalent to the metric TSP) and with two machines and just two nodes of
the network (including the depot)(Averbakh I. et. al. 2006). The latter case is denoted as
RO2|G = K3|Rpax-

Consider the following standard lower bound on the optimal makespan, proposed in
Averbakh I. et. al. (2005):

R = max {Emax + 7T, ma‘:}{(dmax(v) + 2dist(vo, v))} .
ve

n m
Here {;yax = max Y, pj; is the maximum machine load, dyax(v) = max d; = max <Z pji)
i i JET (v) jeJ(v) \i=1

is the maximum length of job from node v, with J(v) being the set of jobs located at v.
T* denotes the TSP optimum on G with distance function dist(u, v).

One of the directions of the research of an NP-hard optimization problem is optima
localization, i.e. the search of tight upper bound on the optimum in terms of the lower bound
LB. More precise, the tight optima localization interval is an interval of type [LB, pLB]|
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with the smallest possible value of p guaranteed to contain an optimum value for any
problem instance from a given set. The first tight optima localization interval for scheduling
problems was found for O3||Cpax in (Sevastyanov S.V. and Tchernykh I.D. 1998). This
research required massive computer-aided enumeration based on the branch-and-bound
method.

For the routing open shop problem this question was partly studied for the case of
two machines. It is proved in Averbakh I. et. al. (2005) that optimum of any instance of
RO2|G = K3|Rpyax belongs to an interval [R, $R], and the bounds are tight. Lately this
result was generalized for the RO2|G = K35|Rmax (Chernykh I. and Lgotina E. 2016) and
RO2|G = tree| Riyax problems (Krivonogova O. and Chernykh I. 2019). Optima localization
for the problem with three or more machines is still an open question even in case G = K.

2 Instance simplification operations

The research of the optima localization for the two-machine case is based on an instance
reduction procedure which uses two simplification operations: job aggregation and terminal
edge contraction.

Job aggregation operation (also known as grouping) utilizes a simple idea of replacing
a number of jobs from the same node with a single aggregated job for which processing
times equal to the total processing time of the respective operations combined. We use
job aggregation to simplify the instance preserving the standard lower bound R. A natural
question arises, is it possible to perform a job aggregation of a whole set of jobs at some
nodes. To answer that question, we use the following definition.

Definition 1. A node v from G(I) of some problem instance I is overloaded if
Av) = Z dj > R — 2dist(vg, v).
J; €T (v)
Otherwise the node is referred to as underloaded.

The job aggregation of the whole set of jobs in node v preserves R if and only if the node
v is underloaded.

Another operation, terminal edge contraction, is based on the following idea: translate
a single job from a terminal node v to an adjacent one u, modifying processing times of all
of its operations to include travel times (back and forth) between v and w.

Again, we want to perform an edge contraction operation only if it does not lead to
the growth of the standard lower bound R. Otherwise, the edge is called overloaded. The
following definition describes the exact condition, under which an edge is overloaded.

Definition 2. Let v # vy is a terminal node in G and there is a single job J; € J(v). Let
e = |u,v] be an edge incident to v. Then edge e is overloaded if

dj + 2mdist(u, v) 4 2dist(vo, u) > R,
and is underloaded otherwise.

Overloaded elements make the instance somehow problematic. Fortunately, the number
of such elements is rather small.

Lemma 1. Any instance of the ROm||Ryax problem contains at most m — 1 overloaded
elements.

Moreover, the number of jobs in the simplified instance is small. One of the main results
of our research is the following
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Lemma 2. Let I be an instance of the ROmM||Rumax problem and any job aggregation in I
leads to the growth of R. Then every underloaded node in I contains exactly one job, and
all the overloaded nodes (if any) contain at most 2m — 1 jobs altogether.

Instance simplification preserving the lower bound allows one to reduce the search for
the tight optima localization interval to the case with small number of jobs (depending on
m) and with simpler structure of the transportation network. The next section covers the
first attempts to discover optima localization interval for the three-machine routing open
shop.

3 Optima localization for RO3|G = Ka|Ryax

For any instance of RO3|G = Ks|Ry.x we use v to denote the node other than the
depot.

Back in 1998 Sevastyanov and Chernykh used a computer program to prove that for
any instance of O3||Ciax (which is equivalent to RO3|G = K1|Rmax) optimal makespan
does not exceed % times standard lower bound. The program is based on an intelligent
branch-and-bound-style enumeration of subsets of instances (with infinite cardinality). For
each subset a critical instance with the greatest ratio of upper and lower bounds of the
optimal makespan was found with a help of linear programming. The proof follows from
the facts that the enumeration is complete (union of the subsets considered coincides with
the whole sets of instances), and for each critical instance found the upper bound is within
the range of %R. It took about 200 hours of running time to complete the proof, including
building the structure of subsets and the search for critical instances for each one. As it
was clear that a direct application of the same approach would take enormous amount of
time, we focused our research on the possibilities to make the proof-building process more
efficient. As a result, we were able to complete the research of the optima localization of
the RO3|G = K3|Rmax problem and to prove the following theorem constructively.

Theorem 1. For any instance ofjhe RO3|G = K3|Rmax problem there exists a feasible
schedule S such that Ry, (S) < %R.

One part of the proof is based on a description of a set of sufficient conditions which
allow to reduce an instance to the case of O3||Cpax. Another one used the computer-
aided approach with some fine-tuning applied. As a result, the proof-building process was
complete in about 28 hours.

Let us focus on the running time reduction techniques. First idea was to try to reduce
the set of instances as much as possible without loss of generality. This is done by means
of the following two lemmas.

Lemma 3. For any instance of RO3|G = K| Rmax wz'lfh underloaded node v and ppax =
maxpj; = %R the optimal makespan does not exceed %R.

Lemma 4. Let I be an instance for RO3|G = Ka|Rumax problem such that A(vy) > 2R.
Then R}, < iR
The influence of the application of different combinations of these restrictions on the run-
ning time for one of the special cases of the problem is presented in Table 1.

As one can observe, that influence is not that noticeable. Luckily, we discovered another
reserve which surprisingly allowed one to reduce running time significantly.

Second idea was to reduce the set of instances by using symmetries induced by different
enumerations of jobs and machines.
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A(vo) < 2R|A(vg) is arbitrary
Pmax < 3R [17:52 min. 19:27 min.
Pmax 18 arbitrary| 20:27 min. 29:31 min.

Table 1. Running time of the original program depending on the restriction applied.

A(vg) < 2R|A(vo) is arbitrary
Pmax < 3R [00:10 min. | 01:45 min.

Pmax 18 arbitrary| 00:09 min. 02:14 min.

Table 2. Running time of the modified program depending on the restriction applied.

Further ways to improve efficiency are based on details of the computer-aided approach
and cannot be fully disclosed in the format of the current abstract. The results are covered
in Table 2.

Thus we were able to reduce the running time (for one of the special cases) by the factor
of almost 200, which gives us hope that the computer-aided approach can still be used for
wider classes of problems, i.e. O4||Cyax (an intriguing case, as we no evidence that the
optimal makespan can be greater than 3R), RO3|G = K3|Rpax and so on.

4 Conclusion

The main results of this paper are the following.

1. Description of the extremal properties of overloaded elements of ROm/||R,.x problem.

. The optima localization of the special case of the RO3|G = K3|Ryax problem.

3. Developments of the computer-aided approach with a significant reduction of the run-
ning time.

[\

An intriguing open question from (Sevastyanov S.V. and Tchernykh I1.D. 1998) still
remains: does there exist an analytic proof of Theorem 1 (as well as the optima localization
result for O3||Cinax), such that doesn’t require any computer-aided enumeration.
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1. Introduction

In the paper written by Vanhoucke and Coelho (2018), a new method is proposed to facilitate
the reporting of results for the single- and multi-mode RCPSP. We have now extended this method
with a website where researchers can download and upload solutions without much intervention,
which is the topic of this abstract.

The new website does not want to replace the well-known existing libraries such as the
PSPLIB proposed in Kolisch and Sprecher (1996), the MMLIB proposed in Peteghem and
Vanhoucke (2014) or the generic OR-LIBRARY proposed by Beasley (1990), but rather serves as
a complement. The website reports data about many benchmark datasets from the literature in a
standardized way, and also provides the best LB/UB/optimal values, the best known solutions
(start times of each activity), and also information about project indicators (network and resource
indicators). We have saved exactly one result file for each run of a complete dataset, and the
performance of the procedure used is calculated against the CPM lower bound as well against the
current best LBs and UBs.

We also present two new datasets for the RCPSP. The first so-called NetRes set has already
been proposed earlier in Vanhoucke and Coelho (2018), which is a large set of 30 activity
instances that spans a wide range for the topological network structure. The second set is totally
new and is proposed in Coelho and Vanhoucke (2020) and contains a small set of very hard
instances with 20 to 30 activities. This so-called CV set contains the smallest possible instances
that we could find for which no optimal solutions could be found using the fast and efficient
branch-and-bound procedures from the literature.

In the remainder of this abstract, we will detail how the results are reported (Section 2). In
Section 3, we describe how we will update the website tables with best known solutions for the
RCPSP and the MMRCPSP. Section 4 provides an illustrative example of an experiment with
NetRes. In Section 5, we show the diversity of the new CV dataset, and we conclude in Section 6.

2. Reporting new results

The method we propose for reporting new results is done using a single data file per dataset (in
CSV format) rather than one file per instance, containing one line per instance. Each line contains
all possible data for that instance, such that user can easily know the network and resource
indicators for each instance in the set. The results are given in a singe result file (also in CSV
format). Consequently, our method requires only a single file for each run and avoids the need to
submit one result per instance. Not only the values of the LBs and UBs are made available, but
also the obtained solutions by the author of the new algorithm (the start times of each activity), and
these results can be interesting for other researchers.

