
https://pms2020.sciencesconf.org/

Book of Extended Abstracts

1

https://pms2020.sciencesconf.org/

Table of contents

Foreword 9

Committees 11

Best student paper award 12

Conference Program 13

Plenary Talks 18

Robustness in Scheduling
Marjan van den Akker . 18

Industrial project and machine scheduling with Constraint Programming
Philippe Laborie . 19

Data driven Project Management
Mario Vanhoucke . 20

Modeling and solving complex job-shop scheduling problems
Stéphane Dauzère-Pérès . 21

Extended Abstracts 22

Heuristics for Scheduling Pipe-laying Support Vessels: An Identical Parallel Ma-
chine Scheduling Approach
Victor Abu-Marrul, Davi Mecler, Rafael Martinelli, Silvio Hamacher, Irina
Gribkovskaia . 22

1

Replication and sequencing of unreliable jobs
Alessandro Agnetis, Paolo Detti, Ben Hermans, Marco Pranzo 26

A Discrete Time Markov Decision Process to support the scheduling of re-manufacturing
activities
Alessio Angius, Massimo Manzini, Marcello Urgo 30

A constraint programming approach for planning items transportation in a work-
shop context
Valentin Antuori, Emmanuel Hebrard, Marie-José Huguet, Siham Essodaigui,
Alain Nguyen . 34

Index merge in application to multi-skill project scheduling
Dmitry Arkhipov, Olga Battaia . 38

Adapting the RCPSP framework to Evacuation Problems
Christian Artigues, Emmanuel Hébrard, Alain Quilliot, Peter Stuckey, Hélène
Toussaint . 42

Structural and Experimental Comparisons of Formulations for a Multi-Skill Project
Scheduling Problem with Partial Preemption
Christian Artigues, Pierre Lopez, Oliver Polo Mej́ıa 46

A Serial Schedule Generation Scheme for Project Scheduling in Disaster Manage-
ment
Niels-Fabian Baur, Julia Rieck . 50

Scheduling to minimize maximum lateness in tree data gathering networks
Joanna Berlińska . 54

On the Activity Criticality in Project Scheduling with Generalized Precedence
Relationships
Lucio Bianco, Massimiliano Caramia, Stefano Giordani 58

A Novel Matheuristic for the Multi-Site Resource-Constrained Project Scheduling
Problem
Tamara Bigler, Mario Gnägi, Norbert Trautmann 62

Solution Repair by Inequality Network Propagation in LocalSolver
Léa Blaise, Christian Artigues, Thierry Benoist 66

The generalised resource-constrained project scheduling problem with flexible re-
source profiles
Matthew Bold, Burak Boyaci, Marc Goerigk, Chris Kirkbride 70

Why and how to evaluate the task threatness
Helena Brozova, Tomas Subrt, Jan Rydval, Petra Pavlickova 74

2

Local Search Algorithm to Solve a Scheduling Problem in Healthcare Training
Center
Simon Caillard, Laure Brisoux Devendeville, Corinne Lucet 78

Computing lower bounds for the cumulative scheduling problem
Jacques Carlier, Antoine Jouglet, Abderrahim Sahli 82

Ultimate Instance Reduction for the Routing Open Shop
Ilya Chernykh . 86

Optima Localization for the Routing Open Shop: Computer-aided Proof
Ilya Chernykh, Olga Krivonogova . 90

A new tool for analysing and reporting solutions for the RCPSP and MMRCPSP
José Coelho, Mario Vanhoucke, Ricardo Amaro 94

Adaptive Robust Parallel Machine Scheduling
Izack Cohen, Krzysztof Postek, Shimrit Shtern 98

The Resource-Constrained Project Scheduling Problem: New Benchmark Results
Stefan Creemers . 101

Scheduling and Routing Workers Teams for Ground Handling at Airports with
Column Generation
Giacomo Dall’Olio, Rainer Kolisch . 107

Robust scheduling for target tracking with wireless sensor network considering
spatial uncertainty
Florian Delavernhe, André Rossi, Marc Sevaux 111

Exact solution of the two-machine flow shop problem with 3 operations
Federico Della Croce, Fabio Salassa, Vincent T’kindt 115

Adversarial bilevel scheduling on a single machine
Federico Della Croce, Vincent T’kindt . 119

A Conjunctive-disjunctive Graph Modeling Approach for Job-Shop Scheduling
Problem with Changing Modes
Xavier Delorme, Gérard Fleury, Philippe Lacomme, Damien Lamy 123

Near-Linear Approximation Algorithms for Scheduling Problems with Setup Times
Max Deppert, Klaus Jansen . 127

Efficiency and Equity in the Multiple Organization Scheduling Problem
Martin Durand, Fanny Pascual . 130

3

On the complexity of the crossdock truck-scheduling problem
Quentin Fabry, Alessandro Agnetis, Lotte Berghman, Cyril Briand 134

Linear inequalities for neighborhood based dominance properties for the common
due-date scheduling problem
Anne-Elisabeth Falq, Pierre Fouilhoux, Safia Kedad-Sidhoum 138

An acceleration procedure for several objective functions in the permutation flow
shop scheduling problem
Victor Fernandez-Viagas, José M. Molina-Pariente, Carla Talens, José M.
Framiñan . 142

Scheduling problems with processing time dependent profit: applications and a
nice polynomial case
Florian Fontan, Nadia Brauner, Pierre Lemaire 146

Planning problem in Healthcare domain
Olivier Gérard, Laure Brisoux Devendeville, Corinne Lucet 151

Solving the Multi-mode Resource Investment Problem with Constraint Program-
ming
Patrick Gerhards . 155

Multi-Scenario Scheduling with Rejection Option to Minimize the Makespan Cri-
terion
Miri Gilenson, Dvir Shabtay . 159

A Continuous-Time Model for the Multi-Site Resource-Constrained Project Schedul-
ing Problem
Mario Gnägi, Norbert Trautmann . 163

Non-dominated sorting genetic algorithm for a bi-objective flexible flow shop prob-
lem. A Case Study
Ibeth Grattz Rodŕıguez, Jose-Fernando Jimenez, Eliana Maŕıa González-Neira,
Nicolás Eduardo Puerto Ordóñez, Yenny Alexandra Paredes Astudillo, Juan Pablo
Caballero-Villalobos . 167

An analytical model for budget allocation in risk prevention and risk protection
Xin Guan, Mario Vanhoucke . 171

Embedded vision systems buffer minimization with energy consumption con-
straint
Khadija Hadj salem, Tifenn Rault, Alexis Robbes 175

Multi-project scheduling problems with shared multi-skill resource constraints
Meya Haroune, Cheikh Dhib, Emmanuel Néron, Ameur Soukhal, Hafedh Mo-
hamed Babou, Mohamedade Nanne . 179

4

Solving large, long-horizon resource constrained multi project scheduling prob-
lems with genetic algorithms
Brendan Hill, Adam Scholz, Lachlan Brown, Ana Novak 183

A mixed integer programming approach for scheduling aircraft arrivals at terminal
airspace fixes and runway threshold
Sana Ikli, Catherine Mancel, Marcel Mongeau, Xavier Olive, Emmanuel Racheslon187

Optimization of order for containers placement schedule in rail terminal opera-
tions
Nadiia Kalaida, Rémy Dupas, Igor Grebennik . 191

A Generation Scheme for the Resource-Constrained Project Scheduling Problem
with Partially Renewable Resources and Time Windows
Mareike Karnebogen, Jürgen Zimmermann . 195

On a Polynomial Solvability of the Routing Open Shop with a Variable Depot
Antonina Khramova, Ilya Chernykh . 199

A Stochastic Programming Model to Schedule Projects under Cash Flow Uncer-
tainty
Berfin Kutlag, Nazli Kalkan, Serhat Gul, Oncu Hazir 203

Multi-Objective Robotic Assembly Line Balancing Problem: A NSGA-II Ap-
proach Using Multi-Objective Shortest Path Decoders
Youssef Lahrichi, Laurent Deroussi, Nathalie Grangeon, Sylvie Norre 207

The Group Shop Scheduling Problem with power requirements
Damien Lamy, Simon Thevenin . 211

A two-stage robust approach for minimizing the weighted number of tardy jobs
with profit uncertainty
Henri Lefebvre, François Clautiaux, Boris Detienne 216

Scheduling of battery charging tasks with limited common power source
Tomasz Lemanski, Rafal Rozycki, Grzegorz Waligora, Jan W ↪eglarz 220

Computational Experiments for the Heuristic Solutions of the Two-Stage Chain
Reentrant Hybrid Flow Shop and Model Extensions
Lowell Lorenzo . 224

Minimizing Flow Time on a Single Machine with Job Families and Setup Times
Arnaud Malapert, Margaux Nattaf . 233

Using exponential smoothing to integrate the impact of corrective actions on
project time forecasting
Annelies Martens, Mario Vanhoucke . 237

5

An Experimental Investigation on the Performance of Priority Rules for the Dy-
namic Stochastic Resource Constrained Multi-Project Scheduling Problem
Philipp Melchiors, Rainer Kolisch, John Jack Kanet 241

Conditional Value-at-Risk of the Completion Time in Fuzzy Activity Networks
Carlo Meloni, Marco Pranzo, Marcella Samà . 245

A column generation algorithm for the single machine parallel batch scheduling
problem
Onur Ozturk . 249

Mixed-Integer Programming Formulations for the Anchor-Robust Project Schedul-
ing Problem
Adèle Pass-Lanneau, Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux . . 253

Search space reduction in MILP approaches for the robust balancing of transfer
lines
Aleksandr Pirogov, André Rossi, Evgeny Gurevsky, Alexandre Dolgui 257

An Inclusion-Exclusion based algorithm for the permutation flowshop scheduling
problem
Olivier Ploton, Vincent T’kindt . 261

Decision trees for robust scheduling
Tom Portoleau, Christian Artigues, Romain Guillaume 265

A Benders decomposition for the flexible cyclic jobshop problem
Félix Quinton, Idir Hamaz, Laurent Houssin . 269

Exact and heuristic methods for characterizing optimal solutions for the 1——Lmax
Tifenn Rault, Ronan Bocquillon, Jean-Charles Billaut 273

A Comparison of two MILP formulations for the resource renting problem
Max Reinke, Jürgen Zimmermann . 277

Minimizing the costs induced by perishable resource waste in a chemotherapy
production unit
Alexis Robbes, Yannick Kergosien, Virginie André, Jean-Charles Billaut 281

A comparison of proactive and reactive scheduling approaches for the RCPSP
with uncertain activity durations
Pedram Saeedi, Erik Demeulemeester . 285

Towards the Optimisation of the Dynamic and Stochastic Resource-Constrained
Multi-Project Scheduling Problem
Ugur Satic, Peter Jacko, Christopher Kirkbride 288

6

An FPTAS for Scheduling with Piecewise-Linear Nonmonotonic Convex Time-
Dependent Processing Times and Job-Specific Agreeable Slopes
Helmut A. Sedding . 292

An analysis of critical alternatives in the RCPSP-AS
Tom Servranckx, Mario Vanhoucke . 296

Reference Class Forecasting to improve time and cost forecasts: Empirical and
statistical analysis
Tom Servranckx, Mario Vanhoucke, Tarik Aouam 301

Buffer Sizing in Critical Chain Project Management by Network Decomposition
Bingling She, Bo Chen, Nicholas Hall . 305

A new solution procedure for multi-skilled resources in resource-constrained project
scheduling
Jakob Snauwaert, Mario Vanhoucke . 309

The impact of limited budget on the corrective action taking process
Jie Song, Annelies Martens, Mario Vanhoucke 313

A New Lower Bound Approach for the Multi-mode Resource Constrained Project
Scheduling Problem
Christian Stürck . 317

How to find Critical Mass of Task Threatening the Projects
Tomas Subrt, Helena Brozova . 321

Solving the stochastic multimode resource-constrained project scheduling problem
Claudio Szwarcfiter, Avraham Shtub, Yale T. Herer 325

Maximizing value-Modeling and solving lean project management
Claudio Szwarcfiter, Avraham Shtub, Yale T. Herer 329

Generating instances for the two-stage multi-machine assembly scheduling prob-
lem
Carla Talens, Victor Fernandez-Viagas, Paz Perez-Gonzalez 333

Metric Estimations for a Resource Leveling Problem With Variable Job Duration
Ilia Tarasov, Alain Häıt, Olga Battäıa, Alexander Lazarev 337

Open shop problem with agreement graph: new results
Nour Elhouda Tellache, Mourad Boudhar, Farouk Yalaoui 341

Scheduling loads injection during flows merging in a collector
Blandine Vacher, Antoine Jouglet, Dritan Nace, Stéphane Pietrowicz, Marwane
Bouznif . 345

7

New benchmark datasets for the RCMPSP
Rob Van Eynde, Mario Vanhoucke . 349

Minimizing Delays in Aircraft-Landing Scheduling
Marie-Sklaerder Vié, Nicolas Zufferey, Roel Leus 354

Evaluation of Scheduling Policies for the SRCPSP in a Dynamic Multi-Project
Environment
Hendrik Weber, Rainer Kolisch . 358

Modular equipment optimization in the design of multi-product reconfigurable
manufacturing systems
Abdelkrim Yelles-Chaouche, Evgeny Gurevsky, Nadjib Brahimi, Alexandre Dolgui 362

Decomposition approach for fixed jobs multi-agent scheduling problem on parallel
machines with renewable resources
Boukhalfa Zahout, Ameur Soukhal, Patrick Martineau 366

List of participants 370

List of sponsors 377

Author Index 379

8

Foreword

Toulouse January 22, 2022.

PMS is an international workshop series devoted to Project Management and Scheduling.
It was inaugurated by the European Working Group on Project Management and Scheduling
(EURO - EWG Project management and scheduling), originally coordinated by Prof. Jan
W ↪eglarz from the Poznań University of Technology (Poland) and now coordinated by Prof.
Erik Demeulemeester (KU Leuven, Belgium) and Prof. Joanna Jozefowska (Poznań University
of Technology, Poland).

The EWG decided to organize a workshop every two years. The workshops provide an ideal
opportunity to discuss recent and important issues in the field of project management (planning,
scheduling, control) and machine scheduling (single and parallel machine problems, flow shop,
job shop, etc.).

The first workshop was held in Lisbon in July 1988. The successor workshops were held
in Compiègne (1990), Como (1992), Leuven (1994), Poznań (1996), Istanbul (1998), Osnabrück
(2000), Valencia (2002), Nancy (2004), Poznań (2006), Istanbul (2008), Tours (2010), Leuven
(2012), Munich (2014), Valencia (2016), Rome (2018).

The PMS 2020 workshop should have been held in Toulouse Business School, located in
the heart of Toulouse, France, famous for its unique architecture which earned it the nickname
la Ville Rose (”the Pink City”) and counts two UNESCO World heritage sites: the Canal du
Midi and and the Basilica of St. Sernin, the largest remaining Romanesque building in Europe
(https://www.toulouse-visit.com/), not to mention its famous South West French cooking and
vibrant nightlife.

Due to the COVID-19 coronavirus pandemic, it was impossible to organize the event in
2020. It was postponed to April 21–23 2021, and then named PMS 2020/2021. Unfortunately
the pandemic persistence forced us to turn the workshop in a full online event, the first online
PMS !

The PMS 2020/2021 workshop is co-organised by researchers from LAAS-CNRS (https:
//www.laas.fr/), Toulouse Business School (https://www.tbs-education.fr) and ISAE-Supaero
(https://www.isae-supaero.fr/) under the scientific supervision of the EURO EWG-PMS Inter-
national committee.

The Workshop covers the following but non exhaustive list of project management and
scheduling areas:

• Project Management: Network modeling, Project scheduling, Resource management, Due-
date management, Project risk management, Project scheduling under uncertainty, Proac-
tive/reactive project scheduling, Multicriteria project scheduling, Applications, Software

• Machine Scheduling: Shop scheduling, Scheduling with additional constraints, Machine
assignment and scheduling, Flexible/robust scheduling, Grid scheduling, Multicriteria

9

https://www.toulouse-visit.com/
https://www.laas.fr/
https://www.laas.fr/
https://www.tbs-education.fr
https://www.isae-supaero.fr/

scheduling, Applications, Software.

Methodological/theoretical papers related to Operational Research, Artificial Intelligence/Machine
Learning models, exact and heuristic algorithms for scheduling problems were presented, as well
as papers dealing with data-driven approaches, practical applications and industrial case studies.

Overall, 101 extended abstracts were received and 85 extended abstracts were accepted
after a peer-review process. More than 23 nationalities are represented among the authors, as
displayed below.

France 41 Canada 1
Belgium 11 Portugal 1
Germany 11 Turkey 1
Italy 7 Netherlands 1
United-Kingdom 5 Philippines 1
Russian federation 5 Brazil 1
Switzerland 4 Norway 1
Israel 4 Czech Republic 1
Australia 2 Colombia 1
Spain 2 Algeria 1
USA 2 Ukraine 1
Poland 2 TOTAL 107

As a new record for PMS, 216 participants registered to the workshop !

Not less than 23 extended abstracts applied to the Best Student Paper Award and 6 finalists
were selected to present their work in 2 dedicated sessions. Prizes were awarded by EURO and
Springer. Congratulations to Adèle Pass-Lanneau (First Prize), Quentin Fabry (2nd Prize) and
Miri Gilenson (3rd Prize).

Last but not least, we had the pleasure to listen to four plenary talks by Marjan van den Akker,
Philippe Laborie, Mario Vanhoucke and Stéphane Dauzère-Pérès.

You will find in these proceedings :

• The member list of the Organization Committee,

• The member list of the Program Committee,

• The finalists and the winners of the Best Student Paper Award,

• The conference program,

• The plenary talk abstracts and a short bio of each plenary speaker,

• The extended abstracts sorted by alphabetical order of the first author,

• The list of participants,

• The list of sponsors,

• The author index.

We warmly thank all the participants and the international program committee who greatly
contributed to the large success of the workshop!

The organizing Committee.

10

Organizing Committee

pms2020@sciencesconf.org

Christian Artigues LAAS-CNRS (Workshop chair)
Lotte Berghman Toulouse Business School
Cyril Briand Université Toulouse III-Paul Sabatier, LAAS-CNRS
Brigitte Ducrocq LAAS-CNRS
Quentin Fabry LAAS-CNRS
Sylvain Fayeulle Toulouse Business School
Alain Häıt ISAE-SUPAERO
Laurent Houssin Université Toulouse III-Paul Sabatier, LAAS-CNRS
Carla Juvin LAAS-CNRS
Pierre Lopez LAAS-CNRS
Tom Portoleau LAAS-CNRS
Louis Rivière LAAS-CNRS

International Program Committee

Alessandro Agnetis. Università di Siena (Italy)
Ali Allahverdi. Kuwait University (Kuwait)
Christian Artigues. LAAS-CNRS (France)
Francisco Ballest́ın. Universitat de València (Spain)
Jacek B lażewicz. Poznań University of Technology (Poland)
Fayez Fouad Boctor. Université Laval (Canada)
Massimiliano Caramia. Università degli Studi di Roma “Tor Vergata” (Italy)
Jacques Carlier. Université de Technologie de Compiègne (France)
Erik Demeulemeester. Katholieke Universiteit Leuven (Belgium)
Joanna Józefowska. Poznań University of Technology (Poland)
Sigrid Knust. Universität Osnabrück (Germany)
Rainer Kolisch. Technische Universität München (Germany)
Mikhail Kovalyov. National Academy of Sciences of Belarus (Belarus)
Wieslaw Kubiak. Memorial University (Canada)

Linet Özdamar. Yeditepe Üniversitesi (Turkey)
Erwin Pesch. Universität Siegen (Germany)
Chris Potts. University of Southampton (United Kingdom)
Rubén Ruiz. Universitat Politècnica de València (Spain)

Funda Sivrikaya-Şerifoğlu. Istanbul Bilgi Üniversitesi (Turkey)
Avraham Shtub. Technion - Israel Institute of Technology (Israel)
Vincent T’kindt. Université François Rabelais Tours (France)
Norbert Trautmann. Universität Bern (Switzerland)
Mario Vanhoucke. Ghent University (Belgium)
Jan W ↪eglarz. Poznań University of Technology (Poland)
Jürgen Zimmermann. Technische Universität Clausthal (Germany)

11

Best student paper award

The following extended abstracts were finalists of the best student paper award.

• Quentin Fabry, Alessandro Agnetis, Lotte Berghman, Cyril Briand
On the complexity of the crossdock truck-scheduling problem

• Miri Gilenson, Dvir Shabtay
Multi-Scenario Scheduling with Rejection Option to Minimize the Makespan Criterion

• Mareike Karnebogen, Jürgen Zimmermann
A Generation Scheme for the Resource-Constrained Project Scheduling Problem with Par-
tially Renewable Resources and Time Windows

• Adèle Pass-Lanneau, Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux
Mixed-Integer Programming Formulations for the Anchor-Robust Project Scheduling Prob-
lem

• Alexis Robbes, Yannick Kergosien, Virginie André, Jean-Charles Billaut
Minimizing the costs induced by perishable resource waste in a chemotherapy production
unit

• Claudio Szwarcfiter, Avraham Shtub, Yale T. Herer
Maximizing value and Minimizing Waste: Modeling and solving lean project management

The jury is made of the whole International Program Committee, except those involved in
the phD thesis.

• The first prize (500€) was awarded by EURO to Adèle Pass-Lanneau (Sorbonne Uni-
versité and EDF R&D, France)

• The second prize (300€) was awarded by EURO to Quentin Fabry (LAAS-CNRS and
Toulouse Business School, France)

• The third prize was awarded to (200€) was awarded by EURO to Miri Gilenson (Ben-
Gurion university of the Negev, Israel)

Books were also offered to the winners by Springer.

12

The Group Shop Scheduling
Damien Lamy and Simon Thevenin

Ultimate Instance Reduction for the Routing Open Shop
Ilya Chernykh

Miri Gilenson and Dvir Shabtay

3:30 PM – 4:30 PM: Industrial plenary talk
3:10 PM – 3:30 PM: Coffee break

Xavier Delorme, Gérard Fleury, Philippe Lacomme and Damien Lamy Christian Stuerck

Stefan Creemers

Meya Haroune, Cheikh Dhib, Emmanuel Néron, Ameur Soukhal, Hafedh

The Resource-Constrained Project Scheduling Problem: New Benchmark
Results

chair: Mario Vanhoucke chair: Joanna Jozefowska

The impact of limited budget on the corrective action taking process

Brendan Hill, Adam Scholz, Lachlan Brown and Ana Novak

Robustness in Scheduling by Marjan van den Akker

Industrial project and machine scheduling with Constraint Programming by Philippe Laborie
chair: Pierre Lopez

Using exponential smoothing to integrate the impact of corrective actions
on project time forecasting
Annelies Martens and Mario Vanhoucke

Conditional Value-at-Risk of the Completion Time in Fuzzy Activity
Networks
Carlo Meloni, Marco Pranzo and Marcella Sama

Jie Song, Annelies Martens and Mario Vanhoucke

Reference Class Forecasting to improve time and cost forecasts: Empirical
and statistical analysis
Tom Servranckx, Mario Vanhoucke and Tarik Aouam

An analytical model for budget allocation in risk prevention and risk
protection

Mixed-Integer Programming Formulations for the Anchor-Robust Project
Scheduling Problem

Xin Guan and Mario Vanhoucke Adèle Pass-Lanneau, Pascale Bendotti, Philippe Chrétienne and Pierre
Fouilhoux

Multi-Scenario Scheduling with Rejection Option to Minimize the
Makespan Criterion

On the complexity of the crossdock truck-scheduling problem
Quentin Fabry, Alessandro Agnetis, Lotte Berghman and Cyril Briand

12:20 PM – 1:30 PM: Lunch break

1:30 PM – 3:10 PM: Parallel session W2
Room 1: Risk management Room 2: Best student paper 1 (30 min slots)

Generating instances for the two-stage multi-machine assembly
scheduling problem
Carla Talens, Victor Fernandez-Viagas and Paz Perez-Gonzalez

Solving large, long-horizon resource constrained multi project scheduling
problems with genetic algorithms

A new solution procedure for multi-skilled resources in resource-
constrained project scheduling
Jakob Snauwaert and Mario Vanhoucke

Multi-project scheduling problems with shared multi-skill resource
constraints

Optima Localization for the Routing Open Shop: Computer-aided Proof
Ilya Chernykh and Olga Krivonogova

A New Lower Bound Approach for the Multi-mode Resource Constrained
Project Scheduling Problem

A Conjunctive-disjunctive Graph Modeling Approach for Job-Shop
Scheduling Problem with Changing Modes

10:40 AM – 12:20 PM: Parallel session W1
Room 1: RCPSP 1 Room 2: Shop scheduling

Wednesday 21th of April 2021

9 AM – 9:20 AM: Welcome session
9:20 AM – 10:20AM: Plenary session 1

10:20 AM – 10:40 AM: Coffee break
chair: Erwin Pesch

chair: Stefan Creemers chair: Ilya Chernykh

13

Onur Ozturk

Patrick Gerhards

Helmut A. Sedding

Max Deppert and Klaus Jansen

4:30 PM – 5:50 PM: Parallel session W3

On a Polynomial Solvability of the Routing Open Shop with a Variable
Depot
Antonia Khramova and Ilya Chernykh

chair: Alessandro Agnetis
An FPTAS for Scheduling with Piecewise-Linear Nonmonotonic Convex
Time-Dependent Processing Times and Job-Specific Agreeable Slopes

chair: Vincent T'kindt

chair: Christian Artigues

Near-Linear Approximation Algorithms for Scheduling Problems with
Setup Times

Structural and Experimental Comparisons of Formulations for a Multi-
Skill Project Scheduling Problem with Partial Preemption
Christian Artigues, Pierre Lopez and Oliver Polo

Index merge in application to multi-skill project scheduling
Dimitry Arkhipov and Olga Battaia

A Continuous-Time Model for the Multi-Site Resource-Constrained Project
Scheduling Problem

chair: Norbert Trautmann

12:20 PM – 1:30 PM: Lunch break

Mario Gnaegi and Norbert Trautmann

A Novel Matheuristic for the Multi-Site Resource-Constrained Project
Scheduling Problem
Tamara Bigler, Mario Gnaegi and Norbert Trautmann

Metric Estimations for a Resource Leveling Problem With Variable Job
Duration
Ilia Tarasov, Alain Haït, Olga Battaia and Alexander Lazarev Alessandro Agnetis, Paolo Detti, Ben Hermans and Marco Pranzo

Duplication and sequencing of unreliable jobs

11:00 AM – 12:20 PM: Parallel session T2
10:40 AM – 11:00 AM: Coffee break

Room 1: Resource-unit focused project scheduling Room 2: Complexity results and Approximation algorithms

Room 2: Best student paper 2 (30 min slots)

A Discrete Time Markov Decision Process to support the scheduling of re-
manufacturing activities
Alessio Angius, Massimo Lanzini and Marcello Urgo

Buffer Sizing in Critical Chain Project Management by Network
Decomposition
Bingling She, Bo Chen and Nicholas Hall

Thursday the 22th of April 2021

Minimizing Flow Time on a Single Machine with Job Families and Setup
Times
Arnaud Malapert and Margaux Nattaf

Exact and heuristic methods for characterizing optimal solutions for the
1||Lmax

chair: Marcello Urgo

Florian Delavernhe, André Rossi and Marc Sevaux

A two-stage robust approach for minimizing the weighted number of
tardy jobs with profit uncertainty
Henri Lefebvre, François Clautiaux and Boris Détienne

Room 1: Single machine scheduling Room 2: Robust scheduling 1

A column generation algorithm for the single machine parallel batch
scheduling problem

Robust scheduling for target tracking with wireless sensor network
considering spatial uncertainty

Léa Blaise, Christian Artigues and Thierry Benoist

A Generation Scheme for the Resource-Constrained Project Scheduling
Problem with Partially Renewable Resources and Time Windows
Mareike Karnebogen and Jurgen Zimmermann Valentin Antuori, Emmanuel Hébrard, Marie-José Huguet, Siham

Essodaigui and Alain Nguyen

Embedded vision systems buffer minimization with energy consumption
constraint
Khadija Hadj Salem, Tifenn Rault and Alexis Robbes

A constraint programming approach for planning items transportation in
a workshop context

Maximizing value: Modeling and solving lean project management
Claudio Szwarcfiter, Avraham Shtub and Yale T. Herer

Minimizing the costs induced by perishable resource waste in a
chemotherapy production unit

Alexis Robbes, Yannick Kergosien, Virginie André and Jean-Charles Billaut Solution Repair by Inequality Network Propagation in LocalSolver

Adversarial bilevel scheduling on a single machine

Tifenn Rault, Ronan Bocquillon and Jean-Charles Billaut

9 AM – 10:40 AM: Parallel session T1
Room 1: Constraint programming

chair: Erik Demeulemeester

Solving the Multi-mode Resource Investment Problem with Constraint
Programming

Federico Della Croce and Vincent T'kindt

14

Félix Quinton, Idir Hamaz and Laurent Houssin

Niels-Fabian Baur and Julia Rieck

Lowell Lorenzo

Jacques Carlier, Antoine Jouglet and Abderrahim Sahli

Room 1: Applications: Manufacturing Room 2: Lower bounds, dominance and formulations

Modular equipment optimization in the design of multi-product
reconfigurable manufacturing systems

Computing lower bounds for the cumulative scheduling problem

Marie-Sklaerder Vie, Nicolas Zufferey and Roel Leus

3:10 PM – 3:30 PM: Coffee break

Sana Ikli, Catherine Mancel, Marcel Mongeau, Xavier Olive and Emmanuel
Rachelson

Scheduling and Routing Workers Teams for Ground Handling at Airports
with Column Generation
Giacomo Dall'olio and Rainer Kolisch

Heuristics for Scheduling Pipe-laying Support Vessels: An Identical Parallel
Machine Scheduling Approach
Victor Abu-Marrul, Davi Mecler, Rafael Martinelli, Silvio Hamacher and
Irina Gribkovskaia

A Serial Schedule Generation Scheme for Project Scheduling in Disaster
Management

Computational Experiments for the Heuristic Solutions of the Two-Stage
Chain Reentrant Hybrid Flow Shop and Model Extensions

Scheduling of battery charging tasks with limited common power source

chair: Nadia Brauner chair: Roel Leus

chair: Jan Węglarz chair: Safia Kedad-Sidhoum

Open shop problem with agreement graph: new results

3:30 PM – 4:30 PM: Plenary session 3

4:30 PM – 5:30 PM: Parallel session T4

Max Reinke and Jurgen Zimmermann

Scheduling problems with processing time dependent profit: applications
and a nice polynomial case
Florian Fontan, Nadia Brauner and Pierre Lemaire

The generalised resource-constrained project scheduling problem with
flexible resource profiles

Minimizing Delays in Aircraft-Landing Scheduling

Scheduling loads injection during flows merging in a collector
Blandine Vacher, Antoine Jouglet, Dritan Nace, Stephane Pietrowicz and
Marwane Bouznif

Linear inequalities for neighborhood based dominance properties for the
common due-date scheduling problem

Anne-Elisabeth Falq, Safia Kedad-Sidhoum and Pierre Fouilhoux

Matthew Bold, Burak Boyaci, Marc Goerigk and Chris Kirkbride

A Benders decomposition for the flexible cyclic jobshop problem A mixed integer programming approach for scheduling aircraft arrivals at
terminal airspace fixes and runway threshold

1:30 PM – 3:10 PM: Parallel session T3
Room 1: Flexible scheduling Room 2: Applications: Logistics

Data driven Project Management by Mario Vanhoucke
chair: Sigrid Knust

A Comparison of two MILP formulations for the resource renting problem

5:30 PM – 5:50 PM: Best student paper award

Abdelkrim R. Yelles-Chaouche, Evgeny Gurevsky, Nadjib Brahimi,
Alexandre Dolgui

Tomasz Lemanski, Rafal Rozycki, Grzegorz Waligóra and Jan Węglarz

Nour Elhouda Tellache, Mourad Boudhar and Farouk Yalaoui

15

Martin Durand and Fanny Pascual

Optimization of order for containers placement schedule in rail terminal
operations

chair: Rainer Kolisch chair: Helena Brozova

Nadiia Kalaida, Remy Dupas and Igor Grebennik

Aleksandr Pirogov, André Rossi, Evgeny Gurevsky and Alexandre Dolgui

A Stochastic Programming Model to Schedule Projects under Cash Flow
Uncertainty
Berfin Kutlag, Nazli Kalkan Nazli, Serhat Gul and Oncu Hazir

Planning problem in Healthcare domain

Zahout Boukhalfa, Ameur Soukhal and Patrick Martineau

Efficiency and Equity in the Multiple Organization Scheduling Problem

Helena Brozova, Tomas Subrt, Jan Rydval and Petra Pavlickova

Tomas Subrt and Helena Brozova

Multi-Objective Robotic Assembly Line Balancing Problem: A NSGA-II
Approach Using Multi-Objective Shortest Path Decoders

12:20 PM – 1:30 PM: Lunch break

Tom Portoleau, Christian Artigues and Romain Guillaume

Local Search Algorithm to Solve a Scheduling Problem in Healthcare
Training Center

Olivier Gérard, Laure Brisoux Devendeville and Corinne Lucet

Simon Caillard, Laure Brisoux Devendeville and Corinne Lucet

Decision trees for robust scheduling

Search space reduction in MILP approaches for the robust balancing of
transfer lines

Izack Cohen, Krzystof Postek and Shimrit Shtern

chair: Izack Cohen

10:40 AM – 11:00 AM: Coffee break

Pedram Saeedi and Erik Demeulemeester

An Experimental Investigation on the Performance of Priority Rules for
the Dynamic Stochastic Resource Constrained Multi-Project Scheduling
Problem

Towards the Optimisation of the Dynamic and Stochastic Resource-
Constrained Multi-Project Scheduling Problem
Ugur Satic, Peter Jacko and Christopher Kirkbride

How to find Critical Mass of Task Threatening the Projects
Hendrik Weber and Rainer Kolisch

Solving the stochastic multimode resource-constrained project scheduling
problem
Claudio Szwarcfiter, Avraham Shtub and Yale T. Herer

Philipp Melchiors, Rainer Kolisch and John Jack Kanet Why and how to evaluate the task threatness

Evaluation of Scheduling Policies for the SRCPSP in a Dynamic Multi-
Project Environment

Youssef Lahrichi, Laurent Deroussi, Nathalie Grangeon and Sylvie Norre

9 AM – 10:40 AM: Parallel session F1
Room 1: Robust RCPSP

A comparison of proactive and reactive scheduling approaches for the
RCPSP with uncertain activity durations

Decomposition approach for fixed jobs multi-agent scheduling problem on
parallel machines with renewable resources

Friday the 23th of April 2021

Room 2: Multicriteria scheduling

11:00 AM – 12:20 PM: Parallel session F2
Room 1: Robust scheduling 2 Room 2: Applications: health care and external resources

Adaptive Robust Parallel Machine Scheduling
chair: Jurgen Zimmermann

16

Ibeth Rodriguez Grattz, José-Fernando Jiménez, Eliana Marvé Gonzalez,
Eduardo Puerto, Yenny Paredes and Juan Caballero

Joanna Berlinska

On the Activity Criticality in Project Scheduling with Generalized
Precedence Relationships
Lucio Bianco, Massimiliano Caramia and Stefano Giordani

Scheduling to minimize maximum lateness in tree data gathering

Adapting the RCPSP framework to Evacuation Problems

Christian Artigues, Alain Quilliot, Hélène Toussaint and Peter Stuckey

4:30 PM – 5:00 PM: Closing session

Modeling and solving complex job-shop scheduling problems by Stéphane Dauzère-Pérès
chair: Chris Potts

3:10 PM – 3:30 PM: Coffee break
3:30 PM – 4:30 PM: Plenary session 4

Federico Della Croce, Fabio Salassa and Vincent T'kindt

chair: Federico Della Croce chair: Massimiliano Caramia

Rob Van Eynde and Mario Vanhoucke
New benchmark datasets for the RCMPSP

A new tool for analysing and reporting solutions for the RCPSP and
MMRCPSP
José Coelho, Mario Vanhoucke and Ricardo Amaro

An analysis of critical alternatives in the RCPSP-AS
Tom Servranckx and Mario Vanhoucke

An acceleration procedure for several objective functions in the
permutation flow shop scheduling problem
Victor Fernandez-Viagas, José M. Molina-Pariente, Carla Talens and José
M. Framiñán

Olivier Ploton and Vincent T'kindt

Exact solution of the two-machine flow shop problem with 3 operations

Non-dominated sorting genetic algorithm for a bi-objective flexible flow
shop problem. A Case Study

An Inclusion-Exclusion based algorithm for the permutation flowshop
scheduling problem

1:30 PM – 3:10 PM: Parallel session F3
Room 1: Flowshop scheduling Room 2: RCPSP 2

17

Plenary Talk: Robustness in Scheduling

Marjan van den Akker (Utrecht University, The Netherlands)

Wednesday, April 21, 9:20 am-10:20 am (UTC+2:00)
Chair: Erwin Pesch (Universität Siegen, Germany)

Abstract Traditionally, scheduling is based on the assumption that all input parameters are
deterministic. Since in real-life situations uncertainty is unavoidable, recently more attention
has been given to scheduling with stochastic processing times. Our goal is to obtain robust
solutions for stochastic scheduling problems. To the best of our knowledge, no universal formal
definition of robustness exists. An intuitive definition is: a schedule which does not significantly
degrade in the face of disruption is called robust. In this presentation we discuss different models
and algorithms for robustness in scheduling with an emphasis on parallel machine scheduling
with precedence constraints.

About Marjan After her PhD in scheduling algorithms supervised by Jan Karel Lenstra, Mar-
jan van den Akker has worked CORE (Louvain-la-Neuve) as postdoc and at the Netherlands
Aerospace Centre NLR as expert on modelling, optimization, and simulation in Air Traffic Man-
agement and Electronic Road Pricing. Since 2000, she is at the Department of Information and
Computing Sciences at Utrecht University. Her research area is advanced algorithms, robust-
ness and simulation. In her research characteristics from practice are combined with state of
the art theoretical models. When solving optimization problems, important side-constraints are
included as much as possible, even though this increases the complexity: the goal is to push
the boundary of what is computable as far as possible. To achieve this, her research includes
the application of LP-based decomposition techniques such as column generation, as well as
approaches using local search. The last few years, she has focused on planning and scheduling
under uncertainty. Traditionally, scheduling and planning problems were modeled as problems
with fixed (deterministic) data. Since in real-life situations disturbances occur frequently, ro-
bustness is receiving an increasing amount of attention. The purpose is to develop algorithms
for finding solutions that, either remain valid in case of a disturbance, or can easily be adjusted
to a feasible solution without having to solve the problem all over again. The question is “How
can we capture uncertainty as well and efficient as possible in a deterministic model?” Her work
includes applications in energy networks and public transportation, where she is supervising
different PhD students including projects with companies. Her work is published in well-known
international journals and conferences in Computer Science and Operations Research. She is a
board member of the Dutch Network on the Mathematics of Operations Research (LNMB).

18

Industrial Plenary Talk: Industrial project and machine schedul-
ing with Constraint Programming

Philippe Laborie (IBM France Lab, Gentilly, France)

Wednesday, April 21, 3:30 pm-4:30 pm (UTC+2:00)
Chair: Pierre Lopez (LAAS-CNRS, Toulouse, France)

Abstract More often than not, project and machine scheduling problems are addressed either
by generic mathematical programming techniques (like MILP) or by problem-specific exact or
heuristic approaches. MILP formulations are commonly used to describe the problem in math-
ematical terms and to provide optimal solutions or bounds to small problem instances. As they
usually do not scale well, one usually resorts to using heuristics for handling large and complex
industrial problems. Though constraint programming (CP) techniques represent the state of
the art in several classical project and machine scheduling benchmarks and have been used for
almost 30 years for solving industrial problems, they are still seldom considered as an alternative
approach in the scheduling community. A possible reason is that, for years, in the absence of
efficient and robust automatic search algorithms, CP techniques have been difficult to use for
non-CP experts. We will explain why we think this time is over and illustrate our arguments
with CP Optimizer, a generic system, largely based on CP, for modeling and solving real-world
scheduling problems. CP Optimizer extends linear programming with an algebraic language
using simple mathematical concepts (such as intervals, sequences and functions) to capture the
temporal dimension of scheduling problems in a combinatorial optimization framework. CP
Optimizer implements a model-and-run paradigm that vastly reduces the burden on the user to
understand CP or scheduling algorithms: modeling is by far the most important. The automatic
search combines a wide variety of techniques from Artificial Intelligence (constraint program-
ming, temporal reasoning, learning etc.) and Operations Research (mathematical programming,
graph algorithms, local search, etc.) in an exact algorithm that provides good performance out
of the box and which is continuously improving.

About Philippe Philippe Laborie is a Principal Scientist at IBM. He is one of the main de-
signers of the mathematical modeling language for scheduling problems offered in CPLEX Opti-
mization Studio and a significant contributor to the underlying automatic search algorithm. He
graduated from Telecom ParisTech in 1992, and received a PhD in Artificial Intelligence from
LAAS/CNRS (Toulouse) on the integration of Artificial Intelligence Planning and Scheduling
in 1995. Before joining IBM/ILOG in 1998, he worked at Electricité de France (Paris) and IN-
RIA/IRISA (Rennes) on the Supervision and Diagnosis of complex systems (telecommunication
and power distribution networks). His main scientific interests include planning, scheduling,
supervision and diagnosis of complex systems and more generally, all decision problems deal-
ing with time. He received the 2011 ICAPS Influential paper award. Philippe is member of
the editorial board of the Journal of Artificial Intelligence Research and serves in the Program
Committee of many conferences in AI (IJCAI, AAAI, ECAI, ICAPS, CP, CPAIOR, ...).

19

Plenary Talk: Data driven Project Management

Mario Vanhoucke (Ghent University, Belgium)

Thursday, April 22, 3:30 pm-4:30 pm (UTC+2:00)
Chair: Sigrid Knust (Universität Osnabrück, Germany)

Abstract This presentation will give an overview of the past endeavours and the recent trends
in integrated project management and control, with a focus on linking scheduling to risk and
control management. The presentation will show the relevance of using artificial and real project
data for both research and practice. It will be shown that not many organisations have as much
data as they often claim, and researchers therefore have to fall back on the use of artificial
project data. Consequently, an overview of the most important artificial project datasets (each
with advantages and disadvantages) will be given, and also a new set of empirical projects (freely
available to researchers) will be presented. Some recent research trends will be highlighted, il-
lustrating that the integrated use of empirical data and advanced techniques (machine learning)
might lead to promising results, and should therefore define the path for future research. Ref-
erences to a literature overview of project control will be given to outline the future research on
integrated project management and control. During my talk, I will also present my nice team
of young researchers to you!

About Mario Prof Dr Mario Vanhoucke is a Full Professor at Ghent University (Belgium),
Vlerick Business School (Belgium) and UCL School of Management (University College London,
UK). He teaches ”Project Management”, ”Applied Operations Research” and ”Decision Mak-
ing for Business”. He obtained a Master’s Degree in Business Engineering (1996) and a PhD
in Operations Management (2001), and he was director of EVM Europe (www.evm-europe.eu)
and partner at the company OR-AS (www.or-as.be) until 2018. Mario is responsible for various
research projects in the field of Integrated Project Management and Control, which has led to
more than 60 papers in international journals, five Project Management books published by
Springer, three free online books (www.or-as.be/books), three computerised business games and
an online learning platform known as PM Knowledge Center (www.pmknowledgecenter.com).
His research has received multiple awards, including awards from PMI Belgium (Belgium, 2007),
International Project Management Association (Italy, 2008) and the American Accounting As-
sociation (USA, 2010) and multiple awards from Belgian companies. He currently has a team of
+10 enthusiastic PhD students who are jointly working on improving decision making in project
management, with a strong focus on (1) developing methods to improve project scheduling, (2)
analysis risk in projects and (3) validating current and newly developed statistical methods for
project control.