A software tool — a client tool - was developed to allow users the read and modify the results
file if they have found new and better results. In doing so, the LBs and UBs are checked
automatically for errors or inconsistencies. If no errors are found, the results file is updated and a
reference to the new paper for new solutions is given. The tool is also easy to use for selecting
only a subset of instances of a dataset (e.g. only the open or closed files or the files with LBs x%
from the best known UB) and the instances will be automatically be selected for the user in a so-
called instance file.
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The website is in  solutionsupdate.ugentbe and is integrated in  the
projectmanagement.ugent.be/research/data. The website will maintain and update Table 2 and
Table 3 of Vanhoucke and Coelho (2018) that contains data from several datasets. Other tables for
other project scheduling problems can be also added in the future.

Even if no new results are found, the website can be used to submit results before the
submission of the paper, and in doing so, the authors will have a confirmation that there results
contains no inconsistencies (such as UBs lower than a strong LB). This can be done easily using
the client tool, but when the results are put online, it also gives the reviewers the possibility to
check.

3. Update of tables of BKS on RCPSP and MMRCPSP

In this section we report current results for the tables that we intend to keep updated in the
website. Table 1 displays the current best-known results for the RCPSP and is an update of Table 2
published in Vanhoucke and Coelho (2018). More specifically, we updated the table with the new
CV set and the Patterson set. For the NetRes set, we also reported the results for the 1kNetRes set,
which contains results for a subset of NetRes in which each instance is selected in steps of 1,000
(reducing the number of instances to e.g. 540,000 to 540 for the NR(SP) set). We can now
compare the results with the table in the original paper to see the progress made in the last few
years by many authors. The table reports the number of open instances in the PSPLIB (J60 to
J120) have been reduced. This data is not easily detectable from the PSPLIB website as done in
Table 1.

Table 1. Best-known results for the RCPSP

Dataset Subset #lnstances #0Open %CPM GAP
Ccv 623 623 142.21% 33
RG30 1,800 116 39.27% 2.0
RG300 480 377 956.71% 35.2
DC1 1,800 0 26.57% 0.0
DC2 720 210 274.20% 7.6
PSPLIB J30 480 0 13.38% 0.0
J60 480 37 10.37% 6.3
J90 480 66 9.43% 75
J120 600 290 29.01% 8.0
NetRes NR(SP) | 1k 540,000 | 540 25,591 |12 78.8% | 72.9% 53|18
NR(AD) |1k 480,000 | 480 44,855 |7 98.8% | 56|11
102.4%
NR(LA) |1k 720,000 | 720 24610 58.4% | 58.9% 4610.0

NR(TF) |1k 720,000 | 720 23544|0  68.3%|64.7% 6.4]0.0
NR(RC) | 1k 540,000 | 540 10,333|0 66.3% | 71.6% 6.0]0.0
NR(RU) |1k 270,000 | 270 37610 73.6% | 77.0% 9.3]0.0
NR(VAR) | 1k 540,000 | 540 4,722 |0 87.3% | 91.9% 43100
Patterson 110 0 18.04% 0.0
As mentioned earlier, with this updated data, a reviewer can easily check whether some new
results on the RCPSP are within a valid range by e.g. checking the percentage deviation of the LB
over the CPM. Also, the sum of time units of both best lower bounds and best upper bounds is
provided, and this indicator can be checked in the same way than the %CPM. This does not rule
out the possibility of less credible researchers to invent and manipulate results, but prevents errors
unwillingly made by the researchers. Nevertheless, the reviewer can also ask the researcher to
submit a result file to the website, so the results can always be checked, even if there are no new
LBs or UBs.
Table 2 displays the current best-known results for the MMRCPSP, and is an update of Table
3 published in Vanhoucke and Coelho (2018). The LBs are updated with the work of Stiirck
(2018), and compared with the version published in the paper, this new data lead to a larger
number of instances closed in the MMLIB. This illustrates and highlights the importance of
research on LBs as much as on UBs. Note that in the Boctor instances, the GAP between the UBs
and the LBs is very high. This is mainly because no good LBs exist for these instances, since these
instances do not contain non-renewable resource. The MMLIB site is no longer available, but the
final UB values from 2018 are used in our website to guarantee we have used to most recent
results. As for the RCPSP, a reviewer can also check new results.
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Table 2. Best-known results for the MMRCPSP

Dataset Subset #Instances #Open %CPM GAP
PSPLIB J10|J12|J14| 536|547|551 0]0]|0|0|0| 32%|27% | 0.0/0.0]0.0]
J16|J18|J20 | 550 | 552 | 0 24% | 19% | 0.0/0.0/0.0
554 18% | 17%
J30 552 245 12.28% 6.5
Boctor Boct50 120 120 22.74% 52.6
Boct100 120 120 22.91% 103.6
MMLIB MMLIB50 540 95 22.29% 9.3
MMLIB100 540 151 21.35% 10.8
MMLIB+ 3240 2439 78.77% 37.2

4.  Anexample of an experiment with NetRes

The NetRes set was proposed in Vanhoucke and Coelho (2018), and the goal was to create a
set with high diversity in terms of the project indicators, but also to provide a large number of
instances available such that researchers can select subsets they need. Several analyses are done in
the original paper, but we have select Table 5 of the original paper and replicate results in Table 3
that measures the impact of the project indicators using the exact procedure of Demeulemeester
and Herroelen (1992). An instance is considered hard if it could not be solved in 1 second, and the
table shows the percentage of hard instances of each value of the project indicator (SP, AD, LA,
TF, OS, RC and RS).

Table 3. Percentage of hard instances in NetRes depending on each project indicator

SP AD LA TF oS RC RS
0-0,1 54% - 49% 04% 59% 0% 7.4%
0103 13% 15% 03% 05% 31% 91% 7.2%
03-05 02% 45% 01% 28% 13% 49% 13%
05-0,7 0% 13% 01% 8% 04% 38% 0.5%
07-09 0% 49% 0% 17% 0% 18% 0.1%
0,9-1 - 1.9% - 24% 0%  14% 0%

As we can see in Table 3, most of the instances in this set are closed, but we can now visualize
where the most complex instances are for each indicator. All the findings are more or less known
(except for the new project indicators AD, LA and TF). For example, parallel networks (low SP
and OS values) are harder to solve, and for the RC indicator, an easy/hard/easy phase transition is
found, which confirms the results of Herroelen and De Reyck (1999). A similar effect is found for
the AD indicator, and the indicators LA and RS provide more hard instances when the indicator is
low. The TF indicator provides harder instances when it is high.

The Table 3 is an example of an experiment that could not be easily done if no instances are
available for all values of all these indicators. Vanhoucke et. al. (2016) have shown that most sets
are not diverse enough, and only contain instances with values between 0 and 1 for some
indicators, while others are largely ignored.

We expect that the NetRes set will be interesting for research where statistical tests are used
extensively. A deeper study into the relation between a given project indicator and the
performance of a solution procedure requires data that spans the full range of complexity. The
client tool can help selecting the subset of instances necessary for such a study. Moreover, the
large volume of instances with solutions could potentially be interesting for researcher using
machine learning making use of the current best-known solutions on a large amount of data to
train the data.

5. Diversity of dataset CV

Table 4 displays the distribution of the CV instance set for several project indicators used in
Vanhoucke et. al. (2016). Recall that this set contains instances that are currently unsolvable. The
table shows that this set of hard instances still contains instances with diversity in the network
structure and resource constraints, and hence, not only contains instances with very parallel
activities. All topological indicators are spread over a wide interval except for LA that is
concentrated around values below 0,2. For the resource indicators, the RS is not very diverse and
most of the instances have a value lower than 0,2. The diversity is higher for the other resource
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indicators, with RU greater than 2, RC between 0,2 and 0,5, RF greater than 0,8. This set is said to
be very hard to solve, and researchers could focus their research time trying to solve these
instances to optimality.

Table 4. Distribution of instances in CV dataset by several project indicators

#Activities #Resources CNC oS SP AD
20-21 #4 1#1 0-1#405 0-0,1 #85 0-0,1 #232 0-0,2 #8
22-23 #18 2 #39 1-2 #176 0,1-0,2 #416 0,1-0,2 #316 0,2-0,4 #79
24-25 #41 3 #85 2-3 #24 0,2-0,3 #99 0,2-0,3 #62 0,4-0,6 #243
26-27 #95 4 #498 3-4#6 0,3-0,4 #13 0,3-0,4 #12 0,6-0,8 #229
28-30 #465 4-8 #12 0,4-0,6 #10 0,4-0,5 #1 0,8-1 #64

LA TF RC RF RU RS
0-0,2 #592 0-0,2 #28 0,2-0,3 #57 0,5-0,6 #9 1-2 #34 0-0,1 #533
0,2-0,4 #10 0,2-0,4 #48 0,3-0,4 #258 0,6-0,7 #13 2-3#84 0,1-0,2 #87
0,4-0,6 #11 0,4-0,6 #138 0,4-0,5 #285 0,7-0,8 #153 3-4 #505 0,2-0,3 #3
0,6-0,8 #7 0,6-0,8 #220 0,5-0,6 #10 0,8-0,9 #245
08-1 #3 0,8-1 #189 0,6-0,8 #13 0,9-1 #203

The reason why we claim these instances are hard is that we have tried to solve these instances
using 20 hours of CPU time for each instance with the procedure presented in Coelho and
Vanhoucke, M. (2018), and we have reported the best found LB and UB. The percentage over the
CPM of LBs is 129%, and this percentage increases to 142% when compared with the UBs,
leaving enough space to find improvements for the 623 instances.

It is interesting to note that we have kept these instances as small as possible. Most instances
contain 20 activities, and go up to 30 activities maximum, and some of them make use of only 1
renewable resource.

6. Conclusion

In this abstract, we present a new contribution to the academic community with a tool to keep
the current results for the RCPSP and MMRCPSP updated at all times. The tool intends to save the
latest results from all datasets in a standardized way, validates new results and provides
performance indicators. We also provided a new large dataset NetRes that is diverse in several
project indicators, allowing doing analyses for several project indicators, and a second new dataset
CV with only small instances that are still not solved to optimality. We hope and believe that this
tool and the new dataset can be used in new research studies, which can lead to entirely new
solution procedures that can solve small but very hard instances to optimality.
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1 Problem definition:

Parallel machine scheduling (PMS) problems are multi-stage scheduling problems, which
are widely researched owing to their theoretical importance and multiple applications in
manufacturing, cloud computing, and project management, among others. Real-life PMS
settings involve uncertainty about task duration, which may be characterized by the ran-
domness of each task duration and, possibly, a dependence between task durations.

An ideal scheduling approach should accommodate uncertainty to ensure realistic guar-
antees on the objective function value and permit adjustments of later-stage decisions based
on different observed task lengths (e.g., different duration realizations of the task scheduled
first may result in different allocation decisions of the next tasks).

Real-life parallel machine scheduling problems can be characterized by: (i) limited in-
formation about the exact task duration at scheduling time, and (ii) an opportunity to
reschedule the remaining tasks each time a task has completed processing and a machine
becomes idle. Robust scheduling has been used to deal with the first characteristic. How-
ever, the existing literature on robust scheduling does not explicitly consider the second
characteristic — the possibility to adjust decisions as more information about the tasks’
duration becomes available, despite the fact that re-optimizing the schedule every time
new information emerges is a standard practice.

2 Methodology /results:

In this paper, we develop a robust optimization based scheduling approach that takes
into account, at the beginning of the planning horizon, the possibility that scheduling
decisions can be adjusted. We demonstrate that this adaptive approach can lead to better
here-and-now decisions. To that end, we develop the first mixed integer linear programming
model for adjustable robust scheduling, where we minimize the worst-case makespan. Using
this model, we show via a numerical study that adjustable scheduling leads to solutions
with better and more stable makespan realizations compared to static approaches.

We focus on makespan minimization, which is a standard performance measure for
PMS. Indeed, makespan minimization is used for load balancing, an important issue for
many scheduling applications. When deciding whether to use the expected value or worst-
case value, several factors should be considered. Optimizing over an expectation requires
specifying the full probability distribution of task duration, information that is often not
readily available or is costly to acquire. Moreover, the makespan of a single realization
can significantly differ from the expected value; thus, if the exact scheduling problem is
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not repeated multiple times, optimizing over the expected value may not be translated into
good performance in practice. In contrast, much less information is needed when specifying
a set that includes all the reasonable duration realizations, and a worst-case optimization
approach provides a guarantee on the performance of any realization in such a set. There-
fore, we choose a setting where the scheduler minimizes the worst-possible makespan of a
set of tasks over some uncertainty set, which captures all reasonable scenarios within the
support of the distribution. This is in line with the paradigm of Robust Optimization (RO),
where the best solution is sought under the assumption that the problem’s parameters are
initially unknown and that, given the decisions, nature picks their worst-possible values
from an uncertainty set consisting of outcomes that include the true realization with high
probability.

We consider the classical version of PMS, where m identical machines process n > m
tasks that are available at the start of the scheduling horizon. For this problem, we con-
struct a mixed integer linear optimization problem for minimizing the worst-case makespan,
which includes all possible later-stage (re-)scheduling decisions. We compare the adaptive
formulation’s optimal scheduling decisions and optimal worst-case makespan to those of
the optimal static allocation (SA) and static list (SL) policies.

In contrast to the majority of previous works, which compare naive implementations of
the SA and SL policies without re-optimization (i.e., re-scheduling) as more information
is revealed, we consider the more realistic rolling horizon implementation of these policies.
Under this implementation, whenever one of the machines becomes idle, the scheduler
can alter the initial order of tasks by re-solving an optimization problem with the extra
information included.

3 Managerial implications:

We outline our main managerial insights for the studied setting. The insights are rel-
evant to schedulers within multiple domains that can be modeled via PMS such as pro-
duction lines in which machines process a set of tasks, computer multiprocessors (“cloud
processing”) for processing jobs, shipyards and ports in which ships are loaded and un-
loaded, doctors who treat patients in a walk-in clinic or triage setting, and teachers who
educate student groups, just to name a portion of the potential use-cases.

First, our study shows that capturing the uncertainty and the relations between the
durations of different tasks is vital to a realistic assessment of the makespan. Indeed, there
are many settings in which the probabilistic knowledge about task durations is limited or
costly to attain. In such circumstances, it is rather easy to design a polyhedral or ellipsoidal
uncertainty set that frames the involved uncertainty. Ben Tal et al.(2009) provide guidance
and probabilistic guarantees in favor of designing uncertainty sets that balance the level
of conservatism and the probability that a constraint is violated by a scenario. Ideally, we
would like to design the smallest uncertainty set that still captures the meaningful scenarios
(e.g., the probability that a scenario is not included within the uncertainty set is lower than
a pre-specified threshold).

Secondly, whenever the optimal wait-and-see decisions can be taken into account in the
planning stage, this should be done as it lowers the maximum possible project makespan
that the scheduler can promise. In other words, a bid prepared by a decision-maker who
accommodates wait-and-see decisions and thus can commit to a lower makespan (and cost)
would be more competitive than a bidder that does not explicitly take into account the
possibility that decisions can be adapted. In particular, our experiments point out that the
average advantage of adaptive-based bids is estimated to be 5 — 9% over its non-adaptive
(i.e., ‘regular’ RO) counterpart. We note that an adaptive policy need not necessarily be
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achieved by solving our mixed integer linear formulation. Indeed, it is likely that heuristic
methods can be of help as well, and should be explored as an alternative to static policies.

While the previous point dealt with the superiority of adaptive robust policies over
their static counterparts in the planning and contract stage, they are also preferable in
the implementation stage. Specifically, policies that take the later-stage adaptivity of the
decisions into account remain preferable even when the static policies are re-optimized every
time new information becomes available (rolling-horizon). A hint into the reason for this
is provided by the 42 — 59% of the problem instances in which an adaptive policy yielded
different first-stage decisions compared to a SA policy. That means that the adaptive
policies not only offer better project makespan guarantees, but also select decisions that
lead to better realized duration.

A very attractive feature of the adaptive policies, as revealed through our experiments,
is that their performance is comparable to the perfect hindsight policy (e.g., the average
difference between the promised and max perfect hindsight makespans was 0.0—0.1% for the
optimal adaptive policy compared to 5.7 —9.8% for the static robust policy). This suggests
that the adaptive robust policy not only protect the decision-maker against adversarial
realizations of reality but it also performs close to the perfect hindsight policy. Thus, the
typical criticism about the conservatism of static robust policies (i.e., the high price paid
for robustness) does not apply to the adaptive scheduling policy.

In conclusion, while robust SA policies are widely investigated and used in risk averse
settings, they may achieve inferior performance in practice compared to adaptive alter-
natives. Since the performance gap between an optimal adaptive policy and a static one
is quite significant, we recommend allocating resources for finding good adaptive policies,
even if those policies are not necessarily optimal. We believe that these adaptive policies
will grant their users competitive advantages both in the proposal bidding stage and in the
implementation stage.
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1 Introduction

Over the past decades, the resource-constrained project scheduling problem (RCPSP)
has become a standard problem in the operations research literature. The goal of the
RCPSP is to schedule a set of project activities V' = {0, 1,...,n} such that the makespan of
the project is minimized, while satisfying precedence and resource constraints. Precedence
constraints impose that an activity ¢ : ¢ € V can only start upon completion of all its
predecessors P; = {j|(j,i) € E}, where E is the set of precedence constraints. Resource
constraints, on the other hand, impose that an activity i can only be scheduled if sufficient
resources are available. There are K renewable resource types, and the availability of each
resource type k : k € K = {1,2,..., K} is denoted by Rj. Each activity ¢ requires 7;
units of resource k. A solution to the RCPSP is a schedule S = {5y, S1,...,S,}, where S;
is the starting time of activity 7. The project starts at time Sy = 0, and completes at .Sy,
where activities 0 and n are dummy activities that represent the start and the completion
of the project, respectively. In addition, define <7 (S,t) = {i : S; < ¢t A (S; + pi) > t}, the
set of activities in schedule S that are active at time ¢, where p; is the duration of activity
1. Without loss of generality, we assume p; € N for all ¢ : ¢ € V. The RCPSP can then be
formulated as a combinatorial optimization problem:

min S,
s.t. Sy +pi <5 Y(i,j) € E
Z ik < Ry Vvt > 0,Vk € K
icd (S,1)
S; >0 VieV.

Note that we assume that activities are executed without preemption, and that scheduling
decisions are made at discrete points in time.

Blazewicz et al. (1983) have shown that the RCPSP is strongly .4 #-hard, which
explains the abundance of heuristic solution methods in the literature (refer to, e.g., Kolisch
and Padman, 2001; Kolisch and Hartmann, 2006; Hartmann and Briskorn, 2010). In this
abstract, however, we focus on exact methods. Among exact methods, the branch-and-
bound (BB) procedures of Demeulemeester and Herroelen (1992, 1997), Mingozzi et al.
(1998), and Sprecher (2000) are still the most successful approaches to solve the RCPSP. In
what follows, we compare the performance of several lower bounds (LBs), and compare the
performance of four BB procedures and the state-of-the-art procedure of Demeulemeester
and Herroelen (1997).
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2 Branch-and-bound procedures

A BB procedure is an iterative algorithm that implicitly enumerates the state space
of a combinatorial optimization problem using a search tree. The root node of the tree
corresponds to the original optimization problem, and its child nodes correspond to sub-
problems or feasible solutions (also called “leaf nodes”). Each iteration, a search strategy
is used to select the active node from which new nodes (i.e., children) are generated using
a branching scheme. If it can be shown (using dominance rules and/or bounds) that the
optimal solution cannot be found by visiting the children of a node, that node is fathomed
(i-e., its branch is pruned from the search tree). Eventually, if all nodes have been (implic-
itly) visited, the procedure stops, and the optimal solution is obtained as the best feasible
solution found in any of the leaf nodes.