20

www.or-as.be
www.or-as.be/books
www.pmknowledgecenter.com

Plenary Talk: Modeling and solving complex job-shop scheduling
problems

Stéphane Dauzère-Pérès (Ecole des Mines de Saint-Etienne, France)

Friday, April 23, 3:30 pm-4:30 pm (UTC+2:00)
Chair: Chris Potts (University of Southampton, Great Britain)

Abstract This talk focuses on the flexible job-shop scheduling problem, first extensively studied
in the 1990’s, which was later extended to include additional constraints and criteria to become
complex job-shop scheduling problems. The complexity related to the problems is first discussed,
in particular by differentiating with the classical job-shop scheduling problem. The main char-
acteristic of the flexible job-shop scheduling problem is that operations can be performed on
several resources, i.e. that operations must be both assigned to and sequenced on resources.
Modelling choices and solution methods will be surveyed, including some recent contributions
related to the consideration of batching constraints, sequence-dependent setup times and mul-
tiple criteria. Some of the results are based on a long-term collaboration of more than 15 years
with two manufacturing sites of the French-Italian semiconductor company STMicroelectronics.

About Stéphane Stéphane Dauzère-Pérès is Professor at Mines Saint-Etienne in its site of
Gardanne, France, and Adjunct Professor at BI Norwegian Business School, Norway. He received
the Ph.D. degree from Paul Sabatier University in Toulouse, France, in 1992 and the H.D.R.
from Pierre and Marie Curie University, Paris, France, in 1998. He was a Postdoctoral Fellow at
the Massachusetts Institute of Technology, U.S.A., in 1992 and 1993, and Research Scientist at
Erasmus University Rotterdam, The Netherlands, in 1994. He has been Associate Professor and
Professor from 1994 to 2004 at the Ecole des Mines de Nantes, France, where he headed the team
”Production and Logistic Systems” between 1999 and 2004. He was invited Professor at the
Norwegian School of Economics and Business Administration (NHH), Norway, in 1999. Since
March 2004, he is Professor at Mines Saint-Etienne, where he headed the research department
”Manufacturing Sciences and Logistics” from 2004 to 2013. His research interests broadly include
modeling and optimization of operations at various decision levels (from real-time to strategic)
in manufacturing and logistics, with a special emphasis on production planning (lot sizing)
and scheduling and on semiconductor manufacturing. He has published nearly 80 papers in
international journals and has contributed to more than 200 communications in national and
international conferences. Stéphane Dauzère-Pérès has coordinated numerous academic and
industrial research projects, including 4 European projects and 24 industrial (CIFRE) PhD
theses, and also six conferences. In particular, he co-organized in 2010 the first edition of the
International Workshop on Lot Sizing which was held in Gardanne, France. In 2014, he created
with Bernardo Almada-Lobo (University of Porto, Portugal) the EURO Working Group on Lot-
Sizing (LOT), that he coordinated until 2018. He was runner-up in 2006 of the Franz Edelman
Award Competition, and won the Best Applied Paper of the Winter Simulation Conference in
2013. His h-index is 36.

21

1

Heuristics for Scheduling Pipe-laying Support Vessels:
An Identical Parallel Machine Scheduling Approach

Victor Abu-Marrul1, Davi Mecler1, Rafael Martinelli1, Silvio Hamacher1
and Irina Gribkovskaia2

1 Industrial Engineering Department, Pontifical Catholic University of Rio de Janeiro, Brazil
{victor.cunha,davizm}@tecgraf.puc-rio.br, {martinelli,hamacher}@puc-rio.br

2 Molde University College - Specialized University in Logistics, Norway
irina.gribkovskaia@himolde.no

Keywords: Ship Scheduling, Offshore Logistics, Heuristic, Parallel Machine Scheduling.

1 Introduction and Problem Description

We address a problem that emerges in oil & gas offshore logistics where a company
needs to schedule its fleet of pipe laying support vessels (PLSV), responsible for con-
necting sub-sea oil wells to production platforms. We model it as an identical parallel
machine scheduling problem with non-anticipatory family setup times. Here, the vessels
are machines, jobs are wells, and each job includes a number of connecting operations. The
problem consists of scheduling a set O of operations from a set F of families in a setM of
machines. Each operation i ∈ O belongs to a family (fi), has a release date (ri), a process-
ing time (pi), a load occupancy (li), can be assigned to an eligible subset of machines (Mi),
and is associated with a subset of jobs (Ni). Each job j ∈ N has a weight (wj) according
to the related well production rate, and a subset Oj of the operations associated with it.
Each machine k ∈M has a release date (rk) and a capacity (qk). A non-anticipatory family
setup time (sf) is incurred before the first operation on each machine, whenever a machine
changes the execution of operations between families, and when the capacity of a machine
is reached. A set of operations that shares the same setup time is called a batch. Setups are
non-anticipatory since they can only start when all operations scheduled inside a batch are
released. The sum of the load occupancy of the operations assigned to a batch must respect
the machine capacity. The objective is to minimize the total weighted completion time of
jobs (

∑
j∈N wjCj), where the completion time of job j (Cj) is the maximum completion

time of the associated operations (Cj = maxi∈Oj Ci). This objective aims to complete the
connections of the most productive oil wells as soon as possible. An example of a PLSV
schedule is depicted in Figure 1 with 15 operations, 5 jobs, and 4 machines. The associated
jobs are shown in the boxes, and their completion times are marked with dotted lines.

DEI
DEPARTAMENTO
DE ENGENHARIA
INDUSTRIAL

𝒔𝟏 𝐽𝑜𝑏𝑠 1 𝑎𝑛𝑑 3 𝒔𝟑 𝐽𝑜𝑏𝑠 2, 3 𝑎𝑛𝑑 4 𝒔𝟐 𝐽𝑜𝑏 3 𝒔𝟏 𝐽𝑜𝑏 5

𝒔𝟐 𝐽𝑜𝑏 1 𝒔𝟏 𝐽𝑜𝑏𝑠 2 𝑎𝑛𝑑 5 𝒔𝟏 𝐽𝑜𝑏 5

𝒔𝟏 𝐽𝑜𝑏𝑠 4 𝑎𝑛𝑑 5 𝒔𝟐 𝐽𝐽𝑜𝑏𝑠 1 𝑎𝑛𝑑 3 𝒔𝟑 𝐽𝑜𝑏 3 𝐽𝑜𝑏 5

t

𝑀1

𝑀2

𝑀3

𝑀4

𝑂𝑝. 4 𝑂𝑝. 10 𝑂𝑝. 1

𝑂𝑝. 9 𝑂𝑝. 8 𝑂𝑝. 11 𝑂𝑝. 5

𝑂𝑝. 12 𝑂𝑝. 3 𝑂𝑝. 13 𝑂𝑝. 2

𝑂𝑝. 14 𝑂𝑝. 6 𝑂𝑝. 15 𝑂𝑝. 7

𝑪1

𝑪4 𝑪3

𝑪5

𝑪2

Setup

Operations

Machine idleness

Machine release date

𝒔𝟑 𝐽𝑜𝑏𝑠 1 𝑎𝑛𝑑 5 𝐽𝑜𝑏 2 𝒔𝟏 𝐽𝑜𝑏 3 𝒔𝟏 𝐽𝑜𝑏 3

Fig. 1: PLSV Scheduling example with 15 operations, 5 Jobs and 4 machines.

22

2

2 Solution Methods

We present several constructive heuristics to solve the PLSV scheduling problem, using
dispatching rules, and defining how to do the machine assignment and to construct batches.
The schedule construction procedure used in all heuristics is presented in Algorithm 1. To
describe the procedure, we introduce variables and sets: Sk (Start time of the current batch
on machine k), Lk (Cumulative load of the current batch on machine k), Fk (Family of the
current batch on machine k), Ck (Completion time of machine k), same (Boolean variable
that defines if the chosen operation will be assigned to the last position in the current batch
or to a new batch), Bk (Set of operations assigned to the current batch on machine k) and U
(Set of unscheduled operations). The procedure returns a list of schedules σ = (σ1, . . . , σk)
for each machine k containing operations and families (representing the setup times).

Algorithm 1: Schedule Construction Procedure
1: Ck ← rk, Sk ← rk, Lk ← 0, Fk ← 0, Bk ← ∅, σk ← ∅ : ∀k ∈M
2: Ci ←∞ : ∀i ∈ O
3: U ← O
4: while there exists operations not assigned do
5: Select operation i∗ ∈ U and machine k∗ ∈Mi∗ according to a chosen heuristic, defining

same as true or false
6: if same = true then
7: Sk∗ ← max(ri∗ , Sk∗), Ck∗ ← Ck∗ +max(0, ri∗ − Sk∗) + pi∗

8: Lk∗ ← Lk∗ + li∗ , Bk∗ ← Bk∗ ∪ {i∗}
9: else
10: Sk∗ ← max(ri∗ , Ck∗), Ck∗ ← max(ri∗ , Ck∗) + sfi∗ + pi∗

11: Lk∗ ← li∗ , Bk∗ ← {i∗}, σk∗ ← σk∗ ∪ {fi∗}
12: end if
13: σk∗ ← σk∗ ∪ {i∗}, Fk∗ ← fi∗ , Ci∗ ← Ck∗ , U ← U \ {i∗}
14: end while
15: return σ

The main part of the method is defined at line 5, the decision of the next operation,
machine, and batch composition. We consider two approaches at this step. In both, when
we evaluate the insertion of an operation to an existing batch, we consider the delay on
the start time of this batch that may occur due to the inserted operation release date and
the non-anticipatory setup consideration. This delay changes the completion time of all
operations scheduled in the batch, and it is penalized using the operations weights. We
develop rules to estimate weights for the operations (wi), since weights in our problem are
related to jobs. Five rules for estimating weights are considered:

– MAX: Maximum weight of associated wells, computed as wi = maxj∈Ni
wj

– SUM: Sum of the weights of associated wells, computed as wi =
∑

j∈Ni
wj

– AVG: Average weight of associated wells, computed as wi =
∑

j∈Ni
wj/|Ni|

– WAVG: Weighted average weight of associated wells, computed as wi =
∑

j∈Ni
wj/|Oj |

– WAVGA: WAVG adjusted at each iteration by the set of unscheduled operations (i.e., it
replaces subsets Oj by subsets Uj of unscheduled operations associated to a job j).

In the first approach, we initially select the next operation based on a dispatching rule,
and then assign an eligible machine to this operation according to the minimum weighted
completion time, as described in Algorithm 2. New variables and sets are defined: ∆ik

(Delay at the start time of the current batch on machine k due to the insertion of operation
i), CCB

ik (Completion time of operation i if inserted in the current batch on machine k),
CNB

ik (Completion time of operation i if inserted in a new batch on machine k), CB (Set
of feasible assignments cbik of operation i into the current batch on machine k) and NB
(Set of feasible assignments nbik of operation i into a new batch on machine k).

23

3

Algorithm 2: Operation and Machine Disjunctive Selection Procedure
1: Select operation i∗ ∈ U according to a chosen dispatching rule
2: ∆i∗k ← max(0, ri∗ − Sk) : ∀k ∈Mi∗

3: CCBi∗k ← Ck +∆i∗k + pi∗ : ∀k ∈Mi∗

4: CNBi∗k ← max(ri∗ , Ck) + sfi∗ + pi∗ : ∀k ∈Mi∗

5: CB ←
{
cbi∗k = wi∗C

CB
i∗k +

∑
ı̂∈Bk

wı̂∆i∗k | k ∈Mi∗ , Fk = fi∗ , Lk + li∗ ≤ qk
}

6: NB ←
{
nbi∗k = wi∗C

NB
i∗k | k ∈Mi∗

}

7: bmin ← min{b : b ∈ (CB ∪ NB)}
8: Select k∗ corresponding to bmin
9: if bmin ∈ CB then same← true
10: return i∗, k∗, same

We consider six dispatching rules for this approach. The priority value πi indicates
the next operation to schedule. At each iteration, the operation i with the largest πi
value is selected (Ðurasević and Jakobović 2018). We adapt some rules by adding family
setup times, and assume that every operation will be assigned to a new batch. Ti is the
minimum completion time among the eligible vessels for each operation i, and is computed
as Ti = mink∈Mi

Ck. The following dispatching rules are considered:

– ERD: Earliest Release Date πi = 1/ri.
– SPT: Shortest Processing Time πi = 1/pi.
– LPT: Longest Processing Time πi = pi.
– MCT: Minimum Completion Time πi = max(Ti, ri) + pi + sfi .
– WSPT: Weighted Shortest Processing Time πi = wi/pi.
– WMCT: Weighted Minimum Completion Time πi = [max(Ti, ri) + pi + sfi]/wi.

The second approach extends one of the heuristics from Weng et al.(2001), by consider-
ing the PLSV scheduling properties, such as the release dates of operations and machines,
the family setup times and the batch composition, to decide at each iteration the next pair
operation/machine simultaneously (Algorithm 3). We call it WMCT-Pair.

Algorithm 3: Operation and Machine Simultaneous Selection Procedure
1: ∆ik ← max(0, ri − Sk) : ∀i ∈ U , k ∈Mi

2: CCBik ← Ck +∆ik + pi : ∀i ∈ U , k ∈Mi

3: CNBik ← max(ri, Ck) + sf i + pi : ∀i ∈ U , k ∈Mi

4: CB ←
{
cbik =

CCB
ik
wi

+
∑
ı̂∈Bk

∆ik
wı̂
| i ∈ U , k ∈Mi, Fk = fi, Lk + li ≤ qk

}

5: NB ←
{
nbik =

CNB
ik
wi
| i ∈ U , k ∈Mi

}

6: bmin ← min{b : b ∈ (CB ∪ NB)}
7: Select i∗ and k∗ corresponding to bmin
8: if bmin ∈ CB then same← true
9: return i∗, k∗, same

3 Computational Experiments

We introduce in total 19 heuristics, where 4 do not consider weights and 15 combine the
dispatching rules and the ways of estimating the operations’ weights. We tested all of them
on a set of 72 PLSV instances3 with |M| = {2, 4}, and |O| = {15, 25, 50}. We performed
3 available at https://doi.org/10.17771/PUCRio.ResearchData.45799

24

4

the experiments on a computer with 64 GB of RAM and Intel Core i7-8700K CPU of
3.70GHz, using C++ for coding the heuristics and running Linux. The results of tests, in
terms of the average relative deviations from the best generated solutions, are presented in
Table 1. Each instance group, defined by the number of operations and machines, contains
12 instances. The relative deviation is computed as RDh

inst = TWC h
inst/TWC best

inst, where
TWC h

inst is the total weighted completion time of heuristic h ∈ H applied to instance
inst ∈ I, and TWC best

inst is the best solution obtained for a given instance. The best result
for each instance group is shown in bold. All heuristics run in less than 0.1 seconds. Last
column (#BKS) accounts how many times each heuristic yields the best solution.

Table 1: Average deviations from the best solutions.

Heuristic
Instance Group (|O| – |M|)

All
Instances #BKS15-4 15-8 25-4 25-8 50-4 50-8

ERD 1.212 1.198 1.245 1.190 1.261 1.250 1.226 2
SPT 1.278 1.217 1.363 1.296 1.442 1.392 1.331 1
LPT 1.347 1.153 1.412 1.265 1.471 1.398 1.341 0
MCT 1.226 1.165 1.268 1.248 1.254 1.295 1.243 0
WSPT-MAX 1.161 1.079 1.224 1.173 1.299 1.255 1.198 1
WSPT-SUM 1.156 1.066 1.181 1.141 1.280 1.241 1.178 0
WSPT-AVG 1.181 1.085 1.266 1.187 1.327 1.294 1.223 1
WSPT-WAVG 1.124 1.076 1.184 1.124 1.234 1.196 1.156 0
WSPT-WAVGA 1.085 1.041 1.112 1.067 1.138 1.114 1.093 3
WMCT-MAX 1.084 1.040 1.070 1.088 1.046 1.096 1.071 7
WMCT-SUM 1.063 1.046 1.093 1.082 1.158 1.132 1.096 3
WMCT-AVG 1.101 1.027 1.123 1.118 1.150 1.147 1.111 4
WMCT-WAVG 1.065 1.036 1.041 1.059 1.111 1.084 1.066 5
WMCT-WAVGA 1.023 1.021 1.013 1.016 1.027 1.003 1.017 34
WMCT-Pair-MAX 1.086 1.043 1.063 1.082 1.036 1.091 1.067 9
WMCT-Pair-SUM 1.063 1.043 1.087 1.071 1.151 1.124 1.090 4
WMCT-Pair-AVG 1.101 1.027 1.123 1.107 1.136 1.136 1.105 2
WMCT-Pair-WAVG 1.060 1.035 1.045 1.050 1.100 1.076 1.061 7
WMCT-Pair-WAVGA 1.029 1.023 1.024 1.018 1.026 1.005 1.021 19

Note that among the heuristics, WCMT-WAVGA generated the best average solutions for 5
of 6 groups with the best average deviation of 1.003, achieved on group 50-8. This heuristic
also found the highest number of best solutions, on 34 of 72 instances.

4 Conclusions

We studied an identical parallel machine scheduling problem with non-anticipatory
family setup times, derived from a ship scheduling problem in the offshore oil & gas logistics.
Tests of the 19 heuristics presented on all instances show that the heuristic WCMT-WAVGA
performs better, with an average deviation of 1.017 from the best solutions. For future
work, local searches and meta-heuristics will be developed.

References

Ðurasević, M; Jakobović, D. “A survey of dispatching rules for the dynamic unrelated machines
environment”, Expert Systems with Applications, Vol. 113, pp. 555-569, 2018.

Weng, M.; Lu, J.; Ren, H. “Unrelated parallel machine scheduling with setup consideration and
a total weighted completion time objective”, International journal of production economics,
Vol. 70, pp. 215-226, 2001.

25

1

Duplication and sequencing of unreliable jobs

A. Agnetis1, P. Detti1, B. Hermans2 and M. Pranzo1

1 Università degli studi di Siena,
Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Siena, Italy

{agnetis,detti,pranzo}@diism.unisi.it
2 Katholieke Universiteit Leuven,

Research Centre for Operations Research and Business Statistics (ORSTAT), Leuven, Belgium
ben.hermans@kuleuven.be

Keywords: unreliable jobs; job duplication; parallel machines; complexity.

1 Introduction

This paper considers a scenario in which a given set of n jobs must be processed
on a machine subject to possible breakdowns. If a breakdown occurs, the remaining jobs
(including the job currently being processed) cannot be performed and are therefore lost.
On the other hand, if job j is successfully completed, a revenue rj is gained. We denote
the success probability of job j as pj . No rescheduling or reactions are possible, hence a
preventive disruption management perspective is adopted (Qi et al. 2006), and the problem
is to decide the job sequence before the beginning of the actual execution of the sequence, in
such a way that the expected revenue is maximized. In what follows, we denote this problem
as 1ERM (i.e., expected revenue maximization on a single machine). Given a sequence σ
of jobs on the machine, and denoting the i-th scheduled job as σ(i), the expected revenue
ER[σ] is given by

ER[σ] = pσ(1)rσ(1) + pσ(1)pσ(2)rσ(2) + . . .+ pσ(1) . . . pσ(n−1)pσ(n)rσ(n). (1)

It is known that 1ERM can be solved at optimality (Mitten 1960) by sequencing jobs
from the greatest to the smallest Z-ratio:

Zj =
pjrj

(1− pj)
. (2)

Here we address an extension of 1ERM in which there are m (identical) machines in
charge of job processing. In order to hedge against unrecoverable interruptions, we adopt
the technique of duplicating work on di�erent machines, which is a common strategy in
many computing centers (Zhou et al. 2016, Benoit et al. 2013). In particular, this means
that there are m copies of each job, one to be executed on each machine. The revenue
rj is gained if at least one copy of j is successfully carried out, i.e., even if all copies are
completed, the revenue is attained only once. When no job duplication is allowed, problems
on parallel machines have been addressed in (Agnetis et al. 2017, Agnetis et al. 2009, Lee
and Yu 2008).

The problem addressed here may arise when considering the execution of a set of tasks
on a multi-processor environment, composed by di�erent servers geographically distributed.
In general we can assume that servers may fail, connections can be broken and outages
may occur. A strategy to increase reliability is to duplicate the execution of the tasks on
two or more independent servers possibly in di�erent geographical locations so that in case
of failure of a server the computation is still carried out on the other servers. In any case,
the revenue is gained only once when one of the computations is over.

Speci�cally, we address the following problems.

26

2

De�nition 1. EXPECTED REVENUE MAXIMIZATION WITH TWOMACHINES (2ERM)
� Given n jobs {1, 2, . . . , n}, each having success probability pj and revenue rj, and two
identical machines M1 and M2, �nd a sequence of the n jobs on M1 and M2 so that the
expected revenue of attaining at least one copy of each job is maximized.

De�nition 2. KIT AVAILABILITY MAXIMIZATION (mKAM) � Given n jobs {1, 2, . . . , n},
each having success probability pj, and m identical machines, �nd a sequence of the n jobs
on each machine so that the probability of attaining at least one copy of each job is maxi-
mized.

We discuss the problem complexity and introduce a rule based on a modi�ed Z-ratio
(2) that, given the sequence on machine M1, allows to derive an optimal sequence for M2.
Furthermore, when the Z-ratios (2) of the jobs are all equal to 1, the rule allows to easily
build an optimal solution for 2ERM.

2 The Expected Revenue Maximization Problem with two machines

We let P =
∏n
j=1 pj and assume that pj < 1 for all j (if for some job pj = 1, such a

job is obviously processed �rst with no consequence on the other jobs). Let us �rst state
a result concerning the following situation. Suppose that a job sequence σ̄1 has been �xed
on M1, and we let p̄j denote the cumulative probability up to job j on M1 in sequence σ̄1,
i.e.,

p̄j =
∏

k:k≺j
pk.

Moreover, we denote by Z ′j the modi�ed Z-ratio of job j, de�ned as

Z ′j = Zj(1− p̄j). (3)

The problem of �nding the optimal sequence on M2 given σ̄1 is solved as shown in the
following lemma:

Lemma 1. If a job sequence σ̄1 is �xed on M1, expected revenue is maximized sequencing
the jobs on M2 by nonincreasing values of

Z ′j = Zj(1− p̄j). (4)

Proof. The proof uses an interchange argument. Consider a sequence σ2 on M2, and let Pi
be the cumulative success probability of job i in σ2, i.e., Pi = pi

∏
k:k≺i pk. (Note that Pi

includes the probability of job i itself.) Given a �xed sequence σ̄1 onM1 and the associated
probabilities p̄i and p̄j , assume that in σ2 there are two consecutive jobs j and i such that
j ≺ i and Z ′i > Z ′j . Let σ

′
2 be the sequence obtained swapping i and j in σ2. The expected

revenue of (σ̄1, σ
′
2) can be expressed as

ER(σ̄1, σ
′
2) = A+ ri(Pi + p̄i − Pip̄i) + rj(Pipj + p̄j − Pipj p̄j) +B

while
ER(σ̄1, σ2) = A+ rj(Pj + p̄j − Pj p̄j) + ri(Pjpi + p̄i − Pjpip̄i) +B,

where A and B denote the contribution of jobs preceding and respectively following
i and j on M2 in the two schedules. Denoting with Q the cumulative probability of jobs
preceding i and j on M2, in (σ̄1, σ

′
2) one has Pi = Qpi and in (σ̄1, σ2), Pj = Qpj , one has

that ER(σ̄1, σ
′
2)− ER(σ̄1, σ2) > 0 if and only if

ripi − ripip̄i + rjpipj − rjpipj p̄j − (rjpj − rjpj p̄j + ripjpi − ripjpip̄i) > 0,

27

3

i.e.,
ripi(1− p̄i)(1− pj) > rjpj(1− p̄j)(1− pi),

and hence
Zi(1− p̄i) > Zj(1− p̄j),

which holds since Z ′i > Z ′j . By repeatedly applying the above argument, the thesis follows.
ut

A consequence of Lemma 1 is the following.

Lemma 2. Consider an instance of 2ERM in which Zj = 1 for all jobs j = 1, . . . , n. Then
any schedule in which the jobs are reversely sequenced on the two machines is optimal.

ut
Regarding the computational complexity of the problem, we recall that when dupli-

cations are not allowed, the problem with 2 machines and unreliable jobs is known to be
strongly NP-hard (Agnetis et. al. 2009). Concerning 2ERM, it is possible to prove the
following result.

Theorem 1. 2ERM is strongly NP-hard.
ut

The proof consists in showing that the combinatorial problem Product Partition

can be polynomially reduced to 2ERM. Product Partition was proved strongly NP-hard
by (Ng et al. 2010).

3 The Kit Availability Maximization Problem

The following results can be established for KAM.

Theorem 2. When there are two machines and n job types (2KAM), the problem can be
solved in O(n).

The problem in which there are m machines and only two job types (1 and 2) consists
in deciding the number x of machines that follow the sequence 12, so that m−x will follow
the sequence 21. The following result can be established.

Theorem 3. mKAM with two job types can be solved in O(logm).
ut

References

Agnetis, A., Detti, P., Martineau, P., Scheduling nonpreemptive jobs on parallel machines subject
to exponential unrecoverable interruptions, Computers and Operations Research, 79, 109-118,
2017.

Agnetis, A., Detti, P., Pranzo, M., Sodhi, M.S., Sequencing unreliable jobs on parallel machines,
Journal of Scheduling, 12(1), 45-54, 2009.

Benoit, A., Robert, Y., Rosenberg, A.L., Vivien, F., Static Strategies for Worksharing with Unre-
coverable Interruptions, Theory of Comput Systems, 2013,53,386-423.

Lee, C.-Y., Yu, G., Parallel-machine scheduling under potential disruption, Optimization Letters,
2, 27-37, 2008.

Lee, C.-Y., Yu, G., Single machine scheduling under potential disruption, Operations Research
Letters, 35, 541-548, 2007.

Mitten, L.G., An Analytic Solution to the Least Cost Testing Sequence Problem, J. Industrial
Engineering, 11, 17, 1960.

28

4

Ng, C.T., Barketau, M.S., Cheng, T.C.E., Kovalyov, M.Y., �Product partition� and related prob-
lems of scheduling and systems reliability: Computational complexity and approximation,
European Journal of Operational Research, 207, 601-604, 2010.

Qi, X., Bard, J.F., Yu, G., Disruption management for machine scheduling: The case of SPT
schedules, International Journal of Production Economics, 103, 166-184, 2006.

Zhou, A., Wang, S., Cheng, B., Zheng, Z., Yang, F., Chang, R.N., Lyu, M.R., Buyya, R., Cloud ser-
vice reliability enhancement via virtual machine placement optimization, IEEE Transactions

on Services Computing, 10 (6), 902-913, 2016.

29

1

A Discrete Time Markov Decision Process to support
the scheduling of re-manufacturing activities

Alessio Angius1, Massimo Manzini1 and Marcello Urgo1

Politecnico di Milano, Mechanical Dept., Italy
alessio.angius, massimo.manzini, marcello.urgo@polimi.it

Keywords: Markov Decision Process, re-manufacturing, scheduling.

1 Introduction and problem statement

Rotor blades are one of the most expensive components in gas turbines for power gen-
eration due to the specific materials used and the complex manufacturing process needed.
For this reason, turbine blades are one of the component whose re-manufacturing is eco-
nomically viable during the maintenance of gas turbines. Nevertheless, rework activities
are subject to a considerable degree of uncertainty due to the unpredictable degree of dam-
age affecting the blades. The wear of the rotor blades could usually occur in term of lack
of material or the presence of cracks whose depth is difficult to estimate in advance. The
repair process consists in the removal of the hard coating and of the damaged parts, and
the addition of the missing material through additive manufacturing processes. Then, the
blades have to undergo a material removal process to obtain the final desired shape. This
material removal process is executed through Electrical Discharge Machining technology
(EDM), operating to lots of turbine blades belonging to the same stage of the gas turbine
and, thus, sharing the same geometrical features. To be able to process a lot of blades, the
EDM machine has to undergo a set-up to mount the right electrode. The duration of the
processing of a lot also entails a certain degree of uncertainty. Some of the blades, in fact,
during the rework process, results having damages that are not possible to repair and, thus,
have to be discarded. For this reason, the number of blades to be manufactured in a lot
cannot be known in advance. Once the lot of blades have been manufactured in the EDM
shop, it undergoes further process steps, it is integrated with new blades to complement
the missing ones and then shipped to the customer’s premises to be made available to the
turbine, thus defining a due date to be respected.

In this paper, we will focus on the EDM shop where both new and repaired blades have
to be processed. New blades follow the standard manufacturing process and the associated
production plans. Repaired blades arrive as soon as the repair process has been completed
and compete for the same resources, i.e., an EDM machine. Thus, a proper approach is
needed to schedule the processing of both the classes of blades. We model the presence
of multiple EDM machines where an already defined production plan sequences the lot of
new blades to be processed while a set of lots of repaired blades is known to be about to
require the same machines to be processed. The scheduling approach considers the need of
a set-up to be able to process a new lot of blades and aims at minimizing the tardiness of
both lots of new and repaired blades.

2 The model

The model under investigation considers K machines processing two classes of pro-
duction lots: production and repair. The main difference between the two classes is that
production lots are immediately available and can be scheduled on machines in advance.

30

2

On the contrary, the arrival of repair lots is uncertain, thus, any decision about their pro-
cessing is delayed to the moment they become available. The production of a lot is never
preempted, hence, a machine must finish the production of a lot before processing a new
one. A set-up is needed to move from the production of a lot to a new one.

The model considers a time interval [0, T] where P production lots are produced by
knowing in advance that M repair lots will require to be processed. The scheduling of the
production lots is defined and conveniently described by a vector S = |s1, ...sk| where lots
between 1 and s1 will be produced in sequence on the first machine, lots between s1 + 1
and s2 will be produced by the second machine, and so on. Each lot is associated to a due
date dc,i and size lc,i where c indicates the class and i the index of the lot.

The model assumes that theM repair lots arrive together into the system with the same
due date and only one arrival is possible in [0, T]. The state of the system is defined by a
vector |k1, . . . , kK , lp,1, . . . , lp,P , lm,1, . . . , lmM

| with K + P +M entries, where ki ∈ {R,S}
(Running and Set-up) refers to the state of each machine; lp,i ∈ [1,K] ∪ {D} represents
the state of the ith production lot that can be assigned to a machine or completed (Done).
Similarly, lm,i ∈ [1,K]∪{D,NA,A} represents the ith repair lot, where the two additional
states NA and A (Not Arrived and Arrived) are necessary to discriminate if the lot has
arrived or not. A repair lot can be assigned to a machine only if it has been arrived.

The initial state of the system consider all the machines as running and working the
firsts lots assigned in the schedule S, e.g., with K = 3 we will have lp,1 = 1, lp,s1+1 = 2 and
lp,s2+1 = 3, and all the repair lots marked as NA. The model divides the time in units and
assumes a syncronous system, hence, in each time unit more than one change can occur in
the system. Each transition is the consequence of several events due to the the change of
state of the machines and the arrival of repair lots. The arrival of repair lots changes their
state from NA to A. Instead, the change of state of a machine k from R to S leads to the
completion of a lot. This transition will move the system in a state where the machine will
be in the state S and the corresponding lot will change state in D. In this case, if exist a
lm,j = k, 1 ≤ j ≤M , then the machine was processing a repair lot, otherwise the machine
was processing the first production lot not in the state D, by following the sequence in S.
Vice-versa, a machine can return to the state R from the state S. Whenever this transition
is performed with both production and repair lots available, a decision must be taken, i.e.,
the machine has to decide if it has to follow the schedule or choose a repair lot. If machine
k decides to process a repair lot, then the chosen lot will move from the state A to the
state k.

The probability driving the system transitions are assumed distributed according to
phase-type distributions (PH). It is determined by a vector α, which gives the initial prob-
abilities of the transient states and a matrix A containing the intensities of the transitions
among the transient state (see (Horváth, A. 2002)). The rates toward the absorption state
are collected in a firing vector f = −A1 where 1 is a vector of ones having the same size of
the matrix A. This class of distributions is able to approximate any general distribution on
the positive axis with a pre-determined accuracy whilst the overall process preserves the
Markovian property. This allows us to model the distribution of the lot completion time
in a statistically sound manner (as described in (Angius et. al. 2018)). In the following,
the time that machine k requires to complete the lot i of class c follows a PH distribu-
tion represented by (αk,c,i, Ak,c,i) and a firing vector fk,c,i. Similarly, the set-up times and
repair arrival are distributed according to a PH distribution represented by (αs, As) and
(αm, Am).

Since transitions from a state z to a state z′ are always combinations of events that
involve the machines and the arrival of repair lots, any transition probability is the result
of a Kronecker product of the form BA(z, z

′) ⊗K
k=1 Bk(z, z

′). The function BA(z, z
′) is

equal to Am if the repair lots are not arrived in both z and z′, it is equal to the firing

31

3

vector if the repair lots arrived in z′, and it is equal to 1 otherwise. Instead, the function
Bk(z

′, z′) describes the dynamic of machine k in state z. If the machine is processing a
lot, this function behaves as BA(z, z

′) by using the corresponding values (αk,c,i, Ak,c,i).
Otherwise, if the machine is performing the set-up, the function BA(z, z

′) takes values
from (αs, As) and a behaviour similar to the previous case, but starting the execution of
a new lot after the completion of the set-up. This is done by multiplying the firing vector
by the initial vector of the corresponding lot to be processed. The firing of the set-up
coincides with a decision every time a machine has to choose between a production and a
repair lot. Because of the presence of non-deterministic decisions, the underlying process
is a Discrete Time Markov Decision Process (DTMDP) which is fully characterized by a
matrix P containing all the dynamics that do not depend on decisions and a set of matrices
D1, . . . , DV describing the different strategies in selecting the next lot to be processed in
each machine.

3 Problem definition

Given the DTMDP described in Section 2, the aim of this work is to analyze the
tardiness of each lot as a function of a scheduler. We define a scheduler W = |w1, . . . , wT |
as a sequence of T entries wi ∈ [1, . . . , V] that determine which decision matrix has to
be used in each t ∈ [1, T]. Given a scheduler W, the distribution π(t) of the DTMDP
evolves on time according to the formula π(t) = π(t − 1)(P + Dw(t−1)

) starting from an
initial vector having all the probability mass in the initial state. Let us denote the random
variable describing the completion of the ith production lot as Xp,i, computed as follows:

Pr{Xp,i ≥ dp,i} = 1−




dp,i∑

t=1

π(t− 1)F (lp,i<>D)(P +Dw(t−1)
)F (lp,i==D)


× 1

where F<cond> is a filtering matrix whose entries are equal to one on the diagonal only if the state
satisfies the boolean condition < cond >. Filtering matrices exploit basic linear algebra to select
only the transitions of interest from the matrix used to catch the moment in which a production
lot completes its execution. For this reason, the filtering matrix on the lhs selects only the source
state in which lot i is still under processing (lp,i <> D), while the matrix on the rhs selects the
destination states in which the lot i is completed (lp,i == D). This guarantees that the process
performs only those transitions that lead to the completion of the considered lot. Instead, the
summation over t and the multiplication by 1 are used to evaluate all the time units until the due
date, and to generate a scalar number from the distribution vector.

The computation of the time for the completion of a repair lot is slightly more complicated
because the arrival is stochastic and, as a consequence, the due date is shifted on time. Thus, the
calculations involve also the isolation of the moment in which the lot arrives into the system. By
denoting the completion of the ith repair lot with Xm,i, we have that:

Pr{Xm,i ≥ dm,i} = 1−
(∑T

t=1 π(t− 1)F (lm,i<>NA)(P +Dw(t−1)
)F (lm,i==A)×

∏dm,i−1

t′=t+1 (P +Dw(t−1)
)× F ((lm,i<>NA)∧(lm,i<>A))(P +Dw(t−1)

)F (lm,i==A)
)
× 1

The first term isolates only those transitions starting from a state in which the repair lot is not
arrived (lm,i <> NA) and ending in a state where it is (lm,i == A), while the second term carries
on the process for dm,i − 1 time units. The third term is used to catch only the moment in which
the lot processing is completed ((lm,i <> NA) ∧ (lm,i <> A)) as already done for the production
lots.

4 Numerical example

In this section we show the importance of the problem under investigation by means of a
numerical example. We performed an experiment by assuming a system having K = 3 machines

32

4

that has to produce 7 production lots and is waiting for 4 repair lots. The scheduling is such
that the first three lots are scheduled at the first machine, the fourth and the fifth are scheduled
at the second machine and the remaining lots are scheduled at the third machine. The sizes of
production lots are equal to |30, 20, 10, 30, 20, 30, 20| whereas repair lots are all composed of 30
parts each. Each part requires on average 1 time unit (TU) for being produced whereas set-ups
require 1.25 TU on average. The probability that repair lots arrive in the next time unit is 0.5.
In order to underline the strong impact that different policies have on the tardiness of each lot,
we defined two matrices, D1 and D2, that represent the two extreme cases. We defined matrix
D1 in such a way that it always selects the next production lot. On the contrary, matrix D2 gives
always precedence to repair lots. We performed an experiment by four different schedulers: the
first scheduler uses constantly matrix D1; the second always uses matrix D2; finally, the other
two schedulers select randomly D1 or D2. We expect that the tardiness of production lots will be
minimized by the first scheduler and maximized by the second. Vice versa, the second scheduler
will minimize the tardiness of the repair lots and maximizes the one of the production lots. The
third and fourth schedulers are expected to provide results in between the two extremes. Figure
1 shows the probability of the tardiness of the third production lot and the third repair lot as
function of the due date. It is possible to notice that the results confirms the expectations. In fact,
the probability to complete the third production lot on time is maximized by the first scheduler
and minimized by the second. On the contrary, the second scheduler provides the best results
for the repair lot whereas it is detrimental for the production lot. Furthermore, as expected, the
trajectories referring to the random schedulers can be found between the trajectories of generated
by the first and second scheduler.

Fig. 1. Probability of the tardiness of the third production lot and the third repair lot as function
of the due date.

5 Conclusive Remarks and Future Works

The paper presents a DTMDP that provides the tools for optimizing the scheduling of lots
whose arrival into the system is uncertain and cannot be planned in advance. We tested two
different scheduling strategies affecting the tardiness function in different ways and validating the
model. Future works will regard the identification of optimal scheduling policies.

References

Horváth, A., 2011, "Approximating non-Markovian Behavior by Markovian Models", PhD Thesis,
Department of Telecommunications, Budapest University of Technology and Economics.

Angius, A. and Colledani, M. and Yemane, A., 2018, "Impact of condition based maintenance poli-
cies on the service level of multi-stage manufacturing systems", Control Engineering Practice,
Vol. 76, pp. 65-78.

33

1

A constraint programming approach for planning items
transportation in a workshop context

Valentin Antuori1,2, Emmanuel Hebrard1, Marie-José Huguet1,
Siham Essodaigui2, Alain Nguyen2

1 LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
{vantuori,hebrard,huguet}@laas.fr

2 Renault, France
{valentin.antuori, siham.essodaigui, alain.nguyen}@renault.fr

Keywords: Constraint Programming, Single-machine Scheduling, TSP.

1 Introduction and related works

We are interested in transporting items in a workshop, from their production spots, to
their consumption spots. For each type of items, there is one consumption machine, one
production machine and four dedicated carriage trolleys, of limited capacity. Initially, there
is one full trolley and one empty trolley in front of each machine. This problem comes from
a real industrial problem, in the context of a car manufacturer workshop. When a trolley
is full, an operator must transport it. He can transport several trolleys at the same time,
making a train with them, but there is a limit on the maximal size on the train he can form.
The production rate, and the consumption rate for a type of item is the same, therefore,
when a carriage is full at a production spot, another carriage is empty at the associated
consumption spot. The operator is also in charge of bringing back empty trolleys from their
consumption machines, to production machines. The production rate, and the capacity of
the trolley, permit to define a production cycle for each pair of machine. A production
cycle is the time taken by a production (resp. consumption) machine, to fill (resp. empty)
a trolley. The end time of a production cycle correspond to the beginning of the next cycle.
For each pair of machines, and for each of their cycles considered until the time horizon,
the goal is to deliver the trolleys which have been filled during the previous cycle to their
consumption spots, and the trolleys which have been emptied during the previous cycle to
their production spots.

The aim is to plan a route of the operator in order to satisfy pickup and delivery
requests with time windows constraints. A particularity of this problem is the periodicity
of the requests. Indeed, all the pickups and deliveries of a given item are almost completely
sequenced. However, the relative order of pickups and deliveries of distinct items still need
to be decided, potentially over a very long planning horizon.

This problem can be seen as a Pickup and Delivery Problem, with a single capacited
vehicle and time windows. It is part of the one-to-one pickup and delivery family (which
means that each pickup has a unique destination and conversely, each delivery has a unique
source)(Cordeau et al. 2008). The single vehicle case comes from a Traveling Salesman
Problem (TSP) in which precedences were added between clients. Since then, several ad-
ditional constraints have been considered, such as time windows, limited capacity or LIFO
loading (deliveries must respect a last-in-first-out rule). One can find complete survey on
pickup and delivery problem in (Parragh et al. 2008) and (Berbeglia et al. 2007). There
are temporal specificities in our problem. Indeed, each request has a twin request with the
same time window: for each request from point A to point B to transport a full (resp.
empty) trolley, there is a request from B to A for the empty (resp. full) trolley to do during

34

2

the same time. Moreover, each request is repeated over time until the horizon, that is, each
due date corresponds to a release date for the next request on the same pair of machine.

Routing problems can often be seen as scheduling problems with sequence-dependent
setup times. In fact, time windows and precedences constraints, as well as the fact that there
is no objective to optimize might suggest that the problem more adapted to scheduling
technologies (Beck et al. 2003). From a scheduling point of view, it is a single resource (the
driver of the train) scheduling problem. We have 4 types of activities: pickup and delivery
of a full and an empty trolley which can’t overlap. There is a precedence between a pickup
and its delivery, and each activity has a time window. Travel times between two activities
are then sequence-dependent. Finally the length of the train can be seen as a reservoir
resource with limited capacity, which is filled by pickups, and emptied by deliveries.

2 Constraint Models

We propose two constraint models to deal with this problem. One TSP-oriented based
on next variables, and one scheduling oriented. In the scheduling model, for each operation
i ∈ T = {1, 2, ..., n}, we define the variable starti as the starting date of the operation i.
Moreover we introduce for each pair of operations i, j ∈ T , a Boolean variable xij which
represent the relative ordering of the two operations. The link between these two sets of
variables is made with with the following constraint:

xij =

{
1⇔ startj ≥ starti + ttij + pi
0⇔ starti ≥ startj + ttji + pj

with ttij , the travel time between operation i and j, and pi the processing time of i. In
fact, we do not need a Boolean variable for every pair of tasks, and can easily reduce the
model. For all pair of operation i, j ∈ T , such as i precede j, we avoid creating the variable
xij , and directly post the following constraint : startj ≥ starti + ttij + pi.

Since production cycles are often much shorter than the planning horizon, the problem
involves a lot of precedences. Therefore, we can drastically reduce the size of the model.
Moreover, we observe that there are only two sensible ways to schedule the four activities
of a production cycle (pickup of the full trolley, pickup of the empty trolley, and the
corresponding deliveries). First, obviously pickups must precede their respective deliveries.
Second, since the second pickup and the first delivery take place at the same spot, it is
always preferable (w.r.t. the capacities and the time windows) to do the first delivery before
the second pickup. Therefore, there are only two possible orders: the operator may either
first pickup and deliver the full trolley, or first pickup and deliver the empty trolley. Hence,
only one variable is needed for these four tasks. In order to deal with the constraint on the
length of the train, we use the balance constraint introduced in (Laborie 2003).