Several BB procedures for solving the RCPSP have been proposed in the literature. In
most of these procedures, nodes correspond to partial schedules, and a depth-first search
strategy is used to select the next active node. The procedures, however, use different
branching schemes and pruning methods (i.e., dominance rules and LBs). In this abstract,
we consider the following branching schemes:

— The precedence tree branching scheme proposed by Patterson et al. (1989), and later
on adopted by Sprecher (1998).

— The delay alternatives branching scheme proposed by Christofides et al. (1987), and
later on adopted by Demeulemeester and Herroelen (1992, 1997).

For other branching schemes, refer to Stinson et al. (1978), Mingozzi et al. (1998), and
Igelmund and Radermacher (1983). Even though a depth-first search strategy is generally
accepted as the best choice, in this abstract, we will also consider a breadth-first search
strategy. This results in four BB procedures to be tested.

3 Dominance rules

Several dominance rules have been proposed in the literature. The state-of-the-art pro-
cedure of Demeulemeester and Herroelen (1992, 1997) uses the following dominance rules:

— DH1: if an activity 7 cannot be scheduled together with any other activity, it should be
started at the first time possible.

— DH2: if a pair of activities ¢ and j cannot be scheduled together with any other activity,
they should be started at the first possible time possible.

— LLS: we can fathom a node that is associated with a (partial) schedule where an activity
i can be scheduled 1 time unit earlier (i.e., where activity 7 can be left-shifted). A global
variant of this local left shift rule can also be devised (see e.g., Schrage, 1970).

— CUT: we can fathom a node associated with (partial) schedule S’ if we previously have
saved another (partial) schedule S” that dominates schedule S’. Note that Demeule-
meester and Herroelen (1992, 1997) use a hash function to save (partial) schedules.

From these dominance rules, we will only consider CUT. In contrast to Demeulemeester
and Herroelen (1992, 1997), however, we do not overwrite a schedule if a schedule is already
stored at a given hash (i.e., we keep track of all schedules).

4 LBs

In the literature, we distinguish between two classes of LBs: (1) complex procedures
that are used to obtain a very tight LB and (2) fast procedures that can be evaluated as
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part of a subroutine in the nodes of a BB procedure. In this abstract, we focus on the
latter class of LBs. Several of these LBs have been proposed in the literature (refer for
instance to Brucker et al. (1999, 2003), Klein and Scholl (1999), Knust (2015), and Coelho
and Vanhoucke (2018)). In this abstract, we consider the following LBs:

— CPL: the critical path LB.

— CS: the critical sequence LB that was introduced by Stinson et al. (1978).

— LB3: the node-packing LB as implemented by Demeulemeester and Herroelen (1997).
This bound ranks activities in a list based on the number of “companions” each activity
has (i.e., the number of activities with which it can be scheduled in parallel). To
construct the LB, activities (and their companions) are removed from the list.

Next, we propose two new LBs:

— LB4: an extension of LB3 that recalculates the list of activities each time an activity
(and its companions) is removed from the list.

— LBO: an overflow LB that determines the overflow (i.e., the remaining work contents)
of activities that cannot be fully scheduled in a schedule that uses the critical path as
a baseline; the remaining work contents is scheduled after the critical path.

The performance of the different LBs is evaluated for the instances of the well-known
J30, J60, J90, and J120 PSPLIB data sets (Kolisch and Sprecher, 1996). For each data
set, Figure 1 reports how often a LB is one of the dominant LBs. Conversely, Figure 2
reports how often a LB is uniquely the dominant LB. From the results it is clear that LBO
performs very well, especially if larger projects are considered.

90%
81% % 83%
73%
62% 68%
33%
20% 20%
|
CPL cs LB3 LB4 LBO CPL cs LB3 LB4 LBO
190 96% 1120 95%
76% iad
:
4% 46%
17%
| —
CPL cs LB3 LB4 LBO CPL cs LB3 LB4 LBO

Fig. 1. How often is a LB the best LB

5 Results
In this section, we compare the performance of the procedure of Demeulemeester and

Herroelen (1997) (as implemented in the Rescon software; see also Deblaere et al. (2009))
and four other BB procedures:
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CPL cs LB3 LB4 LBO CPL Ccs LB3 LB4 LBO
J90 J120

20%
0% 4% 0% 0% - 0% 5% 0% 0%

CPL cs LB3 LB4 LBO CPL cs LB3 LB4 LBO

Fig. 2. How often is a LB better than any other LB

— Precedence tree branching scheme and depth-first search strategy.
Precedence tree branching scheme and breadth-first search strategy.
Delay alternatives branching scheme and depth-first search strategy.
Delay alternatives branching scheme and breadth-first search strategy.

Each of these BB procedures is equipped with the CUT dominance rule, and with LBs
CPL, CS, LB3, LB4, and LBO. In addition, the procedures that adopt a breadth-first search
strategy evaluate a trivial upper bound in each node. We use these procedures to solve
all instances of the J30 PSPLIB data set. In order to make a fair comparison, all tests
are performed on the same computer: an Intel I5 2.6GhZ computer with 8GB of working
memory.

The result of the preliminary test are reported in Table 1. From the table it is clear that
we easily outperform the procedure of Demeulemeester and Herroelen (1997). In addition,
the results also show that, in contrast to popular belief, a breadth-first search strategy
almost performs as good as a depth-first search strategy.

Table 1. Benchmark results for procedure of Demeulemeester and Herroelen (1997) and various
other procedures that are equipped with dominance rule CUT and LBs CPL, CS, LB3, LB4, and
LBO

Precedence Tree Delay Alternatives

DH1997 Depth Breadth Depth Breadth
First First First First

# Nodes 19.30E6 167.14E6 14.48E6 11.66E6 6.36E6
CPU (sec) 374 1185 209 207 149

We have also performed a number of other preliminary tests that use new dominance
rules and LBs that have not been discussed in this abstract. The results of these experiments
have shown that we can solve all instances of the PSPLIB J30 data set in 27 seconds (while
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visiting 6.15E6 nodes). If we minimize the number of visited nodes, we end up with 1.29E6
nodes over all instances of the J30 data set (with a CPU time of 183 seconds). Compared
to the state-of-the-art procedure of Demeulemeester and Herroelen (1997), this results in
a improvement of factor 13.8 for CPU times and of 14.8 for memory requirements.
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1 Introduction

Air traffic has been constantly increasing over the past decades, and its annual growth
for the next ten years is estimated to 4.6% (Boeing Commercial Airplanes 2019). An
efficient management of the airport infrastructures is therefore crucial in order to avoid
congestions and delays which are causes for high costs and customer dissatisfaction. Poor
planning of ground handling is one of the main sources of delays (Oreschko et. al. 2011).
Ground handling consists of those services which are necessary to prepare the aircraft for
its next flight and are performed at the gates or at parking positions. Such services include
baggage loading and unloading, interior cleaning of the aircraft and refueling. Aircrafts are
kept on the ground for a limited amount of time, which causes ground handling tasks to
have restricted time windows within they can be performed. It is desirable to get the ground
handling tasks done as soon as possible, to make sure that the aircrafts are ready before
the scheduled take-off time. Since ground handling tasks, from now on simply denoted as
tasks, are interdependent, any delay could propagate to other tasks. Missing the due date
of a task might lead to a flight delay, which translates to penalty costs and reduced quality
service for the ground handler. Specialized workforce, the ground personell, is responsible
for performing the tasks. Each ground worker has a qualification level, which allows her/him
to perform tasks with a requirement equal or lower to her/his own. The planner has to
assign the workers to the tasks according to their qualification level, and schedule the tasks
avoiding workforce shortage and meeting the due dates.

In this paper, we propose a solution method, for the mentioned problem, based on the
branch and price framework, where column generation is used to find a lower bound.

2 Problem Definition

Planning ground handling is a combination of routing, assignment and scheduling prob-
lems. The tasks are performed by teams of workers. The workers are grouped into teams
making sure they have an adequate qualification to perform the assigned tasks. The qualifi-
cations are definded as hierarchical skill levels. Workers can perform a task of a certain level
only if their skill level is equal or higher. Since the tasks are located at different parking
positions, we have to plan a route for the workers, so that they are present at the locations
of the tasks in time to carry them out. A schedule for all the tasks has to be found, so that
the tasks are performed as soon as possible.