The other model is inspired by the constraint model for TSP with time windows pro-
posed in (Ducomman et al. 2016). For each operation i, there is a variable nexti that
indicates which operation directly follows i. Additional variables are needed in order to
post redundant constraints. posi indicates the position of the operation i in the sequence
of operations, and xij has the same semantic than in the first model. We add another
variable trainLi which represent the length of the train before the operation i. Our model
only differ by the adding of the following constraints :

trainLnexti = trainLi + li ∀i ∈ T ∪ {0} (1)
trainL0 = 0 (2)
posdeli > posi ∀i ∈ P (3)

35

3

with li, the length of the trolley of the operation i (negative length for delivery), deli is the
associate delivery of the operation i, and P is the set of pickup operations. Constraint (1)
and (2) represent the accumulation on the train length during the sequence of operations
and use the Element constraint. The last constraint (3) ensures that each pickup precedes
its delivery. In addition, we use the Circuit constraint to enforce the Hamiltonian circuit.

3 Experiments

In order to compare the two models, and in addition to the industrial instances, we
generated random instances 1. We tried to generate only feasible instances, but we cannot
guaranty that all instances are. There are 4 categories of instances (A, B, C, D). Instances
A contain the least dense instances, i.e. with the least number of operations. They have
also more pairs of machines with the same production cycle. Conversely, instances D are
the most dense, and most asynchronous. We generate 10 instances of each category, and for
each of them we consider 3 different temporal horizons, leading to 120 instances in total.
The two models were implemented in the constraint solver Choco 2.

We observed that variable orderings following the chronological sequence tend to be
more efficient. For instance, in the TSP model, building a tour by selecting the nodes
from the first to be visited (pos1) to the last to be visited (posn) was more effective
than assigning the positions in a different order. In the case of the scheduling model,
we use the following strategy: we say xij dominate xkl, iff min(starti) ≤ min(startk) and
min(startj) ≤ min(startl) with at least one strict inequality or min(starti) ≤ min(startl)
and min(startj) ≤ min(startk) with at least one strict inequality, with min(starti) the
minimum value of starti. When choosing a variable to assign, we look for the boolean
variables which is not dominated by any other variables, ties are broken randomly. We
noticed a slight improvement when in addition we gave priority to the variables which
order operations in the same pair of machines before the other ones. That is, we don’t
deal with a variable xij if the variable ordering the three remaining activities linked to
operation i, and the variable ordering the three remaining activities linked to operation j
are not instantiated. Generic heuristics such as dom/wdeg (Boussemart et al. 2004) were
significantly less effective than these simple orderings.

Similarly, we explore first the branch that minimizes the start time of the next operation.
In the TSP model, it means assigning posi to j such that the minimum value of startj is
minimal. In the scheduling model, it means assigning xij to 1 iff minimum value of starti
is lower than the minimum value of startj . For both, and thanks to the propagation on
the start’s variables, this heuristic acts more or less like a nearest neighborhood approach
and takes advantage of the travel time between activities.

We ran each instance 10 times with randomized heuristics: if there are ties, they are
broken randomly, and if not, one of the two best choices is chosen randomly with equal
probabilities. We also used a restart strategy (the Luby sequence (Luby et al. 1993)) to
improve the result. Each run has a timeout of 1 hour.

Table 1 shows the results. The first column denotes the category of the instance and
second column denotes the temporal horizon. For the two models (denoted by Scheduling
and TSP), 3 indicators are given, the number of solved instances (in average on 10 runs), the
average time, and the numbers of fails for solved instances. We observe that the scheduling-
based model can solve more instances in every category, and is faster in average. The average
number of fails for the TSP model shows the relative slowness of that model. Most of the
instances are unsolved.
1 Available on https://github.com/AntuVal/SPDPTW
2 Prud’homme, C., Fages, J.-G. & Lorca, X. (2017), Choco Documentation.

36

4

Table 1. Comparison of the two models on the generated instances

Cat. Hor. Scheduling TSP Nb Inst.NbSolve Time NbFail NbSolve Time NbFail

A
15000 9.3 44.11 174195 9.0 18.39 13081 10
25000 8.5 52.74 143564 7.9 140.92 9445 10
40000 8.0 36.48 29665 7.1 149.71 3803 10

B
15000 4.8 390.61 301231 2.1 943.88 18340 10
25000 2.5 381.94 203849 0.7 1017.76 2015 10
40000 2.0 402.88 419479 0.1 1929.71 283 10

C
15000 4.3 534.60 387635 2.0 541.68 14549 10
25000 1.4 1264.03 352172 0.1 1693.80 1521 10
40000 0.0 - - 0.0 - - 10

D
15000 2.2 495.55 112918 0.8 1271.75 9484 10
25000 0.2 2565.44 45153 0.0 - - 10
40000 0.0 - - 0.0 - - 10

4 Conclusions

We introduced a one machine scheduling problem with several additional constraints.
That problem is not new in the definition of its constraints, but the temporal structure of
the instances makes it challenging. We proposed a randomly generated set of benchmark
instances, whose a large number stay unsolved. We observed that a light model based on
ordering pair of activities works better than a TSP-based model, which does not scale to
industrial instances.

As a large number of the generated instances remains unsolved, there are still works to
do. We are currently working on a Large Neighborhood Search (LNS) in order to improve
these results. In this scheme, we relax the due date of each task, and instead we minimize
the maximum lateness. Then during a LNS move, a subset of operations can be withdrawn
from the sequence and re-inserted so as to minimize this objective. We also aim to deal
with the entire problem, which is the team sizing for the whole shop. The goal is to plan
a route through the pair of machines, minimizing the number of trains in the shop.

References

Beck, J. C., Prosser, P. & Selensky, E. (2003), Vehicle routing and job shop scheduling: What’s
the difference?, ICAPS, pp. 267–276.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I. & Laporte, G. (2007), ‘Static pickup and delivery
problems: a classification scheme and survey’, TOP 15(1), 1–31.

Boussemart, F., Hemery, F., Lecoutre, C. & Sais, L. (2004), Boosting systematic search by weight-
ing constraints, ECAI, pp. 146–150.

Cordeau, J.-F., Laporte, G. & Røpke, S. (2008), Recent models and algorithms for one-to-one
pickup and delivery problems, in ‘The Vehicle Routing Problem’, Springer, pp. 327–357.

Ducomman, S., Cambazard, H. & Penz, B. (2016), Alternative Filtering for the Weighted Circuit
Constraint: Comparing Lower Bounds for the TSP and Solving TSPTW, AAAI, pp. 3390–
3396.

Laborie, P. (2003), ‘Algorithms for propagating resource constraints in ai planning and scheduling:
Existing approaches and new results’, Artificial Intelligence 143(2), 151–188.

Luby, M., Sinclair, A. & Zuckerman, D. (1993), ‘Optimal speedup of las vegas algorithms’, Infor-
mation Processing Letters 47, 173–180.

Parragh, S. N., Doerner, K. F. & Hartl, R. F. (2008), ‘A survey on pickup and delivery problems’,
Journal für Betriebswirtschaft 58(2), 81–117.

37

1

Index merge in appli
ation to multi-skill proje
t

s
heduling

Dmitry Arkhipov

1
, Olga Battaïa

2

1
V.A. Trapeznikov Institute of Control S
ien
es of Russian A
ademy of S
ien
es, Mos
ow,

Russian Federation

miptrafter�gmail.
om

2
KEDGE Business S
hool, Bordeaux, Fran
e

olga.battaia�kedgebs.
om

Keywords: proje
t s
heduling, multi-skill resour
es, workfor
e s
heduling.

1 Introdu
tion

In this resear
h the index merge method is proposed to de
rease the number of variables

of Multi-Skilled Resour
e Constraint Proje
t S
heduling Problem (MSRCPSP). This prob-

lem was formulated in (Neron E. and Baptista B. 2002) It generalizes Resour
e-Constraint

Proje
t S
heduling Problem (RCPSP) whi
h is proved to be NP-hard in the strong sense

(Garey M. and Johnson D. 1975). In (De Brue
ker P. et. al. 2015) the survey of approa
hes

to solve this problem is presented. Integer and mixed-integer statements of MSRCPSP are

ompared in (Almeida B.F. et. al. 2019).

The problem
an be formulated as follows. There is a set of tasks N , set of workers W
and a set of spe
ialities S. If the worker wi has skill sl than hil = 1, otherwise hil = 0. For
ea
h task j ∈ N the following parameters are given: pj � pro
essing time and ajk � required

number of workers with spe
iality sk. Pre
eden
e relation eij
an be de�ned for a pair of

tasks, means that the task i has to be
ompleted before the task j starts. The obje
tive is

to pro
ess all tasks without preemptions in the shortest time. For easier understanding of

presented method non-human resour
es are not
onsidered in this extended abstra
t.

The very important di�eren
e between MSRCPSP and RCPSP: it is ne
essary to assign

workers not only to tasks but also the spe
iality for whi
h this worker is responsible for.

The following short example des
ribes it. There is a task j whi
h needs one worker with

spe
iality s1 and one with spe
iality s2, a set of workers W = {w1, w2, w3} and a set

of spe
ialities S = {s1, s2, s3}. Worker w1 has spe
ialities s1 and s2, w2 � s3, w3 � s1.

Suppose that there is a binary variable xij whi
h equals 1 if the worker i is assigned to

task j, otherwise xij = 0. Suppose that spe
iality
onstraints are modelled as resour
es,

i.e.

∀l = 1, 2 :

3∑

i=1

x1i · hil ≥ 1 (1)

� there are enough workers for ea
h spe
iality required for pro
essing task j. The problem
is that inequality (1) allows to assign workers w1 and w2 to the task j in feasible solu-

tion, whi
h is not
orre
t. In this
ase worker w1 have to a
t as a spe
ialist s1 and s2

simultaneously, whi
h is not possible.

This means that the variable with three indi
es (task, worker, spe
iality) have to be

introdu
ed together with variables related to the start times of tasks. Su
h a large number

of variables makes the problem very hard to solve.

38

2

2 Proposed approa
h

We propose a data-prepro
essing method to de
rease the number of variables by index

merge. To solve MSRCPSP it is ne
essary to set task pro
essing intervals and to assign

workers to tasks. For ea
h worker the spe
iality under whi
h he operates the task has to be

hosen. In the paper (Stadni
ka D. et. al. 2017), the Hall's marriage theorem was used in

integer linear programming (ILP) model to formalize operator assignments. In this work,

we propose an approa
h based on the
reation of task pro
essing s
enarios.

Let we
all s
enario z � the assignment list of workers z = {xz
1, . . . , x

z
|W |}, xz = 1.

If s
enario z is
orre
t for task j ∈ N , then it is possible to assign the set of workers

Wz = {wi|xz
i = 1} to all spe
ialities required for pro
essing j. The set of all
orre
t

s
enarios for task j is denoted by Zj . To de
rease the number of s
enarios in Zj , only those

with the number of workers not ex
eeding the required number for task j are
onsidered.

2.1 The
orre
tness of task s
enario

The problem to verify the
orre
tness of s
enario z for task j
an be formulated as

follows.

Problem 1. There is a set of workers de�ned by s
enario z and a set of spe
ialists

required for job j. Ea
h worker
an have several spe
ialities. How to verify that there is

an assignment of workers to required spe
ialities, su
h that ea
h worker is assigned to the

spe
iality he has and for ea
h spe
iality the required number of workers are assigned?

Let Sj � the ordered set of spe
ialities, whi
h in
ludes ajk elements of spe
iality k. Note
that |Sj | = |Wz |. Then, problem 1 means that the set of workers Wz
an be paired with

the set of Sj . In terms of graph theory this problem is equivalent to the perfe
t mat
hing

problem in bipartite graph.

Problem 2. There is a bipartite graph with two disjoint sets of verti
es related to Wj

and Sj . Vertex i ∈ Wj is
onne
ted to vertex sk
j ∈ Sj related to spe
iality s if and only if

his = 1. Is there a perfe
t mat
hing for this graph?

If there is a perfe
t mat
hing, then we
an assign workers to spe
ialities they are

mat
hed with. If there is no perfe
t mat
hing, then the workers
annot be assigned to

spe
ialities and task j
annot be pro
essed under s
enario z. Veri�
ation of s
enarios for

the example, presented in the previous se
tion is illustrated on the Fig. 1.

Fig. 1. Example: s
enario veri�
ation.

Problem 2
an be solved by the Hop
roft�Karp algorithm (Hop
roft J. and Karp

R. 1973) in O(|Wz |5/2) operations. Therefore the
omplexity of the veri�
ation of the

orre
tness of s
enario z for task j is the same.

39

3

2.2 Creation of
orre
t s
enarios

To
reate the set of
orre
t s
enarios Zj the following algorithm
an be used.

Algotithm 1.

1. Cal
ulate the number of workers kj =
∑

s∈S ajs required for pro
essing task j ∈ N .

2. Generate all the s
enarios of kj workers.

3. Cy
le all generated s
enarios and
he
k ea
h s
enario if it is
orre
t for pro
essing task

j. If yes, add it to Zj .

Number of s
enarios to be veri�ed � C
kj

|Wz | = |Wz|!
kj !(|Wz |−kj)!

whi
h is not more than

C
⌈|Wz |/2⌉
|Wz | . By the Stirling's formula this value
an be asymptoti
ally approximated by

C
|Wz |
⌈|Wz |/2⌉ ∽ 2|Wz|+1/2

√
π|Wz |

.

Then, subje
t to Hop
roft�Karp algorithm, the
omplexity of Algorithm 2
an be evaluated

as O(2|Wz ||Wz |2) operations. Creation of the
orre
t s
enarios for entire set of tasks N takes

O(n2|W ||W |2).

2.3 Using s
enarios in MSRCPSP models

In
ase of Mixed-Integer Linear Programming models the variable with one index (task

s
enario)
an be used instead of the variable with three indi
es (task, worker, spe
iality). In

Constraint Programming models, interval variables asso
iated with optional task s
enarios

an be used as follows.

Constraint programming MSRCPSP model.

Task pro
essing optional interval variables: ∀j ∈ N, z ∈ Zj : intz with size |intz| = pj.

Constraints:

� ∀j ∈ N :
∑

z∈Zj
presenceOf(intz) � for ea
h task only one s
enario is presented in

the solution;

� Let fi(t) �
umulative fun
tion de�ned for all i ∈ W by the number of intervals

asso
iated with s
enarios z ∈ Z whi
h involves the worker i (xz
i = 1). Then the number

of tasks pro
essed simultaneously be the worker i
an be modelled by fi(t) ≤ 1.
� ∀eij ∈ E, z1 ∈ Zi, z2 ∈ Zj : endOf(intz1) ≤ startOf(intz2) � pre
eden
e relations

have to be satis�ed.

Obje
tive � minimal makespan:

min max
z∈Z

endOf(intz).

3 Numeri
al experiments & analysis

In numeri
al experiments, we
ompared the presented model with CP model based on

the IBM ILOG example: /examples/opl/s
hed_sequen
e. Both models were implemented

using IBM CP Optimizer 12.6.2 and tested on Intel(R) Core(TM) i7-7700 HQ 2.8 GHz with

8 Gb RAM. We generated 800 random instan
es with 10, 20, 30 and 40 tasks and di�erent

number of workers, pre
eden
es and skills. Time limit for instan
es with 10 and 20 jobs

was equal to 120 se
onds and for instan
es with 30 and 40 jobs � 600 se
onds. For 100%

of generated instan
es proposed method gave better results. The results are presented in

Table 1.

40

4

Table 1. Numeri
al experiments result.

Without s
enarios With s
enarios

Tasks Solutions found % Optimum proved % Solutions found % Optimum proved %

10 53 26 100 89

20 44 19 100 63

30 18 6 100 39

40 6 0 100 0

The presented approa
h
an be applied for other models to merge the variable indi
es

and de
rease the number of variables. Method allows to de
rease the number of variables

by
onsidering
onstraints on the pre-pro
essing stage and works espe
ially e�
iently if

the pre-pro
essing eliminates a large number of indi
es
ombinations as it is shown by

numeri
al experiments.

The proposed idea has the following weaknesses.

� A larger number of
onstraints. In
omparison with
lassi
 models, all
onstraints

involving index i have to be applied to all merged
ombinations of indi
es in
luding i.
� The need to store s
enarios and a large number of
onstraints leads to the large amount

of memory required.

� It is ne
essary to develop fast pre-pro
essing pro
edures to eliminate the forbidden

ombinations of indi
es.

4 Con
lusion

In this paper, an index merge method was presented and applied to MSRCPSP. The

e�
ien
y of the proposed model was evaluated theoreti
ally and by a
omparative analysis

with default IBM ILOG CP model.

A
knowledgements

This resear
h was supported by the Russian Foundation for Basi
 Resear
h (grant 18-

37-00295 mol_a).

Referen
es

Almeida B.F., I. Correia and F. Saldanha-da-Gama, 2019, �Modeling frameworks for the multiskill

resour
e-
onstrained proje
t s
heduling problem: a theoreti
al and empiri
al
omparison", Intl

Trans in Oper Res., Vol. 26, I. 3, pp. 946-967.

De Brue
ker P., J. Van den Bergh, J. Beliën and E. Demeulemeester, 2015, �Workfor
e planning

in
orporating skills: State of the art", Eur J Oper Res, Vol. 243, I. 1, pp. 1-16.

Garey M., D. Johnson, 1975, �Complexity results for multipro
essor s
heduling under resour
e

onstraints", SIAM Journal on Computing, Vol. 4, I. 4, pp. 397-411.

Hop
roft J., R. Karp, 1973, �An n5/2
algorithm for maximum mat
hings in bipartite graphs",

SIAM Journal on Computing, Vol. 2, I. 4, pp. 225-231.

Neron E., B. Baptista, 2002, �Heuristi
s for multi-skill proje
t s
heduling problem",

In:International Symposium on Combinatorial Optimization.

Stadni
ka D., D. Arkhipov, O. Battaïa and R.M. Chandima Ratnayake, 2017, �Skill management

in the optimization of air
raft maintenan
e pro
esses", IFAC PapersOnLine, Vol. 50, I. 1, pp.

6912-6917.

41

Adapting the RCPSP framework to Evacuation Problems

Christian ARTIGUES1, Emmanuel HEBRARD2, Alain QUILLIOT2,, Peter

STUCKEY3, Hélène TOUSSAINT2

1 LAAS Laboratory, CNRS Toulouse, France

e-mail: artigues@laas.fr

2LIMOS laboratory, CNRS/UCAlermont-Ferrand, France

e-mail: alain.quilliot@isima.fr

3Monash University, Melbourne, Australia

Keywords: Scheduling, RCPSP, Evacuation.

1. Introduction

In the context of the H2020 GEOSAFE European project [7], we have been working on the

late evacuation problem, that means the evacuation of people and eventually critical goods facing

a natural disaster (flooding, wildfire..).

We did it accordingly to the 2-step approach currently favored by practitioners [2, 4, 7]: the

first step (pre-process) computes the routes that evacuees will follow; the second step, to be

performed in real time, schedules the evacuation of estimated late evacuees along those routes. In

practice, performing this last step requires forecasting the evolution of the disaster, rather difficult

in the case of wildfires, because of their dependence to topography and meteorology [4]. But we

consider here this issue as resolved and focus on the priority rules and evacuation rates which have

to be imposed to evacuees [3]. Our model non preemptive Tree evacuation planning problem

(NPETP) is equivalent to the model proposed in [1] evacuees have been clustered into groups with

same original location and pre-computed route, and once a group starts moving, it keeps on at the

same rate until reaching his target safe area (non preemption. This last hypothesis derives from

practical concerns and aims at avoiding any panic effect during the evacuation process. The pre-

computed evacuation routes are supposed to define a tree, with evacuee groups located at the

leaves of the tree and the safe target place at its anti-root. While [1] addresses the problem through

a discretization of both time and rate domains and constraint programming techniques, we make it

here appear as a RCPSP: Resource Constrained Project Scheduling Problem variant, [5,6]), and

use this RCPSP reformulation in order to get accurate optimistic bounds (lower bounds) and

design an efficient network flow based heuristic.

The paper comes as follows: Section 2 provides the NPETP model. Section 3, 4 are devoted to

optimistic bounds and algorithms. Section 5 proposes numerical tests.

2. The RCPSP Oriented NPETP Model

We consider here a tree A, oriented from its leaves towards its anti-root (safe target node),

which is the extremity of a single arc Root. The leaf set is denoted by J = {1..N} : every j  J is

provided with an evacuee population P(j) which has to be brought until the safe target anti-root.

We indistinctly talk about j as an evacuation node and an evacuation job. Arcs e are provided with

both a capacity CAP(e) and a length (or duration) L(e). This induces that the path (j) which

connect j to the anti-root has a length (j). Values CAP(e) increase as long as we advance along

path (j). For any arc e, J(e) denotes the subset of J defined by all j such that e  (j).

With every population j is associated a deadline (j) : evacuation of j must be achieved no

later than time (j). The evacuation time of population j is determined by its speed, which is

supposed to be the same for all evacuees, and by its evacuation rate (number of people/time unit)

vj, which is imposed to be independent on the time. It comes that the duration of evacuation job j is

42

equal to (j) + P(j)/vj. We want to schedule the evacuation process, while meeting the following

requirements:

- Every evacuation job j is achieved at time TEnd
j no later than deadline (j) ;

- For any arc e, the sum of the evacuation rates vj, taken for all j which are concurrently

entering on e, does not exceed CAP(e); (E1)

- The global safety margin M = Inf j ((j) - TEnd
j) is the largest possible.

In order to cast our NPTEP problem into the RCPSP framework, we identify every evacuation

job j with the entering process defined by the arrival of evacuees of j on the arc Root. Let us

denote by Tj the starting time of this process and by T*j its ending time. Then we get a schedule if

we decide, for every j  J, starting time Tj, ending time T*j, and evacuation rate vj, in such a way

that:

 Tj is no smaller than the release date R(j) = distance in the tree A from node j to the

origin of Root;

 T*j = Tj + P(j)/vj ≤ (j) – L(Root), which becomes the deadline D(j) of job j. We

deduce that vj should be no smaller than vmin(j) = P(j)/(D(j) – R(j)).

 Above capacity constraints (E1) are never violated.

Because of the Non Preemption hypothesis, entering process j should take place in a

continuous way between time Tj and time T*j, and define an interval. So we simplify the

formulation of (E1) by introducing a vector Z = (Zj,k, j,k = 1..N) 1..N) such that Zj,k = 1 iff j

precedes k. This allows to get our RCPSP oriented NPTEP model as follows:

NPTEP Model: {Compute vectors T = (Tj , j = 1..N), T* = (T*j , j = 1..N), v= (vj , j = 1..N)

≥ 0, and {0,1}-valued vector Z = (Zj,k, j,k = 1..N) such that:

o Zj,k = 1 iff j precedes k: we say that j and k overlap if Zj,k + Zk,j = 0;

o Temporal constraints:

 For any j, Tj + P(j)/vj = T*j ≤ D(j) ;

 For any j, Tj ≥ R(j);

 For any j, k, Zj,k = 1 -> T*j ≤ Tk ;

o Resource constraints:

 For any arc e, and any clique C  {1..N} in the overlap sense,

  j  J(e)  C vj ≤ CAP(e). (E2)

o Safety Margin Criterion: Maximize M = Inf j (D(j) - T*j)}

3. Optimistic Upper Bounds

We propose 2 upper bounds, both derived from the relaxation of the Non Preemption

constraint from the NPTEP model. We get upper bound UB-Tree while keeping all constraints but

the Non Preemption Constraint; we get upper bound UB-Arc while also relaxing all constraints

(E2) but those related to the final arc Root and those related to the arcs e(j) whose origins are the

leaves j = 1..N and whose capacities CAP(e(j)) are upper bounds values for the evacuation rates vj.

Computing both UB-Arc and UB-Tree follows the same algorithmic scheme:

Start from time value t = 0;

At any time t, consider all (entering) jobs j which have not been achieved yet and which

are such that t ≥ R(j); Denote by Q(j) the population which remains to enter into the arc

Root;

Compute, for any such a job j, its current optimistic safety margins Mj, which means the

safety margin D(j) - T*j = D(j)– Q(j)/CAP(e(j)) which would be achieved if constant rate

vj = CAP(e(j)) were applied to job j from t on;

Make run jobs j with higher value Mj, which are assigned values vj in such a way that

values Mj evolve at the same pace for those jobs with highest priority;

43

Compute smallest time value t* which fits some of the 3 following situations: (a) some

job j gets to its end; (b) t coincides with the release date R(j) of a job j which could not

be started before; (c) the priority order related to safety margins Mj has been modified.

Update t: t <- t*.

4. Algorithms

We propose here 2 algorithms. The first one is a fast insertion algorithm which relies on the

Network Flow approach which was implemented in [6] in the case of RCPSP. The second one was

already described in [1] and involved the use of IBM CP Optimizer Software.

4.1. A Network Flow Oriented Heuristic NPETP.

The key idea here is to consider the arcs e of the tree A as resources, likely to be exchanged by

evacuation jobs i, j whose paths (i) and (j) share arc e. According to this purpose, we extend

above NPETP model by introducing, for any pair (i,j) and any arc e in the set Arc(i,j) = (i) 

(j), the part wi,j,e of access rate to e which is given by i to j. We see that resulting vector w has to

comply with the following flow constraints (E3):

o For any j = 1..N, e in (i):  i such that e  Arc(x,y) wi,j,e = vi =  i such that e  Arc(j,i) wj,i,e; (E3)

We see that the main difficulty here is that we must choose between assigning high rates vj to

jobs j and let them monopolize the access to transit arcs of A, or conversely restricting vj in order

to make j share its arcs. In order to deal with it we design a 2 step NPETP approach:

NPETP Algorithmic scheme:

First step (conservative approach):

Starts from deadlines D(j), j = 1..N; Not Stop;

While Not Stop do

Look for a feasible Schedule (T, v, T*);

If Fail then Stop Else decrease deadlines D(j), j = 1..N, in order to force values

T*j to decrease and so improve the Safety Margin criterion.

Second step: Improve the solution by making evacuation rates vj increase (and so dates

T*j decrease), through resolution a specific linear program on vectors w and v.

Then the core of NPETP Algorithm is related to the “Look for a feasible Schedule (T, v, T*)”

instruction of the “While” loop of the first step. We do it while relying on above flow vector w

and providing every job with no more than what it needs in order to be achieved in time:

Start from some linear ordering  defined on N; Not Success; Not Failure;

While Not Success and Not Failure do

 Scan  j0 being current job, values vj, Tj and (j,e) = access level to arc e that job j

can transmit to j0 have been computed for any j prior to j0 in s; 

Then: 

(1) : Scan path (j0): for any e in (j0), compute flow values wj,j0,e, j prior to j0

in , in such a way T*j0 ≤ D(j0); Derive vj0 = Sup e ( j wj,j0,e) and related arc e0;

(2) : Increase the wj,j0,e for e  e0 in order to make job j0 run at the same rate for

all arcs e of(j0).

If Not Success then modify  accordingly and update Failure.

4.2. A Constraint Programming Approach for a Discrete Version of the NPTEP Model.

This approach associates with every variables vj, Tj, j = 1..N, finite discrete domains, and apply

the constraint propagation techniques which are at the core of the IBM CP Optimizer Software. All

details are provided in [1]. Because of the rounding of values vj, Tj, j = 1..N, it is also a heuristic

approach.

44

5. Numerical Experiments

Purpose/Technical context: Algorithms were implemented C++, Windows 10, Visual Studio

2017, on PC with 16Go de RAM, Intel Core i5-8400 CPU @ 2.80GHz. Our goal was to evaluate

both ability of the NPETP algorithm to yield good solutions and the accuracy of the optimistic

upper bounds of Section III, while using results obtained in [1] through constraint programming

(CPO Optimizer) as reference results.

Instances/outputs: They are as in [1]. The main characteristics of an instance is the number N

of populations. We consider several instance packages, with, for any package, the number S which

denotes the number of instances inside the package.

Outputs: For every instance package, we compute:

 resCPO = reference value through IBM-CPO in no more than 100 s (CPU).

 optCPO = number of instances such that IBM-CPO could achieve optimality of the discrete

approximation of NPETP.

 NPETP = Value obtained through NPETP Algorithm; cpuNPEP = Related CPU time.

 UB1 = Optimistic (upper) bound UB-Arc; UB2 = Optimistic bound UB-Tree.

CPU times for the computation of both UB1 and UB2, since they never exceed 0.1 s.

Then the following table provides a summary of our results:

N S resCPO optCPO NPETP cpuNPETP(s) UB1 UB2

10 15 104,00 12,00 97,96 0,56 112,16 107,16

15 16 69,81 12,00 65,14 0,79 78,53 73,94

20 11 40,09 8,00 42,36 1,30 51,28 43,58

25 5 8,40 0,00 43,80 1,17 70,30 49,20

Comments: The model handled by IBM-CPO is an approximation of NPETP model, and so

NPETP algorithm obtains in some cases better results that IBM-CPO, even when IBM-CPO

concludes to optimality. In any case, NPETP, whose computation times are very small,

outperforms IBM-CPO as soon as the size of the problem increases. We also see that the Tree

Upper Bound UB2 provides us with a very efficient estimation of the optimal NPETP value, since

the gap between UB2 and Inf(resCPO, NPETP) is in average 5% (it tends to increase with the size

of the instance).

Acknowledgements

This work is partially funded by the H2020-MSCA -2015 U.E project GEO-SAFE.

References

[1]. Artigues.C, Hebrard.E, Pencolé.Y, Schutt.A, Stuckey.P: “A study of evacuation planning for

wildfires”; 17 th Int. Workshop on Constraint Modelling/Reformulation, Lille, France, (2018).

[2]. Bayram.V : “Optimization models for large scale network evacuation planning and

management : a review “; Surveys in O.R and Management, (2016)

[3]. Even.C, Pillac.V, Van Hentenryk.P: “Convergent plans for large scale evacuation”; In Proc.

29 th AAAI Conf. On Artificial Intelligence, Austin, Texas, p 1121-1127, (2015).

[4].Intini.P, Gwynne.S.M, Ronchi.E, Pel.A : “Traffic modeling for wildland urban interface fire

evacuation” ; Jour. Transportation Eng. A, 145, 3 (2019)

[5].Orji.M.J, Wei.S. “Project Scheduling Under Resource Constraints: A Recent Survey”. Inter.

Journal of Engineering Research & Technology (IJERT) Vol. 2 Issue 2, (2013)

[6]. Quilliot.A, Toussaint.H: “Flow Polyedra and RCPSP”, RAIRO-RO, 46-64, p 379-409, (2012)

[7]. Veeraswamy.A, Galea.E, .Filippidis.L, Lawrence.P, Haasanen.S, Gazzard.R.J, TSmith.T.E:

“The simulation of urban scale scenarios with application to the Swinly forest fire”; Safety

Science 102, p 178-193, (2018).

45

1

Structural and Experimental Comparisons of
Formulations for a Multi-Skill Project Scheduling

Problem with Partial Preemption

Christian Artigues, Pierre Lopez, and Oliver Polo Mejía

LAAS-CNRS, Université de Toulouse, CNRS, France
{christian.artigues, pierre.lopez, oliver.polo-mejia}@laas.fr

Keywords: RCPSP, Multi-skill, Partial preemption, Mixed-integer programming, Con-
straint programming.

1 Problem statement

Preemptive scheduling problems assume that all resources are released during preemp-
tion periods, and that they can be used to perform other activities. However, in certain
cases, constraints require that a subset of resources remains allocated to the activity when
it has been interrupted, to ensure safety for example. Suppose one must execute an exper-
imental activity that requires an inert atmosphere for its execution. In practice, one can
stop this activity and allow the technicians and some of the equipment to be used in other
activities. However, safety and operational constraints force us to preserve the inert atmo-
sphere even when the activity is stopped (before its end). In other words, one cannot release
the equipment that ensures the inert atmosphere during the preemption periods. Tradi-
tional preemptive schedule models cannot represent this behaviour since they assume that
all resources are released during the preemption periods. Until now, the only way to model
this activity, while respecting safety requirements, was to declare it as “non-preemptive”.
However, this decision can increase the project makespan, especially when the activities
have restrictive time windows and the availability/capacity of the resources vary over time.
We call partial preemption the possibility of only releasing a subset of resources during the
preemption periods.

We are concerned here in multi-skill project scheduling problem (MSPSP) (Bellenguez
and Néron 2012). We present in this extended abstract a new variant of the MSPSP that
uses the concept of partial preemption. The variant of the problem under study is then
called Multi-Skill Project Scheduling Problem with Partial Preemption (MSPSP-PP). To
the best of our knowledge, it has not been studied yet in the scientific literature.

In the MSPSP-PP, if an activity is interrupted, we release only a subset of resources
while seizing the remainder. We can then classify the set I of activities to be scheduled into
three types according to the possibility of releasing the resources during the preemption
periods: 1) Non-preemptive activities (NP), if none of the resources can be released; 2)
Partially preemptive activities (PP), if a subset of resources can be released; and 3) Pre-
emptive activities (P), if all resources can be set free. In our case, the partial preemption
is only related to mono-skilled resources, and we made the hypothesis that resources can
always be released during preemption periods.

Our objective in the MSPSP-PP is to find a feasible schedule that minimises the to-
tal duration of the project (Cmax). Finding a solution consists in determining the periods
during which each activity is executed and also which resources will execute the activity in
every period; all this, while respecting the resources capacity and the activities character-
istics. We must schedule these activities on renewable resources with limited capacity; they
can be cumulative mono-skilled resources (machines or equipment) or disjunctive multi-
skilled resources (technicians) mastering a given number of skills. Multi-skilled resources

46

2

can respond to more than one skill requirement per activity and may execute it partially
(except for non-preemptive activities where technicians must perform the whole activity).
An activity is defined by its duration (Di), its precedence relationships (set E), its require-
ments of resources, its requirements of skills, the minimum number of technicians needed
to perform it, and the subset of preemptive resources. Activities might or not have either a
deadline or a release date. Figure 1 illustrates an example of an MSPSP-PP instance and
a possible solution.

Fig. 1. Example of an MSPSP-PP instance.

The complexity of the MSPSP with partial preemption can be established using the
classical RCPSP (Resource-Constrained Project Scheduling Problem) as a starting point.
For each instance of the RCPSP, we can match an instance of the MSPSP with partial pre-
emption, where all resources are mono-skilled, and none of the resources can be preempted.
Thus, we can define the RCPSP as a particular case of the MSPSP with partial preemp-
tion. Since the RCPSP has been proved to be strongly NP-hard (Błazewicz et al. 1983),
we can, therefore, infer that the MSPSP with partial preemption is also strongly NP-hard.

We propose five formulations for the MSPSP-PP using Mixed-Integer/Linear Program-
ming (MILP) and Constraint Programming (CP).

2 MILP formulations

We present below five time-indexed formulations of the problem over a discretized
horizon H. These formulations generalize the ones presented in (Polo et al. 2018) and
(Polo et al. 2019). All models are based on on/off binary variables Yi,t stating whether an
activity i is in process in time period t, on/off binary variables Oj,i,t = 1 if technician j is
assigned to activity i during period t, binary variable Sj,i = 1 if technician j is assigned to
non-preemptive activity i (this variable is used to express that any technician assigned to
a non-preemptive activity must remain assigned until its completeness). For any partially
preemptive activity i, an on/off binary variable Ppi,t = 1 if activity i is preempted in time
period t. For the three first models, step binary variable Zi,t = 1 if partially preemptive or
non-preemptive activity i starts in time period t or before and step binary variable Wi,t = 1

47

3

if partially preemptive or non-preemptive activity i ends in time period t or after. We only
provide a subset of the constraints of the first model (MSPP1a): precedence constraints
(1) and the constraints (2–8) that link variables Y , Pp, Z, W , S, O and Cmax, the project
makespan. The other constraints are standard resource constraints and operator availability
constraints.

Di ∗ (1− Yl,t) ≥
|H|∑

t′=t

Yi,t′ ∀(i, l) ∈ E,∀t ∈ H (1)

Zi,t ≥ Yi,t′ ∀i /∈ P ,∀t ∈ H, ∀t′ ≤ t (2)

Wi,t ≥ Yi,t′ ∀i /∈ P ,∀t ∈ H, ∀t′ ≥ t (3)

Ppi,t = Zi,t +Wi,t − Yi,t − 1 ∀i ∈ PP ,∀t ∈ H (4)

Zi,t +Wi,t − Yi,t = 1 ∀i ∈ NP,∀t ∈ H (5)

Oj,i,t ≥ Sj,i + Yi,t − 1 ∀i ∈ NP,∀j ∈ J, ∀t ∈ H (6)

Oj,i,t ≤ Sj,i ∀i ∈ NP,∀j ∈ J, ∀t ∈ H (7)

Cmax ≥ t ∗ Yi,t ∀i ∈ I, ∀t ∈ H (8)

Given the variables Wi,t and Zi,t, we can replace the precedence constraints (1) by a
disaggregated version below, yielding the second model (MSPP1b), while the third model
(MSPP1c) includes both constraints (1) and (9).

Zl,t +Wi,t ≤ 1 ∀(i, l) ∈ E,∀t ∈ H (9)

We also propose two mixed continuous-time/discrete-time models (MSPP2a and
MSPP2b), replacing binary variables Wi,t and Zi,t by continuous time variables Gi and
Fi representing the start and completion times of activity i, respectively. We replace con-
straints (1–5) by:

Fi + 1 ≤ Gl ∀(i, l) ∈ E (10)

Ppi,t ≤ 1− Yi,t ∀i ∈ PP ,∀t ∈ H (11)

Fi −Gi + 1 ≤ Di +
∑

t∈H

Ppi,t ∀i ∈ PP (12)

Fi −Gi + 1 ≤ Di ∀i ∈ NP (13)

Fi ≥ t ∗ Yi,t ∀i ∈ I, ∀t ∈ H (14)

Gi ≤ t ∗ Yi,t + (1− Yi,t) ∗ |H| ∀i ∈ I (15)

It remains to express the fact that partial preemption variables Ppi,t must be equal to 0
outside the execution interval of i. We either use the following constraints using variables Y
(MSPP2a):

Ppi,t ≤
t∑

t′=1

Yi,t′ ; Ppi,t ≤
|H|∑

t′=t

Yi,t′ ∀i ∈ PP ,∀t ∈ H (16)

or the following ones using variables F and G (MSPP2b):

Fi ≥ t ∗ Ppi,t ; Gi ≤ t ∗ Ppi,t − (1− Ppi,t) ∗ |H| ∀i ∈ PP ,∀t ∈ H (17)

In Section 3, we compare the proposed MILP formulations in terms of LP relaxation
strength and we provide a computational comparison with the constraint programming
formulation described in (Polo et al. 2019).

48

4

3 Structural and computational comparisons

3.1 Structural comparison of the MILP formulations

Using the transformation Gi = |H| −
∑

t∈H Zi,t + 1 and Fi =
∑

t∈H Wi,t we show that
the constraints in model MSPP2 involving the Fi and Gi variables are all implied by the
constraints of model MSPP1 augmented with the transformation. As the computational
experiments show that there are instances where MSPP1 has a strictly better LP relaxation
than MSPP2, this yields the following result:

Theorem 1. Formulation MSPP1b is tighter than formulations MSPP2a and MSPP2b.

We could not prove a dominance relation between MSPP1a and MSPP1b, which was
corroborated by the experiments fox which some bounds provided by the MSPP1a re-
laxation are better than those provided by the MSPP1b relaxation and vice-versa, which
justifies the proposal of MSPP1c.

3.2 Computational experiments on the MILP and CP formulations

For computational tests, we use CPLEX 12.7 and CP Optimizer 12.7 for solving the
MILP models and the CP models, respectively (using the default configuration and limiting
the number of threads used by the solvers at 8). The computation time was limited to 10
minutes. We use the four sets of 30 activities instances of (Polo et al. 2019), each of
them having 50 instances and a different proportion of preemption types. The activity
durations are between 5 to 10 time units. There are up to 15 skills, 8 cumulative resources,
8 technicians (multi-skilled resources) divided into two teams, 20% of activities with time
windows, the density of precedence relationships is low, and an average optimum Cmax

between 70 and 90 time units.
First of all, the MILP formulations are only efficient when the number of preemptive

activities is high. For these instances, model MSPP1b provides the larger number of op-
timal solutions but model MSPP2b is faster and has a better average gap. There was no
perceptible advantage for the integrated model MSPP1c. These computational results con-
firm one more time that a theoretically stronger formulation does not necessarily imply
better practical performance. The MILP MSPP2b model outperforms the CP one when
the percentage of preemptive activities is high, proving the optimality of a higher number
of instances, and giving a lower average gap. CP, on the other hand, gives better results
when this percentage is low. One could then say that the two methods are complementary.

Future research should be done in order to develop a hybrid method that better exploit
the characteristics of each instance.

References

Bellenguez-Morineau O., E. Néron, 2008, “Multi-mode and multi-skill project scheduling problem”,
In Resource-constrained project scheduling: models, algorithms, extensions and applications,
C. Artigues, S. Demassey, E. Néron (Eds.), Wiley-ISTE, pages 149-160.

Błazewicz J., J. K. Lenstra and A. H. G. Rinnooy Kan, 1983, “Scheduling subject to resource
constraints: classification and complexity”, Discrete applied mathematics, Vol. 5, pp. 11-24.

Polo-Mejía O., M.-C. Anselmet, C. Artigues and P. Lopez, 2018, “Mixed-integer and constraint
programming formulations for a multi-skill project scheduling problem with partial preemp-
tion”, In 12th International Conference on Modeling, Optimization and Simulation (MOSIM
2018), Toulouse, France, pages 367-374.

Polo-Mejía O., C. Artigues, P. Lopez and V. Basini, 2019, “Mixed-integer/linear and constraint
programming approaches for activity scheduling in a nuclear research facility”, International
Journal of Production Research, In Press. DOI:10.1080/00207543.2019.1693654.

49

1

A Serial Schedule Generation Scheme for Project
Scheduling in Disaster Management

Niels-Fabian Baur and Julia Rieck

University of Hildesheim, Germany
{baur,rieck}@bwl.uni-hildesheim.de

Keywords: disaster management, schedule generation scheme, flexible resource profiles.

1 Project Scheduling in Disaster Management

Due to climatic changes and a concomitant accumulation of extreme weather events,
natural disasters, e.g., hurricanes and floods are a growing threat worldwide. According to
the survey of Altay and Green, disasters can be described as large-scale events that pose an
unusually high threat to life and health as well as to material assets. A particular challenge
is the uncertainty of the events as well as the difficulty to predict a disasters impact.
Four phases can be identified in the lifecycle of disaster management (i.e., mitigation,
preparedness, response, and recovery). In particular, the response phase (post-disaster),
where activities must be coordinated and information exchanged quickly, is considered in
the literature, e.g., in the fields of infrastructure protection and medical care (Altay and
Green 2006). Here, models and decision support systems can be used to directly reduce
the impact of disasters. Therefore, the response phase is addressed in the following.

Using governmental emergency plans, necessary activities can be pre-defined that have
to be carried out immediately after a disaster. For successful planning, it makes sense to
visualize their precedence constraints by a project with a corresponding network. However,
the execution of the activities requires suitable resources, the emergency forces. When
responding to a disaster, it is helpful to have as many workforces as possible to carry out
the necessary relief measures. Volunteers can constitute important resources and therefore
be an effective complement to the professional forces in disaster relief. Hence, a successful
response should integrate voluntary helpers. They must be assigned to activities and start
times of activities must be determined. Consequently, a combined workforce and project
scheduling problem arises. Due to the high complexity of the resulting problem, we have
developed a serial schedule generation scheme (SGS) that finds feasible solutions even for
large problem instances in reasonable time.