Some of the tasks can be performed in more than one execution mode. An execution
mode defines the number of workers needed to carry out the task in a certain amount of
time. Modes which require more workers to perform a task also require less time. Teams
can only perform tasks which entail a mode requiring a number of workers equal to the
number of members of the team. In order to avoid complex synchronizing interactions, the
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workers leave the depot in teams, reach one or more task locations at which they perform
the corresponding tasks and return back to the depot. Teams are not fixed for the whole
time horizon, since the workers are free to form new ones as they come back to the depot.
Let us define 7 as the set of tasks and K as the set of possible skill levels. Each task i
has to be performed within its time window [ES;, LF;]. The set M; = {mJ"", ..., m}
represents the different modes in which task i can be peformed. When task i is per-
formed in a certain mode, the number of workers needed corresponds to m,;, while p;
is the corresponding execution time; notice that p; , > p;,m+1. The earliest finish time is
therefore B F; = E'S; + p; mmax. We define a tour r as the sequence of tasks carried out by a
team composed by f,. members with skill levels equal or higher than ¢,.. During its tour, the
team can perform tasks with a skill level requirement equal or lower than ¢, which entails
an execution mode equal to f,. The tour r specifies the start time S} and end time F;" for
each performed task. A feasible tour r must therefore be compliant with the following;:

S; > ES;

F] < LF;

Si +pim = F;

S; > F +d;
where 7 and j represent two consecutive tasks in the tour sequence and d; ; is the time
needed to go from ¢ to j. Since our goal is to complete the tasks as soon as possible, we

introduce a penalty for each scheduled task, that is the difference between its earliest finish
time and its actual finish time. We can therefore define the cost ¢” of a tour r as

¢ =3 (F ~EF) (1)

where Z,. is the set of tasks performed during the tour. Supposing we can generate all
possible team tours, we can write down the following formulation:

K
min Z Z CLAL (2)

k=1re2
s.t. > ap > VkeK,Viel (3)
ey
K K
SN A <) Ne Vke K,VteT (4)
k'=kref2,, k=k’
% €10,1] Vk € IC,Vr € (2 (5)

The tours are grouped by skill level k£ in order to simplify the notation. The set of tours
of skill level k is {2, and A} is the binary variable which is 1 if tour » of skill level k is
selected in the solution, 0 otherwise. The parameter aj, ; is equal to 1 if the team from
tour r performs task ¢, O otherwise. The parameter bj , is equal to the number f of team
members (which need to own a skill level of at least k) for those instants ¢ when the team
is operating, 0 otherwise. The overall number of available workers of skill level k is denoted
as Nj. Constraint (3) enforces that every task is performed. Constraint (4) ensures that

the number of workers is not exceeded in any time instant.

3 Literature Review

Given its strategic importance, ground handling has been considerably investigated in
the literature. Nevertheless, not many publications tackle the problem from a combined
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scheduling and routing point of view. In Dohn et. al. (2009) teams are fixed before they
are routed across the tasks. There is no schedule time optimization since the focus is
to maximize the number of tasks performed. Fink et. al. (2019) focus on the Abstract
VRP with Workers and Vehicle Synchronization (AVRPWYVS), which they apply to ground
handling. This problem, however, does not include any kind of qualifications or skills, which
are necessary in such a setting. In the AVRPWYVS, workers need to be synchronized in time
and space at the task locations. This dramatically increases the complexity, making it hard
to solve real-world instances. Dohn et. al. (2009) as well as Fink et. al. (2019) use a column
generation approach, which is known to have good performances in solving vehicle routing
problems with time windows (see Desrochers et. al. (1992)). Manpower allocation with
hierarchical skill levels has been investigated, on a general level, by Bellenguez-Morineau
and Néron (2007). Practical applications can be found in Cordeau et. al. (2010) and Firat
and Hurkens (2012). In these papers, the travel time needed to move from the location of
a task to another one is neglected, differently from our problem setting. The multi-mode
RCPSP has been solved to optimality by Sprecher and Drexl (1998). In Hartmann and
Briskorn (2010) a survey on the topic can be found.

4 Proposed Solution Approach

We propose the use of column generation to find lower bounds, and branch and price
to find the optimal integer solution. We define the continuous master problem (MP) as
the linear relaxation of the model proposed in Section 2. The value of an optimal solution
of the MP is therefore a lower bound for the original problem. Furthermore, we introduce
the restricted master problem (RMP), which has exactly the same structure of the MP,
but is defined over a subset of tours ¥ C 2. Column generation consists of an iterative
process where RMP is solved and the values of the dual variables are used to generate new
promising tours. A new tour can improve the current RMP solution only if its reduced cost
is negative. If it possibile to generate a new feasible tour with a negative reduced cost, the
tour is added to ¥ and a new iteration of the column generation starts. Otherwise, the
current solution of the RMP cannot be improved, therefore it is optimal for the MP and
its value is a valid lower bound for the original problem. The reduced cost of a tour r with
f team members working at level & is the following:

Ch— > aj ki + > b Ok (6)

i€ teT

where i and § are respectively the values of the dual variables corresponding to constraints
(3) and (4). The reduced cost of a team tour can be interpreted as follows. For each task
performed during the tour, a penalty has to be paid if the end time is subsequent to the
earliest finish time (c},). The first summation is a reward obtained for every performed task
while the second summation is a penalty paid for using limited resources (i.e. workers) at
specific instants in time. The pricing problem is the problem of finding a tour of minmum
reduced cost. Since a tour has a predefined number of team members f who work at a
maximum skill level ¢, we have to solve the pricing problem multiple times with different
settings. When solving a pricing problem for a team of f workers working at level ¢, only
the tasks involved are those which entail an execution mode with f workers and whose
skill level requirement equal or less than q. We can model the pricing problem with a time
expanded network, where we have two types of nodes for each task: start nodes and end
nodes. For each suitable task i, the network encompasses a start node for each possible start
time of 7, and a leave node for each instant from EF; until the end of the time horizon.
Each start node has one outgoing execution arc connecting it to an end node according to
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the execution time. The weight of an execution arc from node (i,tg) to (i,tr) corresponds
to the reward for performing task ¢, plus the penalty for ending i at ¢tz (if any) and the
penalty for keeping f workers busy from tg to tr. An end node (i,¢;) is connected to a
start node (j,t;) with a travel arc if i # j and t; = t; + d; ;. Travel arcs also connect the
source node to all start nodes and all end nodes to the sink node. Start and sink nodes
represent, respectivly the leaving from and the returning to the depot. The weights of the
travel arcs represent the penalty for keeping the workers busy from ¢; to t;. If the origin
of the arc is the source node, t; = t; — ddepot,; While if if the destination of the arc is the
sink node, t; = t; + d; depos. Eventually, two consecutive end nodes (i,t;) and (4,t; + 1)
referring to the same task i are connected with a waiting arc. The weight of a waiting arc
corresponds to the penalty for keeping workers busy, therefore it follows the rule for travel
arcs. Given the described network, the pricing problem can be solved finding a shortest
path from the source node to the sink node.

5 Experimental Study

In order to verify the quality of our approach we will test the proposed algorithm on
data from a major European airport. Based on these data, we generated various realistic
test instances. The instances cover from 30 minutes up to 4 hours of a working day. Since
the flights are not equally distributed during the day, we differentiate the instances in low,
medium and high workload. The final results of the experimental study will be presented
in the conference.
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1 Introduction

A wireless sensor network (WSN) is a set of sensors, randomly deployed in an
area often hard or dangerous to access and without any infrastructure. Hence,
the batteries of the sensors are not refillable which limits the lifetime of the
network, i.e., how long it can operate. There are several types of sensors for
different applications, and we focus in this work on the target tracking. In such
applications, the network aims to monitor a set of moving targets (planes, trains,
terrestrial vehicles,. .. ), whose spatial trajectories are estimated. It means that,
at instant ¢ in the time horizon, we have an estimation of the position of each
target. However, this estimation may not be accurate, and the difficulty of the
problem is to cover the targets considering the highest possible deviation from
their estimated trajectories. Moreover, in order to preserve energy in the net-
work for future mission, at most one sensor per target should be used at any
time. Finally, all the data collected by the sensors have to be transmitted to a
base station. The problem is to find a robust schedule to continuously monitor
the targets and to transfer the data. This schedule is robust because it has to
maximize a spatial stability radius, such that, it stays feasible as long as the
targets are not deviated for more than the value of the stability radius from
their estimated position. The targets are covered at every instant ¢ as long as,
they are located in the disc of radius equals to the stability radius and centered
on the estimated position of the target. In this work, we propose (i) a discretiza-
tion method on the geometric data, (ii) two upper bounds on the value of the
stability radius, and (iii) a method that uses the discretized data and the upper
bounds to compute a robust schedule.

2 Definition of the problem

Let J be the set of the n targets that should be monitored. Each target j has
an estimated trajectory such that at instant ¢, the estimated position of j is
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P;(t). For each target, its estimated trajectory is represented using a collection
of waypoints. The trajectory is a sequence of segments between the waypoints.
i.e., a trajectory is a suite of segments. The network is a set I of m sensors and
a base station where the data is sent. A sensor can receive or transmit data only
with the base station or another sensor if it is in its neighborhood N(i), i.e.,
if the distance is less than the communication range R¢. For a target j and a
instant ¢, we define p;(t, R) as the set of all points that are in the disc of radius
R and centered on P;(t). There are three types of energy consumption for a
Sensor:

— monitoring a target (p° Watts),
— transmitting data (p” Watts),
— receiving data (pf* Watts).

3 Discretization

The following figure is an example, where three sensors (1,2 and 3) are deployed
to cover a single target (the black arrow) in the horizon of time H = [0, 20]:

RN

Discretization is the necessary transformation of the geometric data of the
problem into a set of discretized data that can be used for modeling and solving
the problem. The aim is to represent the trajectory of each target as a set of
time windows with a set of candidate sensors associated to each window, that
can monitor the target during the entire time window. Let’s call a face f a set
of spatial points that are covered by the same set of sensors S(f). Monitoring
a target j at time t is therefore monitoring all the faces where j can possibly
be. Hence, for a stability radius R, we need to cover all the faces with a non
empty intersection with p; (¢, R). The intersection of all these faces defines the
face to cover (if the intersection is empty, then the target cannot be covered).
For example, if a target needs to be covered in the face {1} and the face {1, 2},
the set of candidate sensors is {1} N {1,2} = {1}.

Thus, the trajectory of a target j is represented as a sequence of faces to
be covered, associated to the set K of time windows. The time windows are
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delimited by time instants called ticks, such that a tick is either entering which
means that a new sensor is candidate, or leaving when a sensor is no more
candidate.

With a R = 0, the time windows and candidate sensors over the horizon of
time, in our example, are:

0 4 12 17.5 20

When increasing the stability radius, the spatial uncertainty covered is in-
creasing. It delays the instant where a sensor is guaranteed to cover a target
and is advancing the moment where a sensor is no more candidate to cover the
target. The evolution of a tick depends on the segment of the estimated spatial
trajectory where it is located. Therefore, increasing the stability radius corre-
sponds to moving the ticks and is modifying the length of the time windows.
This may change the set of candidate sensors when two ticks are equal.

In our example, with a certain value of R, the tick moved and changed the
candidate sensors such that we obtain:

0 8 13.5 16 20

Another difficulty is that, for each target j, there are instants ¢ where time
window can appear when the stability radius reaches a certain value r. Indeed,
it possible that some points in p; (¢, r) are no longer covered by a sensor that was
initially covering P;(t) even if the corresponding tick did not move. It means
that a new time window is appearing in K; at ¢t when the stability radius reaches
this specific value of R. In our example, a time window is appearing at the time
corresponding to the last estimated waypoint if the stability radius is great
enough to allow the target to be out of the range of sensor 2.

In order to find all these time windows, we need to look at each intersection
of the segments of the estimated trajectory of a same target, i.e., when the target
is changing of direction. For each sensor covering an extremity e of a segment,
there is a potential time window w. It appears at the time instant the target is
estimated to be at e, when the stability radius is equal to the sensing range of
the sensor minus the distance between the sensor and e. Indeed, a segment is
always leaving the range of a sensor starting by one of its extremity or by the
estimated frontier between two faces (initial ticks).

To conclude, an increase of the stability radius is modifying the length of
the time windows, adding new time windows, and adding new or changing the
sets of candidate sensor. All of this issues are depending on the coordinates of
the sensors and the segments of the trajectories.

4 Upper bounds on the stability radius
Two upper bounds were found and implemented for our solving method. The

first bound searches the first value of R that creates an empty face to cover.
The stability radius cannot exceed this value and it always corresponds to either
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the intersection between two ticks, or the apparition of a new time window.
First, we need to compute, for each extremity, the last time window that will
appear. Because each of the time window is corresponding to one sensor no
longer candidate for this extremity, the last time window is corresponding to
an empty face. These values are easily computed with the distance between the
extremity and the sensors. The second part of this bound is, for each segment,
to find the lowest value of R that corresponds to an intersection between two
ticks such that the intersection point is no longer covered by any other sensor
when the intersection occurs. These values are computed using the position of
the sensors and the segments’ coordinates.

The second bound computes the value of R such that there is not enough
energy in a set of candidate sensors to cover the length of the corresponding
time window. In that purpose, for each face in the estimated trajectories of the
targets, we compute the total sum of the batteries of the sensors in range and
the total energy needed. We order these sensors by increasing values of R for
which they are no longer in range of any point of the trajectories in the face.
Afterwards, we remove the batteries of these sensors, one by one, until the sum
of the batteries of the remaining sensors are not enough to cover the face.

5 Solving Process

Because the time windows and the corresponding sets of candidate sensors are
depending on the value of the stability radius, a single linear program cannot be
solved to maximize R. Therefore, we use a dichotomy method on the values of R
which modify these sets. For each value tested by the dichotomy, the following
satisfactory linear program is solved:

i p® 4% fui 4T Y fw <EViel (1)

JEJ keK,|ieS; (k) i'€N (i) i'EN (i)
Tjik + > fiui — > fir=0 Viel (2)
JEJ kEK,|ieS; (k) _ i’ €N (3) i'EN(3)
> Tjik = A Vje JkeK;(3)
i€S; (k)
§>0 (4)
.T]ZkZO VJ€J7I{IEK]7ZES](]€) (5)
Jir 20 Vi e I,i' € N(i) (6)

With Ai the size of the k-th time window of the sensor j and zj;; the time
sensori ¢ is monitoring j in its k-th time window. Constraints (1) correspond to
the limitations of the batteries. Constraints (2) are flow constraints, where the
data collected and received by a sensor is transmitted. Constraints (3) sets that
the sum of the activities of the sensors in a time window is equal to its length.

References

1. Lersteau, C., Rossi, A., Sevaux, M. (2018). Minimum energy target tracking with
coverage guarantee in wireless sensor networks. European Journal of Operational

Research, 265(3), 882-894.

114



Exact solution of the two-machine flow shop problem
with 3 operations

Federico Della Croce!, Fabio Salassa' and Vincent T’kindt?

L Politecnico di Torino, Italy
[federico.dellacroce,fabio.salassal]@polito.it
2 University of Tours, Laboratory of Theoretical and Applied Computing (EA 6300), ERL
CNRS 7002 ROOT, Tours, France

tkindtQuniv-tours.fr

Keywords: Two-machine flow shop with three operations, ILP modeling, Exact approach.

1 Introduction

We consider a two-machine flow shop problem with three operations originally proposed
in (Gupta et al. 2004). There is a set of n jobs being available at time zero to be processed
on a two-machine flow-shop. Each job 7 has three operations, where the first operation
has processing time a; and must be performed on the first machine. The third operation
has processing time b; and must be performed on the second machine. Finally, the second
operation has processing time ¢; and can be performed either on machine 1 immediately
after the first operation or on machine 2 immediately before the third operation. The
operations of the same job cannot be processed concurrently, nor can any machine process
more than one job at a time. We assume that preemption is not allowed, i.e., any operation
once started must be completed without interruption. The goal is to minimize the makespan
denoted by Chax- As mentioned in (Gupta et al. 2004), this problem applies to several
situations where a machine-independent setup operation is needed on each job between
the two operations. The setup time is job-dependent and both machines are equipped with
the required tooling for the setup. Then, the setup of an individual job is performed either
while the job is still mounted on the first machine after the completion of the first operation
or once the job is mounted on the second machine before the start of the second operation.
The problem has strong similarities with the two-machine flow shop problem with common
due date and jobs selection considered in (T’kindt et al. 2007) and (Della Croce et al. 2017).
By using the extended three-field notation of (T’kindt, Billaut 2006) this latter problem
is denoted by F2|d; = d, unknown d |e(d/nr) where the number of jobs n — nr to be
selected (here nr is the number of tardy, hence discarded, jobs) is given in advance and
the aim is to find the minimum value of d. For problem F2|d; = d, unknown d |e(d/nr),
the best available exact approach is able to solve very large size instances in limited CPU
time (less than 30 seconds in the worst case for instances with n = 100000).

From every instance of the original 3-operation two-machine flow shop problem, it is
possible to generate a special F2|d; = d, unknown d |e(d/nr) problem as follows. Every
job ¢ of the original problem induces two "coupled" incompatible jobs ¢; and s of the jobs
selection problem where 7; has the second operation of i assigned to the first machine,
while i5 has the second operation of i assigned to the second machine. Correspondingly,
job i1 has processing times «;, = a; + ¢; and §;, = b;, while job iy has processing times
o, = a; and B;, = b; + ¢;. Thus, we reduce to a two-machine flow shop problem with 2n
jobs where exactly n compatible jobs out of the 2n jobs have to be selected.
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2 ILP formulation

Consider the 2n jobs generated from the original problem as indicated above with
processing times «; (5;), 1 <4 < 2n, on machine M; (Ms). When the set §2 of selected
jobs is fixed, the minimization of the makespan for these jobs can be done in polynomial
time by the so-called Johnson’s algorithm (Johnson 1954): schedule first the jobs with
a; < f; in non-decreasing order of «;, followed by the jobs with «; > ; in non-increasing
order of ;. Without loss of generality, let us assume that the 2n jobs are indexed according
to their position in the Johnson’s schedule.

Let d be the unknown common due date, or equivalently the makespan of the selected
jobs. Let us associate to each job 7 a binary variable x; that indicates if job 7 is selected or
not. A first ILP model is as follows.

mind (1)
2n
a1 + Zﬁixi <d (2)
i=1
2n
Z ;i + PonTan < d (3)
i=1
J 2n
domi+ Y Biwi<d, Vj=2,.,2n—1 (4)
i=1 i=j
zi +xr = 1 Vi, k incompatible (5)
z; €{0,1} Viel,..,n (6)

Here, constraints (2—4) are critical-path constraints which define the value of d. Notice
that d is always determined by the sum of the processing times of jobs 1,..,5 on the
first machine plus the sum of the processing times of jobs j,..,2n on the second machine
where j depends on the selected early jobs and therefore constraints (2—4) consider all
possible values of j with 1 < j < 2n. Notice that in the critical path constraints (2—4),
we explicited constraint (2) corresponding to 5 = 1 and constraint (3) corresponding to
j = 2n. Constraints (5) represent the incompatibility constraints between each pair of
coupled jobs so that there will be exactly n early (selected) jobs. Finally, constraints (6)
indicate that the x; variables are binary.

Due to the presence of constraints (4) that generate O(n?) nonzeroes in the constraints
matrix, the above model is limited in size as it induces an out-of-memory status of the
solver if problems with several thousands of variables are considered.

As mentioned in (Della Croce et al. 2017), there exists an equivalent ILP formulation
with O(n) nonzeroes in the constraints matrix that can be obtained by introducing variables

Yj = >0 0T + Zf; Bix; and constraints y; = y;—1 — Bi—1Ti—1 + oyxi, Vi € 2,..,2n.

min d (7)
2n
Y1 = oa1x1 + Zﬂ¢$¢ (8)
i=1
2n
Yon = Z ;T + PonTan 9)
i=1
Yi = Yi—1 — Bi—1Zi—1 + iz Vi=2,...,2n—1 (10)
v <d, Vi=1,...,2n (11)
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xi +xr =1, Vi, k incompatible (12)
z; €{0,1} Viel,..,n, y, >0 Viel,...,n (13)

Let us denote by I LP, the above ILP. Interestingly enough, the addition of the incom-
patibility constraints makes the problem much more difficult both for CPLEX 12.9 solver
applied to ILP. and to the constraint generation approach of (Della Croce et al. 2017)
adapted in order to incorporate the incompatibility constraints. We tested both solution
approaches on a Computer Intel i5 @1.6 GHz and 8 G of RAM. We considered a stan-
dard distribution of processing times with a;, b; and ¢; uniformly distributed in the range
[1...100] and tested 10 distinct instances for each problem size considering a CPU time limit
of 60 seconds per instance. With this distribution, CPLEX 12.9 solver applied to model
(7-13) already failed to solve to optimality one instance with 200 jobs, while the constraint
generation approach of (Della Croce et al. 2017) was limited to 600 jobs runnning out of
time on one instance with 700 jobs. We remark however that constraints (8-9) in ILP,
can be modified as follows where a[pin,] and Bjmin,) indicate the second smallest processing
time on the first and the second machine respectively.