2 Problem Definition and Solution Approach

As described in Section 1, we consider a combined workforce and project scheduling
problem (cf. Baur and Rieck 2019 for the mathematical model). It is assumed that projects
with n real activities i, j = {0, . . . , n + 1} and a set of reasonable precedence constraints
E can be predefined. All real activities (e.g., fill sandbags and carry sandbags) require
volunteers k ∈ K to be carried out. Whether a volunteer can be assigned to an activity
depends on two important aspects. Since voluntary helpers constitute partial renewable
resources, each one has a defined time interval in which it is available. A resource k can be
assigned to an activity at time t if θkt = 1 applies. The other precondition for an assignment
is that the resource is suitable for an activity. Every activity has a corresponding set of skills
Si that are needed to process it. Exemplary skills are physical fitness and driving licenses.
A volunteer has to declare an associated level Lks for all predefined skills S ⊇ Si, which
indicates to what extent the skill is mastered. According to Mansfield, the levels range

50

2

from “not demonstrated” (i.e., Lks = 0) to “outstanding” (i.e., Lks = 2). A volunteer with
a low skill level needs more time for the same workload (Mansfield 1996). Consequently,
only if at least one volunteer with required skills is available, an activity can be processed.
It is completed when the estimated total workload Di is reached for every required skill.

Even if all predecessors Pred(i) of activity i have been completed, a delay of the start
Si may be necessary, if there is not at least one suitable volunteer available. If an activity
i already started but is not yet finished and no resource can be assigned at any time, the
activity must be interrupted. Figure 1 shows exemplary interruptions of activity i = 1. It
starts when the first resource is assigned at t = 1. At time t = 2 and t = 4 interruptions
occur, as no suitable worker can be selected. After six time periods (i.e., P1 = 6), the total
processing time of D1 = 4 is covered and the activity is completed.

Fig. 1. Interruptions of an activity Fig. 2. Multiple assignments to an activity

If more than one resource is available at a given time, a team of several volunteers
with different skill levels can be assigned to an activity. This would lead to a reduction
of the expected activity duration Pi, which is variable and no deterministic parameter.
The size of the assigned team is not constant during the processing time of an activity
i what can be seen in Figure 2. It visualizes another example, where five resources are
assigned simultaneously during the execution of activity i = 2. Although the estimated
total processing time is D2 = 10, the activity can be completed within four time units (i.e.,
P2 = 4). Note that the number of resources assigned to i = 2 differs over time. While in
period 14 only three volunteers are assigned, in period 15 there are five resources working in
total. Therefore, the problem under consideration is a problem with flexible resource profiles
(cf. (Naber and Kolisch 2014)). Besides the considered skills and the possible interruptions
of an activity, the multiple resource assignments and variable activity duration are the
most important characteristics of the problem. These properties make the problem more
realistic, but also more difficult to solve. For this purpose, we implemented the SGS shown
in Algorithm 1 to create feasible solutions even for large instances in decent time.

In the initialization step, the fictitious project start i = 0 is scheduled and added to the
set of already completed activities C. The schedule of all completed activities ST contains
the corresponding start time S0 = 0. Furthermore, the predecessors Pred(i) of all nodes
i ∈ V are determined. The main step from line 3 is executed until all activities have been
completed. At the beginning of his step, the eligible set E of activities is determined from
which all predecessors have already been completed. The earliest start times ESj of all
activities j ∈ E are calculated in line 5. The activity with the highest priority is selected
for the further procedure. The priority rule of the earliest start time (EST) was applied for
first computational studies. For the selected activity j, the set σ of all skills for which the
required working time Dj has not yet been reached is defined. Tj describes the set of time

51

3

periods t at which j is actively processed by one or more resources and Ds
j represents the

number of working hours remaining for each skill.

Algorithm 1 Serial Schedule Generation Scheme
1: set C := {0}, ST C := (0);
2: determine set of all predecessors Pred(i) for activities i ∈ V \ {0};
3: while C 6= V do
4: determine E := {i ∈ C̄|Pred(i) ⊆ C};
5: calculate earliest start ESj := maxi∈Pred(i)(STi + Pi) of all j ∈ E ;
6: choose j ∈ E with highest priority;
7: determine σ := {s ∈ Sj}, Tj := ∅ and Ds

j = Dj for all s ∈ σ;
8: while σ 6= ∅ do
9: for t = ESj to d̄ do

10: for k ∈ K with θkt = 1 ∧ ∑
s∈σ Lks > 0 do

11: set rjkt := 1, θkt := 0 and Tj := Tj ∪ {t};
12: for s ∈ σ with Lks > 0 do
13: calculate Ds

j := Ds
j − Lks;

14: if Ds
j ≤ 0 then

15: set σ := σ \ {s} and Pj := t + 1 − STj ;
16: set C := C ∪ {j} and STj := mint∈Tj t;

return ST C.

The inner loop starting from line 8 is executed until σ is an empty set, thus the required
total working hours for each skill have been met (Ds

j ≤ 0, ∀s ∈ σ). From the earliest start
until an activity can be completed or the maximum planning horizon is reached, all available
resources k that have at least one of the required skills (

∑
s∈σ Lks > 0) are considered one

after the other. If no resource is available, the procedure continues with the next period. In
line 11, the first resource found is assigned to the activity j at the current time t (rikt = 1
applies). Consequently, the volunteer is no longer available for other activities in this period
(i.e., θkt := 0). The lines 12-15 update the number of working hours still needed for each
skill that is mastered by resource k and required for activity j. Once the total working
time for a skill has been reached, the skill is removed from set σ and no longer needs to
be considered. If σ is an empty set, activity j can be terminated and added to the set
C in line 16. The start time of the activity j is defined as the time of the first resource
assignment to j. When all activities are completed, the procedure terminates and returns
the schedule of all start times.

3 Computational Results

For our computational study, we created 20 instances with n = {30, 60} real activities
on the basis of the PSPLIB benchmark (Kolisch and Sprecher 1996). The instances are
supplemented by problem-specific parameters. For example, the number of considered skills
is randomly set from 3 to 5. Under the assumption that the default skill level Lks = 1 is the
most common in reality, it gets the highest generation probability. The levels Lks = 0 and
Lks = 2 are the least likely. The availability of resources is randomly determined within
{8, 9, . . . , 18} time units without breaks. The SGS was implemented in C++ with Visual
Studio 2019. The comparison results were generated with CPLEX 12.9 in GAMS 25.1
within a time limit of 7200 seconds. The tests were carried out on a server (two 2.1 GHz
processors and 384 GB of RAM) using up to 16 threads.

52

4

Table 1 shows the obtained results. Instances with numbers 1 to 10 include 30 real
activities. Instances 11 to 20 include 60 real activities. The SGS found feasible solutions
for all instances within 100 s, which can be seen in the column “CPU”, whereas CPLEX
has only found a solution for five instances with 30 activities and no solution for the larger
instances. The objective function values of the procedures can be taken from the columns

Table 1. Comparison of SGS and CPLEX solutions for instances with n = 30 and n = 60

SGS CPLEX
no. F (x) CPU [s] F (x) CPU [s] Gap [%]

1 46 42 – 7229 –
2 29 27 – 7212 –
3 33 36 – 7223 –
4 21 24 21 2890 0.0
5 38 60 38 7230 0.0
6 22 4 20 2228 10.0
7 42 7 26 7215 61.5
8 29 7 – 7228 –
9 27 26 26 3519 3.8
10 32 5 – 7247 –

SGS CPLEX
no. F (x) CPU [s] F (x) CPU [s] Gap [%]

11 50 30 – 7883 –
12 43 72 – 7807 –
13 51 25 – 8065 –
14 52 70 – 7876 –
15 78 22 – 7954 –
16 37 15 – 8168 –
17 81 27 – 8121 –
18 48 16 – 8097 –
19 100 76 – 8009 –
20 59 24 – 8089 –

F (x). The objective is to minimize the project duration and thus to cope with the disaster
as soon as possible. The column “Gap” shows the deterioration of the solution found by the
SGS compared to the solution of CPLEX. For instances 4 and 5, the SGS found an equally
good solution after 24 respectively 60 s, as CPLEX did after 7200 s. Only for instance 7,
the SGS found a clearly worse (61.5%) solution than CPLEX.

4 Conclusion and Outlook

The abstract introduces a serial schedule generation scheme for a particular problem
with skills, skill levels, possible interruptions of activities, and variable activity durations.
The results of the procedure were compared to the results of CPLEX. The next step
is the development of a metaheuristic, which is able to improve the found solution in
reasonable time. In addition, the problem should be adapted to the dynamic and stochastic
characteristics of a disaster by transforming the currently static and deterministic model
into a dynamic formulation with stochastic components.

References

Altay, N., Green, W.,G., 2006, “OR/MS research in disaster operations management”, European
Journal of Operational Research, Vol. 175, pp. 475-493.

Baur, N.-F., Rieck, J., 2019, “Project Management with Scarce Resources in Disaster Response”,
submitted to Operations Research Proceedings 2019.

Kolisch, R., Sprecher, A., 1996, “PSPLIB – A project scheduling problem library”, European Jour-
nal of Operational Research, Vol. 96, pp. 205-216.

Mansfield, R.S., 1996, “Building competency models: Approaches for HR professionals”, Human
Resource Management, Vol. 35, pp. 7-18.

Naber, A., Kolisch, R., 2014, “MIP models for resource-constrained project scheduling with flexible
resource profiles”, European Journal of Operational Research, Vol. 239(2), pp. 335-348.

53

Scheduling to minimize maximum lateness in tree data

gathering networks

Joanna Berli«ska

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Pozna«, Poland

Joanna.Berlinska@amu.edu.pl

Keywords: scheduling, data gathering network, maximum lateness, hybrid �ow shop.

1 Introduction

Scheduling for data gathering has been attracting increasing attention in recent years.
Choi and Robertazzi (2008) and Moges and Robertazzi (2006) constructed algorithms for
partitioning the total amount of measurements between the nodes of a wireless sensor
network in order to gather the data in the shortest possible time. Algorithms minimizing
schedule length were also proposed for networks with data compression (Berli«ska 2015, Luo
et al. 2018), and with limited memory (Berli«ska 2020). Scheduling with maximum lateness
criterion in star networks was studied by Berli«ska (2018), Berli«ska (2019).

In this paper, we analyze minimizing maximum lateness in 2-level tree networks. The
data gathering application consists of three partially overlapping stages. First, each of the
leaf nodes of the network has to transfer acquired data to an appropriate intermediate
node. In the second stage, datasets are preprocessed by the intermediate nodes. Finally,
they are transferred from the intermediate nodes to a single base station. It is assumed
that an intermediate node can receive at most one dataset at a time, and it can process
at most one dataset at a time. Therefore, a subnetwork consisting of an intermediate node
and all leaves that communicate with it, can be seen as a sequence of two machines working
in a �ow shop mode. The base station can also receive at most one dataset at a time, and
hence, the third stage consists in executing a sequence of jobs on a single machine. Thus,
our network is a three-machine hybrid �ow shop with m dedicated machines in the �rst
stage and the second stage, and one machine in the last stage. Hybrid �ow shops with
dedicated machines were studied mostly in two-machine setting (see the survey Hwang
and Lin (2018)). Three-machine hybrid �ow shop with one machine in the �rst and the
third stage, and two dedicated machines in the second stage, was studied by Riane et al.
(1998). The case of two dedicated machines in the last stage, and one machine in the �rst
and the second stage was analyzed by Bedhief and Dridi (2019). To our best knowledge,
three-machine hybrid �ow shops with multiple dedicated machines in more than one stage
were not studied in the earlier literature.

2 Problem formulation and complexity

The data gathering network consists of n leaf nodes, m intermediate nodes and a single
base station. Intermediate node Pj (1 ≤ j ≤ m) collects data from nj leaf nodes Pjk,
where k = 1, . . . , nj . Thus, n1 + . . .+ nm = n. Leaf node Pjk acquires dataset Djk of size
αjk at time rjk. The due date for receiving this dataset at the base station is denoted
by djk. The time necessary to transfer one unit of data is denoted by C. Thus, dataset
Djk is sent from Pjk to Pj in time Cαjk. After receiving the whole dataset, node Pj has
to preprocess it, which takes time Aαjk. During this process, the dataset size changes to
γαjk, where γ is a given application parameter. Afterwards, the dataset has to be sent to
the base station, which takes time Cγαjk. Each node can receive at most one dataset at

54

a time. An intermediate node can simultaneously receive one dataset, preprocess another
dataset, and send yet another dataset to the base station. Preemptions are allowed both
in communication and computation.

Let Tjk be the time when dataset Djk arrives at the base station. The lateness of Djk

is Ljk = Tjk − djk. Our goal is to organize dataset transfer and processing so that the
maximum lateness Lmax = maxmj=1 max

nj

k=1{Ljk} is minimized.
When m = 1 and γ = 0, our scheduling problem becomes equivalent to minimizing the

maximum dataset lateness in a star network with datasets processed at the base station,
which was proved to be strongly NP-hard by Berli«ska (2019). Thus, the problem analyzed
in this work is also strongly NP-hard.

3 Algorithms

In this section, we propose heuristic algorithms for solving our scheduling problem.
Note that if a schedule for the �rst two stages of the application is �xed, an optimum
schedule for the last stage can be easily found. Indeed, for each dataset Djk, the time
r′jk when it becomes available for transfer to the base station is known, and it remains
to solve an instance of problem 1|rj , pmtn|Lmax, which can be done using the preemptive
earliest due date �rst rule (Horn 1974). Therefore, our algorithms concentrate on building
a good schedule for transferring datasets to intermediate nodes and preprocessing them,
separately for each of the m subnetworks.

Firstly, we implement an exponential algorithm BB, which uses the branch-and-bound
technique to obtain a schedule which minimizes the maximum dataset lateness after two
stages of the application. A detailed description of this algorithm can be found in Berli«ska
(2019). Note that a partial schedule that minimizes the maximum lateness after the �rst
two stages, does not necessarily result in the optimum schedule for the whole application.
Thus, although algorithm BB uses an enumerative approach, it does not guarantee �nding
optimum solutions.

Secondly, we propose algorithms that build a communication schedule �rst, and after
�xing it, construct a schedule for dataset preprocessing. For each of these two stages, we
use one of the following rules:

� FIFO: choose datasets in the order in which they are released (no preemptions);
� EDD: select an available dataset with the smallest due date (possible preemptions);
� SRT: choose an available dataset with the shortest remaining transfer/preprocessing
time (possible preemptions).

An algorithm which uses Rule1 for dataset transfer, and Rule2 for dataset preprocessing,
will be called Rule1-Rule2. We study all possible combinations of the above rules, resulting
in 9 di�erent algorithms. Each of these algorithms �nds a schedule for the j-th subnetwork
in O(nj log nj) time, for j = 1, . . . ,m. After �xing subnetwork schedules, a schedule for
sending datasets to the base station is computed in O(n log n) time. Since n = n1+. . .+nm,
the total algorithm running time is also O(n log n).

4 Experimental results

In this section, we compare the performance of the proposed heuristics. The algorithms
were implemented in C++ and run an Intel Core i5-3570K CPU @ 3.40 GHz with 8GB
RAM. Due to limited space, we report here only on a subset of the obtained results. In the
experiments presented here, the network consisted of m = 5 subnetworks, containing ni =
10 leaf nodes each. Note that if m > 1, A is small in comparison to C, and γ is large, then

55

the third stage of the application dominates the whole schedule, i.e. it takes a signi�cantly
longer time than each of the �rst two stages, and hence, it has the largest impact on the
obtained maximum lateness. Since the last stage is always scheduled optimally, building
good solutions is easy in this case. Therefore, in order to construct demanding instances, we
used C = 1, A ∈ {1, 2, 3} and γ ∈ {0.01, 0.1, 0.5}. Dataset release times rjk were generated
separately for each subnetwork j as follows. The release time of the �rst dataset was rj1 = 0.
The remaining release times were computed from the formula rjk = rj,k−1 + δjk, with δjk
chosen randomly from interval [1, 10], for each j and k independently. Due dates djk were
selected randomly from interval [0, 100], and dataset sizes αjk from interval [1, 15]. For each
analyzed combination of parameters A and γ, 30 instances were generated and solved.

Since the optimum solutions for the test instances were not known, in order to assess
the schedule quality we computed a lower bound

LB = max
j=1,...,m

max
k=1,...,nj

{rjk + (C(1 + γ) +A)αjk − djk}. (1)

Measuring schedule quality for the Lmax criterion may be problematic, as the optimum
value can be positive, zero or negative, which precludes using relative measures. Therefore,
we measure solution quality by the di�erence between the maximum lateness delivered by
a given algorithm and the lower bound LB.

Table 1. Average distance of the solutions from the lower bound.

γ = 0.01 γ = 0.1 γ = 0.5
Algorithm A = 1 A = 2 A = 3 A = 1 A = 2 A = 3 A = 1 A = 2 A = 3

BB 2.201 42.858 119.080 1.313 39.883 124.100 49.900 59.550 124.400

FIFO-FIFO 32.784 101.835 171.999 34.127 99.437 180.550 50.450 97.783 179.500

FIFO-EDD 28.299 44.493 120.244 29.027 43.243 125.040 50.350 59.550 125.017

FIFO-SRT 31.901 98.147 173.014 31.463 95.050 172.930 51.150 95.533 177.200

EDD-FIFO 5.731 52.349 124.176 6.183 48.993 129.527 51.000 54.050 128.483

EDD-EDD 3.602 49.125 123.044 3.197 46.710 129.527 51.217 57.633 127.617

EDD-SRT 18.915 95.982 172.949 19.417 91.010 173.167 52.917 95.183 176.383

SRT-FIFO 30.856 97.945 172.479 28.157 94.933 177.153 50.883 97.250 178.517

SRT-EDD 27.891 48.163 120.943 25.143 45.720 127.367 50.633 58.750 126.633

SRT-SRT 31.324 100.948 173.217 30.500 95.207 175.857 51.467 94.933 175.633

The average quality of the obtained solutions is presented in Table 1. The distances from
LB obtained by all algorithms grow with A. The main reason for this is that the distance
between LB and the actual optimum increases with A. Algorithm BB delivers the best
results for all settings except A = 2, γ = 0.05. However, BB has high computational costs.
Its average running time ranged from about 7 seconds for A = 1, γ = 0.5 to approximately
2075 seconds for A = 3, γ = 0.5, while the remaining heuristics needed about 0.004 seconds
in all analyzed settings. All algorithms return similar results when A = 1 and γ = 0.5.
This illustrates the mentioned above fact that the combination of small A and big γ leads
to easy instances.

Let us now compare the performance of the fast heuristics in the remaining settings.
When A = 1 and γ ∈ {0.01, 0.1}, algorithm EDD-EDD is the winner. When A = 3, the
best results are obtained by FIFO-EDD, for all values of γ. For tests with A = 2, the
best results are returned by algorithm FIFO-EDD when γ ∈ {0.01, 0.1}, and by EDD-
FIFO when γ = 0.5. It seems that the choice between the EDD and FIFO rules should

56

be based on the expected durations of the three stages of our application. When A = 2
and γ ∈ {0.01, 0.1}, or when A = 3, the second stage dominates, and the best strategy
is to use FIFO in the �rst stage. For A = 2 and γ = 0.5, the third stage is the longest
(because m = 5), and FIFO should be applied in the second stage. In the remaining cases,
the best strategy is to use only EDD rule. We infer that if stage i dominates the schedule
(i = 2, 3), then the FIFO rule should be applied in stage i− 1 in order to pass some data
to stage i as soon as possible, and EDD should be used in the remaining stages. If there is
no dominating stage, algorithm EDD-EDD seems the best choice.

5 Conclusions

In this work, we analyzed minimizing maximum lateness in tree data gathering net-
works. As the problem is computationally hard, we proposed several heuristic algorithms.
Computational experiments showed that algorithm BB usually delivers the best results, but
at a high computational cost. Good schedules can be obtained in polynomial time using an
adequate combination of EDD and FIFO rules. Future research may include investigating
theoretical performance guarantees of the proposed algorithms.

Acknowledgements

This research was partially supported by the National Science Centre, Poland, grant
2016/23/D/ST6/00410.

References

Bedhief, A., N. Dridi, 2019, �Minimizing makespan in a three-stage hybrid �ow shop with dedicated

machines�, International Journal of Industrial Engineering Computations, Vol. 10, pp. 161-

176.
Berli«ska J., 2015, �Scheduling for data gathering networks with data compression�, European

Journal of Operational Research, Vol. 246, pp. 744-749.
Berli«ska J., 2018, �Scheduling Data Gathering with Maximum Lateness Objective�, In: R.

Wyrzykowski et al., Parallel Processing and Applied Mathematics: 12th International Con-

ference PPAM 2017, Part II, LNCS 10778, pp. 135-144, Springer, Cham.
Berli«ska J., 2019, �Scheduling in a data gathering network to minimize maximum lateness�, In:

B. Fortz, M. Labbé, Operations Research Proceedings 2018, pp. 453-458, Springer, Cham.
Berli«ska J., 2020, �Heuristics for scheduling data gathering with limited base station memory�,

Annals of Operations Research, Vol. 285, pp. 149-159.
Choi K., T.G. Robertazzi, 2008, �Divisible Load Scheduling in Wireless Sensor Networks with

Information Utility�, In: IEEE International Performance Computing and Communications

Conference 2008: IPCCC 2008, pp. 9-17.
Horn, W.A., 1974, �Some simple scheduling algorithms�, Naval Research Logistics Quarterly, Vol.

21, pp. 177-185.
Hwang, F.J., B.M.T. Lin, 2018, �Survey and extensions of manufacturing models in two-stage

�exible �ow shops with de dicated machines�, Computers and Operations Research, Vol. 98,

pp. 103-112.
Luo, W., Y. Xu, B. Gu, W. Tong, R. Goebel, G. Lin, 2018, �Algorithms for Communication

Scheduling in Data Gathering Network with Data Compression�, Algorithmica, Vol. 80, pp.

3158-3176.
Moges M., T.G. Robertazzi, 2006, �Wireless Sensor Networks: Scheduling for Measurement and

Data Reporting�, IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, pp. 327-

340.
Riane, F., A. Artiba, S.E. Elmaghraby, 1998, �A hybrid three-stage �owshop problem: E�cient

heuristics to minimize makespan�, European Journal of Operational Research, Vol. 109, pp.

321-329.

57

1

On the Activity Criticality in Project Scheduling with

Generalized Precedence Relationships

Lucio Bianco, Massimiliano Caramia and Stefano Giordani

University of Rome �Tor Vergata�, Italy
bianco, caramia, giordani@dii.uniroma2.it

Keywords: Critical Path, Criticality and Flexibility Analysis, Project Scheduling.

1 Introduction

It is well known that a project network with Generalized Precedence Relations (GPRs),
due to the presence of maximum and minimum times lags, may contain cycles and a critical
path may contain cycles of zero length (De Reyck, 1998). Consequently, it may happen that
the project duration increases when the duration of a critical activity is shortened. This phe-
nomenon was �rstly studied by Wiest (1981). In another seminal paper, Elmaghraby and
Kamburowski (1992) further studied this anomaly under GPRs. They introduced �ve dif-
ferent criticality types (i.e., start-critical, �nish-critical, backward-critical, forward-critical,
and bi-critical) and the new concept of �exibility. Later, De Reyck (1998) in his doctoral
thesis, revisited these concepts adapting them to an Activity on Nodes (AON) representa-
tion of the project network and proposed a method for recognizing criticalities and in�ex-
ibilities of an activity, based on the types of its ingoing and outgoing precedence relations.
Since the Ph.D. work of De Reyck appears not to be present in the open literature, the
reader may �nd the analysis of De Reyck in the book by Demeulemeester and Herroelen
(2002). To the best of our knowledge, the analysis made by De Reyck has been widely
accepted and not revised by any point of view in the last twenty years.

In this work, starting from some concerns related to the criticality de�nitions of the
activities and potential failures of De Reyck's method for the analysis of activity critical-
ities and �exibilities, we propose a new method. Section 2 provides some de�nitions and
notations. In Section 3, by means of one example, we show some potential failures of the De
Reyck's method, giving in Section 4 new results. Similar remarks can also be made for the
method proposed by Elmaghraby and Kamburowski (1992). In Section 5 we provide a brief
outline of the new method after having rede�ned and discussed the types of criticalities.

2 De�nitions and notations

Accordingly to De Reyck (1998) and to Demeulemeester and Herroelen (2002), hereafter
we assume that a project is modeled by means of an AON network N = (V,A; d, δ). V is the
set of nodes, with V = V r∪{1, n}, where V r = {2, . . . , n−1} is the set of n−2 real activities,
di is the duration of activity i ∈ V r, and nodes 1 and n are two additional dummy activities,
with duration equal to zero, representing project beginning and completion, respectively;
without loss of generality, we assume the real activity durations being integers and positive.
A is the set of arcs representing GPRs between pairs of activities. An arc may model a
start-to-start (SS), a start-to-�nish (SF), a �nish-to-start (FS) and a �nish-to-�nish (FF)
precedence relation with minimum or maximum time lags for an overall number of eight
relations that may be represented, i.e., SSmin

ij (δ), SSmax
ij (δ), SFmin

ij (δ), SFmax
ij (δ), FSmin

ij (δ),

FSmax
ij (δ), FFmin

ij (δ), FFmax
ij (δ), where δ is the minimum or maximum time lag. It is well

known (see e.g., Demeulemeester and Herroelen, 2002) that a GPR with maximum time
lag is equivalent to a GPR with minimum time lag with opposite direction and opposite

58

2

time lag, i.e., SSmax
ij (δ) ≡ SSmin

ji (−δ), SFmax
ij (δ) ≡ FSmin

ji (−δ), FSmax
ij (δ) ≡ SFmin

ji (−δ),

and FFmax
ij (δ) ≡ FFmin

ji (−δ). Hence, we can always model the project activities and their
relationships with a GPRs AON network with only minimum time lag, but the resulting
network may contain cycles, due to maximum time lag. Therefore, without loss of generality,
in the following we assume that the project has only GPRs with minimum time lags.

It is well known that with the transformations of Bartush et al. (1988) we can represent
the project network in a so called standardized form where there are, for example, only
GPRs of type SSmin

ij (ℓ). This standardized network allows to calculate the project duration
as the length of the longest path form node 1 to node n, i.e., the length of a critical path.
Moreover, it allows to determine the critical activities and the critical arcs (i.e., critical
precedences among critical activities).

3 An example showing potential failures

We show a project network example for which the method proposed by De Reyck fails in
determining some activities' criticalities. Analog failures can also be shown on the method
by Elmaghraby and Kamburowski. Let us consider the project network with GPRs in
Figure 1a, with node weights being activities' durations. The standardized network (with
only SSmin

ij (ℓ) precedences) is shown in Figure 1b, with arcs' weights being time lags. Let
us consider the critical path (1, 2, 3, 4, 5, 4, 6, 7) with length equal to 20 (note that the path
contains a cycle of length equal to zero). All the activities belong to the critical path. The
criticalities according to De Reyck's method (see the de�nitions and Table 6 at page 124 of
the book of Demeulemeester and Herroelen, 2002) are: activity 2, forward-critical; activity
3, �nish-critical; activity 4, bi-critical; activity 5, start-critical; activity 6, �nish-critical.

1 2 3
SSmin(0) FFmin(0) FSmin(0)

0 5 5

4
SFmin(15)

5

6
FSmin(0)

5

7

0

5

5

FSmin(5) SFmin(-5)

1 2 3
0 0 5

0 5 5

4
10

5

6
5

5

7

0

5

5

10 -10

(a) (b)

Fig. 1. The project network with GPRs of the example (a) and its standardized network (b)

Actually, the criticalities of activities 3, 4, and 5 are di�erent, as the �exibility analysis
reveals. Indeed, if it was d3 = 6, it would be ℓ23 = −1 and ℓ34 = 6, with ℓij being the
length of arc (i, j) in the standardized network. In this case, the length of the longest
path from node 1 to node 3 would be negative and hence we need to add arc (1, 3) of
length ℓ13 = 0 to the standardized network, which corresponds to add precedence SSmin

13 (0)
between activities 1 and 3 (and the related arc to the original network), to force activity 3
to start not before time 0. On the standardized network, the critical path would change to
(1, 3, 4, 5, 4, 6, 7) of length 21. If it was d3 = 4, it would be ℓ23 = 1, ℓ34 = 4, and the critical
path would not change. Therefore, activity 3 is backward-�exible and forward-in�exible,
and, hence, it is also forward-critical. Similarly, if it was d5 = 6, the length of the longest
path from node 5 to node 7 would be less than d5, and hence we need to add arc (5, 7) of
length ℓ57 = d5 to force the start time of dummy activity 7 (i.e., the project makespan)
to be not less than the �nish time of activity 5, which corresponds to add precedence
FSmin

57 (0) between activities 5 and 7 (and the related arc to the original network). On the

59

3

standardized network, the critical path would be (1, 2, 3, 4, 5, 7) of length 21. Therefore,
activity 5 is forward-in�exible, meaning that it is also forward-critical. Finally, activity 4
is both start- and forward-critical, because it is backward-�exible since we can decrease
its duration without increasing the length of the critical path (1, 2, 3, 4, 5, 4, 6, 7). These
results show possible failures of the De Reyck's method.

4 New general results

Referring to the previous analysis, it is possible to prove that:

Proposition 1. Given a critical activity i such that the longest path in the standardized
network from node 1 to node i is equal to 0, if the critical precedence relations ingoing
activity i are only of type XFmin

hi and the critical precedence relations outgoing activity i
are of type FXmin

ij (SXmin
ij), then activity i is not only �nish-critical (backward-critical) as

induced by the De Reyck's method but also forward-critical (start-critical).

Proposition 2. Given a critical activity i whose duration di is equal to the longest path
from node i to node n in the standardized network, if the critical precedence relations
outgoing activity i are only of type SXmin

ij and the critical precedence relations ingoing

activity i are of type XSmin
hi (XFmin

hi), then activity i is not only start-critical (backward-
critical) as induced by the De Reyck's method but also forward-critical (�nish-critical).

These results suggest further corrections to the standardized network and consequently
to the original network. In particular, in the previous example, if we add arc (1, 3) with
ℓ13 = 0 and arc (5, 7) with ℓ57 = d5 to the standardized network, that correspond to
precedence relations SSmin

13 (0) and FSmin
57 (0), respectively, we obtain that by applying the

De Reyck's method we identify the correct criticality of activities 3 and 5. However, the
criticality of activity 4, involved in the cycle (4, 5, 4), remains incorrect. The conclusion
is that, apart from the corrections, it is necessary a new method to de�ne on a generic
project network the right criticality and �exibility of each single activity.

5 Our proposal

Before outline a new method for analyzing activity criticalities and �exibilities, we
rede�ne activity criticalities, independently from the project network representation.

De�nition 1. An activity is critical if its earliest and latest start (�nish) times are equal.

De�nition 2. An activity is start-critical if it is critical and the project duration increases
only if we delay the activity start time.

This means that, given a start-critical activity, if we maintain �xed its start time and
vary (either increase or decrease) its duration, and, hence, vary (either increase or decrease)
its �nish time, the project duration does not change, meaning that a start-critical activity
is bi-�exible. In addition, the �nish time of a start-critical activity is not constrained.

De�nition 3. An activity is �nish-critical if it is critical and the project duration increases
only if we delay the activity �nish time.

This means that, given a �nish-critical activity, if we maintain �xed its �nish time
and vary (increase or decrease) its duration, and, hence, vary (increase or decrease) its
start time, the project duration does not change, meaning that a �nish-critical activity is
bi-�exible. In addition, the start time of a �nish-critical activity is not constrained.

60

4

De�nition 4. An activity is forward-critical if it is critical and the project duration in-
creases whether we delay its start time, while maintaining �xed its duration, or we increase
its duration while maintaining �xed its start time (apart from project time-infeasibility).

Therefore, in anyone of the above two cases, also the activity �nish time increases, mean-
ing that the forward-criticality dominates the �nish-criticality. Moreover, apart from the
project time-infeasibility, an increase of the duration of a forward-critical activity increases
the project duration, meaning that a forward-critical activity is forward-in�exible.

De�nition 5. An activity is backward-critical if it is critical and the project duration in-
creases whether we delay its �nish time, while maintaining �xed its duration, or we decrease
its duration while maintaining �xed its �nish time (apart from project time-infeasibility).

Hence, in anyone of the above two cases, also the activity start time increases, that is,
backward-criticality dominates start-criticality, and, apart from the project time-infeasibility,
a decrease of the duration of a backward-critical activity increases the project duration,
that is, a backward-critical activity is backward-in�exible. Our de�nitions di�er from those
by De Reyck for which �an activity is forward-critical (backward-critical) if (a) it is start-
critical (�nish-critical), and (b) when the project duration increases when activity's dura-
tion is increased (decreased)� (cfr. p. 124 of Demeulemeester and Herroelen, 2002).

De�nition 6. An activity is bi-critical if it is both forward-critical and backward-critical.

Therefore, a bi-critical activity is bi-in�exible.
We propose the following approach for analyzing activity criticalities and �exibilities,

whose correctness is formally proved:

1. Adopt the AON project network representation with minimum time lags.
2. Convert the network into the standardized network (with only SSmin

ij (ℓ) precedences).
3. Correct the standardized network, if necessary, with the addition of new arcs outgoing

from source node 1 and/or ingoing to sink node n, also on the basis of Propositions 1
and 2. Consequently, additional precedence relations of type SSmin

1i (0) outgoing from
node 1 and/or of type FSmin

jn (0) ingoing to node n might have to be considered.
4. Find on the (corrected) standardized network the critical subnetwork composed by all

the critical nodes (activities) and all the critical arcs on the standardized network.
5. Trace back the critical nodes and the critical arcs on the original AON project network

in order to consider only its critical subnetwork.
6. Determine the types of criticality of each critical activity i on the basis of the precedence

types of the couples of critical ingoing and outgoing arcs of i and the existence or not
of elementary critical paths passing through these arc couples.

7. Determine possible project time-infeasibility of each critical activity i on the basis of
the existence or not of elementary cycles traversing node i on the critical subnetwork.

8. Analyze the �exibility of non-critical activities in order to detect possible project time-
infeasibility due to duration changing for these activities.

References

Bartusch, M., R.H. Möhring R.H. and F.J. Radermacher F.J., 1988, �Scheduling project networks
with resource constraints and time windows�, Ann. of Oper. Res., Vol. 16(1), pp. 201�240.

De Reyck, B., 1998, �Scheduling Project with Generalized Precedence Constraints - Exacts and
Heuristics Approaches�, Ph.D. Thesis, Dept. of Appl. Econ., Kath. Univer. Leuven, Belgium.

Demeulemeester, E., W. Herroelen, 2002, Project scheduling: a research handbook, Kluwer, Boston.
Elmaghraby, S.E., J. Kamburowski, 1992, �The analysis of activity networks under generalized

precedence relations�, Management Sci., Vol. 38(9), pp. 1245�1263.
Wiest, J.D., 1981, �Precedence diagramming methods: some unusual characteristics and their

implications for project managers�, J. of Oper. Management, Vol. 1(3), pp. 121�130.

61

1

A Novel Matheuristic for the Multi-Site

Resource-Constrained Project Scheduling Problem

Tamara Bigler, Mario Gnägi and Norbert Trautmann

University of Bern, Switzerland
tamara.bigler@pqm.unibe.ch, mario.gnaegi@pqm.unibe.ch,

norbert.trautmann@pqm.unibe.ch

Keywords: Multi-site resource-constrained project scheduling problem, Matheuristic.

1 Introduction

In the well-known resource-constrained project scheduling problem (RCPSP), a set of
precedence-related project activities must be scheduled such that the project makespan is
minimized subject to limited resource availabilities. We consider a planning problem that
extends the RCPSP by involving di�erent sites. Some of the renewable resource units are
mobile and can be transferred between sites while others are permanently located at one
site. It is assumed that the mobile resource units are available at the site at which they
are used for the �rst time. Transportation times apply a) when a mobile resource unit is
transferred from one site to another or b) when the output of an activity is transferred to
another site where one of its successor activities will be processed. In the latter case, the
successor activity can only start once the outputs of all predecessor activities have arrived
at the respective site. These transfers enable the sharing of resources among sites, e.g., the
sharing of medical sta� among hospitals. As activities from multiple sites are scheduled
simultaneously in the multi-site RCPSP, the number of activities to be scheduled is often
greater than in the single-site RCPSP.

The literature comprises some exact and heuristic approaches for this planning problem.
Laurent et al. (2017) introduced a discrete-time mathematical model that they applied to
instances involving 5 to 30 activities. Because their model did not seem to scale well,
they developed four metaheuristics, which are based on an activity list and a site list
representation of the solution. One metaheuristic conducts a local search, one metaheuristic
is based on simulated annealing, and two metaheuristics perform an iterated local search.
They applied the four metaheuristics to instances comprising 30 to 120 activities. It turned
out that the iterated local search and the simulated annealing metaheuristics perform best.
Gnägi and Trautmann (2019; 2021) formulated a continuous-time mathematical model that
they applied to the same instances as Laurent et al. (2017) comprising 30 activities. Their
model was able to derive a large number of new best known solutions for these instances.

In this paper, we propose a novel matheuristic for the multi-site RCPSP. In the matheuris-
tic, the activities are scheduled by performing the following two steps in an iterative man-
ner. First, a subset of activities that will be scheduled in the next iteration is selected based
on standard priority rules from the literature. Second, the selected activities are scheduled
by solving a relaxation of the model of Gnägi and Trautmann (2019; 2021). The matheuris-
tic obtains high-quality solutions for instances comprising 30 activities and 2 or 3 sites.
Among the 960 tested instances from the literature, it derives new best known solutions
for 164 instances.

The remainder is structured as follows. In Section 2, we illustrate the planning problem
with an example. In Section 3, we outline the novel matheuristic. In Section 4, we report
the computational results. In Section 5, we conclude and give an outlook on future research.

62

2

1

2

3

4

5

6

7

8

9

i j

0

2

3

1

2

1

2

1

0

pi pj

(0,0)

(2,0)

(0,2)

(0,1)

(1,1)

(0,2)

(1,0)

(2,0)

(0,0)

(ri1,ri2) (rj1,rj2)
0 1 2 3 4 5 6 7 8

Resource
type k

2

2

1

1

Resource
unit u

2

1

2

1

Mobility
(site)

mobile

non-mobile
(site B)

non-mobile
(site A)

non-mobile
(site A) 2

2

3

3

4

5

5

6

6

78

8

Activity Site A Site B

Resource
transfer
Output
transfer

t

Fig. 1. Example: activity-on-node network (left) and an optimal solution (right)

2 Illustrative example

In this section, we illustrate the planning problem with an example that comprises
seven real activities {2, . . . , 8}. The �ctitious activities 1 and 9 represent the project start
and completion, respectively. The left part of Figure 1 shows an activity-on-node network.
Each node in the network represents one activity and each arrow represents one precedence-
relationship. Moreover, the example includes two sites A and B between which we assume
a transportation time of one time unit. Each of the two resource types k = 1 and k = 2
comprises two resource units u = 1 and u = 2. Both resource units of resource type k = 1
are non-mobile and permanently located at site A. One unit (u = 2) of resource type k = 2
is mobile, and the other unit (u = 1) is permanently located at site B. The activity-on-
node network further shows for each activity i its resource requirement rik for the two
resource types and its duration pi. The right part of Figure 1 shows an optimal solution
for the illustrative example. Each line represents a resource unit u of a resource type k,
and the rectangles represent the activities. Each real activity is assigned to at least one
resource unit and exactly one site. The activities {2, 5, 7, 8} are executed at site A while
the activities {3, 4, 6} are executed at site B. The resource transfers are indicated by a
dash-dotted arrow, e.g., between activities 6 and 5 which take place at a di�erent site;
thus, the commonly used resource unit u = 2 of resource type k = 2 must be transferred
from site B to site A. The output transfers are indicated by a dotted arrow, e.g., between
activities 4 and 8, which are precedence-related and take place at a di�erent site; thus, the
output of activity 4 must be transferred from site B to site A before activity 8 can start.

3 Novel matheuristic

In this section, we describe the novel matheuristic in more detail and illustrate it with
the example from Section 2. The matheuristic is based on the continuous-time sequencing/
natural-date model of Gnägi and Trautmann (2019), subsequently referred to as GT19.
The model involves continuous start-time variables that indicate the start time of an ac-
tivity, and binary site-selection variables that represent the execution site for each activity.
Moreover, it includes binary resource-assignment variables that assign the activities to the
resource units, and binary sequencing variables yij that indicate the sequence between pairs
of activities i and j. Hence, yij = 1 means that activity i is scheduled before activity j.

Our matheuristic is based on a variant of GT19, in which some sequencing variables are
relaxed, i.e., they can take any fractional value between 0 and 1, and some activities are
locked, i.e., the site-selection and resource-assignment variables of these activities as well
as the sequencing variables between all pairs of these activities are �xed to their values in
the current solution of the relaxation. Before the �rst iteration, the matheuristic derives
promising initial values for the site-selection variables by solving a relaxation of GT19,

63

3

0 1 2 3 4 5 6 7 8

k

2

2

1

1

u

2

1

2

1

Mobility
(site)

mobile

non-mobile
(site B)

non-mobile
(site A)

non-mobile
(site A) 2

2

3

3 4
5

5

6

6

7

8

8

Activity Site A Site B

resourceResource
transfer
Output
transfer

t

0 1 2 3 4 5 6 7 8

k

2

2

1

1

u

2

1

2

1

Mobility
(site)

mobile

non-mobile
(site B)

non-mobile
(site A)

non-mobile
(site A) 2

2

3

3

4

5

5

6

6

78

8

Activity Site A Site B

Resource
transfer
Output
transfer

t

Fig. 2. Example: schedule after Iteration 1 (left) and schedule after Iteration 2 (right)

in which all sequencing variables are relaxed. Then, the matheuristic iteratively schedules
changing subsets of activities in a rolling-horizon manner as follows. First, 2b activities
are selected based on the latest starting time (LST) priority rule and the latest �nishing
time (LFT) priority rule as a tie breaker. Second, a relaxation of GT19 is solved, in which
only the sequencing variables among and between the 2b selected and the locked activities
are de�ned as binary; all remaining sequencing variables are relaxed. Moreover, the initial
values for the site-selection variables of the 2b selected activities are provided. The solu-
tion of this relaxation provides a schedule in which the sequence of the 2b selected and
the locked activities is determined. The remaining activities (subsequently referred to as
eligible activities), however, may overlap among each other as well as with the selected and
the locked activities. Finally, the initial values for the site-selection variables are updated
based on the current solution of the relaxation, and the b activities with the highest priority
(according to the combined LST and LFT priority rule) among the 2b selected activities are
locked. Consequently, b activities remain selected. Then, the next iteration starts by select-
ing b additional activities from the eligible activities based on the combined LST and LFT
priority rule. If there are no eligible activities to select in this step, the matheuristic stops.

In the illustrative example, we set b = 3. Figure 2 illustrates the resulting two iterations.
The selected activities are marked in bold, the eligible activities are transparent, and
the locked activities are not highlighted. In Iteration 1, the activities {1, 3, 2, 4, 5, 7} are
selected. Figure 2 (left) shows the schedule obtained in Iteration 1, in which some of the
eligible activities {6, 8, 9} overlap with some of the selected activities. This is feasible in this
iteration because all sequencing variables between the eligible activities and the selected
activities are relaxed. Next, the activities {1, 3, 2} are locked and the activities {6, 8, 9} are
selected in addition to the already selected activities {4, 5, 7}. As all activities are either
selected or locked in Iteration 2, the sequencing variables between all activities are de�ned
as binary and the con�icts between the activities {5, 6}, {5, 8}, and {7, 8} must be resolved.
Figure 2 (right) illustrates the schedule obtained in Iteration 2. Compared to Iteration 1,
activity 4 is scheduled at a di�erent time, at a di�erent site, and on a di�erent resource
unit. Without the site change of activity 4 in Iteration 2, an additional transportation time
would apply, which would delay the project makespan by one time unit. After performing
Iteration 2, there are no eligible activities and the matheuristic stops.