2n

Y1 = 121 +Oé[min2](1 —1‘1) +Zﬂzx1 (14)
=1
2n
Yon = Z ;T + B[minQ](l — Z'Qn) —+ 52nx2n (15)

=1

Indeed, if 1 = 1, then constraint (14) coincides with constraint (8), while if z; = 0, then
the critical path on the first selected job has processing time on the first machine not
inferior t0 @[min,]- Similar consideration holds with respect to constraint (15) taking into
account the critical path on the last selected job and its processing time on the second
machine. At the time of the conference we will also discuss how appin,) and bjyin,) can be
increased without loss of optimality. In the reminder we denote by I LP;. the improved ILP
formulation that substitutes in ILP, constraints (8-9) with constraints (14-15).

Hence, we can then successfully adapt to our problem the constraint generation ap-
proach proposed in (Della Croce et al. 2017) according to the scheme depicted in Algo-
rithm 1. There, we denote by F23°P our problem formulated according to the ILP;. model
and by F2§Zf its relaxation induced by the elimination of constraints (10) and considering
constraints (11) only for ¢ = 1, 2n.

Algorithm 1 Contraint Generation Algorithm
: End=False
while !End do
Solve F2°°P: 7 is its solution and OPT(F2°°7) its value
Compute d(Z) the optimal value of the ILP of F2°°? with added constraints z = T
if (d(z) = OPT(F2,.;)) then
End=True
else
Let C be the constraint giving d(z) in the ILP of F23°° for &
// (C is the most violated constraint)
9: Add C to F23%
10: end if
11: end while
12: return Z as the optimal solution of F23°P
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4

Algorithm 1 is a constraint generation approach solving initially problem F2§2f and
then considering a separation procedure adding to the relaxation any inequality of the
original formulation that is violated by the current solution. We tested both CPLEX 12.9
solver applied to model ILP;. and Algorithm 1 on instances generated according to the
same distribution considered above (10 instances for each problem size). The related results
are depicted in Table 1 where it is shown that Algorithm 1 is clearly superior and solves
within 60 seconds instances with up n = 30000. Detailed computational results on several
other different distributions will be presented at the conference.

n CPLEX |Algorithm 1
tavg‘ tmaz tavg tmaz
1000{0.6| 1 |0.1 1
4000 (9.3 | 13 |0.6 1
7000 24.1] 36 |1.2 2
10000{CPU limit| 3.7 5
15000{CPU limit| 6.2 9
20000|CPU limit|10.1| 13
25000|CPU limit|24.3| 35
30000|CPU limit|25.9] 43
35000{CPU limit| CPU limit
Table 1. Comparing CPLEX applied to model ILP;. and Algorithm 1
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1 Introduction

In this contribution we focus on a particular setting in which two agents are concerned
by the scheduling of a set of n jobs. The first agent, called the leader, can take some decisions
before providing the jobset to the second agent, called the follower, who then takes the
remaining decisions to solve the problem. As an example, the leader could select a subset
of n’ < n jobs that the follower has to schedule. Notice that the decisions the agents can
take are exclusive: in this example, the follower cannot decide the jobs to schedule and the
leader cannot schedule the jobs. This setting falls into the category of bilevel optimization
(Dempe et al. 2015). In such problems it is assumed that the leader and the follower follow
their own objectives which can be contradictory, so leading to very hard optimization
problems. Recently, many papers on bilevel combinatorial optimization appeared, here we
refer to (Caprara et al. 2016, Della Croce et al. 2019, Fischetti et al. 2017, Fischetti et
al. 2018, Fischetti et al. 2019) just to mention a few. On the other hand, to the authors
knowledge, the literature on bilevel scheduling is much more limited. We refer here to
(Abass 2005, Karlof and Wangs 1996, Kis and Kovacs 2012). We focus in the following on
single machine scheduling under the adversarial framework where the goal of the leader is
to make the follower solution as bad as possible and provide several exact polynomial time
algorithms for different objective functions when the leader can only modify data of the
problem.

2 Adversarial bilevel single machine scheduling

2.1 Sum of completion times

It is assumed that, given a list of n jobs with processing times pf , the follower is
scheduling jobs so that their sum of completion times, denoted by > y C’f , 18 minimum.
This is doable in polynomial time by applying the so-called SPT rule (Shortest Processing
Times first). Let be the initial processing times p; so that p; < ... < p,. Then, the leader
has to decide how to fix quantities g; so that with pf = p; + g;, the follower optimal
solution is the worst possible. Obviously, it is of no interest for the leader that some g; < 0.
In addition, the leader has a budget so that ; lg;| < Q, with @ € N given. This problem
is referred to as 1{ADV —p| >, Cf’, with ADV —p meaning that it concerns an adversarial
bilevel problem in which the leader can only modify the processing time values.

Theorem 1. The 1|JADV —p|}_, CF problem can be solved in O(nlog(n)) time. The leader
sets:
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o qi=P—p;, Vj=1.(kp —Q—kPP+Zf%1pi)’

with P = argmazo<i<y:  p, ((kt - Zle pi) <Qlp1 < ... <pr <t and pr1 > t), and kp
the job such that py, < P < pgp+1- The follower applies the SPT rule on the pf =pij+gq;’s.

2.2 Weighted sum of completion times

Now, let us assume that, in addition to the previous problem, jobs are also attached
weights ij and the follower is scheduling jobs so that their weighted sum of completion
times, denoted by Zj waJF, is minimum. Whenever the processing times are fixed, this
is doable in polynomial time by applying the so-called WSPT rule ( Weighted Shortest Pro-
cessing Times first). Let be the initial processing times p; so that 5—% <. < u’j—% Again,
the leader has to decide how to fix quantities ¢; so that with pf = p; + g;, the follower
optimal solution is as worse as possible. Obviously, it is of no interest for the leader that
some ¢; < 0. This problem is referred to as 1{/ADV —p[3_, wi CF.

We first consider the relaxed version where ¢; € R,Vj = 1..n, denoted by 1|ADV —
P, €R| Y wiCf.

Theorem 2. The 1{ADV —p,q; € R[}; wi' CF problem can be solved in O(nlog(n))
time. The leader sets:

kg P
o q = (Q+§Cg;15§)wj —pj, Vi = 1.kg
=1 "¢
0 q; =0,V = (kg +1).m,
Q-7 p;
with R = ~—=i=1"7 4pnq kgr the job such that Php < R < PEREL The follower applies the

ER ., F w w
Zj:1 wi kR krp+1

WSPT rule on pf =p; +q; and w]F =wj;, Vj = l.n.

The optimal solution of the 1]ADV —p| 3~ w C]" problem can be obtained by solving
iteratively the relaxed version: first solve it with the initial ) value and round down the
computed g;’s. Then, on the remaining quantity Q' = (Q — >_ y ¢;) solve again the relaxed
problem to modify processing times. This process is iterated until all initial budget @ is
assigned to jobs. As there are at most n iterations, this leads to an exact algorithm than
can be implemented in O(n?) time.

Let us turn to the other possible adversarial problem in which the leader can only

modify the weights of the follower. So, for the follower’s problem we set pf = p; and
wf” = w;+q;, Vj = 1.n, with ¢; € N. This problem is referred to as 1|ADV —w| ", w] Cf
and as previously, 1|/ADV — w,q; € R] Zj waJF refers to the relaxed version with real

valued g;’s.
Theorem 3. The 1|ADV —w,q; € R[}; wi'CF problem can be solved in O(nlog(n))
time. The leader sets:

(Q+327 s, we)py .
g = W —wj, Vj = kg..n

® q; = 0, V] = 1(kR - 1),

120



F F
with R = # and kg the job such that ka L < R < 25 The follower applies
J R

the WSPT rule on pj =p; and w] = wj; +gj, W = 1.n.

The 1|ADV —w| Zj w]FC’]F problem can be solved by iteratively solving the relaxation

with real valued ¢;’s to dispatch the initial leader’s budget Q. Again, this leads to an O(n?)
optimal algorithm.

2.3 Maximum lateness

Assume that each job j is defined by a processing time p; and a due date d;. The aim,
for the follower, is to schedule jobs so as to minimize the maximum lateness, defined by
L} oe = maxj— ,(Cf" —df'). The leader can modify either the processing times or the due

dates. Without loss of generality, let us assume that d; < ... < d,.

We first focus on the problem where the leader can only modify the processing times,
which is referred to as 1|ADV p|LE .. As the due dates remain unchanged, we set
df = dj, ¥j = 1..n. Besides, pj = p;j + ¢, is the processing time value of the follower’s
problem. It is trivial to show that ¢; € N in order to make increasing the optimal solution
value of the follower’s problem. Besides, it is known that the 1||L;,. problem is solved to
optimality by the EDD rule (Earliest Due Dates first). So the follower builds the optimal
sequence by sorting jobs by non decreasing values of the df ’s which is not impacted by
any variations in the processing time values. Consequently, the 1|ADV — p|LE  problem
can be solved in O(nlog(n)) time by sorting jobs according to EDD rule and then set:

e g = Q with k the earliest job having (Cy — d) = L and L7
the EDD schedule,

e q=0,Vj=1.n,j+k

the L,,q. value of

*
max max

Let us consider the problem in which the leader can only modify the due dates, which
is referred to as 1|/ADV — d|LE . Then, we set pf = p; and df =d; +q;, ¥j=1.n.