4 Computational results

In this section, we present the computational results. The matheuristic was tested on
960 instances comprising 30 activities and 2 or 3 sites that belong to the test set MSj30.
This set has been adapted to the multi-site context by Laurent et al. (2017) from the
instances of the PSPLIB by Kolisch and Sprecher (1996). We implemented the matheuristic

64

4

Table 1. Computational results

Overall Laurent et al. (2017) Gnägi and Trautmann (2021)

Sites # New BKS # Better ∅ Gap [%] # Better ∅ Gap [%]
2 63 110 0.70 94 0.38
3 101 143 0.53 144 -0.57

in Python 3.7 and used the Gurobi 9.1 solver. We prescribed a time limit of 300s to the
Gurobi solver in each iteration. Moreover, we set b = 5.

Table 1 summarizes the results obtained. The solutions of the matheuristic are compared
to the best known solutions that Laurent et al. (2017) published for their metaheuristics
on their website and to the solutions Gnägi and Trautmann (2021) reported for their
continuous-time mathematical model. We group the results by the number of sites (2 or 3).
The column # New BKS corresponds to the number of instances for which the matheuristic
found a new best known solution. The columns # Better report the number of instances
for which the matheuristic obtained a better solution than the approaches of Laurent et al.
(2017) or Gnägi and Trautmann (2021), respectively, and the columns ∅ Gap report the
average gap of the matheuristic solutions to the solutions of the approaches of Laurent et al.
(2017) or Gnägi and Trautmann (2021), respectively. Even though the average gap to the
benchmark approaches is overall slightly positive, our matheuristic is able to derive 164 new
best known solutions in a shorter average running time than the benchmark approaches.

5 Conclusions and outlook

In this paper, we studied a variant of the RCPSP that involves multiple sites. This ex-
tension allows for resource pooling among sites and introduces two types of transportation
times that must be considered. We developed a matheuristic for this problem that derives
high-quality solutions for a standard test set of instances with 30 activities and 2 or 3 sites.

In future research, the matheuristic could be extended by an LP-based improvement step
involving the so-called justi�cation technique. This technique has been shown to improve
schedules considerably while running times increase only slightly (cf. Valls et al., 2005).
Also, the planning problem could be extended to take into account resources that are re-
quired for the transfer of the output of an activity to another site (Krüger and Scholl, 2010).

References

Gnägi, M., and Trautmann, N., 2019, �A continuous-time mixed-binary linear programming for-
mulation for the multi-site resource-constrained project scheduling problem.�, In: Wang, M.,
Li, J., Tsung, F., and Yeung, A. (eds.): Proceedings of the 2019 IEEE International Conference
on Industrial Engineering and Engineering Management (IEEM), Macau, pp. 382�365.

Gnägi, M., and Trautmann, N., 2021, �A continuous-time model for the multi-site resource-
constrained project scheduling problem�, In: Proceedings of the 17th International Conference
on Project Management and Scheduling (PMS), Toulouse, to appear.

Kolisch, R., and Sprecher, A., 1996, �PSPLIB-a project scheduling problem library.�, European
Journal of Operational Research, Vol. 96(1), pp. 205�216.

Krüger, D., and Scholl, A., 2010, �Managing and modelling general resource transfers in (multi-
)project scheduling�, OR Spectrum, Vol. 32(2), pp. 369�394.

Laurent, A., Deroussi, L., Grangeon, N., and Norre, S., 2017, �A new extension of the RCPSP
in a multi-site context: Mathematical model and metaheuristics.�, Computers & Industrial
Engineering, Vol. 112, pp. 634�644.

Valls, V., Ballestin, F., and Quintanilla, S., 2005, �Justi�cation and RCPSP: A technique that
pays.�, European Journal of Operational Research, Vol. 165(2), pp. 375�386.

65

1

Solution Repair by Inequality Network Propagation in
LocalSolver

Léa Blaise12, Christian Artigues1, Thierry Benoist2

1 LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France
2 LocalSolver, 36 Avenue Hoche, 75008, Paris, France

lblaise@localsolver.com

Keywords: constraint propagation, inequality networks, local search, solution repair, solver,
disjunctive scheduling.

1 Introduction and context

This paper introduces a solution repair algorithm based on constraint propagation,
designed to overcome the difficulties met by small neighborhood search on a family of
tightly constrained problems.

LocalSolver is a mathematical programming solver, whose goal is to offer a model-and-
run approach to optimization problems, including combinatorial, continuous, and mixed
problems, and to offer high quality solutions in short running times, even on large instances.
It allows OR practitioners to focus on the modeling of the problem using a simple formalism,
and then to defer its actual resolution to a solver based on efficient and reliable optimization
techniques, including local search (but also linear, non-linear, and constraint programming).
The local search algorithms implemented in LocalSolver are described in Gardi et. al. (2014).

This paper focuses on problems whose constraints include a network of two-variable
inequalities. More precisely, it focuses on problems whose constraints comprise either
linear inequalities between two variables or disjunctions of such inequalities. Many such
problems arise in the field of scheduling: for example the Job Shop Problem (Fisher
and Thompson 1963) and the Bridge Building Problem (Bartusch 1983), which are both
characterized by generalized precedences and disjunctive resource constraints. However, this
kind of structure is also typical of packing, layout, and mining problems.

These problems are highly constrained: in a good solution of a Job Shop or Bridge
instance, the precedences and disjunctive resource constraints are often very tight. Because
of that, moving from a solution of makespan x to a solution of makespan x− 1 requires a
lot of small changes on many integer variables – the start times of the tasks. Being able to
move from a good feasible solution to another using random small neighborhoods is then
very unlikely: one would have to randomly target the right set of integer variables and to
randomly shift them all by the right amount. For these reasons, the algorithms described in
Gardi et. al. (2014) encounter serious difficulties on these problems. In the vast literature on
job-shop scheduling by local search, these difficulties are overcome by exploiting higher level
dedicated solution representations, such as the disjunctive graph (Vaessens et. al. 1994). In
this work, we aim at keeping the modeling elements simple and we wish to target other
problems as well. Hence, we focus on the direct integer variable representation.

2 Solution repair

The solution that we envisioned and implemented in LocalSolver to tackle this problem
is a kind of constraint propagation: a promising but infeasible solution is gradually repaired
one constraint at a time. This gradual procedure might remind one of the min-conflicts
heuristic, used to repair an inconsistent assignment for the variables of a CSP, or of ejection

66

2

chains algorithms, both recently studied in the context of scheduling problems, respectively
in Ahmeti and Musliu (2018) and Ding et. al. (2019).

Before the search, specific constraints (such as generalized precedences and disjunctive
resource constraints) are detected in the model and made into a constraint network. Those
constraints will be the ones on which the repairing algorithm will apply when necessary.
Let’s consider any iteration of the local search, and let’s assume that the current solution S0
is feasible. A local transformation is applied to the solution (for example, modification of a
few start times), rendering it infeasible (S). In the simplest case, the repair phase is similar
to the classic constraint propagation of Constraint Programming (Rossi et. al. 2006), but
has a few singularities. First, while constraint propagation generally aims at reducing the
variables’ domains, here the constraints are only propagated when they are violated and
need repairing. Indeed, our only concern here is to build a feasible solution S ′ as close to S
as possible. Then, we impose that, during the local move and along the successive constraint
repairs, the variables must always be shifted in the same direction: if a variable’s value was
increased, it can still be increased further when repairing a constraint, but it can never be
decreased, and reciprocally. This ensures that all the decisions taken during the current
iteration (during the successive constraint repairs, and more importantly during the local
move) are respected. This way, the successive repairs “follow the move’s direction”: they
lead to finding a feasible solution as close as possible to S, by amplifying the move rather
than by cancelling it. At the end of the propagation, the algorithm was either able to repair
all the constraints, and thus found a feasible solution S ′, or found a constraint that could
not be repaired. In the latter case, all the changes are cancelled and the whole procedure
starts over: the current solution is set back to S0, and a new move is applied.

2.1 Two-variable linear inequalities

We consider inequalities of the form

aX + bY ≤ c

where X and Y are integer or floating point variables, and a, b, and c are any constants.
When a = 1 and b = −1, these inequalities correspond to the generalized precedence
constraints encountered in scheduling problems, but the following algorithm is not limited
to this specific case.

Let’s assume that the inequality aX + bY ≤ c is violated. Since the initial solution was
feasible, at least X or Y has already been shifted in the “wrong” direction, and therefore
cannot be shifted now in the repair direction. At most one variable (X by symmetry) can
then be shifted in the repair direction: there exists only one way to repair the constraint,
which consists in shifting X just enough (X ← c−bY

a). This is a necessary decision, as in
every feasible solution following the move’s choices, X is at least (resp. at most) c−bY

a .
When the only repairable constraints in the model are inequalities, the repair phase is

equivalent to a particular kind of constraint propagation, which will be referred to as “half
bound consistency” in the remainder of the paper. The reduction of a variable X’s domain
is propagated only if it excludes its current support x (only if the constraint is violated and
needs repairing). After repairing the constraint, the new support of X is written x′. When
propagating the reduction of X’s domain, only one of its bounds is modified: either x′ > x
(then X’s value can no longer be decreased) and x′ is its new lower bound, or x′ < x and
x′ is its new upper bound. Since each variable must always be shifted in the same direction,
one of its bounds at most can be modified throughout the propagation.

An interesting property when the only repairable constraints in the model are inequalities
is that, if there exists a feasible solution that respects the decisions of the local move, the
algorithm is guaranteed to find one at the end of the propagation.

67

3

2.2 Disjunctions of two-variable linear inequalities

We consider disjunctions of inequalities of the form
∨

i

(aiXi + biYi ≤ ci)

where the Xi and Yi are integer or floating point variables, and the ai, bi, and ci are
any constants. When ai = 1 and bi = −1 ∀i, these disjunctions correspond to disjunctive
resource constraints (disjunctions of size 2), or packing constraints in higher dimensions.
However, the algorithm is not limited to this specific case here either.

Let’s assume that a disjunction is violated. We will try to repair it in a non deterministic
way. Since a priori none of the generalized precedences of the disjunction should prevail
over the others, the algorithm chooses one at random and tries to repair it. If it cannot be
repaired, it tries to repair the following one, and so forth. If none of them could be repaired,
the propagation fails.

Let aX+bY ≤ c be the inequality that was randomly chosen for repair in the disjunction.
If only one of its variables can be shifted in the repair direction, then the constraint is
repaired as described in 2.1. It is also possible that both variables can be shifted in the
repair direction, since the chosen inequality may not have been the one that was respected
in the initial feasible solution S0. If so, the algorithm randomly chooses how to shift them.
Let ∆ be the distance to feasibility: ∆ = aX + bY − c, and let δX and δY be the shares
of the repair respectively attributed to X and Y , verifying δX + δY = ∆. There are four
possible ways for the algorithm to repair the constraint: either X repairs it alone (δX = ∆),
or Y repairs it alone (δY = ∆), or X and Y equitably share the repair (δX = δY = ∆

2), or
X and Y randomly share the repair (δX = random(1, ∆− 1) and δY = ∆− δX).

Since the repair procedure of a disjunction is non deterministic, the previous properties,
of half bound consistency and guarantee to find a feasible solution, do not hold anymore
when such constraints are detected among the repairable constraints in the model. However,
if there exists a solution that respects the decisions of the move, there is always a non-zero
probability that the propagation leads to finding one, depending on whether the algorithm
always takes the “right” random decisions when repairing a disjunction.

3 Application to scheduling problems

This method of solution repair by constraint propagation dramatically improves the
performances of LocalSolver on problems with a network of two-variable linear inequalities.

3.1 Results on the Bridge Building Problem

The optimum value of the Bridge Building Problem is 104. Without our repair mechanism,
within ten seconds of search, LocalSolver 9.0 is only able to find solutions of value 115 on
average, and virtually never finds an optimum solution. But with the integrated repair
mechanism, it always finds a solution of value 104 within four seconds of search, and very
often finds one in less than one second.

3.2 Results on the Job Shop Problem

We compared the performances of LocalSolver 9.0 with and without this repair mech-
anism on three classic Job Shop instance classes: the FT class by Fisher and Thompson
(1963), the LA class by Lawrence (1984), and the ORB class by Applegate and Cook (1991).

68

4

Table 1. Evolution of the gap between the average solution found by LocalSolver and the optimum
solution, in 10 seconds and in 60 seconds, on different Job Shop instance classes

Gap 10s Gap 60s
Instance class No repairs With repairs No repairs With repairs

FT 73% 7% 15% 3%
LA 246% 10% 91% 4%
ORB 120% 6% 22% 4%

As shown above in table 1, our repair mechanism enables LocalSolver not only to find
very good solutions of many Job Shop instances, but also to find good solutions very quickly:
less than 10% from the optimum within 10 seconds of search.

4 Conclusion

In this paper, we considered a family of problems, whose constraints comprise a network
of two-variable linear inequalities. Although small neighborhood search algorithms may
encounter serious difficulties on these problems, we introduced a solution repair algorithm
based on constraint propagation, overcoming the difficulties met by small neighbourhood
search. The two main specificities of our propagation algorithm are that a domain reduction
is only propagated if it excludes the current support of the variable, and that each variable
must always be shifted in the same direction. Its integration into LocalSolver dramatically
improves its performances on the targeted problems, not only on classic scheduling problems
such as the Job Shop Problem, but also on some 3D packing and mining industrial instances
of our test base.

References

Ahmeti A. and N. Musliu, 2018, “Min-conflicts Heuristic for Multi-mode Resource-constrained
Projects Scheduling”, Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 237-244.

Applegate D., W. Cook, 1991, “A computational study of the job-shop scheduling problem”, ORSA
Journal on Computing 3, pp 149-156.

Bartusch M., 1983, “Optimierung von Netsplanen mit Anordnungsbeiziehungen bei knappen
Betriebsmitteln”, PhD thesis, Universitat Passau, Fakultat fur Matematik und Informatik.

Ding J., L. Shen, Z. Lü, and B. Peng, 2019, “Parallel machine scheduling with completion-time-based
criteria and sequence-dependent deterioration”, Computers and Operations Research (103), pp.
35-45.

Fisher H., G. Thompson, 1963, “Probabilistic learning combinations of local job-shop scheduling
rules”, Industrial Scheduling, Muth J., G. Thompson (Eds.), Prentice Hall, Englewood Cliffs,
New Jersey, pp. 225-251.

Gardi F., T. Benoist, J. Darlay, B. Estellon, and R. Megel, 2014, “Mathematical Programming
Solver Based on Local Search”, Wiley.

Lawrence S., 1984, “Resource constrained project scheduling: an experimental investigation of
heuristic scheduling techniques (Supplement), Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburg, Pennsylvania.

Rossi F., P. Van Beek, and T. Walsh, 2006, “Handbook of Constraint Programming (Foundations
of Artificial Intelligence)”, Elsevier Science Inc., New York, NY, USA.

Vaessens, R. J. M., E. H. L. Aarts, and J. K. Lenstra, “Job shop scheduling by local search”,
Informs Journal on computing, 8(3), pp. 302-317.

69

1

The generalised resource-constrained project scheduling
problem with flexible resource profiles

Matthew Bold1, Burak Boyaci2, Marc Goerigk3 and Chris Kirkbride2

1 STOR-i Centre for Doctoral Training, Lancaster University, United Kingdom
m.bold1@lancaster.ac.uk

2 Lancaster University Management School, Lancaster University, United Kingdom
3 Network and Data Science Management, University of Siegen, Germany

Keywords: project scheduling, flexible resource profiles, generalised precedence constraints,
schedule generation scheme, genetic algorithm.

1 Introduction

The classical resource-constrained project scheduling problem (RCPSP) consists of
scheduling a set of activities, subject to resource and precedence constraints, in order
to minimise the project makespan. The applicability of the RCPSP, however, is limited by
the following two assumptions: 1. only finish-to-start, zero time-lag precedence relation-
ships exist between activities, and 2. the resource requirements of each activity are fixed
and constant throughout its duration. In practice, rarely do these assumptions hold true.

The extension of the RCPSP to include generalised precedence relationships addresses
the first limiting assumptions, and is a well studied problem for which a number of exact
(Bartusch, Möhring & Radermacher 1988, De Reyck & Herroelen 1998, Schutt, Feydy,
Stuckey & Wallace 2013) and heuristic (Franck, Neumann & Schwindt 2001, Ballestín,
Barrios & Valls 2011) solution methods have been developed. We refer to this problem as
the generalised resource-constrained project scheduling problem (GRCPSP).

More recently, the resource-constrained project scheduling problem with flexible re-
source profiles (FRCPSP) has been introduced to address the second limiting assumption
of the RCPSP. This problem assumes only that the total amount of resource that is re-
quired to complete each activity is known, and that, as well as the start time, the resource
allocation for each activity must be determined. Whilst heuristic approaches have provided
the most success in solving the FRCPSP (Fündeling & Trautmann 2010, Tritschler, Naber
& Kolisch 2017), a number of exact mixed-integer programming (MIP) formulations have
also been developed (Naber & Kolisch 2014, Naber 2017).

Here, we introduce the generalised resource-constrained project scheduling problem
with flexible resource profiles (GFRCPSP) to combine these two extensions of the RCPSP
into a single model. The GFRCPSP is an NP-hard problem for which realistically sized
instances cannot be solved exactly, and hence, in addition to proposing a MIP formulation
for this problem, we also propose a genetic algorithm (GA) based on a non-greedy serial
schedule generation scheme with an unscheduling step.

2 Problem description

A project consists of a set of non-preemptive activities V = {0, 1, . . . , n, n+ 1}, where
0 and n+1 are dummy source and sink activities. The GFRCPSP consists of determining
a start time and resource profile of each activity, subject to a set of resource constraints
and generalised precedence relationships, in order to minimise the project makespan.

There exist four types of generalised precedence relationship: start-to-start, start-to-
finish, finish-to-start and finish-to-finish. Every generalised precedence relationship in a

70

2

project has an associated minimal or maximal time-lag, which together create a feasible
time-window for the processing of each activity. In the GRCPSP, since the duration of each
activity is known a priori, each of the four types of relationship can be transformed into a
single type (Bartusch et al. 1988). In the GFRCPSP however, since activity durations are
variables, these transformations do not apply, and each relationship type remains distinct.
Maximal time-lags however, can be converted into negative minimal time-lags going in the
opposite direction, which allows the set of project precedence constraints to be represented
on a network, such as the one shown in Figure 1.

We define resource constraints for the GFRCPSP in the same way that Naber & Kolisch
(2014) define them for the FRCPSP. The total resource allocated to each task i ∈ V over
its duration must at least satisfy its total resource requirement wi, whilst adhering to
upper and lower bounds on its per period resource allocation, q

i
and qi, and a so-called

minimum block length, lmin (Fündeling & Trautmann 2010), that is, the minimum number
of time periods for which the resource allocation to an activity must remain constant. All
resources r ∈ R are assumed to be renewable, continuous, and have limited availability
Rmax

r . It is also assumed that there are three types of resource: principle, dependent and
independent. The allocation of principle resource to an activity determines the allocation of
each dependent resource to that activity through a linear resource-function. The allocation
of independent resources to an activity is fixed and independent of the allocation of the
other resources.

Fig. 1. An example GFRCPSP network with five non-dummy activities, a lmin = 2, and a single
resource with Rmax = 6. Arc labels indicate lower bounds on precedence relations. The chart
shows an optimal solution to this problem.

3 Solution approaches

The GFRCPSP can be modelled by adapting the FP-DT3 model proposed by Naber &
Kolisch (2014) for the FRCPSP. For brevity, we omit this formulation from this abstract.
Solving this MIP model becomes intractable as instance sizes get larger, and hence we also
propose a schedule generation scheme-based heuristic (Kolisch & Hartmann 1999) and GA
for finding good solutions to realistically-sized instances in a reasonable time. We outline
this scheduling heuristic and GA here.

The scheduling heuristic we propose is a non-greedy serial schedule generation scheme
(SGS) with unscheduling step. This algorithm takes an activity list as input, and constructs
a complete solution by scheduling activities one at a time in the given order. Each activity
is started as early as possible and with as much resource as possible, subject to ‘delay’

71

3

and ‘greediness’ parameters (Tritschler et al. 2017), which are used to encourage non-
greedy scheduling. This is desirable, since an optimal solution for a given instance cannot
necessarily be found using a purely greedy SGS (Fündeling & Trautmann 2010).

If a resource constraint is violated whilst scheduling an activity, the algorithm attempts
to re-start the activity at the next resource-feasible start time. If a precedence constraint is
violated, an unscheduling step is invoked to reschedule the activities that cause either the
missed latest start or latest finish time, and start them closer to the activity with which
they have a maximum time-lag with the aim of restoring the feasibility of the schedule.
If the unscheduling step fails to feasibly reschedule the activities after a given number of
attempts, the schedule is completed infeasibly and the total number of time periods by
which precedence constraints are missed is recorded.

A GA is used to search over individual solutions, each of which consists of an activity list,
and delay and greediness parameters for each activity. An initial population of individuals
is generated randomly subject to precedence feasibility. Each individual is scheduled using
the above heuristic. The ‘fitness’ of a feasible schedule is equal to its makespan, whilst
the fitness of an infeasible schedule is equal to the total number of time periods by which
precedence relationships are missed, plus a fixed penalty. New individuals are obtained
using the adapted two-point crossover of Franck et al. (2001), which is designed to keep
activities that are related by a maximal time-lag close together in the resulting activity
list, thus increasing the likelihood of finding a feasible solution. The mutation operator
of Hartmann (1998) is applied to each offspring solution. Having produced enough new
individuals to double the original population size, the next generation is chosen using
3-tournament selection. The next generation has the same size as the original population.

4 Results and conclusions

Table 1 compares the results of the proposed GA and scheduling heuristic with the re-
sults of solving the FP-DT3-based MIP model. The two approaches are tested over five sets
containing instances with 10, 20, 30, 50 and 100 activities respectively. Each of the five sets
set contains 30 instances for three different values of resource strength (Kolisch, Schwindt
& Sprecher 1999), resulting in a total of 450 instances. Resource strength (RS) measures
the restrictiveness of the resource availability, with a smaller RS generally indicating a
more challenging problem. These instances have been created using a new GFRCPSP in-
stance generator we have developed as an extension to the ProGen/max project generator
(Kolisch et al. 1999).

Table 1 shows the average percentage gap to the critical-path based lower bound of
solutions found by the two solution methods. For each instance, the GA searched 50,000
schedules, whilst a limit of 2 hours was allowed for solving the MIP. To enable a fair
comparison between the two solution methods, the instances for which both approaches
find a feasible solution have been presented separately from those for which only the GA
finds a feasible solution. There are no instances where only the MIP finds a feasible solution.
These results show the MIP performing well on instances with 10 and 20 activities, but
dramatically worsening over the larger test sets, as expected. In contrast, the quality of
the solutions found by the GA remain roughly constant across the five test sets.

In conclusion, the GFRCPSP has been introduced to combine two existing extensions
to the RCPSP. The GFRCPSP can be solved for small instances as an MIP, whilst a new
scheduling heuristic and GA has been proposed for solving larger instances. Future work
will include the application of this new model to a real-world scheduling problem, as well
as further improvements to the metaheuristic approach proposed here, perhaps with the
introduction of a local improvement step.

72

4

MIP & GA Only GA
Test set RS # ∆MIP

lb ∆GA
lb # ∆GA

lb

P10
0.05 30 10.90 13.14 0 -
0.15 30 2.17 3.24 0 -
0.25 30 0.49 0.49 0 -

P20
0.05 30 19.37 19.65 0 -
0.15 30 0.25 0.49 0 -
0.25 30 0.00 0.00 0 -

P30
0.05 28 150.81 13.43 2 10.71
0.15 29 0.00 0.00 1 0
0.25 30 14.56 0.00 0 -

P50
0.05 0 - - 30 25.24
0.15 6 617.23 0.00 24 0.00
0.25 29 769.84 0.00 1 0.00

P100
0.05 0 - - 30 18.81
0.15 3 1029.66 0.00 27 0.00
0.25 29 1442.55 0.00 1 0.00

Table 1. Average percentage gap to the critical path-based lower bound of solutions found by the
MIP and GA. These values are denoted by ∆MIP

lb and ∆GA
lb , respectively.

References

Ballestín, F., Barrios, A. & Valls, V. (2011), ‘An evolutionary algorithm for the resource-
constrained project scheduling problem with minimum and maximum time lags’, Journal
of Scheduling 14(4), 391–406.

Bartusch, M., Möhring, R. H. & Radermacher, F. J. (1988), ‘Scheduling project networks with
resource constraints and time windows’, Annals of Operations Research 16(1), 199–240.

De Reyck, B. & Herroelen, W. (1998), ‘A branch-and-bound procedure for the resource-constrained
project scheduling problem with generalized precedence relations’, European Journal of Op-
erational Research 111(1), 152–174.

Franck, B., Neumann, K. & Schwindt, C. (2001), ‘Truncated branch-and-bound, schedule-
construction, and schedule-improvement procedures for resource-constrained project schedul-
ing’, OR-Spektrum 23(3), 297–324.

Fündeling, C.-U. & Trautmann, N. (2010), ‘A priority-rule method for project scheduling with
work-content constraints’, European Journal of Operational Research 203(3), 568–574.

Hartmann, S. (1998), ‘A competitive genetic algorithm for resource-constrained project schedul-
ing’, Naval Research Logistics 45(7), 733–750.

Kolisch, R. & Hartmann, S. (1999), Heuristic algorithms for the resource-constrained project
scheduling problem: Classification and computational analysis, in J. Weglarz, ed., ‘Project
scheduling’, Vol. 14, Springer, Boston, MA, pp. 147–178.

Kolisch, R., Schwindt, C. & Sprecher, A. (1999), Benchmark instances for project scheduling
problems, in J. Weglarz, ed., ‘Project scheduling’, Vol. 14, Springer, Boston, MA, pp. 197–
212.

Naber, A. (2017), ‘Resource-constrained project scheduling with flexible resource profiles in con-
tinuous time’, Computers & Operations Research 84, 33–45.

Naber, A. & Kolisch, R. (2014), ‘MIP models for resource-constrained project scheduling with
flexible resource profiles’, European Journal of Operational Research 239(2), 335–348.

Schutt, A., Feydy, T., Stuckey, P. J. & Wallace, M. G. (2013), ‘Solving rcpsp/max by lazy clause
generation’, Journal of scheduling 16(3), 273–289.

Tritschler, M., Naber, A. & Kolisch, R. (2017), ‘A hybrid metaheuristic for resource-constrained
project scheduling with flexible resource profiles’, European Journal of Operational Research
262(1), 262–273.

73

Why and how to evaluate the task threatness

Brožová Helena1, Šubrt Tomáš2, Rydval Jan3, Pavlíčková Petra4

Czech University of Life Sciences Prague, Fac. of Economics and Management,
Dept. of Systems Engineering, Kamýcká 129, 165 21 Praha 6 – Suchdol, CZ

1brozova@pef.czu.cz, 2subrt@pef.czu.cz, 3rydval@pef.czu.cz, 4pavlickovap@pef.czu.cz,

Keywords: Project management, project success, task impact, criticalness, failureness, threatness.

1. Introduction

Nowadays, the overwhelming majority of projects fail or end up with more or less problems. It
concerns over half of all large complex industrial projects (Aschman, 2018, Betz, 2018). The main
factors of the projects fail are budget overspending, schedule slipping, a lot of project changes
gradually requested by customers, and/or severe and continuing operational problems holding for at
least one year (Aschman, 2018).

Generally only methods and process of risk analysis are in the focus of many authors which
suggest new, more exact approaches to this analysis (Williams, 2017, APM, 2008). Almost no
authors mention the need to analyse the project in terms of the implementation of individual tasks,
of their time parameters, costs and work. Commonly, methods for creating a project schedule (based
on critical path) or determining the budget and resource requirements are only used but they are not
aimed at predicting and preparing for potential threats of individual task. The criticality of project
tasks is often defined from a time perspective only, using stochastic approaches (Bowers, 1996, Cruz
et al, 1999), fuzzy sets methods (Chen, Huang, 2007, Yakhchali, 2012) or using the findings of a
network analysis (Chanas, Zielinski 2003). Gong and Rowings (1995) mention that ignoring the
impact of non-critical tasks, which may easily become critical, is the most frequent criticism of
project duration analysis methods. Another point of view on tasks criticalness is given by the
structure of relations in the project. Bowers (1996) or Williams (1992) deal with a stochastic analysis
of a project network where the criticality of tasks in the project is derived from the relation between
task duration and the whole project, and on the basis of a number of resources used for a task and
the whole project. Another approach to analysis of the project performance is based on multiple
attribute evaluation (Koelmans, 2004, de Oliveira Moraes, Laurindo, 2013).

For these reasons we introduce the task threatness matrix, our proposed tool for analysis of the
criticalness and failureness potential of the project tasks. The main advantage of this tool is its
similarity to project risk matrix and relatively easily obtainable data.

2. Task criticalness, failureness and threatness concept

The concept of threatness of project task combines two views – task criticalness and failureness.
The task criticalness potential (Brozova et al. 2014, 2016) is suggested to provide the overall

evaluation of the task criticalness using quantitative crisp evaluation without soft knowledge about
character of the tasks (Figure 1). The task criticalness potential is based on the multiple attribute
decision making method using five indicators of the criticalness which are based on objective values
from project schedule and are transformed using linear utility function and fuzzified using fuzzy
linguistic scale:
• Duration – longer task duration means higher value of time criticalness indicator,
• Slack – shorter task slack means higher value of slack criticalness indicator,
• Cost - higher task cost means higher value of cost criticalness indicator,
• Work - higher task work means higher value of work criticalness indicator, and
• Topology - higher probability the activity will lie on critical pass related to the project topology

means higher value of topological criticalness indicator.

The task failureness potential (Brozova et al. 2016, 2019) is based on the expert estimation of
the possibility of task fails from different even soft aspects considering the role of human factor
which are expressed using fuzzy linguistic scale (Figure 1). The task failureness indicators are
primarily derived from the project triangle criteria respecting three key parameters (and can describe
also other parameters of project tasks):

74

• Duration – higher possibility of task duration extension means higher value of time failureness
indicator,

• Cost – higher possibility of task cost increasing means higher value of cost failureness indicator,
• Quality – higher possibility of task quality deterioration means higher value of quality

failureness indicator.

Figure 1. Factors of task threatness and task threatness matrix

The task threatness is obtain using the fuzzy linguistic evaluation of the task criticalness and
failureness potentials as two-dimensional evaluation of task. The fuzzy values of criticalness and
failureness potential are used for placing of the tasks into cells of task threatness matrix (Figure 1)
which is inspired by Winterlink’s matrix.

3. Approaches to tasks evaluation

The evaluation of all indicators can be crisp values (numbers) or fuzzy values (actually a fuzzy
linguistic value). The first one is used for objective evaluation and the second one has its advantage
for subjective evaluation of failureness factors and for division of tasks into five groups.

The crisp evaluation of criticalness factors is based on the objective parameters obtained from
the project schedule. Each task criticalness indicator transforms the task parameter so that the best
value of this parameter corresponds to the value 0 meaning the lowest criticalness and the worst
parameter value corresponds to the value 1 showing the higher criticalness. Then the values of
criticalness indicators are fuzzified using the six step non-uniform fuzzy scale (Table 1). The fuzzy
value of each criticalness indicator is received as weighted sum of all values of linguistic variable
where the weights are the membership function values of criticalness indicator. The criticalness
potential of the task is then calculated as the weighted sum of individual fuzzy evaluation of
indicators. The weights of all indicators are set by the experts’ evaluation.

Table 1. Fuzzy linguistic terms describing intensity of task criticalness and failureness indicators

Linguistic terms Fuzzy number
Not at all critical Not at all failing (0; 0; 0; 0.1)
Usually not critical Usually not failing (0; 0.1; 0.2; 0.3)
Rather not critical Rather not failing (0.2; 0.3; 0.4; 0.6)
Rather critical Rather failing (0.4; 0.6; 0.7; 0.8)
Usually critical Usually failing (0.7; 0.8; 0.9; 1)
Always critical Always failing (0.9; 0.1; 1; 1)

The final linguistic term expressing the classification of the task criticalness potential is received
using suitable method of linguistic approximation into five step non-uniform fuzzy scale (Table 2).

The fuzzy evaluation of the task failureness is based on the expert evaluation of indicators using
the six step non-uniform fuzzy scale (Table 1). The failureness potential is calculated as sum of the
failureness indicators and using linguistic approximation is again mapped into five step non-uniform
fuzzy scale (Table 2).

Table 2. Fuzzy linguistic terms describing the task criticalness and failureness potential

Linguistic terms Fuzzy number
Non-criticalness Non-failureness (0; 0; 0.05; 0.15)
Weak criticalness Weak failureness (0.05; 0.15; 0.25; 0.35)
Rather criticalness Rather failureness (0.25; 0.35; 0.5; 0.6)
Strong criticalness Strong failureness (0.5; 0.6; 0.75; 0.85)
Extreme criticalness Extreme failureness (0.75; 0.85; 1; 1)

F
ai

lu
re

n
es

s Extreme failureness

Strong failureness

Rather failureness

Weak failureness

Non-failureness

N
on

-
cr

iti
ca

ln
es

s

W
ea

k
cr

iti
ca

ln
es

s

R
at

he
r

cr
iti

ca
ln

es
s

S
tr

on
g

cr
iti

ca
ln

es
s

E
xt

re
m

e
cr

iti
ca

ln
es

s

Criticalness

75

4. Example

The tasks threatness matrix creation is described on the following small-scale project with 7 tasks
(Table 3, Figure 2). The critical path of this project consists of the tasks B, C. D, and G.

Table 3. Project example – data from project schedule

Task Top. Dur. Slack Work Cost

A 0.5 2 9 4 5
B 0.5 3 0 3 5
C 0.25 8 0 12 15
D 0.75 4 0 8 22
E 0.25 6 6 6 18
F 0.375 1 2 5 6
G 0.625 3 0 6 4

Figure 2. Project example – AON network

The Table 4 shows the initial quantitative values of criticalness factors, which are then
transformed into fuzzy criticalness indicators and aggregated into the criticalness potential. The
Table 5 shows the experts’ evaluation of failureness indicators and their aggregation into the
failureness potential.

Table 4. Project example – Task criticalness potential

Task
Criticalness factors

Criticalness potential
Linguistic

approximation Top. Dur. Slack Work Cost
A 0.5 0.143 0 0.111 0.056 0.057 0.141 0.215 0.324 Weak criticalness
B 0.5 0.286 1 0 0.056 0.209 0.275 0.326 0.437 Rather criticalness
C 0 1 1 1 0.611 0.586 0.696 0.725 0.772 Strong criticalness
D 1 0.429 1 0.556 1 0.665 0.785 0.824 0.883 Strong criticalness
E 0 0.714 0.333 0.333 0.778 0.327 0.428 0.51 0.645 Rather criticalness
F 0.25 0 0.778 0.222 0.111 0.111 0.197 0.281 0.396 Weak criticalness
G 0.75 0.286 1 0.333 0 0.294 0.375 0.433 0.557 Rather criticalness

Weights 0.189 0.164 0.129 0.230 0.288

Table 5. Project example – Task failureness potential

Task
Failureness factors

Failureness potential
Linguistic

approximation Times Quality Costs
A Not at all fail. Rather fail. Usually fail. 0.367 0.467 0.533 0.633 Rather failureness
B Rather fail. Always fail. Always fail. 0.733 0.867 0.9 0.933 Extremely failureness
C Not at all fail. Rather fail. Usually not fail. 0.133 0.233 0.3 0.4 Weakly failureness
D Rather not fail. Rather fail. Rather not fail. 0.267 0.4 0.5 0.667 Rather failureness
E Rather not fail. Usually not fail. Usually not fail. 0.067 0.167 0.267 0.4 Weakly failureness
F Always fail. Usually not fail. Not at all fail. 0.3 0.367 0.4 0.467 Rather failureness
G Not at all fail. Always fail. Rather not fail. 0.367 0.433 0.467 0.567 Rather failureness

The tasks are now placed into the task threatness matrix (Figure 3). In the red area there is the

highly threatening task C requiring great attention. This task is shown as the critical task by MPM
method also. In the yellow area there are all other tasks of the project. These tasks have to be
controlled to ensure the successful completion of the project regardless of their criticality or non-
criticality. The tasks in green area should not significantly influence the project. In this project, there
is no task, so in this project all task needs more or less attention, control and care.

Figure 3. Project example – Task threatness matrix

76

5. Conclusion

The proposed task threatness matrix was presented to a number of project managers who
evaluated it as an interesting, usable and useful tool to support project management. This approach
is useful for tasks evaluation with respect to the project schedule, the project management triangle
and possibly for other parameters of project tasks failureness or criticalness which have an impact
on the project success. In the large projects, the failureness can be evaluated only for selected tasks
and remaining tasks can only be arranged according to the criticalness potential in the additional
row bellow the task threatness matrix. Important advantage of suggested threatness matrix is that it
allows fuzzy assessments of the impact of individual tasks on project completion.

6. Acknowledgements

The research is supported by the Operational Programme Prague – Growth Pole of the Czech
Republic - Implementation proof-of-concept activities CULS to promote technology transfer and
knowledge into practice, No: CZ.07.1.02/0.0/0.0/17_049/0000815 - KZ10.

References

APM - Association for Project Management, 2008, “Prioritising project risks”. Princess Risborough,
UK: Association for Project Management.

Aschman, A., 2018, “Why Capital Project Systems Succeed or Fail”, IPA,
https://www.ipaglobal.com/news/article/why-capital-project-systems-succeed-or-fail-2/.

Betz, J., 2019, “27+ Impressive Project Management Statistics in 2019”,
https://learn.g2.com/project-management-statistics.

Bowers, J., 1996, “Identifying Critical Activities in Stochastic Resource Constrained Networks”,
Omega - International Journal of Management Science, Vol. 24, pp. 37–46.

Brožová, H., Bartoška, J. and Šubrt, T., 2014, “Fuzzy Approach to Risk Appetite in Project
Management”, In Proceedings of the 32st International conference on Mathematical Methods
in Economics, pp. 61-66, Olomouc, Czech Republic.

Brožová, H., Bartoška, J., Šubrt, T. and Rydval, J., 2016, “Task Criticalness Potential: A Multiple
Criteria Approach to Project Management”, Kybernetika, Vol. 52, pp. 558-574.

Brožová, H., Šubrt, T. Rydval, J. and Pavlíčková, P., 2019, “Task Threatness Matrix in the Project
Management”, In Proceedings of the 32st International conference on Mathematical Methods
in Economics, pp. 234-239, České Budějovice, Czech Republic.

Brožová, H., Šubrt, T. Rydval, J. and Pavlíčková, P., 2019, “Fuzzy Threatness Matrices in Project
Management”, In Proceedings of the 15thInternational Symposium on Operational Research in
Slovenia, pp. 581-586. Bled, Slovenia.

Chanas, S., Zielinski, P., 2003, “On the hardness of evaluating criticality of activities in a planar
network with duration intervals”. Operation Research Letters, Vol. 31, pp. 53–59.

Chen, C. T. and Huang, S. F., 2007, “Applying fuzzy method for measuring criticality in project
network”, Information Sciences, Vol. 177, pp. 2448–2458.

Cruz, S., García, J. and Herrerías, R., 1999, “Stochastic models alternative to the classical PERT for
the treatment of the risk: mesokurtic and of constant variance”. Central European Journal of
Operations Research, Vol. 7, pp. 159–175.

Gong, D. and Rowings, J. E., 1995, “Calculation of safe float use in risk-analysis-oriented network
scheduling”, International Journal of Project Management, Vol. 13, pp. 187–194.

Koelmans, R.G., 2004, “Project success and performance evaluation”, In: International Platinum
Conference ‘Platinum Adding Value’, pp. 229-236.

de Oliveira Moraes, R., Barbin Laurindo, F.J., 2013, “Performance Evaluation of IT Projects - The
Shenhar and Dvir Model”, J. Technol. Manag. Innov. Vol. 8, Special Issue ALTEC, pp. 15-24.

Yakhchali, S. H., 2012, “A path enumeration approach for the analysis of critical activities in fuzzy
networks”, Information Sciences, Vol. 204, pp. 23–35.

Williams, T., 2017, “The Nature of Risk in Complex Projects”, Project Management Journal, Vol.
48, pp. 55–66.

Williams, T. M., 1992, “Criticality in stochastic networks”, Journal of Operational Research Society,
Vol. 43, pp. 353–357.

77

1

Local Search Algorithm to Solve a Scheduling Problem
in Healthcare Training Center?

Simon Caillard1,2, Laure Brisoux Devendeville1 and Corinne Lucet1

1 Laboratoire MIS (EA 4290), Université de Picardie Jules Verne
33 rue Saint-Leu, 80039 Amiens Cedex 1, France

{simon.caillard, laure.devendeville, corinne.lucet}@u-picardie.fr
2 Health Simulation Center SimUSanté R©

Amiens University Hospital, France
simon.caillard@chu-amiens.fr

Keywords: Scheduling, Local search, Healthcare training, Timetabling.

1 Introduction

SimUSanté, located in Amiens, France is one of the biggest healthcare training center in
Europe. All kinds of health actors: professionals, patients, students use this center and can
meet and train together by simulating medical acts in various fields of healthcare but also
attending regular courses, for a total of more than 500 different formations. The problem
faced by SimUSanté is a scheduling problem that consists in planning a set of training
sessions respecting a set of time and resource constraints.

Scheduling problems are NP-Complete (Cooper, T.B. and Kingston, J.H. 1995). SimU-
Santé’s problem belongs to this family of problems and specifically to the Curriculum-Based
Courses Timetabling Problem (CB-CTT)(Di Gaspero L. et. al. 2007) which consists in find-
ing the best weekly assignment for university lectures, available rooms and time periods for
a set of classes under a set of hard and soft constraints. However, some features of SimU-
Santé’s problem differ from CB-CTT ones, such as resources types, skills and precedence
constraints required for activities, lunch break management, and objective function. An-
other way would be to consider CB-CTT as a variant of the Resource-Constrained Project
Scheduling Problem (RCPSP)(Brucker, P. AND Knust, S. 2001). In this case, we need
to add the followings constraints : some activities cannot be planned in parallel and each
resource can have more than one type.

We present in this paper a local search algorithm SimuLS, based on dedicated neighbor-
hood operators to solve SimUSanté’s problem. We generated adequate instances3 inspired
by those used in CB-CTT. We then compared the results obtained by SimuLS with those
worked out by the mathematical model implemented in CPLEX and a dedicated greedy
algorithm SimuG (Caillard S. et. al. 2020).

The paper is organized as follows: in section 2, we briefly formalize the scheduling
problem encountered by SimUSanté and describe how a solution is evaluated. In section
3 we present our local search algorithm SimuLS and give the different operators used in
order to explore the search space. Section 4 provides computational results. Finally, section
5 concludes this paper and presents some perspectives.

2 Formalization and evaluation

The problem encountered by SimUSanté is to schedule a set of training sessions S
over a determined period T . A training session s ∈ S is composed by a set of activities As.
? This project is supported by region Hauts-de-France and Health Simulation Center SimUSanté
3 SimUSanté instances available on: https://mis.u-picardie.fr/Benchmarks-GOC

78

2

A =
⋃

s∈S UAs represents the set of all activities. Activity a ∈ A has a specific duration and
requires different types and quantities of resources. Activities can be linked by precedence
constraints. In addition, there is a set of resources R which is composed by employees,
rooms and materials. Each resource r ∈ R is associated to one or more types of resources.
For example a room can have both meeting room and classroom types.

Solution Sol is a set of triplets (a, ta, Ra) where a ∈ A is an activity, ta ∈ T the starting
time slot of a, and Ra ⊆ R the set of avalaible resources assigned to a, from ta and for its
total duration durationa. The set of scheduled activities is denoted SA = {a|(a, ta, Ra) ∈
Sol}, with (SA ⊆ A). The set of unscheduled activities is denoted UA = A \ SA. For
session s ∈ S, Sols ⊆ Sol, represents the set of triplets of the solution related to s, with
Sols = {(a, ta, Ra) ∈ Sol|a ∈ As}. SAs = SA ∩ As, is the set of scheduled activities of s,
and UAs = As \ SAs, the set of unscheduled activities of s.

For a given session s ∈ S, if at least one activity has been scheduled (SAs 6= ∅), start
date tstarts = min{ta, a ∈ SAs}, and end date tends

= max{ta+durationa, a ∈ SAs} allow
to compute the corresponding makespan mks = tends − tstarts of session s. If no activity
has been scheduled (SA = ∅), then mks = 0.

The evaluation of Sol, denoted Makespan(Sol), is the sum of the makespans of all
sessions, plus the amount of unplanned activities, multiplied by penalty α (see equation
1). The objective is to find a valid solution with a minimum Makespan.

Makespan(Sol) =
∑

s∈S

mks + |UA| × α (1)

3 Local search algorithm: SimuLS

SimuLS is a local search algorithm that explores the solution space by applying neigh-
borhood operators, starting from a solution provided by a greedy algorithm, SimuG
(Caillard S. et. al. 2020). For a maximum preset limitCounter iterations, SimuLS re-
lies on saturator operator to plan unscheduled activities and when it is not possible, it
uses several operators: intra, extra and extra+. Each of these operators checks possible
movements and applies one. If the best solution ever met is not improved after a preset
noImprov iterations, a part of the solution is destroyed by the destructor operator, in
order to escape from a local minimum.

A movement is caracterized by a couple < (a, ta, Ra) ; Υ >. (a, ta, Ra) represents a
triplet that will be added to the current solution, with a ∈ UA, an unscheduled activity,
ta ∈ T , a time slot from which a could be started, and Ra, the set of resources assigned to
a , that exactly matches its resources requirement. In order to plan a, we need to remove a
set Υ of triplets from the solution. Υ = {(b1, tb1 , Rb1), . . . , (bn, tbn , Rbn)}, n ∈ {1, . . . |Sol|}.
The set of resources Ra can be composed by resources directly available over T , plus thoses
released by canceling all activities of Υ . A movement respects all operational rules and
resources constraints.

The choice of a movement by an operator relies on criteria such as makespan mks of
impacted sessions, global makespanMakespan, the number of canceled activities, etc. The
different operators present in SimuLS are:
saturators: This operator tends to place an unscheduled activity a ∈ UAs without chang-

ing the current solution. It builds a set of movements M :{< (a, t1a, Ra); ∅ >, . . . , <
(a, tka, Ra); ∅ >} so that for each movement < (a, tia, Ra) ; ∅ >∈ M , with i ∈ [1; k],
[tia; t

i
a + durationa[∩[tb; tb + durationb[= ∅ ∀(b, tb, Rb) ∈ Sols.

intras: This operator removes one or more scheduled activities from session s in or-
der to plan an unscheduled activity a ∈ UAs. It builds a set of movements M :{<
(a, t1a, Ra);Υ >, . . . , < (a, tka, Ra);Υ >} so that for each movement < (a, tia, Ra);Υ > ∈
M , with i ∈ [1; k] and Υ ⊆ Sols, the following properties are verified:

79

3

– [tia; t
i
a + durationa[∩[tb; tb + durationb[6= ∅, ∀(b, tb, Rb) ∈ Υ

– [tia; t
i
a + durationa[∩[tb; tb + durationb[= ∅, ∀(b, tb, Rb) ∈ {Sols \ Υ}

extras: This operator removes one or more scheduled activities from a randomly selected
session s′ 6= s, in order to plan an unscheduled activity a ∈ UAs. It builds a set of
movements M :{< (a, t1a, Ra);Υ >, . . . , < (a, tka, Ra);Υ >} so that for each movement
< (a, tia, Ra);Υ >∈ M , with i ∈ [1; k] and Υ ⊆ Sols′ , the following properties are
verified:
– [tia; t

i
a + durationa[∩[tb; tb + durationb[6= ∅, ∀(b, tb, Rb) ∈ Υ

– [tia; t
i
a + durationa[∩[tb; tb + durationb[= ∅, ∀(b, tb, Rb) ∈ Sols

extra+s : This operator is an extension of extras. The canceled activities can belong to a set
of sessions {s′1, . . . , s′k} ⊆ S. For activity a ∈ UAs, it builds a set of movements M :{<
(a, t1a, Ra);Υ >, . . . , < (a, tka, Ra);Υ >} so that for each movement < (a, tia, Ra);Υ >∈
M , with i ∈ [1; k] and Υ ⊆ Sol, the properties below are verified :
– [tia; t

i
a + durationa[∩[tb; tb + durationb[6= ∅, ∀(b, tb, Rb) ∈ Υ

– [tia; t
i
a + durationa[∩[tb; tb + durationb[= ∅, ∀(b, tb, Rb) ∈ {Sols \ Υ}

destructor: This operator destroys a part of current solution Sol. It builds and applies
a set of movements M :{< ∅ ; {(a1, ta1 , Ra1} >, . . . , < ∅ ; {(ak, tak

, Rak
} > so that

∀i ∈ [1; k], (ai, tai , Rai) ∈ Sol represents the triplet that will be removed from the Sol.

Algorithm 1 : SimuLS
Input: Sol (the current solution), S (set of sessions), ∀s ∈ S,UAs (set of unscheduled activities
for session s), UA =

⋃
s∈S UAs (the set of unscheduled activities), noImprov, limitCounter

noBest← 0
counter ← 0
Sol← saturator(UA)
bestSol← Sol
while counter < limitCounter do

if (noBest = noImprov) then
Sol← destructor(Sol)
noBest← 0

end if
if UA 6= ∅ then

a← random(UA)
s← (s/a ∈ UAs)
Sol← selectOperator({intra, extra, extra+}, s, a)

end if
Sol← saturator(UA)
if Makespan(Sol) < Makespan(bestSol) then

noBest← 0
bestSol← Sol

else
noBest← noBest+ 1

end if
counter ← counter + 1

end while

In order to choose which operator to apply between intra, extra, extra+, SimuLS
uses the SelectOperator function that uses two specific counters csextra and caextra+ . The
first one, csextra, counts the number of times where intra have been consecutively applied
to session s. The second one counts how many times activity a remained consecutively
unscheduled. By default, operator intra is applied, except whenever one of these counters
reaches a preset limit, selectOperator then activates the operator that corresponds to the
counter. In case of equality between the two counters, extra+ is always used first.

80

4

4 Experimental study

A mathematical model has been implemented under CPLEX. It provides optimal re-
sults for small instances with a running time of two hours or more. Table 4 presents the
comparison between CPLEX, SimuG and SimuLS on SimUSanté instances. Penalty α is
set to |T |. SimuLS was implemented in Java, on an Intel i7 7500U processor. The time
used to find solutions is always less than 1 second for the greedy algorithm SimuG and less
than 1 minute for SimuLS. The numbers in parentheses after some if the results, represent
the amount of unscheduled activities.

Table 1. Results for Brazil1 and Italy1 instances
Instance Brazil1 Instance Italy1

Instance cplex SimuG SimuLS Instance cplex SimuG SimuLS
D0T0C0A0 81 86 83 D0T0C0A0 101 105 102
D0T0C1A0 81 87 82 D0T0C1A0 101 104 101
D0T1C0A1 94 232 (4) 110 D0T1C0A1 107 150 (1) 116
D0T1C1A1 94 232 (4) 108 D0T1C1A1 107 187 (2) 115
D1T0C0A0 81 89 85 D1T0C0A0 101 104 104
D1T0C1A0 81 94 90 D1T0C1A0 101 104 104
D1T1C0A1 96 161 (2) 107 D1T1C0A1 107 150 (2) 114
D1T1C1A1 96 166 (2) 110 D1T1C1A1 107 180 (3) 115

Columns cplex, SimUG and SimULS represent respectively the optimums, the results
of greedy algorithm and those of the local search algorithm. By the nature of a greedy
algorithm, SimUG cannot scheduled all activities (see instances D0T1C0A1, D0T1C1A1,
D1T1C0A1, D1T1C1A1). In this case, a penalty α is applied, and the corresponding score
is rising up to 246% from optimality. In contrast, Cplex and SimULG always schedule all
activities. SimULG reaches optimality for Italy−D0T0C1A0 instance, and always improves
the results obtained by the greedy algorithm. The gap with optimality is less than 18%.

5 Conclusion

In this paper we have briefly introduced SimUSanté’s problem and proposed a local
search algorithm SimuLS to solve it. SimuLS is based on five neighborhood operators
dedicated to SimUSanté’s problem. Four of them allow to schedule activities but only one
without modify solution. The last operator destroys the solution in order to escape from
a local minimum. SimuLS is experimented on instances from CB-CTT, adapted to the
SimUSanté’s problem. The results obtained are compared to the optimal solutions provided
by CPLEX. Contrary to SimuG, all activities are scheduled by SimuLS. It is a first step
towards building an efficient metaheuristic to solve SimUSanté’s problem.

References

Brucker, P. AND Knust, S., 2001, “Resource-Constrained Project Scheduling and Timetabling",
Springer, Burke E., Erben W. (eds) Practice and Theory of Automated Timetabling III.

Caillard S., Brisoux-Devendeville L., and Lucet C., 2020, “A Planning Problem with Resource
Constraints in Health Simulation Center", Springer, Le Thi H., Le H., Pham Dinh T. (eds)
Optimization of Complex Systems: Theory, Models, Algorithms and Applications.

Cooper, T.B. and Kingston, J.H., 1995, “The complexity of timetable construction problems",
Springer, Burke E., Ross P. (eds) Practice and Theory of Automated Timetabling.

Di Gaspero, L. and McCollum, B. and Schaerf, A., 2007, “Curriculum-based CTT - Technical
Report", The Second Int. Timetabling Competition

Schaerf A., 1999, “A Survey of Automated Timetabling", Artificial Intelligence Review, Vol. 13,
pp. 87-127.

81

1

Computing lower bounds for the cumulative scheduling
problem

Jacques Carlier1, Antoine Jouglet1, and Abderrahim Sahli2

1 Heudiasyc UMR CNRS 7253, Sorbonne Universités, Université de Technologie de Compiègne,
Compiègne, France

jacques.carlier@hds.utc.fr, antoine.jouglet@hds.utc.fr
2 LIGM UMR CNRS 8049, Université Paris-Est-Marne-La-Vallée, Paris, France

abderrahim.sahli@esiee.fr

Keywords: Cumulative Scheduling Problem, Energetic Reasoning, Lower Bounds.

1 Introduction

In this paper, we consider the Cumulative Scheduling Problem (Carlier 1987). An in-
stance of this problem is composed of a set of n tasks J = {1, . . . , n}. These tasks have
to be scheduled without preemption by a resource of a given capacity C. Each task i ∈ J
cannot be scheduled before its release date ri, has a duration pi, is characterized by a tail
qi and needs ci units of the resource to be processed. A schedule consists in assigning a
starting time si ≥ ri to each task i in such a way that the capacity of the resource is never
exceeded : ∀t,

∑

i∈{j∈J|sj≤t<sj+pj}
ci ≤ C.

In this paper, we propose some algorithms to compute lower bounds for the optimisation
version of the cumulative scheduling problem (CuSP Optimisation). In CuSP Optimisa-
tion we have to find a schedule which minimizes the makespan Cmax = maxi∈J {si + pi + qi}.
Let C∗

max be the optimal value of a given instance of CuSP Optimisation. The special
case of CuSP Optimisation where ∀i ∈ J, ci = 1 corresponds to the m-parallel machine
scheduling problem Pm|ri, qi|Cmax. Several lower bounds of C∗

max have been described for
Pm|ri, qi|Cmax (Horn 1974, Labetoulle et. al. 1984, Carlier and Pinson 1998, Haouari 2003).
In (Carlier, Pinson, Sahli and Jouglet submitted), we provided caracterizations of some
lower bounds for CuSP Optimisation to analyse their structural differences. It leaded to
the elaboration of new algorithms for Energetic Reasoning (ER) (Baptiste et. al. 2001) and
we discussed the transformation of the destructive energetic bound (the ER based checker
for CuSP Decision(Cmax)) into constructive energetic lower bounds of C∗

max. In the re-
mainder let LB0(J) = maxi∈J {ri + pi + qi} be a trivial lower bound which can be easily
computed in O(n) time. The first constructive energetic lower bound, named LBER

2 (J),
relies on particular tasks for which there is at least an interval of the time horizon in
which they are necessarily scheduled because of their release dates and tails. Such tasks
are called crossing tasks. The concept of crossing tasks is related to core times. The second
constructive energetic lower bound, named LBER

3 (J) relies on ER. Both LBER
2 (J) and

LBER
3 (J) were theoretically characterized in (Carlier J., Pinson E., Sahli A. and Jouglet

A. submitted).
Section 2 is devoted to the introduction of the energetic approach initially proposed for

the decision version of CuSP and its reformulation in the context of CuSP Optimisation.
Section 3 explains the notion of crossing tasks which is the main concept used in LBER

2 (J)
and which has also an important role in LBER

3 (J). We then describe an algorithm in
O(n log n) time for LBER

2 (J). In Section 4, we describe an algorithm in O(n2) time and an
algorithm in O(α(n)n log n log(maxi∈J pi)) for LBER

3 (J), where α(n) is the inverse function
of Ackermann.

82

2

2 The energetic reasoning in CuSP Optimisation

A lot of works of the literature considers the decision version of the CuSP in which
all tasks have to be completed before a given value of Cmax. Being given a value Cmax,
we denote this problem by CuSP Decision(Cmax). In CuSP Decision(Cmax), tails qi

are replaced by deadlines di(Cmax) = Cmax − qi. Therefore, each task i has to processed
in interval [ri, di(Cmax)]. It can lead to unfeasible instances. The Energetic Reasoning
(ER) (Erschler and Lopez 1990) (Erschler 1991) (Baptiste et. al. 1999) is a very well
known technique to solve CuSP Decision(Cmax) allowing feasibility tests and time-bound
adjustments. Given a time interval [α, δ], ER is based on the computation of the minimal
part, named energy, of the tasks that must be processed in any feasible schedule between
times α and δ. The minimal energy required by task i over [α, δ] is obtained from positions
of i that overlap as less as possible with the interval. The difference between the length of
a given interval multiplied by C and the sum of the tasks energies is called the slack of the
interval. If we can find an interval with a negative slack, then the instance is unfeasible.
While the slack has to be non-negative on any interval, it is sufficient to test at most O(n2)
particular intervals (Baptiste et. al. 1999). It permitted to exhibit a checker which runs
in O(n2) time (Baptiste et. al. 2001). Derrien and Petit (Derrien and Petit 2014) have
later reduced the number of intervals which has to be considered. Ouellet and Quimper
(Ouellet and Quimper 2018) described an O(n log2 n) algorithm. Recently, we provided a
O(α(n)n log n) algorithm for the checker (Carlier, Sahli, Jouglet and Pinson submitted),
where α(n) is the inverse function of Ackermann. We also provided an O(n2) algorithm for
time-bound adjustments (Carlier et. al. 2020).

In the context of CuSP Optimisation, we use ER in algorithms in which the value of
Cmax dynamically changes during the execution. Thus, the deadline di(Cmax) = Cmax − qi

of task i is also modified. Actually, it is simpler to manipulate directly tails qi which
are constant. Therefore, we propose a reformulation of ER with tails which manipulates
directly Cmax. Instead of considering intervals, we now equivalently manipulate triplets
(α, γ, Cmax) which corresponds to intervals [α, δ = Cmax − γ] in CuSP Decision(Cmax).

ri α ri + pi di − pi δ di = Cmax − qi Cmax

left shift right shift

p+
i (α) p−

i (γ)
γ

qi

Cmax − γ − α

Fig. 1. Intersection energy.
For given values of Cmax, α ∈ {0, . . . , Cmax} and γ ∈ {0, . . . , Cmax − α}, we define:

– δ = Cmax − γ
– ∀i ∈ J p+

i (α) = min(max(0, ri + pi − α), pi), p−
i (γ) = min(max(0, qi + pi − γ), pi) and

Wi(Cmax, α, γ) = ci min(p+
i (α), p−

i (γ), Cmax − α − γ) is the energy of task i.
– The total required energy by tasks is W (Cmax, α, γ) =

∑
i Wi(Cmax, α, γ). The slack,

which is the difference between the maximum energy available over [α, Cmax − γ] and
the total required energy by tasks, is S(Cmax, α, γ) = C(Cmax−γ−α)−W (Cmax, α, γ).

There exists a schedule with makespan Cmax only if ∀(α, γ) with α ∈ {0, . . . , Cmax −1}
and γ ∈ {0, . . . , Cmax − α − 1}, we have S(Cmax, α, γ) ≥ 0. In fact, by adapting results of

83

3

(Baptiste et. al. 1999, Derrien and Petit 2014), there are only O(n2) couples (α, γ) values
to consider for a given value of Cmax.

3 LBER
2 (J): a constructive lower bound based on the notion of crossing-tasks

Given a makespan Cmax, a task i is called a Cmax-crossing-task if and only if there exists
an interval of time in which task i is necessarily scheduled, i.e. if Cmax −qi −pi < ri +pi. If
a task i is necessarily scheduled during interval [t, t+1), i is called a (Cmax, t)-crossing-task
(t ∈ {Cmax − qi − pi, . . . , ri + pi − 1}).

We provide an algorithm to compute the lower bound LBER
2 (J) which corresponds to

the smallest value of Cmax ≥ LB0(J) for which for any time t ∈ {0, . . . , Cmax}, the sum of
capacities required by (Cmax, t)-crossing tasks in J is lower than or equal to C. Let χ(Cmax)
be the set of Cmax-crossing-tasks and let χ(Cmax, t) be the set of (Cmax, t)-crossing tasks.
Thus, note that LBER

2 (J) corresponds to the smallest value Cmax ≥ maxi∈J (ri + pi + qi)
for which for any time t ∈ {0, . . . , Cmax} we have

∑
i∈χ(Cmax,t) ci ≤ C.

Note that a Cmax-crossing-task i becomes crossing at time Cmax − qi − pi while it is
not crossing anymore from time ri + pi. Let T be the list of dates in {ri + pi|i ∈ J}. Our
algorithm iterates over the different t ∈ T in the non-increasing order. At each iteration of
the algorithm, we maintain an AVL-tree CT in such a way that it contains all (Cmax, t)-
crossing-task. We also maintain a variable CCT in such a way it corresponds to the sum
of the capacities of the crossing-tasks over [t − 1, t). At each iteration, we will verify that
CCT (Cmax, t − 1) ≤ C. It allows to ensure that at the end of the algorithm Cmax has been
adjusted to the smallest value Cmax ≥ LB0(J) for which for any time t ∈ {0, . . . Cmax} we
have CCT (Cmax, t) ≤ C. To maintain these properties, we use a forward linked list allowing
the tasks i which are not crossing at time t − 1 ≥ Cmax − qi − pi to be known : these tasks
have to be removed from CT . We also use another forward list allows the tasks i which
are crossing at time t − 1 ≥ ri + pi to be known and which have therefore to be inserted in
CT . When CCT > C, we adjust Cmax in such a way that CCT ≤ C. This algorithm runs in
O(n log n) time. It is analogous to the sweep algorithm of (Beldiceanu and Carlsson 2002)
verifying the cumulative constraint. It uses additional data structures for adjusting Cmax.

4 LBER
3 : a constructive lower bound based on the energies

We also provide two algorithms to compute LBER
3 (J) which corresponds to the smallest

value of Cmax ≥ LBER
2 (J) for which for any ∀(α, γ) with α ∈ {0, . . . , Cmax − 1} and

γ ∈ {0, . . . , Cmax − α − 1}, we have S(Cmax, α, γ) ≥ 0.
Our first algorithm uses twice an adjustment procedure of Cmax. Indeed, the ri and qi

play a symmetrical role. Therefore, for each given α ∈ {ri, ri + pi, Cmax − qi − pi|i ∈ J},
we check the couples (α, γ) with γ ∈ {Cmax − ri − pi, qi + pi, qi, α+ qi − ri|i ∈ J} such that
γ < Cmax−α. Next, we build the instance in which the ri and the qi values are interchanged
and we apply the same procedure. It ensures that all relevant couples (α, γ) identified by
(Baptiste et. al. 1999, Derrien and Petit 2014) are considered during the algorithm. The
adjustment procedure iteratively considers the different pertinent values of α in an outer
loop while. For each value of α it then considers the pertinent values of γ in decreasing
order, allowing the right bound of the associated interval to increase iteratively while we
maintain the value of the required energies of the task in this interval. Each time it is
detected that the slack is negative on the current interval, the value of Cmax is adjusted
and our data structures are updated to continue the consideration of the other intervals.
The whole algorithm runs in O(n2) time and uses only simple data structures (arrays and
forward linked lists).

84

4

Our second algorithm relies on the direct use of our checker described in (Carlier J.,
Sahli A., Jouglet A. and Pinson E. submitted) to do a dichotomic search on LBER

3 (J).
The complexity is theoretically attractive : O(α(n)n log n log(maxi∈J pi)), where α(n) is
the inverse function of Ackermann.

A drawback is that we don’t compute the energetic balance of each classical interval
which should be useful for computing adjustments. Moreover, the checker uses very complex
data structures which makes it very hard to implement.

Acknowledgements

These works are partially financed by the project 2018-0062H of the Gaspard Monge
Program for Optimization, operations research, and their interactions with data science.

References

Baptiste P., Le Pape C. and Nuijten W., 1999, “Satisfiability tests and time-bound adjustments
for cumulative scheduling problems”, Annals of Operations Research, 92, pp. 305-333.

Baptiste P., Le Pape C., Nuijten W., 2001, “Constraint-based scheduling : applying constraint
programming to scheduling problems”, International Series in Operations Research and Man-
agement Science, vol 39, Kluwer.

Beldiceanu N. and Carlsson M., 2002, “A new multi-resource cumulative constraint with negative
heights”, CP, 2470, pp. 63-79.

Carlier J., 1987, “Scheduling jobs withe release dates and tails on identical machines to minimize
the makespan”, European Journal of Operational Research, 29, pp. 298-306.

Carlier J., Pinson E., 1998, “Jackson’s pseudo preemptive schedule for the Pm/ri, pi/Cmax schedul-
ing problem”, Annals of Operations Research, 83(0), pp. 41-58 (1998)

Carlier J., Pinson E., Sahli A. and Jouglet A., to appear, “An O(n2) algorithm for time-bound
adjustments for the cumulative scheduling problem” , European Journal of Operational Re-
search.

Carlier J., Pinson E., Sahli A. and Jouglet A., submitted, “Comparison of three classical lower
bounds for the cumulative scheduling problem”.

Carlier J., Sahli A., Jouglet A. and Pinson E., submitted, “A nearly o(n log n) checker algorithm
for the cumulative scheduling problem”.

Derrien A., Petit T., 2014, “A new characterization of relevant intervals for energetic reasoning”,
In International conference on principles and practice of constraint programming, pp. 289-297.

Erschler J., Lopez P., 1990, “Energy-based approach for task scheduling under time and resources
constraints”, In Proceedings of the 2nd international workshop on project management and
scheduling, pp. 115-121.

Erschler J., Lopez P., Thuriot, 1991, “Raisonnement temporel sous contraintes de ressource et
problèmes d’ordonnancement”, Revue d’Intelligence Artificielle, 5(3), pp. 7-32.

Haouari M., Gharbi A., 2003, “An improved max-flow-based lower bound for minimizing maximum
lateness on identical parallel machines”, Operations Research Letters, 31(1), pp. 49-52.

Horn W., 1974, “Some simple scheduling algorithms”, Naval Research Logistics Quaterly, 21, pp.
177-185.

Labetoulle J., Lawler E., Lenstra J., Rinnooy Kan ., 1984, “Preemptive scheduling of uniform
machines subject to release dates”, Progress in combinatorial optimization (Waterloo Ont,
1982), Academic Press, pp. 245-261.

Ouellet .Y, Quimper C.G., 2018, “A O(n log2 n) checker and O(n2 log n) filtering algorithm for the
energetic reasoning”, In, International Conference on the Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research, pp. 477-494.

85

1

Ultimate Instance Reduction for the Routing Open Shop

Ilya Chernykh1,2,3

1 Sobolev Institute of Mathematics, Russia
idchern@math.nsc.ru

2 Novosibirsk State University, Russia
3 Novosibirsk State Technical University, Russia

Keywords: Routing open shop, instance reduction, lower bound, optima localization.

1 Introduction

In the routing open shop problem a fleet of mobile machines has to process a set of
immovable jobs located at the nodes of some transportation network, described by an
undirected edge-weighted graph G = 〈V ;E〉, where each node contains at least one job,
and weight dist(u, v) represents travel times between nodes u and v. Each machine Mi has
to perform an operation Oji on each job Jj in open shop environment, the processing times
pji are given. All the machines start from the same node v0 referred to as the depot and
have to return to the depot after processing all the job. No restriction on the machines
traveling are in order: any number of machines can travel over the same edge of the network
simultaneously, machines are allowed to visit each node multiple times. However, machine
has to reach a node prior to be able to process jobs located there. The goal is to minimize
the makespan Rmax, i.e. the completion time of the last machine’s activity (either traveling
back to the depot or performing an operation on a job located at the depot). The problem
is clearly a generalization of the metric traveling salesman problem and therefore is NP-
hard in strong sense even for single machine. On the other hand, it generalizes the classical
open shop problem, which is well-known to be NP-hard for the case of three and more
machines, and is polynomially solvable for the two-machine case (Gonzalez T.F. and Sahni
S. 1976). Surprisingly, the routing open shop is NP-hard even in the two-machine case on
the transportation network consisting of at least two nodes (including the depot) (Averbakh
I. et. al. 2006). We use notation ROm||Rmax for the routing open shop with m machines.
Optional notation G = X in the second field is used in case we want to specify the structure
of the transportation network, with X being the name of the structure (e.g. Kp or tree). A
set of instances of the ROm|G = X|Rmax problem is denoted by IXm (or Im for a general
case of unspecified X).

The routing open shop problem was introduced by Averbakh I. et. al. (2005). In our
research we utilize the standard lower bound on the optimal makespan from the same paper:

R̄ = max

{
`max + T ∗,max

v∈V
(dmax(v) + 2dist(v0, v))

}
. (1)

Here `max = max
i

n∑
j=1

pji is the maximum machine load, dmax(v) = max
j∈J (v)

(
m∑
i=1

pji

)
is

the maximum length of job from node v, with J (v) being the set of jobs located at v, while
T ∗ is the TSP optimum on G. The problem under research is so-called optima localization
and can be described as follows: how much (by what factor) can optimal makespan differ
from the standard lower bound R̄ for a given class of instances K? More precisely, for some
class K we want to find

α (K) = sup
I∈K

α(I) = sup
I∈K

R∗max(I)

R̄(I)
.

86

2

Here R∗max(I) and R̄(I) denote optimal makespan and the value of R̄ for I, respectively,
and α(I) is referred to as the abnormality of instance I.

It is known that for the classical two-machine open shop (which can be denoted as
RO2|G = K1|Rmax for consistency) optimal makespan always coincides with the standard
lower bound, therefore α

(
IK1
2

)
= 1 (Gonzalez T.F. and Sahni S. 1976). It is not the

case for the three-machine problem, where optimal makespan can reach as much as 4
3 R̄

(Sevastyanov S.V. and Tchernykh I.D. 1998). The value of α
(
IK1
4

)
is still an open question,

however we have no evidence that it is greater than 4
3 . Needless to say, that similar research

for the routing open shop is probably harder even for m = 2, because the value α
(
IKp
m

)

might depend both on m and p. However, it was recently established that α
(
IK2
3

)
= 4

3

(Chernykh I. and Krivonogova O. 2020).
Current research for two machines up to the moment is as follows:

1. α
(
IK2
2

)
= 6

5 (Averbakh I. et. al. 2005);

2. α
(
IK3
2

)
= 6

5 (Chernykh I. and Lgotina E. 2016);

3. α (Itree2) = 6
5 (Krivonogova O. and Chernykh I. 2019).

This paper addresses a natural question: how to stop this infinite series of incremental
results and still reach an ultimate goal of discovering the general value α (I2).

2 Instance transformations

The research of some extremal (with respect to the standard lower bound) properties of
the set of instances (such as optima localization) is often based on some instance transfor-
mation procedures. Suppose we have some transformation which obtains instance Ĩ from I.
Such a procedure is called reversible if any feasible schedule for Ĩ can be treated as a feasi-
ble schedule for I. Reversibility means that R∗max(Ĩ) > R∗max(I). The transformation I → Ĩ
is referred to as valid if it preserves the standard lower bound: R̄(Ĩ) = R̄(I). Obviously
for any valid and reversible transformation I → Ĩ we have α(Ĩ) > α(I). That observation
serves as a foundation for the following approach to investigate the abnormality α(I) for
some set of instances:

1. Describe a valid reversible transformation on I which simplifies the instance (i.e. re-
duces number of jobs to some constant, or simplifies the structure of the transportation
network).

2. Describe the image Ĩ of I under that transformation. Find α(Ĩ).

There is a well-known transformation which reduces the number of jobs, referred to as job
aggregation or job grouping. The idea is to combine a set of jobs into a single one adding
up the processing times independently for each machine. Such a procedure was used, e.g.,
in (Sevastyanov S.V. and Tchernykh I.D. 1998) for the classic open shop problem, and in
(Chernykh I. and Lgotina E. 2016, Krivonogova O. and Chernykh I. 2019) for the two-
machine routing open shop. While the procedure is clearly reversible, its validity has to be
maintained explicitly. For example, it is possible to perform valid job aggregation for any
instance of Om||Cmax so that the resulting instance would contain at most 2m − 1 jobs
(Sevastyanov S.V. and Tchernykh I.D. 1998). As for RO2||Rmax, one can aggregate jobs
in such a valid manner that every node (except for at most one) has a single job, and the

87

3

“exceptional” one (if any) contains at most 3 jobs (Chernykh I. and Lgotina E. 2016). Such
an exceptional node v is referred to as overloaded :

∆(v) =
∑

j∈J (v)

∑

i

pji > R̄− 2dist(v0, v).

However, it would be of the most interest to describe some valid reversible transforma-
tion to simplify the structure of G. An example of such a reduction is so-called terminal
edge contraction, which can be described as follows. Suppose G contains a terminal node
v 6= v0 with a single job Jj in J (v). Let u be the node adjacent to v, and τ = dist(u, v).
We translate the job Jj to the node u, increase its operations processing times by 2τ ,
and eliminate the obsolete node v. Such a transformation is reversible, as one can treat
the processing of a new operation Oji as a concatenation of traveling of Mi from u to v,
processing of the initial operation and traveling back to u. It is proved in (Chernykh I.
and Lgotina E. 2019) that for any instance I ∈ I2 one can perform a valid transformation
I → Ĩ such that the transportation network in Ĩ contains at most two terminal nodes. This
helps to efficiently reduce any tree to a chain. On the other hand a graph might have a
complex structure even without terminal edges. Below we describe a new approach to the
instance reduction which allows to significantly simplify the structure of a transportation
network preserving the standard lower bound R̄.

Consider an instance I ∈ I2. Let ∆ =
∑
i,j

pji be the total load if I. Note that (1) implies

∆ 6 2`max 6 2(R̄− T ∗). (2)

Let cycle σ be an optimal solution of the underlying TSP. Any edge e /∈ σ is referred to
as chord. A chord e is referred to as critical if removing it from G increases the standard
lower bound R̄.

Lemma 1. Any instance I ∈ I2 contains at most one critical chord, which is incident to
the depot v0.

Proof. Note that the definition (1) does not depend on any distance between two non-
depot nodes, therefore a chord may be critical only if it is incident to v0. Suppose a chord
[v0, v] is critical and τ is the new distance between v0 and v after removing e from G. Then
R̄ < 2τ + dmax(v) 6 T ∗+ dmax(v). Assume we have another critical chord [v0, u], therefore
R̄ < T ∗ + dmax(u). Combining those two inequalities we obtain 2R̄ < dmax(u) + dmax(v) +
2T ∗ 6 ∆+ 2T ∗. Lemma is proved by contradiction with (2). ut
Lemma 2. Let I ∈ I2, node v is overloaded and chord [v0, u] is critical. Then u = v.

Proof. We have ∆(v) > R̄ − 2dist(v0, v) > R̄ − T ∗ and dmax(u) > R̄ − T ∗. Assume u 6= v,
then ∆ > ∆(v) + dmax(u) > 2(R̄− T ∗). Lemma is proved by contradiction with (2). ut
Theorem 1. Let I ∈ I2 such that the depot v0 is overloaded. Then α(I) = 1.

Proof. Note that ∆(v0) > R̄. It follows from Lemma 2 that I contains no critical chords,
therefore eliminating all the chords is a valid (and reversible) transformation of I. Now
let us replace all the jobs except the ones in the depot with a new single job J ′ with
operations processing times p′i = T ∗+

∑
Jj /∈J (v0)

pji, and locate J ′ at v0. Obsolete nodes (all

except v0) can now be removed from G, therefore G is transformed into a single-node graph
and instance is reduced to the classic O2||Cmax problem, for which we know that optimal
makespan coincides with the standard lower bound. Such a transformation is reversible, as
soon as we can treat the processing of operations of job J ′ as traveling along the optimal
cycle and processing the jobs on the way. It is therefore sufficient to prove the validity of
the transformation:

∑
i p
′
i = 2T ∗ +∆−∆(v0) 6 2T ∗ + 2(R̄− T ∗)−∆(v0) < R̄. ut

88

4

Now we describe a chain contraction transformation. Suppose G contains a chain C =
(v − v1 − v2 − . . . − vk − u), all the nodes v1, . . . , vk are of degree 2, and none of them is
the depot. Let τ be the length of chain (the distance between v and u along C) and J (C)
is the set of jobs from nodes v1, . . . , vk. We now replace the subchain v1 − . . .− vk with a
new special node vC containing single job JC with processing times pCi = τ +

∑
Jj∈J (C)

pji,

and set weights of edges [v, vC] and [vC , u] to zero.
Such a transformation is not reversible in general. To make it reversible we need to

apply certain restriction on schedules for the transformed instance:

1. If machine arrives at JC from one end (say, from v), the machine is considered to be
at another end (say, u) after the completion of operation of job JC .

2. Any machine can bypass the node vC , but this takes τ time units.

We say that the chain contraction transformation is conditionally reversible, meaning that
we obtain a special node which has to be treated as described above.

The main result of this paper is the following

Theorem 2. For any instance I ∈ Im there exists a combination of valid chord elimina-
tions and chain contractions I → Ĩ such that Ĩ contains at most 2m nodes from which at
most m are special.

Moreover, the structure of the resulting instance Ĩ is not arbitrary. For instance, for
m = 2 the most general structure we need to investigate is the cycle (v0−v1−v2−v3−v0)
with additional chord [v0, v2] and v1, v3 being special nodes. Our working conjecture is that
for any instance I of such a special structure α(I) = 6

5 , and therefore α(I2) = 6
5 . Theorem

2 can still be useful for a general ROm||Rmax problem, although the research for the tight
optima localization interval for m > 3 is difficult even for the classic Om||Cmax problem.

Acknowledgements

This research was supported by the Russian Foundation for Basic Research, projects
20-01-00045 and 20-07-00458.

References

Averbakh I., Berman O., Chernykh I., 2005, “A 6/5-approximation algorithm for the two-machine
routing open shop problem on a 2-node network”, European Journal of Operational Research,
Vol. 166, pp. 3-24.

Averbakh I., Berman O., Chernykh I., 2006, “The routing open-shop problem on a network: com-
plexity and approximation”, European Journal of Operational Research, Vol. 173, pp. 521-539.

Chernykh I. and Krivonogova O., 2020, “On the Optima Localization for the Three-Machine Rout-
ing Open Shop”, Lecture Notes in Computer Science, Vol. 12095, pp. 274-288.

Chernykh I. and Lgotina E., 2016, “The 2-machine routing open shop on a triangular transportation
network”, Lecture Notes in Computer Science, Vol. 9869, pp. 284-297.

Chernykh I. and Lgotina E., 2019, “Two-machine routing open shop on a tree: instance reduction
and efficiently solvable subclass”, submitted to Optimization Methods and Software.

Gonzalez T.F. and Sahni S., 1976, “Open shop scheduling to minimize finish time”, J. Assoc.
Comput. Mach., Vol. 23, pp. 665-679.

Krivonogova O. and Chernykh I., 2019, “Optima localization for the two-machine routing open
shop on a tree (in Russian)”, submitted to Diskretnyj Analiz i Issledovanie Operacij.

Sevastyanov S.V. and Tchernykh I.D., 1998, “Computer-aided way to prove theorems in schedul-
ing”, Algorithms — ESA’98 Lecture Notes in Computer Science, Vol. 1461, pp. 502-513.

89

1

Optima Localization for the Routing Open Shop:

Computer-aided Proof

Ilya Chernykh1,2,3 and Olga Krivonogova1

1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
idchern@math.nsc.ru

2 Novosibirsk State University, Novosibirsk, Russian Federation
krivonogova.olga@gmail.com

3 Novosibirsk State Technical University, Novosibirsk, Russian Federation

Keywords: routing open shop, instance transformation, optima localization, computer-
aided approach.

1 Introduction

In the open shop problem sets of jobs J = {J1, . . . , Jn} and machinesM = {M1, . . . ,Mm}
are given. Each of job Jj has to be processed by each machine Mi in arbitrary order, and
this operation takes a given processing time pji. The goal is to minimize the makespan
Cmax which is de�ned as a maximum completion time of the operation. We use notation
Om||Cmax for the problem withm machines. It is known (Gonzalez T.F. and Sahni S. 1976)
to be polynomially solvable in the case m = 2 and NP-hard for m ≥ 3.

We consider the routing open shop problem being a generalization of the metric TSP
and the open shop problem. Routing open shop, introduced in (Averbakh I. et. al. 2006,
Averbakh I. et. al. 2005), can be described as follows. Jobs are located at the nodes of
a transportation network described by an edge-weighted graph G = 〈V ;E〉, each node
contains at least one job. The weight dist(u, v) represents the travel time of any machine
between those nodes. Mobile machines are initially located at some prede�ned node v0 ∈ V
referred to as the depot. All the machines have to travel between nodes to process jobs
in an openshop-like environment, and to return to the depot after completion of all the
operations. The makespan Rmax is the return time moment of the last machine after
completion of all its operations, and has to be minimized. We denote this problem as
ROm||Rmax, or as ROm|G = X|Rmax in the case we want to specify the structure of the
transportation network. Problem is known to be NP-hard even in trivial cases with single
machine (equivalent to the metric TSP) and with two machines and just two nodes of
the network (including the depot)(Averbakh I. et. al. 2006). The latter case is denoted as
RO2|G = K2|Rmax.

Consider the following standard lower bound on the optimal makespan, proposed in
Averbakh I. et. al. (2005):

R̄ = max

{
`max + T ∗,max

v∈V
(dmax(v) + 2dist(v0, v))

}
.

Here `max = max
i

n∑
j=1

pji is the maximummachine load, dmax(v) = max
j∈J (v)

dj = max
j∈J (v)

(
m∑
i=1

pji

)

is the maximum length of job from node v, with J (v) being the set of jobs located at v.
T ∗ denotes the TSP optimum on G with distance function dist(u, v).

One of the directions of the research of an NP-hard optimization problem is optima
localization, i.e. the search of tight upper bound on the optimum in terms of the lower bound
LB. More precise, the tight optima localization interval is an interval of type [LB, ρLB]

90

2

with the smallest possible value of ρ guaranteed to contain an optimum value for any
problem instance from a given set. The �rst tight optima localization interval for scheduling
problems was found for O3||Cmax in (Sevastyanov S.V. and Tchernykh I.D. 1998). This
research required massive computer-aided enumeration based on the branch-and-bound
method.

For the routing open shop problem this question was partly studied for the case of
two machines. It is proved in Averbakh I. et. al. (2005) that optimum of any instance of
RO2|G = K2|Rmax belongs to an interval [R̄, 65 R̄], and the bounds are tight. Lately this
result was generalized for the RO2|G = K3|Rmax (Chernykh I. and Lgotina E. 2016) and
RO2|G = tree|Rmax problems (Krivonogova O. and Chernykh I. 2019). Optima localization
for the problem with three or more machines is still an open question even in case G = K2.

2 Instance simpli�cation operations

The research of the optima localization for the two-machine case is based on an instance
reduction procedure which uses two simpli�cation operations: job aggregation and terminal
edge contraction.

Job aggregation operation (also known as grouping) utilizes a simple idea of replacing
a number of jobs from the same node with a single aggregated job for which processing
times equal to the total processing time of the respective operations combined. We use
job aggregation to simplify the instance preserving the standard lower bound R̄. A natural
question arises, is it possible to perform a job aggregation of a whole set of jobs at some
nodes. To answer that question, we use the following de�nition.

De�nition 1. A node v from G(I) of some problem instance I is overloaded if

∆(v) =
∑

Jj∈J (v)

dj > R̄− 2dist(v0, v).

Otherwise the node is referred to as underloaded.

The job aggregation of the whole set of jobs in node v preserves R̄ if and only if the node
v is underloaded.

Another operation, terminal edge contraction, is based on the following idea: translate
a single job from a terminal node v to an adjacent one u, modifying processing times of all
of its operations to include travel times (back and forth) between v and u.

Again, we want to perform an edge contraction operation only if it does not lead to
the growth of the standard lower bound R̄. Otherwise, the edge is called overloaded. The
following de�nition describes the exact condition, under which an edge is overloaded.

De�nition 2. Let v 6= v0 is a terminal node in G and there is a single job Jj ∈ J (v). Let
e = [u, v] be an edge incident to v. Then edge e is overloaded if

dj + 2mdist(u, v) + 2dist(v0, u) > R̄,

and is underloaded otherwise.

Overloaded elements make the instance somehow problematic. Fortunately, the number
of such elements is rather small.

Lemma 1. Any instance of the ROm||Rmax problem contains at most m − 1 overloaded
elements.

Moreover, the number of jobs in the simpli�ed instance is small. One of the main results
of our research is the following

91

3

Lemma 2. Let I be an instance of the ROm||Rmax problem and any job aggregation in I
leads to the growth of R̄. Then every underloaded node in I contains exactly one job, and
all the overloaded nodes (if any) contain at most 2m− 1 jobs altogether.

Instance simpli�cation preserving the lower bound allows one to reduce the search for
the tight optima localization interval to the case with small number of jobs (depending on
m) and with simpler structure of the transportation network. The next section covers the
�rst attempts to discover optima localization interval for the three-machine routing open
shop.

3 Optima localization for RO3|G = K2|Rmax

For any instance of RO3|G = K2|Rmax we use v to denote the node other than the
depot.

Back in 1998 Sevastyanov and Chernykh used a computer program to prove that for
any instance of O3||Cmax (which is equivalent to RO3|G = K1|Rmax) optimal makespan
does not exceed 4

3 times standard lower bound. The program is based on an intelligent
branch-and-bound-style enumeration of subsets of instances (with in�nite cardinality). For
each subset a critical instance with the greatest ratio of upper and lower bounds of the
optimal makespan was found with a help of linear programming. The proof follows from
the facts that the enumeration is complete (union of the subsets considered coincides with
the whole sets of instances), and for each critical instance found the upper bound is within
the range of 4

3 R̄. It took about 200 hours of running time to complete the proof, including
building the structure of subsets and the search for critical instances for each one. As it
was clear that a direct application of the same approach would take enormous amount of
time, we focused our research on the possibilities to make the proof-building process more
e�cient. As a result, we were able to complete the research of the optima localization of
the RO3|G = K2|Rmax problem and to prove the following theorem constructively.

Theorem 1. For any instance of the RO3|G = K2|Rmax problem there exists a feasible
schedule S such that Rmax(S) ≤ 4

3 R̄.

One part of the proof is based on a description of a set of su�cient conditions which
allow to reduce an instance to the case of O3||Cmax. Another one used the computer-
aided approach with some �ne-tuning applied. As a result, the proof-building process was
complete in about 28 hours.

Let us focus on the running time reduction techniques. First idea was to try to reduce
the set of instances as much as possible without loss of generality. This is done by means
of the following two lemmas.