Theorem 4. The 1|/ADV —d|LL . problem can be solved in O(nlog(n)) time. The leader
sets:

—q=D—-d, <0, VEEUjeTBjUT,
— and q; = 0, otherwise.

with:

- T ={j/Cf —df = L},..}, with L}, the value of the initial EDD sequence,

- B; —{k;<j|§§€€7' with k < (< j},Vi€T,

— ay = (d¢ —dj) <0 and [{] is the (-th o, value when sorted by non decreasing values,
i.e. o] < e < Q) with 0’ = | Ujer By,

k such that (|T|+ k) — Zif:l g Q< (|TI+k+ Do — letll e,

—and D = LQ+%—T+11€Q[£]J

The follower applies the EDD rule on pf =p; and df =d; +q;, Vj=1n.
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1. Introduction

Reconfigurable Manufacturing Systems (RMS) have been defined in (Mehrabi et al., 2000) as
an effective approach to deal with unpredictable and high-frequency market changes that are
facing industries. To cope with such changes, the production systems must be adaptive and able to
evolve in order to consider 1) changes in parts of existing products; 2) fluctuations in demands; 3)
evolution in legal regulations and 4) evolution in process technology. Meanwhile, the scheduled
operations remain partially manual like material handling, carrying and processing jobs as stressed
by (Napolitano, 2012). The assignment of operators to operations must include personal skills,
training and experience in order to match the competences and/or functionalities required by the
operations to be performed (Ferjani et al., 2017; Grosse et al., 2015). In RMS, the sequential
execution of operations may depends on the job operation sequence that can refer to Flow-shop,
Job-shop, etc. Including flexibility for processing operations remains possible at each step of the
job-sequence. Meanwhile, reconfigurability is the capacity of a set of machines to be reconfigured
in a period of time, which can be seen as setup times. Machine activation delay may include
cleaning the working zone, loading, positioning and unloading the parts (jobs) and can imply costs
coming from energy expenditures, equipment maintenance and labor as stressed by (Borgia et al.,
2013). Hence, in RMS a solution is composed by a set of configurations applied sequentially and
thus a sequence-dependent processing time of operations and sequence dependent setup times have
to be considered in such a production system. If sequence depend setup times are features of
several research projects in the scheduling community as stressed in (Sharma and Jain, 2016; Shen
et al., 2018), these works generally consider setup times at the operation level, whereas several
modifications of the system may occur in RMS requiring several resources to be inactive during
reconfigurations.

Hence, the problem addressed in this research project is different from the one introduced in
(Essafi et al., 2012) since it does not encompass design and line balancing but only machine
operations, and is concerned with makespan minimization and not minimization of the cost of the
line. Actually, the problem is closer to the former vision provided by (Liles and Huff, 1990) who
first indicated the necessity to schedule efficiently operations in reconfigurable manufacturing
environments. As stressed by (Azab and Naderi, 2015) very few papers deal with scheduling in
RMS. In their research work, they addressed reconfigurations in the context of Flow-shop
production systems, but they did not investigate graph modelling.

The present paper is dedicated to scheduling in reconfigurable manufacturing systems where
operators assignment to machine allows to define several modes meaning that processing time of
operations is varying according to chosen configurations. The work specifically focuses on the
graph modelling of the problem in the context of a Job-shop-like production system and introduces
encoding and decoding of solutions.
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2. Graph modelling and representation of solutions

The problem under study is stated as a reconfigurable job-shop manufacturing system where a
set J of n jobs has to be scheduled J = {J;,/, ...J,} on a set M = {My, ..., M,,} of m machines.
Each job in J consists in a set of operations 0; = {0y}, ..., Or,;}. The whole system operates under
configurations. Moving from a configuration to another may affect specific machines, resulting in
variations in processing times of operations. Hence, each operation 0;; has a processing time P,-’j-
where k denotes the chosen configuration. Configuration differs from setup times, since transition
between configurations can affect several machines and configurations can be activated only when
these machines are inactive. Considering two configurations k; and k,, identifying machines that

are concerned by a switch from configuration k; to k, is achieved through vectors R,’Z’;cz, where

each value of the vector is valued 0 if the machine M, is not concerned with transition, 1
otherwise. A reconfiguration time Ty x, is required when switching from a configuration k, to k,.
The objective is to schedule efficiently operations and to define configuration assignments in order
to minimize the completion time of all operations (makespan). In the following, the data bellow
are considered, where Mu(PL-’j-) denotes the processing time on machine M, according to
configurations.

Table 1. processing times of operations in Table 2. processing times of operations in
configuration 1 configuration 2

Product 04 0,; 0;; Product 0y 0,; 0;;

Jj=1 M (10) My(6) Ms(17) j=1 M (13)  M,(49) M;3(12)

J=2  My(15) M,(10) M5(20) j=2 M,(12) M (17) M3(23)

j=3 M;(4) M,(10) M,(20) j=3 M;(7) M,(16) M,(10)

Table 3. Definition of Ry

Configurations ky k,
ky (1,1,
k; (1;1;1)

Tables 1, 2 and 3 introduce data of a 3 jobs, 3 machines Job-shop Scheduling Problem, where
processing times of operations depend on configurations. As can be seen in Table 1 and 2,
processing times of operations on machine M, are different whether configurations k, or k, are
selected. Assignment of machines when switching from a configuration to another is introduced in
Table 3. In this problem, all machines are affected by a change in configuration, and hence, they
must be all inactive when switching from a configuration to another and without of generality the
reconfiguration time Tjq x is set to 1 time unit.

In scheduling problems it is classical to use a conjunctive-disjunctive graph approach that have
been proved to be efficient by (Roy and Sussmann, 1964). For the incumbent problem, a
conjunctive-disjunctive graph G(V, A, E) is considered where V corresponds to the operations, A
denotes the arcs and E defines the edges. Initial arcs correspond to precedencies in jobs sequence
of operations (i.e. an arc (0;j, 0;;11) exists in G between two successive operations of i). E refers
to edges that have to be oriented and initially contains edges relevant to operations that have to be
processed on the same machines, and all edges that refer to configurations. An edge is considered
between operations 0;; and Oy; if they can be processed in two different configurations that are
impacting processing times of both operations. Similarly to (Dauzére-Péres and Paulli, 1997) for
the Flexible Job-shop, different shape lines can connect operations in order to distinguish
configuration switches and machine disjunctions. The objective is to assign a configuration to each
operation and to defined edges that connect operations using the same machine. The Figure 1 gives
an example of a conjunctive-disjunctive graph after choosing configurations for operations.

For sake of clarity, two graphs are presented in Figure 1, the first one (A) concerns edges
related to machine disjunctions (dashed lines), and the second one (B) displays edges related to
configuration switches (dotted lines). In this figure, operations modeled with grey nodes are
processed into configuration 1, and the ones with white nodes are processed into configuration 2.
As operations of a given job are ordered, edges connecting two operations with different assigned
configurations can be removed (i.e. edge between (M;; M3) on job J; is useless) when other
operation are present between them.
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Figure 1. Graph A with edges for machine disjunctions and graph B with configuration disjunctions.

Modeling solutions is an important preliminary step before defining complex operators such as
metaheuristics or local search. Indirect representations are widely spread in literature for
scheduling problems (Cheng et al., 1996). For the incumbent problem two vectors are used. The
first one (R) is a vector by repetition (Bierwirth et al., 1996) which is an ordered list of job
numbers (a job numbers is in the list m times with m the number of machines) and each
occurrence of a job corresponds to one of its operations. The second vector (C) is the configuration
vector which is a list of configurations under which operations are processed. Both vectors
represent a solution which is an orientation of all arcs (Fig. 2) considering R =
[1;2;2;3;3;1;2;1;3]and C = [1;2;1;1;1;2; 1; 2; 2]. Considering these vectors, defining a
solution consists in reading the vectors from left to right applying an extension of the Bierwith
vector rules for graph generation. Figure 2 shows the evaluated graph after execution of one
longest path algorithm.
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Figure 2. Evaluated conjunctive graph

In Figure 2, dashed arrows define sequence of operations on machines, while dotted arrows
define reconfiguration switches. Each arc modeling reconfiguration switches are valued (Pi’j +
Trr:)- Starting time and configuration of operations are in bold in the figure. According to the
vector R, the first operation scheduled is the first operation of job /; and according to the vector C,
it is processed with configuration 1, hence its processing time is 10 according to Table 1. The
second operation in vector R is the first of job J, processed on M, with configuration 2, hence a
reconfiguration switch occurs after operation 0, that required a 1 time unit of reconfiguration that
delay the operation 0,, starting time at 11. The third scheduled operation is 0,, on machine M,
and configuration 1 and a reconfiguration occurs after 0,,, and 0,, will start at 24 (ending time of
04, plus reconfiguration time). The fourth scheduled operation is 0,5 that is the first operation on
M, also processed with configuration 1, and hence, it starts after the last operation that affected
M, with configuration 2. This process iterates until the end of both vectors R and C. The obtained
Gantt chart is given in Figure 3.

Ky K2

Ky %2 Ky k2
L h L h I ; h ;
Jz ‘ J2 J1
J2 ‘ J3 J1
J1 J2 J3
>

Figure 3. Gantt chart corresponding to evaluated Graph

As stressed on Figure 3, 5 reconfigurations are operated along the time horizon and they are
respectively scheduled at times [10;11], [23;24],[39;40],[42;43] and [63;64]. As all machines are
affected by these reconfigurations, it is not possible to schedule operations earlier, considering the
given vectors R and C.

The Gantt of 