Lemma 3. For any instance of RO3|G = K2|Rmax with underloaded node v and pmax =
max pji > 2

3 R̄ the optimal makespan does not exceed 4
3 R̄.

Lemma 4. Let I be an instance for RO3|G = K2|Rmax problem such that ∆(v0) > 2R̄.
Then R∗max 6 4

3 R̄.

The in�uence of the application of di�erent combinations of these restrictions on the run-
ning time for one of the special cases of the problem is presented in Table 1.

As one can observe, that in�uence is not that noticeable. Luckily, we discovered another
reserve which surprisingly allowed one to reduce running time signi�cantly.

Second idea was to reduce the set of instances by using symmetries induced by di�erent
enumerations of jobs and machines.

92

4

∆(v0) ≤ 2R̄ ∆(v0) is arbitrary

pmax ≤ 2
3
R̄ 17:52 min. 19:27 min.

pmax is arbitrary 20:27 min. 29:31 min.
Table 1. Running time of the original program depending on the restriction applied.

∆(v0) ≤ 2R̄ ∆(v0) is arbitrary

pmax ≤ 2
3
R̄ 00:10 min. 01:45 min.

pmax is arbitrary 00:09 min. 02:14 min.
Table 2. Running time of the modi�ed program depending on the restriction applied.

Further ways to improve e�ciency are based on details of the computer-aided approach
and cannot be fully disclosed in the format of the current abstract. The results are covered
in Table 2.

Thus we were able to reduce the running time (for one of the special cases) by the factor
of almost 200, which gives us hope that the computer-aided approach can still be used for
wider classes of problems, i.e. O4||Cmax (an intriguing case, as we no evidence that the
optimal makespan can be greater than 4

3 R̄), RO3|G = K3|Rmax and so on.

4 Conclusion

The main results of this paper are the following.

1. Description of the extremal properties of overloaded elements of ROm||Rmax problem.
2. The optima localization of the special case of the RO3|G = K2|Rmax problem.
3. Developments of the computer-aided approach with a signi�cant reduction of the run-

ning time.

An intriguing open question from (Sevastyanov S.V. and Tchernykh I.D. 1998) still
remains: does there exist an analytic proof of Theorem 1 (as well as the optima localization
result for O3||Cmax), such that doesn't require any computer-aided enumeration.

Acknowledgements

This research was supported by the Russian Foundation for Basic Research, project
20-01-00045.

References

Gonzalez T.F. and Sahni S., 1976, �Open shop scheduling to minimize �nish time�, J. Assoc.

Comput. Mach., Vol. 23, pp. 665-679.
Averbakh I., Berman O., Chernykh I., 2006, �The routing open-shop problem on a network: com-

plexity and approximation�, European Journal of Operational Research, Vol.173, pp. 521�539.
Averbakh I., Berman O., Chernykh I., 2005, �A 6/5-approximation algorithm for the two-machine

routing open shop problem on a 2-node network�, European Journal of Operational Research,
Vol. 166, pp. 3�24.

Sevastyanov S.V. and Tchernykh I.D., 1998, �Computer-aided way to prove theorems in schedul-
ing�, Algorithms - ESA'98 Lecture Notes in Computer Science, Vol. 1461, pp. 502�513.

Chernykh I. and Lgotina E., 2016, �The 2-machine routing open shop on a triangular transportation
network�, Lecture Notes in Computer Science, Vol. 9869, pp. 284-297.

Krivonogova O. and Chernykh I., 2019, � Optima localization for the two-machine routing open
shop on a tree (in russian)�, submitted to Diskretnyj Analiz i Issledovanie Operacij.

93

A new tool for analysing and reporting solutions for the RCPSP and

MMRCPSP

José Coelho1,3, Mario Vanhoucke1,2, and Ricardo Amaro3

1Ghent University, Belgium

e-mail: jose.coelho, mario.vanhoucke@ugent.be

2Vlerick Business School, Belgium
3Universidade Aberta, Portugal

e-mail: jose.coelho@uab.pt

Keywords: RCPSP, datasets, reporting results.

1. Introduction

In the paper written by Vanhoucke and Coelho (2018), a new method is proposed to facilitate

the reporting of results for the single- and multi-mode RCPSP. We have now extended this method

with a website where researchers can download and upload solutions without much intervention,

which is the topic of this abstract.

The new website does not want to replace the well-known existing libraries such as the

PSPLIB proposed in Kolisch and Sprecher (1996), the MMLIB proposed in Peteghem and

Vanhoucke (2014) or the generic OR-LIBRARY proposed by Beasley (1990), but rather serves as

a complement. The website reports data about many benchmark datasets from the literature in a

standardized way, and also provides the best LB/UB/optimal values, the best known solutions

(start times of each activity), and also information about project indicators (network and resource

indicators). We have saved exactly one result file for each run of a complete dataset, and the

performance of the procedure used is calculated against the CPM lower bound as well against the

current best LBs and UBs.

We also present two new datasets for the RCPSP. The first so-called NetRes set has already

been proposed earlier in Vanhoucke and Coelho (2018), which is a large set of 30 activity

instances that spans a wide range for the topological network structure. The second set is totally

new and is proposed in Coelho and Vanhoucke (2020) and contains a small set of very hard

instances with 20 to 30 activities. This so-called CV set contains the smallest possible instances

that we could find for which no optimal solutions could be found using the fast and efficient

branch-and-bound procedures from the literature.

In the remainder of this abstract, we will detail how the results are reported (Section 2). In

Section 3, we describe how we will update the website tables with best known solutions for the

RCPSP and the MMRCPSP. Section 4 provides an illustrative example of an experiment with

NetRes. In Section 5, we show the diversity of the new CV dataset, and we conclude in Section 6.

2. Reporting new results

The method we propose for reporting new results is done using a single data file per dataset (in

CSV format) rather than one file per instance, containing one line per instance. Each line contains

all possible data for that instance, such that user can easily know the network and resource

indicators for each instance in the set. The results are given in a singe result file (also in CSV

format). Consequently, our method requires only a single file for each run and avoids the need to

submit one result per instance. Not only the values of the LBs and UBs are made available, but

also the obtained solutions by the author of the new algorithm (the start times of each activity), and

these results can be interesting for other researchers.

A software tool – a client tool - was developed to allow users the read and modify the results

file if they have found new and better results. In doing so, the LBs and UBs are checked

automatically for errors or inconsistencies. If no errors are found, the results file is updated and a

reference to the new paper for new solutions is given. The tool is also easy to use for selecting

only a subset of instances of a dataset (e.g. only the open or closed files or the files with LBs x%

from the best known UB) and the instances will be automatically be selected for the user in a so-

called instance file.

94

The website is in solutionsupdate.ugent.be and is integrated in the

projectmanagement.ugent.be/research/data. The website will maintain and update Table 2 and

Table 3 of Vanhoucke and Coelho (2018) that contains data from several datasets. Other tables for

other project scheduling problems can be also added in the future.

Even if no new results are found, the website can be used to submit results before the

submission of the paper, and in doing so, the authors will have a confirmation that there results

contains no inconsistencies (such as UBs lower than a strong LB). This can be done easily using

the client tool, but when the results are put online, it also gives the reviewers the possibility to

check.

3. Update of tables of BKS on RCPSP and MMRCPSP

In this section we report current results for the tables that we intend to keep updated in the

website. Table 1 displays the current best-known results for the RCPSP and is an update of Table 2

published in Vanhoucke and Coelho (2018). More specifically, we updated the table with the new

CV set and the Patterson set. For the NetRes set, we also reported the results for the 1kNetRes set,

which contains results for a subset of NetRes in which each instance is selected in steps of 1,000

(reducing the number of instances to e.g. 540,000 to 540 for the NR(SP) set). We can now

compare the results with the table in the original paper to see the progress made in the last few

years by many authors. The table reports the number of open instances in the PSPLIB (J60 to

J120) have been reduced. This data is not easily detectable from the PSPLIB website as done in

Table 1.

Table 1. Best-known results for the RCPSP

Dataset Subset #Instances #Open %CPM GAP

CV 623 623 142.21% 3.3

RG30 1,800 116 39.27% 2.0

RG300 480 377 956.71% 35.2

DC1 1,800 0 26.57% 0.0

DC2 720 210 274.20% 7.6

PSPLIB J30 480 0 13.38% 0.0

 J60 480 37 10.37% 6.3

 J90 480 66 9.43% 7.5

 J120 600 290 29.01% 8.0

NetRes NR(SP) | 1k 540,000 | 540 25,591 | 12 78.8% | 72.9% 5.3 | 1.8

 NR(AD) | 1k 480,000 | 480 44,855 | 7 98.8% |

102.4%

5.6 | 1.1

 NR(LA) | 1k 720,000 | 720 246 | 0 58.4% | 58.9% 4.6 | 0.0

 NR(TF) | 1k 720,000 | 720 23,544 | 0 68.3% | 64.7% 6.4 | 0.0

 NR(RC) | 1k 540,000 | 540 10,333 | 0 66.3% | 71.6% 6.0 | 0.0

 NR(RU) | 1k 270,000 | 270 3,761 | 0 73.6% | 77.0% 9.3 | 0.0

 NR(VAR) | 1k 540,000 | 540 4,722 | 0 87.3% | 91.9% 4.3 | 0.0

Patterson 110 0 18.04% 0.0

As mentioned earlier, with this updated data, a reviewer can easily check whether some new

results on the RCPSP are within a valid range by e.g. checking the percentage deviation of the LB

over the CPM. Also, the sum of time units of both best lower bounds and best upper bounds is

provided, and this indicator can be checked in the same way than the %CPM. This does not rule

out the possibility of less credible researchers to invent and manipulate results, but prevents errors

unwillingly made by the researchers. Nevertheless, the reviewer can also ask the researcher to

submit a result file to the website, so the results can always be checked, even if there are no new

LBs or UBs.

Table 2 displays the current best-known results for the MMRCPSP, and is an update of Table

3 published in Vanhoucke and Coelho (2018). The LBs are updated with the work of Stürck

(2018), and compared with the version published in the paper, this new data lead to a larger

number of instances closed in the MMLIB. This illustrates and highlights the importance of

research on LBs as much as on UBs. Note that in the Boctor instances, the GAP between the UBs

and the LBs is very high. This is mainly because no good LBs exist for these instances, since these

instances do not contain non-renewable resource. The MMLIB site is no longer available, but the

final UB values from 2018 are used in our website to guarantee we have used to most recent

results. As for the RCPSP, a reviewer can also check new results.

95

Table 2. Best-known results for the MMRCPSP

Dataset Subset #Instances #Open %CPM GAP

PSPLIB J10 | J12 | J14 |

J16 | J18 | J20

536 | 547 | 551

| 550 | 552 |

554

0 | 0 | 0 | 0 | 0 |

0

32% | 27% |

24% | 19% |

18% | 17%

0.0 | 0.0 | 0.0 |

0.0 | 0.0 | 0.0

 J30 552 245 12.28% 6.5

Boctor Boct50 120 120 22.74% 52.6

 Boct100 120 120 22.91% 103.6

MMLIB MMLIB50 540 95 22.29% 9.3

 MMLIB100 540 151 21.35% 10.8

 MMLIB+ 3240 2439 78.77% 37.2

4. An example of an experiment with NetRes

The NetRes set was proposed in Vanhoucke and Coelho (2018), and the goal was to create a

set with high diversity in terms of the project indicators, but also to provide a large number of

instances available such that researchers can select subsets they need. Several analyses are done in

the original paper, but we have select Table 5 of the original paper and replicate results in Table 3

that measures the impact of the project indicators using the exact procedure of Demeulemeester

and Herroelen (1992). An instance is considered hard if it could not be solved in 1 second, and the

table shows the percentage of hard instances of each value of the project indicator (SP, AD, LA,

TF, OS, RC and RS).

Table 3. Percentage of hard instances in NetRes depending on each project indicator

 SP AD LA TF OS RC RS

0-0,1

0,1-0,3
0,3-0,5

0,5-0,7

0,7-0,9
0,9-1

54%

13%
0.2%

0%

0%
-

-

1.5%
4.5%

13%

4.9%
1.9%

4.9%

0.3%
0.1%

0.1%

0%
-

0.4%

0.5%
2.8%

8%

17%
24%

59%

31%
1.3%

0.4%

0%
0%

0%

9.1%
4.9%

3.8%

1.8%
1.4%

7.4%

7.2%
1.3%

0.5%

0.1%
0%

As we can see in Table 3, most of the instances in this set are closed, but we can now visualize

where the most complex instances are for each indicator. All the findings are more or less known

(except for the new project indicators AD, LA and TF). For example, parallel networks (low SP

and OS values) are harder to solve, and for the RC indicator, an easy/hard/easy phase transition is

found, which confirms the results of Herroelen and De Reyck (1999). A similar effect is found for

the AD indicator, and the indicators LA and RS provide more hard instances when the indicator is

low. The TF indicator provides harder instances when it is high.

The Table 3 is an example of an experiment that could not be easily done if no instances are

available for all values of all these indicators. Vanhoucke et. al. (2016) have shown that most sets

are not diverse enough, and only contain instances with values between 0 and 1 for some

indicators, while others are largely ignored.

We expect that the NetRes set will be interesting for research where statistical tests are used

extensively. A deeper study into the relation between a given project indicator and the

performance of a solution procedure requires data that spans the full range of complexity. The

client tool can help selecting the subset of instances necessary for such a study. Moreover, the

large volume of instances with solutions could potentially be interesting for researcher using

machine learning making use of the current best-known solutions on a large amount of data to

train the data.

5. Diversity of dataset CV

Table 4 displays the distribution of the CV instance set for several project indicators used in

Vanhoucke et. al. (2016). Recall that this set contains instances that are currently unsolvable. The

table shows that this set of hard instances still contains instances with diversity in the network

structure and resource constraints, and hence, not only contains instances with very parallel

activities. All topological indicators are spread over a wide interval except for LA that is

concentrated around values below 0,2. For the resource indicators, the RS is not very diverse and

most of the instances have a value lower than 0,2. The diversity is higher for the other resource

96

indicators, with RU greater than 2, RC between 0,2 and 0,5, RF greater than 0,8. This set is said to

be very hard to solve, and researchers could focus their research time trying to solve these

instances to optimality.

Table 4. Distribution of instances in CV dataset by several project indicators

#Activities #Resources CNC OS SP AD

20-21 #4

22-23 #18
24-25 #41

26-27 #95

28-30 #465

1 #1

2 #39
3 #85

4 #498

0-1 #405

1-2 #176
2-3 #24

3-4 #6

4-8 #12

0-0,1 #85

0,1-0,2 #416
0,2-0,3 #99

0,3-0,4 #13

0,4-0,6 #10

0-0,1 #232

0,1-0,2 #316
0,2-0,3 #62

0,3-0,4 #12

0,4-0,5 #1

0-0,2 #8

0,2-0,4 #79
0,4-0,6 #243

0,6-0,8 #229

0,8-1 #64

LA TF RC RF RU RS

0-0,2 #592

0,2-0,4 #10

0,4-0,6 #11
0,6-0,8 #7

0,8-1 #3

0-0,2 #28

0,2-0,4 #48

0,4-0,6 #138
0,6-0,8 #220

0,8-1 #189

0,2-0,3 #57

0,3-0,4 #258

0,4-0,5 #285
0,5-0,6 #10

0,6-0,8 #13

0,5-0,6 #9

0,6-0,7 #13

0,7-0,8 #153
0,8-0,9 #245

0,9-1 #203

1-2 #34

2-3 #84

3-4 #505

0-0,1 #533

0,1-0,2 #87

0,2-0,3 #3

The reason why we claim these instances are hard is that we have tried to solve these instances

using 20 hours of CPU time for each instance with the procedure presented in Coelho and

Vanhoucke, M. (2018), and we have reported the best found LB and UB. The percentage over the

CPM of LBs is 129%, and this percentage increases to 142% when compared with the UBs,

leaving enough space to find improvements for the 623 instances.

It is interesting to note that we have kept these instances as small as possible. Most instances

contain 20 activities, and go up to 30 activities maximum, and some of them make use of only 1

renewable resource.

6. Conclusion

In this abstract, we present a new contribution to the academic community with a tool to keep

the current results for the RCPSP and MMRCPSP updated at all times. The tool intends to save the

latest results from all datasets in a standardized way, validates new results and provides

performance indicators. We also provided a new large dataset NetRes that is diverse in several

project indicators, allowing doing analyses for several project indicators, and a second new dataset

CV with only small instances that are still not solved to optimality. We hope and believe that this

tool and the new dataset can be used in new research studies, which can lead to entirely new

solution procedures that can solve small but very hard instances to optimality.

References

Beasley J.E., 1990, “OR-Library: Distributing Test Problems by Electronic Mail ", Journal of the

Operational Research Society, Vol. 41 (11), pp. 1069-1072.

Coelho, J., Vanhoucke, M. (2018). An exact composite lower bound strategy for the resource-
constrained project scheduling problem. Computers & Operations Research, 93, 135–150.

Coelho, J., Vanhoucke, M. (2020). Going to the core of hard resource-constrained project

scheduling instances. Computers & Operations Research, 121, 104976.
Demeulemeester E., W. Herroelen, 1992, “A branch-and-bound procedure for the multiple

resource-constrained project scheduling problem”, Management Science, Vol. 38, pp. 1803–1818.

Herroelen W., B. De Reyck, 1999, “Phase transitions in project scheduling”, Journal of the
Operational Research Society, Vol. 50, pp. 148–156.

Kolisch R., A. Sprecher, 1996, “PSPLIB – A project scheduling problem library”, European Journal

of Operational Research, Vol. 96, pp. 205-216
Peteghem V.V., M. Vanhoucke, 2014, “An experimental investigation of metaheuristics for the

multi-mode resource-constrained project scheduling problem on new dataset instances”, European

Journal of Operational Research, Vol. 235, pp. 62-72
Vanhoucke M., J. Coelho, J. Batselier, 2016, “An overview of project data for integrated project

management and control”, Journal of Modern Project Management, Vol. 3 (2), pp. 6–21.

Vanhoucke M., J. Coelho, 2018, "A tool to test and validate algorithms for the resource-constrained
project scheduling problem", Computers & Industrial Engineering, Vol. 118 (1), pp. 251 – 265

Stürck C., 2018, “Exakte Methoden und Matheuristiken für das Multi-Mode Resource-Constrained

Project Scheduling Problem (Exact and matheuristic approaches for the multi-mode resource-
constrained project scheduling problem)”, Dissertation, Helmut-Schmidt-University, Hamburg

97

1

Adaptive Robust Parallel Machine Scheduling

Izack Cohen1, Krzysztof Postek2 and Shimrit Shtern3

1 Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
izack.cohen@biu.ac.il

2 Faculty of Electrical Engineering, Mathematics and Computer Science, University of
Technology, Delft, The Netherlands

k.s.postek@tudelft.nl
3 Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology,

Haifa, Israel
shimrits@technion.ac.il

Keywords: robust optimization, machine scheduling, adaptive scheduling.

1 Problem definition:

Parallel machine scheduling (PMS) problems are multi-stage scheduling problems, which
are widely researched owing to their theoretical importance and multiple applications in
manufacturing, cloud computing, and project management, among others. Real-life PMS
settings involve uncertainty about task duration, which may be characterized by the ran-
domness of each task duration and, possibly, a dependence between task durations.

An ideal scheduling approach should accommodate uncertainty to ensure realistic guar-
antees on the objective function value and permit adjustments of later-stage decisions based
on different observed task lengths (e.g., different duration realizations of the task scheduled
first may result in different allocation decisions of the next tasks).

Real-life parallel machine scheduling problems can be characterized by: (i) limited in-
formation about the exact task duration at scheduling time, and (ii) an opportunity to
reschedule the remaining tasks each time a task has completed processing and a machine
becomes idle. Robust scheduling has been used to deal with the first characteristic. How-
ever, the existing literature on robust scheduling does not explicitly consider the second
characteristic – the possibility to adjust decisions as more information about the tasks’
duration becomes available, despite the fact that re-optimizing the schedule every time
new information emerges is a standard practice.

2 Methodology/results:

In this paper, we develop a robust optimization based scheduling approach that takes
into account, at the beginning of the planning horizon, the possibility that scheduling
decisions can be adjusted. We demonstrate that this adaptive approach can lead to better
here-and-now decisions. To that end, we develop the first mixed integer linear programming
model for adjustable robust scheduling, where we minimize the worst-case makespan. Using
this model, we show via a numerical study that adjustable scheduling leads to solutions
with better and more stable makespan realizations compared to static approaches.

We focus on makespan minimization, which is a standard performance measure for
PMS. Indeed, makespan minimization is used for load balancing, an important issue for
many scheduling applications. When deciding whether to use the expected value or worst-
case value, several factors should be considered. Optimizing over an expectation requires
specifying the full probability distribution of task duration, information that is often not
readily available or is costly to acquire. Moreover, the makespan of a single realization
can significantly differ from the expected value; thus, if the exact scheduling problem is

98

2

not repeated multiple times, optimizing over the expected value may not be translated into
good performance in practice. In contrast, much less information is needed when specifying
a set that includes all the reasonable duration realizations, and a worst-case optimization
approach provides a guarantee on the performance of any realization in such a set. There-
fore, we choose a setting where the scheduler minimizes the worst-possible makespan of a
set of tasks over some uncertainty set, which captures all reasonable scenarios within the
support of the distribution. This is in line with the paradigm of Robust Optimization (RO),
where the best solution is sought under the assumption that the problem’s parameters are
initially unknown and that, given the decisions, nature picks their worst-possible values
from an uncertainty set consisting of outcomes that include the true realization with high
probability.

We consider the classical version of PMS, where m identical machines process n > m
tasks that are available at the start of the scheduling horizon. For this problem, we con-
struct a mixed integer linear optimization problem for minimizing the worst-case makespan,
which includes all possible later-stage (re-)scheduling decisions. We compare the adaptive
formulation’s optimal scheduling decisions and optimal worst-case makespan to those of
the optimal static allocation (SA) and static list (SL) policies.

In contrast to the majority of previous works, which compare naive implementations of
the SA and SL policies without re-optimization (i.e., re-scheduling) as more information
is revealed, we consider the more realistic rolling horizon implementation of these policies.
Under this implementation, whenever one of the machines becomes idle, the scheduler
can alter the initial order of tasks by re-solving an optimization problem with the extra
information included.

3 Managerial implications:

We outline our main managerial insights for the studied setting. The insights are rel-
evant to schedulers within multiple domains that can be modeled via PMS such as pro-
duction lines in which machines process a set of tasks, computer multiprocessors (“cloud
processing”) for processing jobs, shipyards and ports in which ships are loaded and un-
loaded, doctors who treat patients in a walk-in clinic or triage setting, and teachers who
educate student groups, just to name a portion of the potential use-cases.

First, our study shows that capturing the uncertainty and the relations between the
durations of different tasks is vital to a realistic assessment of the makespan. Indeed, there
are many settings in which the probabilistic knowledge about task durations is limited or
costly to attain. In such circumstances, it is rather easy to design a polyhedral or ellipsoidal
uncertainty set that frames the involved uncertainty. Ben Tal et al.(2009) provide guidance
and probabilistic guarantees in favor of designing uncertainty sets that balance the level
of conservatism and the probability that a constraint is violated by a scenario. Ideally, we
would like to design the smallest uncertainty set that still captures the meaningful scenarios
(e.g., the probability that a scenario is not included within the uncertainty set is lower than
a pre-specified threshold).

Secondly, whenever the optimal wait-and-see decisions can be taken into account in the
planning stage, this should be done as it lowers the maximum possible project makespan
that the scheduler can promise. In other words, a bid prepared by a decision-maker who
accommodates wait-and-see decisions and thus can commit to a lower makespan (and cost)
would be more competitive than a bidder that does not explicitly take into account the
possibility that decisions can be adapted. In particular, our experiments point out that the
average advantage of adaptive-based bids is estimated to be 5− 9% over its non-adaptive
(i.e., ‘regular’ RO) counterpart. We note that an adaptive policy need not necessarily be

99

3

achieved by solving our mixed integer linear formulation. Indeed, it is likely that heuristic
methods can be of help as well, and should be explored as an alternative to static policies.

While the previous point dealt with the superiority of adaptive robust policies over
their static counterparts in the planning and contract stage, they are also preferable in
the implementation stage. Specifically, policies that take the later-stage adaptivity of the
decisions into account remain preferable even when the static policies are re-optimized every
time new information becomes available (rolling-horizon). A hint into the reason for this
is provided by the 42− 59% of the problem instances in which an adaptive policy yielded
different first-stage decisions compared to a SA policy. That means that the adaptive
policies not only offer better project makespan guarantees, but also select decisions that
lead to better realized duration.

A very attractive feature of the adaptive policies, as revealed through our experiments,
is that their performance is comparable to the perfect hindsight policy (e.g., the average
difference between the promised and max perfect hindsight makespans was 0.0−0.1% for the
optimal adaptive policy compared to 5.7−9.8% for the static robust policy). This suggests
that the adaptive robust policy not only protect the decision-maker against adversarial
realizations of reality but it also performs close to the perfect hindsight policy. Thus, the
typical criticism about the conservatism of static robust policies (i.e., the high price paid
for robustness) does not apply to the adaptive scheduling policy.

In conclusion, while robust SA policies are widely investigated and used in risk averse
settings, they may achieve inferior performance in practice compared to adaptive alter-
natives. Since the performance gap between an optimal adaptive policy and a static one
is quite significant, we recommend allocating resources for finding good adaptive policies,
even if those policies are not necessarily optimal. We believe that these adaptive policies
will grant their users competitive advantages both in the proposal bidding stage and in the
implementation stage.

Acknowledgements

We are grateful to Michael Pinedo for consultations at the early stage of this work.
Also, we thank Esther Julien for her help.

References

Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton
University Press.

100

1

The Resource-Constrained Project Scheduling Problem:

New Benchmark Results

Creemers S12

1 IESEG School of Management, France
s.creemers@ieseg.fr
2 KU Leuven, Belgium

stefan.Creemers@kuleuven.be

Keywords: project scheduling, RCPSP, lower bound.

1 Introduction

Over the past decades, the resource-constrained project scheduling problem (RCPSP)
has become a standard problem in the operations research literature. The goal of the
RCPSP is to schedule a set of project activities V = {0, 1, . . . , n} such that the makespan of
the project is minimized, while satisfying precedence and resource constraints. Precedence
constraints impose that an activity i : i ∈ V can only start upon completion of all its
predecessors Pi = {j|(j, i) ∈ E}, where E is the set of precedence constraints. Resource
constraints, on the other hand, impose that an activity i can only be scheduled if su�cient
resources are available. There are K renewable resource types, and the availability of each
resource type k : k ∈ K = {1, 2, . . . ,K} is denoted by Rk. Each activity i requires ri,k
units of resource k. A solution to the RCPSP is a schedule S = {S0, S1, . . . , Sn}, where Si

is the starting time of activity i. The project starts at time S0 = 0, and completes at Sn,
where activities 0 and n are dummy activities that represent the start and the completion
of the project, respectively. In addition, de�ne A (S, t) = {i : Si ≤ t ∧ (Si + pi) ≥ t}, the
set of activities in schedule S that are active at time t, where pi is the duration of activity
i. Without loss of generality, we assume pi ∈ N for all i : i ∈ V . The RCPSP can then be
formulated as a combinatorial optimization problem:

min Sn

s.t. Si + pi ≤ Sj ∀(i, j) ∈ E
∑

i∈A (S,t)

ri,k ≤ Rk ∀t ≥ 0,∀k ∈ K

Si ≥ 0 ∀i ∈ V.

Note that we assume that activities are executed without preemption, and that scheduling
decisions are made at discrete points in time.

Blazewicz et al. (1983) have shown that the RCPSP is strongly N P-hard, which
explains the abundance of heuristic solution methods in the literature (refer to, e.g., Kolisch
and Padman, 2001; Kolisch and Hartmann, 2006; Hartmann and Briskorn, 2010). In this
abstract, however, we focus on exact methods. Among exact methods, the branch-and-
bound (BB) procedures of Demeulemeester and Herroelen (1992, 1997), Mingozzi et al.
(1998), and Sprecher (2000) are still the most successful approaches to solve the RCPSP. In
what follows, we compare the performance of several lower bounds (LBs), and compare the
performance of four BB procedures and the state-of-the-art procedure of Demeulemeester
and Herroelen (1997).

101

2

2 Branch-and-bound procedures

A BB procedure is an iterative algorithm that implicitly enumerates the state space
of a combinatorial optimization problem using a search tree. The root node of the tree
corresponds to the original optimization problem, and its child nodes correspond to sub-
problems or feasible solutions (also called �leaf nodes�). Each iteration, a search strategy
is used to select the active node from which new nodes (i.e., children) are generated using
a branching scheme. If it can be shown (using dominance rules and/or bounds) that the
optimal solution cannot be found by visiting the children of a node, that node is fathomed
(i.e., its branch is pruned from the search tree). Eventually, if all nodes have been (implic-
itly) visited, the procedure stops, and the optimal solution is obtained as the best feasible
solution found in any of the leaf nodes.

Several BB procedures for solving the RCPSP have been proposed in the literature. In
most of these procedures, nodes correspond to partial schedules, and a depth-�rst search
strategy is used to select the next active node. The procedures, however, use di�erent
branching schemes and pruning methods (i.e., dominance rules and LBs). In this abstract,
we consider the following branching schemes:

� The precedence tree branching scheme proposed by Patterson et al. (1989), and later
on adopted by Sprecher (1998).

� The delay alternatives branching scheme proposed by Christo�des et al. (1987), and
later on adopted by Demeulemeester and Herroelen (1992, 1997).

For other branching schemes, refer to Stinson et al. (1978), Mingozzi et al. (1998), and
Igelmund and Radermacher (1983). Even though a depth-�rst search strategy is generally
accepted as the best choice, in this abstract, we will also consider a breadth-�rst search
strategy. This results in four BB procedures to be tested.

3 Dominance rules

Several dominance rules have been proposed in the literature. The state-of-the-art pro-
cedure of Demeulemeester and Herroelen (1992, 1997) uses the following dominance rules:

� DH1: if an activity i cannot be scheduled together with any other activity, it should be
started at the �rst time possible.

� DH2: if a pair of activities i and j cannot be scheduled together with any other activity,
they should be started at the �rst possible time possible.

� LLS: we can fathom a node that is associated with a (partial) schedule where an activity
i can be scheduled 1 time unit earlier (i.e., where activity i can be left-shifted). A global
variant of this local left shift rule can also be devised (see e.g., Schrage, 1970).

� CUT: we can fathom a node associated with (partial) schedule S′ if we previously have
saved another (partial) schedule S′′ that dominates schedule S′. Note that Demeule-
meester and Herroelen (1992, 1997) use a hash function to save (partial) schedules.

From these dominance rules, we will only consider CUT. In contrast to Demeulemeester
and Herroelen (1992, 1997), however, we do not overwrite a schedule if a schedule is already
stored at a given hash (i.e., we keep track of all schedules).

4 LBs

In the literature, we distinguish between two classes of LBs: (1) complex procedures
that are used to obtain a very tight LB and (2) fast procedures that can be evaluated as

102

3

part of a subroutine in the nodes of a BB procedure. In this abstract, we focus on the
latter class of LBs. Several of these LBs have been proposed in the literature (refer for
instance to Brucker et al. (1999, 2003), Klein and Scholl (1999), Knust (2015), and Coelho
and Vanhoucke (2018)). In this abstract, we consider the following LBs:

� CPL: the critical path LB.
� CS: the critical sequence LB that was introduced by Stinson et al. (1978).
� LB3: the node-packing LB as implemented by Demeulemeester and Herroelen (1997).
This bound ranks activities in a list based on the number of �companions� each activity
has (i.e., the number of activities with which it can be scheduled in parallel). To
construct the LB, activities (and their companions) are removed from the list.

Next, we propose two new LBs:

� LB4: an extension of LB3 that recalculates the list of activities each time an activity
(and its companions) is removed from the list.

� LBO: an over�ow LB that determines the over�ow (i.e., the remaining work contents)
of activities that cannot be fully scheduled in a schedule that uses the critical path as
a baseline; the remaining work contents is scheduled after the critical path.

The performance of the di�erent LBs is evaluated for the instances of the well-known
J30, J60, J90, and J120 PSPLIB data sets (Kolisch and Sprecher, 1996). For each data
set, Figure 1 reports how often a LB is one of the dominant LBs. Conversely, Figure 2
reports how often a LB is uniquely the dominant LB. From the results it is clear that LBO
performs very well, especially if larger projects are considered.

62%

81%

20%
33%

68%

CPL CS LB3 LB4 LBO

J30

73%
83%

10%
20%

90%

CPL CS LB3 LB4 LBO

J60

76% 80%

10%
17%

96%

CPL CS LB3 LB4 LBO

J90

41%
46%

4% 9%

95%

CPL CS LB3 LB4 LBO

J120

Fig. 1. How often is a LB the best LB

5 Results

In this section, we compare the performance of the procedure of Demeulemeester and
Herroelen (1997) (as implemented in the Rescon software; see also Deblaere et al. (2009))
and four other BB procedures:

103

4

0%

18%

3% 7% 6%

CPL CS LB3 LB4 LBO

J30

0%
9%

0% 1%

16%

CPL CS LB3 LB4 LBO

J60

0% 4% 0% 0%

20%

CPL CS LB3 LB4 LBO

J90

0% 5% 0% 0%

53%

CPL CS LB3 LB4 LBO

J120

Fig. 2. How often is a LB better than any other LB

� Precedence tree branching scheme and depth-�rst search strategy.
� Precedence tree branching scheme and breadth-�rst search strategy.
� Delay alternatives branching scheme and depth-�rst search strategy.
� Delay alternatives branching scheme and breadth-�rst search strategy.

Each of these BB procedures is equipped with the CUT dominance rule, and with LBs
CPL, CS, LB3, LB4, and LBO. In addition, the procedures that adopt a breadth-�rst search
strategy evaluate a trivial upper bound in each node. We use these procedures to solve
all instances of the J30 PSPLIB data set. In order to make a fair comparison, all tests
are performed on the same computer: an Intel I5 2.6GhZ computer with 8GB of working
memory.

The result of the preliminary test are reported in Table 1. From the table it is clear that
we easily outperform the procedure of Demeulemeester and Herroelen (1997). In addition,
the results also show that, in contrast to popular belief, a breadth-�rst search strategy
almost performs as good as a depth-�rst search strategy.

Table 1. Benchmark results for procedure of Demeulemeester and Herroelen (1997) and various
other procedures that are equipped with dominance rule CUT and LBs CPL, CS, LB3, LB4, and
LBO

DH1997
Precedence Tree Delay Alternatives

Depth Breadth Depth Breadth
First First First First

Nodes 19.30E6 167.14E6 14.48E6 11.66E6 6.36E6
CPU (sec) 374 1185 209 207 149

We have also performed a number of other preliminary tests that use new dominance
rules and LBs that have not been discussed in this abstract. The results of these experiments
have shown that we can solve all instances of the PSPLIB J30 data set in 27 seconds (while

104

5

visiting 6.15E6 nodes). If we minimize the number of visited nodes, we end up with 1.29E6
nodes over all instances of the J30 data set (with a CPU time of 183 seconds). Compared
to the state-of-the-art procedure of Demeulemeester and Herroelen (1997), this results in
a improvement of factor 13.8 for CPU times and of 14.8 for memory requirements.

References

Blazewicz J., Lenstra J.K. and Rinnooy Kan A.H.G., 1983, �Scheduling subject to resource
constraints: Classi�cation and complexity�, Discrete Applied Mathematics, Vol. 5, pp.
11�22.

Brucker P., Drexl A., Möhring R., Neumann K. and Pesch E., 1999, �Resource-constrained
project scheduling: Notation, classi�cation, models, and methods�, European Journal

of Operational Research, Vol. 112, pp. 3�41.
Brucker P., Knust S., 2003, �lower bounds for resource-constrained project scheduling

problems�, European Journal of Operational Research, Vol. 149, pp. 302�313.
Christo�des N., Alvarez-Valdes R. and Tamarit J.M., 1987, �Project scheduling with re-

source constraints: A branch and bound approach�, European Journal of Operational

Research, Vol. 29, pp. 262�273.
Coelho J., Vanhoucke M., 2018, �An exact composite lower bound strategy for the

resource-constrained project scheduling problem�, Computers and Operations Re-

search, Vol. 93, pp. 135�150.
Deblaere F., Demeulemeester E. and Herroelen W., 2009, �RESCON: Educational project

scheduling software�, Computer Applications in Engineering Education, Vol. 19, pp.
327�336.

Demeulemeester E., Herroelen W., 1992, �A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem�, Management Science, Vol. 38, pp.
1803�1818.

Demeulemeester E., Herroelen W., 1997, �New benchmark results for the resource-
constrained project scheduling problem�,Management Science, Vol. 43, pp. 1485�1492.

Hartmann S., Briskorn D., 2010, �A survey of variants and extensions of the resource-
constrained project scheduling problem�, European Journal of Operational Research,
Vol. 207, pp. 1�14.

Igelmund G., Radermacher F.J., 1983, �Preselective strategies for the optimization of
stochastic project networks under resource constraints�, Networks, Vol. 13, pp. 1�28.

Klein R., Scholl A., 1999, �Computing lower bounds by destructive improvement: An ap-
plication to resource-constrained project scheduling�, European Journal of Operational

Research, Vol. 112, pp. 322�346.
Kolisch R., Sprecher A., 1996, �PSPLIB: A project scheduling problem library�, European

Journal of Operational Research, Vol. 96, pp. 205�216.
Kolisch R., Padman R., 2001, �An integrated survey of deterministic project scheduling�,

Omega, Vol. 29, pp. 249�272.
Kolisch R., Hartmann S., 2006, �Experimental investigation of heuristics for resource-

constrained project scheduling: An update�, European Journal of Operational Re-

search, Vol. 174, pp. 23�37.
Knust S., 2015, �Lower bounds on the minimum project duration�. in Schwindt and Zim-

mermann, Eds. Handbook on Project Management and Scheduling: Vol. 1, Springer:
Heidelberg, pp. 43�55.

Mingozzi A., Maniezzo V., Ricciardelli S. and Bianco L., 1998, �An Exact Algorithm for
the Resource-Constrained Project Scheduling Problem Based on a New Mathematical
Formulation�, Management Science, Vol. 44, pp. 714�729.

105

6

Schrage L., 1970, �Solving resource-constrained network problems by implicit enumera-
tion: Nonpreemptive case�, Operations Research, Vol. 18, pp. 225�235.

Sprecher A., 2000, �Scheduling Resource-Constrained Projects Competitively at Modest
Memory Requirements�, Management Science, Vol. 46, pp. 710�723.

Stinson J.P., Davis E.W. and Khumawala B., 1978, �Multiple resource-constrained
scheduling using branch-and-bound�, AIIE Transactions, Vol. 10, pp. 252�259.

Patterson J.H., Sªowi«ski R., Talbot F.B. and W¦glarz J., 1989, �An algorithm for a
general class of precedence and resource constrained scheduling problems�. Advances
in Project Scheduling, Elsevier: Amsterdam, pp. 3�28.

106

1

Scheduling and Routing Workers Teams for Ground
Handling at Airports with Column Generation

Giacomo Dall’Olio1, Rainer Kolisch1

TUM School of Management, Technical University of Munich, Germany
giacomo.dallolio, rainer.kolisch@tum.de

Keywords: Ground Handling Scheduling, Airport Opertations, Column Generation, Ve-
hicle Routing.

1 Introduction

Air traffic has been constantly increasing over the past decades, and its annual growth
for the next ten years is estimated to 4.6% (Boeing Commercial Airplanes 2019). An
efficient management of the airport infrastructures is therefore crucial in order to avoid
congestions and delays which are causes for high costs and customer dissatisfaction. Poor
planning of ground handling is one of the main sources of delays (Oreschko et. al. 2011).
Ground handling consists of those services which are necessary to prepare the aircraft for
its next flight and are performed at the gates or at parking positions. Such services include
baggage loading and unloading, interior cleaning of the aircraft and refueling. Aircrafts are
kept on the ground for a limited amount of time, which causes ground handling tasks to
have restricted time windows within they can be performed. It is desirable to get the ground
handling tasks done as soon as possible, to make sure that the aircrafts are ready before
the scheduled take-off time. Since ground handling tasks, from now on simply denoted as
tasks, are interdependent, any delay could propagate to other tasks. Missing the due date
of a task might lead to a flight delay, which translates to penalty costs and reduced quality
service for the ground handler. Specialized workforce, the ground personell, is responsible
for performing the tasks. Each ground worker has a qualification level, which allows her/him
to perform tasks with a requirement equal or lower to her/his own. The planner has to
assign the workers to the tasks according to their qualification level, and schedule the tasks
avoiding workforce shortage and meeting the due dates.

In this paper, we propose a solution method, for the mentioned problem, based on the
branch and price framework, where column generation is used to find a lower bound.

2 Problem Definition

Planning ground handling is a combination of routing, assignment and scheduling prob-
lems. The tasks are performed by teams of workers. The workers are grouped into teams
making sure they have an adequate qualification to perform the assigned tasks. The qualifi-
cations are definded as hierarchical skill levels. Workers can perform a task of a certain level
only if their skill level is equal or higher. Since the tasks are located at different parking
positions, we have to plan a route for the workers, so that they are present at the locations
of the tasks in time to carry them out. A schedule for all the tasks has to be found, so that
the tasks are performed as soon as possible.

Some of the tasks can be performed in more than one execution mode. An execution
mode defines the number of workers needed to carry out the task in a certain amount of
time. Modes which require more workers to perform a task also require less time. Teams
can only perform tasks which entail a mode requiring a number of workers equal to the
number of members of the team. In order to avoid complex synchronizing interactions, the

107

2

workers leave the depot in teams, reach one or more task locations at which they perform
the corresponding tasks and return back to the depot. Teams are not fixed for the whole
time horizon, since the workers are free to form new ones as they come back to the depot.

Let us define I as the set of tasks and K as the set of possible skill levels. Each task i
has to be performed within its time window [ESi, LFi]. The setMi =

{
mmin
i , ...,mmax

i

}

represents the different modes in which task i can be peformed. When task i is per-
formed in a certain mode, the number of workers needed corresponds to mi, while pi,m
is the corresponding execution time; notice that pi,m > pi,m+1. The earliest finish time is
thereforeEFi = ESi+ pi,mmax . We define a tour r as the sequence of tasks carried out by a
team composed by fr members with skill levels equal or higher than qr. During its tour, the
team can perform tasks with a skill level requirement equal or lower than qr which entails
an execution mode equal to fr. The tour r specifies the start time Sri and end time F ri for
each performed task. A feasible tour r must therefore be compliant with the following:

Sri ≥ ESi
F ri ≤ LFi
Sri + pi,m = Fi

Srj ≥ F ri + di,j

where i and j represent two consecutive tasks in the tour sequence and di,j is the time
needed to go from i to j. Since our goal is to complete the tasks as soon as possible, we
introduce a penalty for each scheduled task, that is the difference between its earliest finish
time and its actual finish time. We can therefore define the cost cr of a tour r as

cr =
∑

i∈Ir

(F ri − EFi) (1)

where Ir is the set of tasks performed during the tour. Supposing we can generate all
possible team tours, we can write down the following formulation:

min
K∑

k=1

∑

r∈Ωk

crkλ
r
k (2)

s.t.
∑

r∈Ωk

ark,iλ
r
k ≥ 1 ∀k ∈ K,∀i ∈ I (3)

K∑

k′=k

∑

r∈Ωk′

brk′,tλ
r
k′ ≤

K∑

k=k′

Nk′ ∀k ∈ K,∀t ∈ T (4)

λrk ∈ [0, 1] ∀k ∈ K,∀r ∈ Ωk (5)

The tours are grouped by skill level k in order to simplify the notation. The set of tours
of skill level k is Ωk and λrk is the binary variable which is 1 if tour r of skill level k is
selected in the solution, 0 otherwise. The parameter ark,i is equal to 1 if the team from
tour r performs task i, 0 otherwise. The parameter brk,t is equal to the number f of team
members (which need to own a skill level of at least k) for those instants t when the team
is operating, 0 otherwise. The overall number of available workers of skill level k is denoted
as Nk. Constraint (3) enforces that every task is performed. Constraint (4) ensures that
the number of workers is not exceeded in any time instant.

3 Literature Review

Given its strategic importance, ground handling has been considerably investigated in
the literature. Nevertheless, not many publications tackle the problem from a combined

108

3

scheduling and routing point of view. In Dohn et. al. (2009) teams are fixed before they
are routed across the tasks. There is no schedule time optimization since the focus is
to maximize the number of tasks performed. Fink et. al. (2019) focus on the Abstract
VRP with Workers and Vehicle Synchronization (AVRPWVS), which they apply to ground
handling. This problem, however, does not include any kind of qualifications or skills, which
are necessary in such a setting. In the AVRPWVS, workers need to be synchronized in time
and space at the task locations. This dramatically increases the complexity, making it hard
to solve real-world instances. Dohn et. al. (2009) as well as Fink et. al. (2019) use a column
generation approach, which is known to have good performances in solving vehicle routing
problems with time windows (see Desrochers et. al. (1992)). Manpower allocation with
hierarchical skill levels has been investigated, on a general level, by Bellenguez-Morineau
and Néron (2007). Practical applications can be found in Cordeau et. al. (2010) and Firat
and Hurkens (2012). In these papers, the travel time needed to move from the location of
a task to another one is neglected, differently from our problem setting. The multi-mode
RCPSP has been solved to optimality by Sprecher and Drexl (1998). In Hartmann and
Briskorn (2010) a survey on the topic can be found.

4 Proposed Solution Approach

We propose the use of column generation to find lower bounds, and branch and price
to find the optimal integer solution. We define the continuous master problem (MP) as
the linear relaxation of the model proposed in Section 2. The value of an optimal solution
of the MP is therefore a lower bound for the original problem. Furthermore, we introduce
the restricted master problem (RMP), which has exactly the same structure of the MP,
but is defined over a subset of tours Ψ ⊂ Ω. Column generation consists of an iterative
process where RMP is solved and the values of the dual variables are used to generate new
promising tours. A new tour can improve the current RMP solution only if its reduced cost
is negative. If it possibile to generate a new feasible tour with a negative reduced cost, the
tour is added to Ψ and a new iteration of the column generation starts. Otherwise, the
current solution of the RMP cannot be improved, therefore it is optimal for the MP and
its value is a valid lower bound for the original problem. The reduced cost of a tour r with
f team members working at level k is the following:

crk −
∑

i∈I
ark,iµk,i +

∑

t∈T
brk,tδk,t (6)

where µ and δ are respectively the values of the dual variables corresponding to constraints
(3) and (4). The reduced cost of a team tour can be interpreted as follows. For each task
performed during the tour, a penalty has to be paid if the end time is subsequent to the
earliest finish time (crk). The first summation is a reward obtained for every performed task
while the second summation is a penalty paid for using limited resources (i.e. workers) at
specific instants in time. The pricing problem is the problem of finding a tour of minmum
reduced cost. Since a tour has a predefined number of team members f who work at a
maximum skill level q, we have to solve the pricing problem multiple times with different
settings. When solving a pricing problem for a team of f workers working at level q, only
the tasks involved are those which entail an execution mode with f workers and whose
skill level requirement equal or less than q. We can model the pricing problem with a time
expanded network, where we have two types of nodes for each task: start nodes and end
nodes. For each suitable task i, the network encompasses a start node for each possible start
time of i, and a leave node for each instant from EFi until the end of the time horizon.
Each start node has one outgoing execution arc connecting it to an end node according to

109

4

the execution time. The weight of an execution arc from node (i, tS) to (i, tF) corresponds
to the reward for performing task i, plus the penalty for ending i at tF (if any) and the
penalty for keeping f workers busy from tS to tF . An end node (i, ti) is connected to a
start node (j, tj) with a travel arc if i 6= j and tj = ti + di,j . Travel arcs also connect the
source node to all start nodes and all end nodes to the sink node. Start and sink nodes
represent respectivly the leaving from and the returning to the depot. The weights of the
travel arcs represent the penalty for keeping the workers busy from ti to tj . If the origin
of the arc is the source node, ti = tj − ddepot,i while if if the destination of the arc is the
sink node, tj = ti + di,depot. Eventually, two consecutive end nodes (i, ti) and (i, ti + 1)
referring to the same task i are connected with a waiting arc. The weight of a waiting arc
corresponds to the penalty for keeping workers busy, therefore it follows the rule for travel
arcs. Given the described network, the pricing problem can be solved finding a shortest
path from the source node to the sink node.

5 Experimental Study

In order to verify the quality of our approach we will test the proposed algorithm on
data from a major European airport. Based on these data, we generated various realistic
test instances. The instances cover from 30 minutes up to 4 hours of a working day. Since
the flights are not equally distributed during the day, we differentiate the instances in low,
medium and high workload. The final results of the experimental study will be presented
in the conference.

References

Bellenguez-Morineau, O., and Néron, E. , 2007, “A branch-and-bound method for solving multi-
skill project scheduling problem", RAIRO-operations Research, Vol. 41(2), 155-170.

Boeing Commercial Airplanes, 2019, Current Market Outlook 2019-2038, Internet.
Cordeau, J. F., Laporte, G., Pasin, F., and Ropke, S., 2010, “Scheduling technicians and tasks in

a telecommunications company.", Journal of Scheduling, Vol. 13(4), 393-409.
Desrochers, M., Desrosiers, J., and Solomon, M., 1992, “A new optimization algorithm for the

vehicle routing problem with time windows.", Operations research, Vol. 40(2), 342-354.
Dohn, A., Kolind, E. and Clausen, J, 2009, “The manpower allocation problem with time win-

dows and job-teaming constraints: A branch-and-price approach.", Computers & Operations
Research, Vol. 36(4), 1145-1157.

Frey, M., Desaulniers, G., Kiermaier, F., Kolisch, R., and Soumis, 2019, “Column generation for
vehicle routing problems with multiple synchronization constraints.", European Journal of
Operational Research, Vol. 272(2), 699-711.

Firat, M., and Hurkens, C. A. J., 2012, “An improved MIP-based approach for a multi-skill work-
force scheduling problem.", Journal of Scheduling, Vol. 15(3), 363-380.

Hartmann S. and Briskorn D., 2010, “A survey of variants and extensions of the resource-
constrained project scheduling problem.", European Journal of Operational Research, Vol.
207(1), 1-14.

Oreschko, B., Schultz, M., and Fricke, H., 2011, “Skill analysis of ground handling staff and delay
impacts for turnaround modeling", Air Transp. Oper, pp. 310-318.

Sprecher A. and Drexl A., 1998, “Solving multi-mode resource-constrained project scheduling
problems by a simple, general and powerful sequencing algorithm.", European Journal of
Operational Research, Vol. 107(2), 431-450.

110

Robust scheduling for target tracking with
wireless sensor network considering spatial

uncertainty

Florian Delavernhe1, André Rossi3, Marc Sevaux4

1 Université d’Angers, LERIA, F-49045 Angers, France
florian.delavernhe@univ-angers.fr

2 Université Paris-Dauphine, LAMSADE, UMR 7243, CNRS, F-75016 Paris, France
andre.rossi@dauphine.psl.eu

3 Université Bretagne Sud, Lab-STICC, UMR 6285, CNRS, F-56321 Lorient, France
marc.sevaux@univ-ubs.fr

1 Introduction

A wireless sensor network (WSN) is a set of sensors, randomly deployed in an
area often hard or dangerous to access and without any infrastructure. Hence,
the batteries of the sensors are not refillable which limits the lifetime of the
network, i.e., how long it can operate. There are several types of sensors for
different applications, and we focus in this work on the target tracking. In such
applications, the network aims to monitor a set of moving targets (planes, trains,
terrestrial vehicles,. . .), whose spatial trajectories are estimated. It means that,
at instant t in the time horizon, we have an estimation of the position of each
target. However, this estimation may not be accurate, and the difficulty of the
problem is to cover the targets considering the highest possible deviation from
their estimated trajectories. Moreover, in order to preserve energy in the net-
work for future mission, at most one sensor per target should be used at any
time. Finally, all the data collected by the sensors have to be transmitted to a
base station. The problem is to find a robust schedule to continuously monitor
the targets and to transfer the data. This schedule is robust because it has to
maximize a spatial stability radius, such that, it stays feasible as long as the
targets are not deviated for more than the value of the stability radius from
their estimated position. The targets are covered at every instant t as long as,
they are located in the disc of radius equals to the stability radius and centered
on the estimated position of the target. In this work, we propose (i) a discretiza-
tion method on the geometric data, (ii) two upper bounds on the value of the
stability radius, and (iii) a method that uses the discretized data and the upper
bounds to compute a robust schedule.

2 Definition of the problem

Let J be the set of the n targets that should be monitored. Each target j has
an estimated trajectory such that at instant t, the estimated position of j is

111

Pj(t). For each target, its estimated trajectory is represented using a collection
of waypoints. The trajectory is a sequence of segments between the waypoints.
i.e., a trajectory is a suite of segments. The network is a set I of m sensors and
a base station where the data is sent. A sensor can receive or transmit data only
with the base station or another sensor if it is in its neighborhood N(i), i.e.,
if the distance is less than the communication range RC . For a target j and a
instant t, we define ρj(t, R) as the set of all points that are in the disc of radius
R and centered on Pj(t). There are three types of energy consumption for a
sensor:

– monitoring a target (pS Watts),
– transmitting data (pT Watts),
– receiving data (pR Watts).

3 Discretization

The following figure is an example, where three sensors (1,2 and 3) are deployed
to cover a single target (the black arrow) in the horizon of time H = [0, 20]:

•
1

•
2

•
3

Discretization is the necessary transformation of the geometric data of the
problem into a set of discretized data that can be used for modeling and solving
the problem. The aim is to represent the trajectory of each target as a set of
time windows with a set of candidate sensors associated to each window, that
can monitor the target during the entire time window. Let’s call a face f a set
of spatial points that are covered by the same set of sensors S(f). Monitoring
a target j at time t is therefore monitoring all the faces where j can possibly
be. Hence, for a stability radius R, we need to cover all the faces with a non
empty intersection with ρj(t, R). The intersection of all these faces defines the
face to cover (if the intersection is empty, then the target cannot be covered).
For example, if a target needs to be covered in the face {1} and the face {1, 2},
the set of candidate sensors is {1} ∩ {1, 2} = {1}.

Thus, the trajectory of a target j is represented as a sequence of faces to
be covered, associated to the set Kj of time windows. The time windows are

112

delimited by time instants called ticks, such that a tick is either entering which
means that a new sensor is candidate, or leaving when a sensor is no more
candidate.

With a R = 0, the time windows and candidate sensors over the horizon of
time, in our example, are:

{1} {1,2} {1,2,3} {2,3}
0 4 12 17.5 20

When increasing the stability radius, the spatial uncertainty covered is in-
creasing. It delays the instant where a sensor is guaranteed to cover a target
and is advancing the moment where a sensor is no more candidate to cover the
target. The evolution of a tick depends on the segment of the estimated spatial
trajectory where it is located. Therefore, increasing the stability radius corre-
sponds to moving the ticks and is modifying the length of the time windows.
This may change the set of candidate sensors when two ticks are equal.

In our example, with a certain value of R, the tick moved and changed the
candidate sensors such that we obtain:

{1} {1,2} {2} {2,3}
0 8 13.5 16 20

Another difficulty is that, for each target j, there are instants t where time
window can appear when the stability radius reaches a certain value r. Indeed,
it possible that some points in ρj(t, r) are no longer covered by a sensor that was
initially covering Pj(t) even if the corresponding tick did not move. It means
that a new time window is appearing in Kj at t when the stability radius reaches
this specific value of R. In our example, a time window is appearing at the time
corresponding to the last estimated waypoint if the stability radius is great
enough to allow the target to be out of the range of sensor 2.

In order to find all these time windows, we need to look at each intersection
of the segments of the estimated trajectory of a same target, i.e., when the target
is changing of direction. For each sensor covering an extremity e of a segment,
there is a potential time window w. It appears at the time instant the target is
estimated to be at e, when the stability radius is equal to the sensing range of
the sensor minus the distance between the sensor and e. Indeed, a segment is
always leaving the range of a sensor starting by one of its extremity or by the
estimated frontier between two faces (initial ticks).

To conclude, an increase of the stability radius is modifying the length of
the time windows, adding new time windows, and adding new or changing the
sets of candidate sensor. All of this issues are depending on the coordinates of
the sensors and the segments of the trajectories.

4 Upper bounds on the stability radius

Two upper bounds were found and implemented for our solving method. The
first bound searches the first value of R that creates an empty face to cover.
The stability radius cannot exceed this value and it always corresponds to either

113

the intersection between two ticks, or the apparition of a new time window.
First, we need to compute, for each extremity, the last time window that will
appear. Because each of the time window is corresponding to one sensor no
longer candidate for this extremity, the last time window is corresponding to
an empty face. These values are easily computed with the distance between the
extremity and the sensors. The second part of this bound is, for each segment,
to find the lowest value of R that corresponds to an intersection between two
ticks such that the intersection point is no longer covered by any other sensor
when the intersection occurs. These values are computed using the position of
the sensors and the segments’ coordinates.

The second bound computes the value of R such that there is not enough
energy in a set of candidate sensors to cover the length of the corresponding
time window. In that purpose, for each face in the estimated trajectories of the
targets, we compute the total sum of the batteries of the sensors in range and
the total energy needed. We order these sensors by increasing values of R for
which they are no longer in range of any point of the trajectories in the face.
Afterwards, we remove the batteries of these sensors, one by one, until the sum
of the batteries of the remaining sensors are not enough to cover the face.

5 Solving Process

Because the time windows and the corresponding sets of candidate sensors are
depending on the value of the stability radius, a single linear program cannot be
solved to maximize R. Therefore, we use a dichotomy method on the values of R
which modify these sets. For each value tested by the dichotomy, the following
satisfactory linear program is solved:∑

j∈J

∑
k∈Kj |i∈Sj(k)

xjik p
S +pR

∑
i′∈N(i)

fi′i +pT
∑

i′∈N(i)

fii′ ≤ Ei ∀i ∈ I (1)

∑
j∈J

∑
k∈Kj |i∈Sj(k)

xjik +
∑

i′∈N(i)

fi′i −
∑

i′∈N(i)

fii′ = 0 ∀i ∈ I (2)

∑
i∈Sj(k)

xjik = ∆j
k ∀j ∈ J, k ∈ Kj (3)

δ ≥ 0 (4)
xjik ≥ 0 ∀j ∈ J, k ∈ Kj , i ∈ Sj(k) (5)
fii′ ≥ 0 ∀i ∈ I, i′ ∈ N(i) (6)

With ∆j
k the size of the k-th time window of the sensor j and xjik the time

sensori i is monitoring j in its k-th time window. Constraints (1) correspond to
the limitations of the batteries. Constraints (2) are flow constraints, where the
data collected and received by a sensor is transmitted. Constraints (3) sets that
the sum of the activities of the sensors in a time window is equal to its length.

References

1. Lersteau, C., Rossi, A., Sevaux, M. (2018). Minimum energy target tracking with
coverage guarantee in wireless sensor networks. European Journal of Operational
Research, 265(3), 882-894.

114

1

Exact solution of the two-machine �ow shop problem

with 3 operations

Federico Della Croce1, Fabio Salassa1 and Vincent T'kindt2

1 Politecnico di Torino, Italy
[federico.dellacroce,fabio.salassa]@polito.it

2 University of Tours, Laboratory of Theoretical and Applied Computing (EA 6300), ERL
CNRS 7002 ROOT, Tours, France

tkindt@univ-tours.fr

Keywords: Two-machine �ow shop with three operations, ILP modeling, Exact approach.

1 Introduction

We consider a two-machine �ow shop problem with three operations originally proposed
in (Gupta et al. 2004). There is a set of n jobs being available at time zero to be processed
on a two-machine �ow-shop. Each job i has three operations, where the �rst operation
has processing time ai and must be performed on the �rst machine. The third operation
has processing time bi and must be performed on the second machine. Finally, the second
operation has processing time ci and can be performed either on machine 1 immediately
after the �rst operation or on machine 2 immediately before the third operation. The
operations of the same job cannot be processed concurrently, nor can any machine process
more than one job at a time. We assume that preemption is not allowed, i.e., any operation
once started must be completed without interruption. The goal is to minimize the makespan
denoted by Cmax. As mentioned in (Gupta et al. 2004), this problem applies to several
situations where a machine-independent setup operation is needed on each job between
the two operations. The setup time is job-dependent and both machines are equipped with
the required tooling for the setup. Then, the setup of an individual job is performed either
while the job is still mounted on the �rst machine after the completion of the �rst operation
or once the job is mounted on the second machine before the start of the second operation.
The problem has strong similarities with the two-machine �ow shop problem with common
due date and jobs selection considered in (T'kindt et al. 2007) and (Della Croce et al. 2017).
By using the extended three-�eld notation of (T'kindt, Billaut 2006) this latter problem
is denoted by F2|di = d, unknown d |ε(d/nT) where the number of jobs n − nT to be
selected (here nT is the number of tardy, hence discarded, jobs) is given in advance and
the aim is to �nd the minimum value of d. For problem F2|di = d, unknown d |ε(d/nT),
the best available exact approach is able to solve very large size instances in limited CPU
time (less than 30 seconds in the worst case for instances with n = 100000).

From every instance of the original 3-operation two-machine �ow shop problem, it is
possible to generate a special F2|di = d, unknown d |ε(d/nT) problem as follows. Every
job i of the original problem induces two "coupled" incompatible jobs i1 and i2 of the jobs
selection problem where i1 has the second operation of i assigned to the �rst machine,
while i2 has the second operation of i assigned to the second machine. Correspondingly,
job i1 has processing times αi1 = ai + ci and βi1 = bi, while job i2 has processing times
αi2 = ai and βi2 = bi + ci. Thus, we reduce to a two-machine �ow shop problem with 2n
jobs where exactly n compatible jobs out of the 2n jobs have to be selected.

115

2

2 ILP formulation

Consider the 2n jobs generated from the original problem as indicated above with
processing times αi (βi), 1 ≤ i ≤ 2n, on machine M1 (M2). When the set Ω of selected
jobs is �xed, the minimization of the makespan for these jobs can be done in polynomial
time by the so-called Johnson's algorithm (Johnson 1954): schedule �rst the jobs with
αi ≤ βi in non-decreasing order of αi, followed by the jobs with αi > βi in non-increasing
order of βi. Without loss of generality, let us assume that the 2n jobs are indexed according
to their position in the Johnson's schedule.

Let d be the unknown common due date, or equivalently the makespan of the selected
jobs. Let us associate to each job i a binary variable xi that indicates if job i is selected or
not. A �rst ILP model is as follows.

min d (1)

α1x1 +
2n∑

i=1

βixi ≤ d (2)

2n∑

i=1

αixi + β2nx2n ≤ d (3)

j∑

i=1

αixi +
2n∑

i=j

βixi ≤ d, ∀j = 2, ..., 2n− 1 (4)

xi + xk = 1 ∀i, k incompatible (5)

xi ∈ {0, 1} ∀i ∈ 1, ..., n (6)

Here, constraints (2�4) are critical-path constraints which de�ne the value of d. Notice
that d is always determined by the sum of the processing times of jobs 1, .., j on the
�rst machine plus the sum of the processing times of jobs j, .., 2n on the second machine
where j depends on the selected early jobs and therefore constraints (2�4) consider all
possible values of j with 1 ≤ j ≤ 2n. Notice that in the critical path constraints (2�4),
we explicited constraint (2) corresponding to j = 1 and constraint (3) corresponding to
j = 2n. Constraints (5) represent the incompatibility constraints between each pair of
coupled jobs so that there will be exactly n early (selected) jobs. Finally, constraints (6)
indicate that the xi variables are binary.

Due to the presence of constraints (4) that generate O(n2) nonzeroes in the constraints
matrix, the above model is limited in size as it induces an out-of-memory status of the
solver if problems with several thousands of variables are considered.

As mentioned in (Della Croce et al. 2017), there exists an equivalent ILP formulation
withO(n) nonzeroes in the constraints matrix that can be obtained by introducing variables

yj =
∑j

i=1 αixi +
∑2n

i=j βixi and constraints yi = yi−1 − βi−1xi−1 + αixi, ∀i ∈ 2, .., 2n.

min d (7)

y1 = α1x1 +
2n∑

i=1

βixi (8)

y2n =
2n∑

i=1

αixi + β2nx2n (9)

yi = yi−1 − βi−1xi−1 + αixi ∀i = 2, ..., 2n− 1 (10)

yi ≤ d, ∀i = 1, ..., 2n (11)

116

3

xi + xk = 1, ∀i, k incompatible (12)

xi ∈ {0, 1} ∀i ∈ 1, ..., n, yi ≥ 0 ∀i ∈ 1, ..., n (13)

Let us denote by ILPc the above ILP. Interestingly enough, the addition of the incom-
patibility constraints makes the problem much more di�cult both for CPLEX 12.9 solver
applied to ILPc and to the constraint generation approach of (Della Croce et al. 2017)
adapted in order to incorporate the incompatibility constraints. We tested both solution
approaches on a Computer Intel i5 @1.6 GHz and 8 G of RAM. We considered a stan-
dard distribution of processing times with ai, bi and ci uniformly distributed in the range
[1...100] and tested 10 distinct instances for each problem size considering a CPU time limit
of 60 seconds per instance. With this distribution, CPLEX 12.9 solver applied to model
(7�13) already failed to solve to optimality one instance with 200 jobs, while the constraint
generation approach of (Della Croce et al. 2017) was limited to 600 jobs runnning out of
time on one instance with 700 jobs. We remark however that constraints (8�9) in ILPc

can be modi�ed as follows where α[min2] and β[min2] indicate the second smallest processing
time on the �rst and the second machine respectively.

y1 = α1x1 + α[min2](1− x1) +
2n∑

i=1

βixi (14)

y2n =
2n∑

i=1

αixi + β[min2](1− x2n) + β2nx2n (15)

Indeed, if x1 = 1, then constraint (14) coincides with constraint (8), while if x1 = 0, then
the critical path on the �rst selected job has processing time on the �rst machine not
inferior to a[min2]. Similar consideration holds with respect to constraint (15) taking into
account the critical path on the last selected job and its processing time on the second
machine. At the time of the conference we will also discuss how a[min2] and b[min2] can be
increased without loss of optimality. In the reminder we denote by ILPic the improved ILP
formulation that substitutes in ILPc constraints (8�9) with constraints (14�15).

Hence, we can then successfully adapt to our problem the constraint generation ap-
proach proposed in (Della Croce et al. 2017) according to the scheme depicted in Algo-
rithm 1. There, we denote by F23op our problem formulated according to the ILPic model
and by F23oprel its relaxation induced by the elimination of constraints (10) and considering
constraints (11) only for i = 1, 2n.

Algorithm 1 Contraint Generation Algorithm

1: End=False
2: while !End do

3: Solve F23op
rel : x̄ is its solution and OPT (F23op

rel) its value
4: Compute d(x̄) the optimal value of the ILP of F23op with added constraints x = x̄
5: if (d(x̄) = OPT (F2rel)) then
6: End=True
7: else

8: Let C be the constraint giving d(x̄) in the ILP of F23op for x̄
// (C is the most violated constraint)

9: Add C to F23op
rel

10: end if

11: end while

12: return x̄ as the optimal solution of F23op

117

4

Algorithm 1 is a constraint generation approach solving initially problem F23oprel and
then considering a separation procedure adding to the relaxation any inequality of the
original formulation that is violated by the current solution. We tested both CPLEX 12.9
solver applied to model ILPic and Algorithm 1 on instances generated according to the
same distribution considered above (10 instances for each problem size). The related results
are depicted in Table 1 where it is shown that Algorithm 1 is clearly superior and solves
within 60 seconds instances with up n = 30000. Detailed computational results on several
other di�erent distributions will be presented at the conference.

n CPLEX Algorithm 1
tavg tmax tavg tmax

1000 0.6 1 0.1 1
4000 9.3 13 0.6 1
7000 24.1 36 1.2 2
10000 CPU limit 3.7 5
15000 CPU limit 6.2 9
20000 CPU limit 10.1 13
25000 CPU limit 24.3 35
30000 CPU limit 25.9 43
35000 CPU limit CPU limit

Table 1. Comparing CPLEX applied to model ILPic and Algorithm 1

Acknowledgements

This work has been partially supported by "Ministero dell'Istruzione, dell'Università e
della Ricerca" Award "TESUN-83486178370409 �nanziamento dipartimenti di eccellenza
CAP. 1694 TIT. 232 ART. 6".

References

Della Croce, F., Koulamas, C., T'kindt, V.: A constraint generation approach for two-machine
shop problems with jobs selection. European Journal of Operational Research, 259: 3, 898�905
(2017).

Gupta, J.N.D., Koulamas, C.P., Kyparisis, G.J., Potts,C.N.,Strusevich, V.A.: Scheduling Three-
Operation Jobs in a Two-Machine Flow Shop to Minimize Makespan. Annals of Operations
Research, 129: 1-4, 171�185 (2004).

Johnson, S.: Optimal two and three stage production schedules with set-up time included. Naval
Research Logistics Quarterly, 1, 61�68 (1954).

Tkindt, V. , Billaut, J.-C.: Multicriteria scheduling: Theory, models and algorithms (2nd edition).
Heidelberg, Germany: Springer-Verlag (2006).

T'kindt, V., Della Croce, F., Bouquard, J.L.: Enumeration of Pareto Optima for a Flowshop
Scheduling Problem with Two Criteria. INFORMS Journal on Computing, 19: 1, 64�72 (2007)

118

1

Adversarial bilevel scheduling on a single machine

Della Croce F.1 and T'kindt V.2

1 DIGEP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, CNR, IEIIT,
Torino, Italy.

federico.dellacroce_a@polito.it
2 Université de Tours, Laboratoire d'Informatique Fondamentale et Appliquée (EA 6300), ERL

CNRS 7002 ROOT, Tours, France,
and

DIGEP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy,
tkindt@univ-tours.fr

Keywords: Single machine, bilevel optimization.

1 Introduction

In this contribution we focus on a particular setting in which two agents are concerned
by the scheduling of a set of n jobs. The �rst agent, called the leader, can take some decisions
before providing the jobset to the second agent, called the follower, who then takes the
remaining decisions to solve the problem. As an example, the leader could select a subset
of n′ ≤ n jobs that the follower has to schedule. Notice that the decisions the agents can
take are exclusive: in this example, the follower cannot decide the jobs to schedule and the
leader cannot schedule the jobs. This setting falls into the category of bilevel optimization

(Dempe et al. 2015). In such problems it is assumed that the leader and the follower follow
their own objectives which can be contradictory, so leading to very hard optimization
problems. Recently, many papers on bilevel combinatorial optimization appeared, here we
refer to (Caprara et al. 2016, Della Croce et al. 2019, Fischetti et al. 2017, Fischetti et
al. 2018, Fischetti et al. 2019) just to mention a few. On the other hand, to the authors
knowledge, the literature on bilevel scheduling is much more limited. We refer here to
(Abass 2005, Karlof and Wangs 1996, Kis and Kovacs 2012). We focus in the following on
single machine scheduling under the adversarial framework where the goal of the leader is
to make the follower solution as bad as possible and provide several exact polynomial time
algorithms for di�erent objective functions when the leader can only modify data of the
problem.

2 Adversarial bilevel single machine scheduling

2.1 Sum of completion times

It is assumed that, given a list of n jobs with processing times pFj , the follower is

scheduling jobs so that their sum of completion times, denoted by
∑
j C

F
j , is minimum.

This is doable in polynomial time by applying the so-called SPT rule (Shortest Processing
Times �rst). Let be the initial processing times pj so that p1 ≤ ... ≤ pn. Then, the leader
has to decide how to �x quantities qj so that with pFj = pj + qj , the follower optimal
solution is the worst possible. Obviously, it is of no interest for the leader that some qj < 0.
In addition, the leader has a budget so that

∑
j |qj | ≤ Q, with Q ∈ N given. This problem

is referred to as 1|ADV −p|∑j C
F
j , with ADV −p meaning that it concerns an adversarial

bilevel problem in which the leader can only modify the processing time values.

Theorem 1. The 1|ADV−p|∑j C
F
j problem can be solved in O(n log(n)) time. The leader

sets:

119

2

• qj = P − pj, ∀j = 1..
(
kP −Q− kPP +

∑kP
i=1 pi

)
,

• qj = P − pj + 1, ∀j =
(
kP −Q− kPP +

∑kP
i=1 pi

)
..kP ,

• qj = 0, ∀j = kP + 1..n,

with P = argmax0≤t≤∑j pj

(
(kt−∑k

j=1 pj) ≤ Q|p1 ≤ ... ≤ pk ≤ t and pk+1 > t
)
, and kP

the job such that pkP ≤ P < pkP+1. The follower applies the SPT rule on the pFj = pj+qj's.

2.2 Weighted sum of completion times

Now, let us assume that, in addition to the previous problem, jobs are also attached
weights wFj and the follower is scheduling jobs so that their weighted sum of completion

times, denoted by
∑
j w

F
j C

F
j , is minimum. Whenever the processing times are �xed, this

is doable in polynomial time by applying the so-called WSPT rule (Weighted Shortest Pro-

cessing Times �rst). Let be the initial processing times pj so that p1
wF

1
≤ ... ≤ pn

wF
n
. Again,

the leader has to decide how to �x quantities qj so that with pFj = pj + qj , the follower
optimal solution is as worse as possible. Obviously, it is of no interest for the leader that
some qj < 0. This problem is referred to as 1|ADV − p|∑j w

F
j C

F
j .

We �rst consider the relaxed version where qj ∈ R,∀j = 1..n, denoted by 1|ADV −
p, qj ∈ R|∑j w

F
j C

F
j .

Theorem 2. The 1|ADV − p, qj ∈ R|∑j w
F
j C

F
j problem can be solved in O(n log(n))

time. The leader sets:

• qj = (Q+
∑kR

`=1 p`)w
F
j∑kR

`=1 w
F
`

− pj, ∀j = 1..kR

• qj = 0, ∀j = (kR + 1)..n,

with R =
Q−∑kR

j=1 pj∑kR
j=1 w

F
j

and kR the job such that
pkR

wF
kR

≤ R <
pkR+1

wF
kR+1

. The follower applies the

WSPT rule on pFj = pj + qj and wFj = wj, ∀j = 1..n.

The optimal solution of the 1|ADV − p|∑j w
F
j C

F
j problem can be obtained by solving

iteratively the relaxed version: �rst solve it with the initial Q value and round down the
computed qj 's. Then, on the remaining quantity Q′ = (Q−∑j qj) solve again the relaxed
problem to modify processing times. This process is iterated until all initial budget Q is
assigned to jobs. As there are at most n iterations, this leads to an exact algorithm than
can be implemented in O(n2) time.

Let us turn to the other possible adversarial problem in which the leader can only
modify the weights of the follower. So, for the follower's problem we set pFj = pj and

wFj = wj+qj , ∀j = 1..n, with qj ∈ N. This problem is referred to as 1|ADV −w|∑j w
F
j C

F
j

and as previously, 1|ADV − w, qj ∈ R|∑j w
F
j C

F
j refers to the relaxed version with real

valued qj 's.

Theorem 3. The 1|ADV − w, qj ∈ R|∑j w
F
j C

F
j problem can be solved in O(n log(n))

time. The leader sets:

• qj =
(Q+

∑n
`=kR

w`)p
F
j∑n

`=kR
pF`

− wj, ∀j = kR..n

• qj = 0, ∀j = 1..(kR − 1),

120

3

with R =
∑n

j=kR
pFj

Q+
∑n

j=kR
wj

and kR the job such that
pFkR−1

wkR−1
< R ≤ pFkR

wkR
. The follower applies

the WSPT rule on pFj = pj and wFj = wj + qj, ∀j = 1.n.

The 1|ADV −w|∑j w
F
j C

F
j problem can be solved by iteratively solving the relaxation

with real valued qj 's to dispatch the initial leader's budget Q. Again, this leads to an O(n2)
optimal algorithm.

2.3 Maximum lateness

Assume that each job j is de�ned by a processing time pj and a due date dj . The aim,
for the follower, is to schedule jobs so as to minimize the maximum lateness, de�ned by
LFmax = maxj=1..n(C

F
j −dFj). The leader can modify either the processing times or the due

dates. Without loss of generality, let us assume that d1 ≤ ... ≤ dn.

We �rst focus on the problem where the leader can only modify the processing times,
which is referred to as 1|ADV − p|LFmax. As the due dates remain unchanged, we set
dFj = dj , ∀j = 1..n. Besides, pFj = pj + qj is the processing time value of the follower's
problem. It is trivial to show that qj ∈ N in order to make increasing the optimal solution
value of the follower's problem. Besides, it is known that the 1||Lmax problem is solved to
optimality by the EDD rule (Earliest Due Dates �rst). So the follower builds the optimal
sequence by sorting jobs by non decreasing values of the dFj 's which is not impacted by

any variations in the processing time values. Consequently, the 1|ADV − p|LFmax problem
can be solved in O(n log(n)) time by sorting jobs according to EDD rule and then set:

• qk = Q with k the earliest job having (Ck − dk) = L∗max and L∗max the Lmax value of
the EDD schedule,
• qj = 0, ∀j = 1..n, j 6= k.

Let us consider the problem in which the leader can only modify the due dates, which
is referred to as 1|ADV − d|LFmax. Then, we set pFj = pj and d

F
j = dj + qj , ∀j = 1..n.

Theorem 4. The 1|ADV −d|LFmax problem can be solved in O(n log(n)) time. The leader

sets:

� q` = D − d` ≤ 0, ∀` ∈ ∪j∈T Bj ∪ T ,
� and q` = 0, otherwise.

with:

� T = {j/CFj − dFj = L∗max}, with L∗max the value of the initial EDD sequence,

� Bj = {k < j|@` ∈ T , with k < ` < j}, ∀j ∈ T ,
� α` = (d` − dj) ≤ 0 and [`] is the `-th αu value when sorted by non decreasing values,

i.e. α[1] ≤ ... ≤ α[n′] with n
′ = | ∪j∈T Bj |,

� k such that (|T |+ k)α[k] −
∑k
`=1 α[`] ≤ Q ≤ (|T |+ k + 1)α[k+1] −

∑k+1
`=1 α[`],

� and D = bQ+
∑k

`=1 α[`]

|T |+k c.

The follower applies the EDD rule on pFj = pj and dFj = dj + qj, ∀j = 1.n.

Acknowledgements

This work has been partially supported by "Ministero dell'Istruzione,
dell'Università e della Ricerca" Award "TESUN-83486178370409 �nanziamento diparti-
menti di eccellenza CAP. 1694 TIT. 232 ART. 6".

121

4

References

Abass S.A.: Bilevel programming approach applied to the �ow shop scheduling problem under
fuzziness. Computational Management Science. 2: 279�293 (2005)

Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.: Bilevel Knapsack with Interdiction Con-
straints. INFORMS Journal on Computing. 28, 319�333 (2016)

Della Croce, F., Scatamacchia, R.: Lower Bounds and a New Exact Approach for the Bilevel
Knapsack with Interdiction Constraints. In: Lodi A., Nagarajan V. (eds) Integer Programming
and Combinatorial Optimization. IPCO 2019. Lecture Notes in Computer Science, vol 11480,
155�167. Springer International Publishing (2019)

Dempe, S., Kalashnikov, V. Perez-Valdes, G.A., Kalashnikova, N., 2015, �Bilevel programming
problems", Springer.

Fischetti, M., Ljubi¢, I., Monaci, M., Sinnl, M.: Interdiction Games and Monotonicity, with Ap-
plication to Knapsack Problems. INFORMS Journal on Computing. 31, 390�410 (2019)

Fischetti, M., Ljubi¢, I., Monaci, M., Sinnl, M.: A New General-Purpose Algorithm for Mixed-
Integer Bilevel Linear Programs. Operations Research. 65, 1615�1637 (2017)

Fischetti, M., Ljubi¢, I., Monaci, M., Sinnl, M.: On the use of intersection cuts for bilevel opti-
mization. Mathematical Programming. 172, 77�103 (2018)

J.K. Karlof, J.K., Wang, W.: Bilevel programming applied to the �ow shop scheduling problem.
Computers and Operations Research. 23:5, 443�451 (1996).

Kis, T., Kovacs, A.: On bilevel machine scheduling problems. OR Spectrum. 34, 43�68 (2012)

122

A Conjunctive-disjunctive Graph Modeling Approach for Job-Shop

Scheduling Problem with Changing Modes

1Xavier Delorme, 2Gérard Fleury, 2Philippe Lacomme, 3Damien Lamy

1 Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS,

Institut Henri Fayol, F - 42023 Saint-Etienne France

delorme@emse.fr

2 Université Clermont Auvergne,

Campus des Cézeaux, 1 rue de la Chebarde

TSA 60125 - CS 60026

63178 Aubière cedex France

placomme@isima.fr, gefleury@isima.fr

3 Mines Saint-Etienne, Institut Henri Fayol, F - 42023 Saint-Etienne, France

damien.lamy@emse.fr

Keywords: Scheduling, Reconfiguration, Job-shop, Conjunctive-Disjunctive Graph.

1. Introduction

Reconfigurable Manufacturing Systems (RMS) have been defined in (Mehrabi et al., 2000) as

an effective approach to deal with unpredictable and high-frequency market changes that are

facing industries. To cope with such changes, the production systems must be adaptive and able to

evolve in order to consider 1) changes in parts of existing products; 2) fluctuations in demands; 3)

evolution in legal regulations and 4) evolution in process technology. Meanwhile, the scheduled

operations remain partially manual like material handling, carrying and processing jobs as stressed

by (Napolitano, 2012). The assignment of operators to operations must include personal skills,

training and experience in order to match the competences and/or functionalities required by the

operations to be performed (Ferjani et al., 2017; Grosse et al., 2015). In RMS, the sequential

execution of operations may depends on the job operation sequence that can refer to Flow-shop,

Job-shop, etc. Including flexibility for processing operations remains possible at each step of the

job-sequence. Meanwhile, reconfigurability is the capacity of a set of machines to be reconfigured

in a period of time, which can be seen as setup times. Machine activation delay may include

cleaning the working zone, loading, positioning and unloading the parts (jobs) and can imply costs

coming from energy expenditures, equipment maintenance and labor as stressed by (Borgia et al.,

2013). Hence, in RMS a solution is composed by a set of configurations applied sequentially and

thus a sequence-dependent processing time of operations and sequence dependent setup times have

to be considered in such a production system. If sequence depend setup times are features of

several research projects in the scheduling community as stressed in (Sharma and Jain, 2016; Shen

et al., 2018), these works generally consider setup times at the operation level, whereas several

modifications of the system may occur in RMS requiring several resources to be inactive during

reconfigurations.

Hence, the problem addressed in this research project is different from the one introduced in

(Essafi et al., 2012) since it does not encompass design and line balancing but only machine

operations, and is concerned with makespan minimization and not minimization of the cost of the

line. Actually, the problem is closer to the former vision provided by (Liles and Huff, 1990) who

first indicated the necessity to schedule efficiently operations in reconfigurable manufacturing

environments. As stressed by (Azab and Naderi, 2015) very few papers deal with scheduling in

RMS. In their research work, they addressed reconfigurations in the context of Flow-shop

production systems, but they did not investigate graph modelling.

The present paper is dedicated to scheduling in reconfigurable manufacturing systems where

operators assignment to machine allows to define several modes meaning that processing time of

operations is varying according to chosen configurations. The work specifically focuses on the

graph modelling of the problem in the context of a Job-shop-like production system and introduces

encoding and decoding of solutions.

123

2. Graph modelling and representation of solutions

The problem under study is stated as a reconfigurable job-shop manufacturing system where a

set 𝐽 of 𝑛 jobs has to be scheduled 𝐽 = {𝐽1, 𝐽2 … 𝐽𝑛} on a set 𝑀 = {𝑀1, … , 𝑀𝑚} of 𝑚 machines.

Each job in 𝐽 consists in a set of operations 𝑂𝑗 = {𝑂1𝑗 , … , 𝑂𝑚𝑗}. The whole system operates under

configurations. Moving from a configuration to another may affect specific machines, resulting in

variations in processing times of operations. Hence, each operation 𝑂𝑖𝑗 has a processing time 𝑃𝑖𝑗
𝑘

where 𝑘 denotes the chosen configuration. Configuration differs from setup times, since transition

between configurations can affect several machines and configurations can be activated only when

these machines are inactive. Considering two configurations 𝑘1 and 𝑘2, identifying machines that

are concerned by a switch from configuration 𝑘1 to 𝑘2 is achieved through vectors 𝑅𝑘1𝑘2

𝑀𝑢 , where

each value of the vector is valued 0 if the machine 𝑀𝑢 is not concerned with transition, 1

otherwise. A reconfiguration time 𝑇𝑘1,𝑘2 is required when switching from a configuration 𝑘1 to 𝑘2.

The objective is to schedule efficiently operations and to define configuration assignments in order

to minimize the completion time of all operations (makespan). In the following, the data bellow

are considered, where 𝑀𝑢(𝑃𝑖𝑗
𝑘) denotes the processing time on machine 𝑀𝑢 according to

configurations.

Table 1. processing times of operations in

configuration 1

Product 𝑶𝟏𝒋 𝑶𝟐𝒋 𝑶𝟑𝒋

𝒋 = 𝟏 𝑀1(10) 𝑀2(6) 𝑀3(17)
𝒋 = 𝟐 𝑀2(15) 𝑀1(10) 𝑀3(20)
𝒋 = 𝟑 𝑀3(4) 𝑀2(10) 𝑀1(20)

Table 2. processing times of operations in

configuration 2

Product 𝑶𝟏𝒋 𝑶𝟐𝒋 𝑶𝟑𝒋

𝒋 = 𝟏 𝑀1(13) 𝑀2(4) 𝑀3(12)
𝒋 = 𝟐 𝑀2(12) 𝑀1(17) 𝑀3(23)
𝒋 = 𝟑 𝑀3(7) 𝑀2(16) 𝑀1(10)

Table 3. Definition of 𝑅𝑘1𝑘2

𝑀𝑢

Configurations 𝒌𝟏 𝒌𝟐

𝒌𝟏 (1;1;1)

𝒌𝟐 (1;1;1)

Tables 1, 2 and 3 introduce data of a 3 jobs, 3 machines Job-shop Scheduling Problem, where

processing times of operations depend on configurations. As can be seen in Table 1 and 2,

processing times of operations on machine 𝑀1 are different whether configurations 𝑘1 or 𝑘2 are

selected. Assignment of machines when switching from a configuration to another is introduced in

Table 3. In this problem, all machines are affected by a change in configuration, and hence, they

must be all inactive when switching from a configuration to another and without of generality the

reconfiguration time 𝑇𝑘1,𝑘2 is set to 1 time unit.

In scheduling problems it is classical to use a conjunctive-disjunctive graph approach that have

been proved to be efficient by (Roy and Sussmann, 1964). For the incumbent problem, a

conjunctive-disjunctive graph 𝐺(𝑉, 𝐴, 𝐸) is considered where 𝑉 corresponds to the operations, 𝐴

denotes the arcs and 𝐸 defines the edges. Initial arcs correspond to precedencies in jobs sequence

of operations (i.e. an arc (𝑂𝑖𝑗 , 𝑂𝑖𝑗+1) exists in 𝐺 between two successive operations of 𝑖). 𝐸 refers

to edges that have to be oriented and initially contains edges relevant to operations that have to be

processed on the same machines, and all edges that refer to configurations. An edge is considered

between operations 𝑂𝑖𝑗 and 𝑂𝑘𝑗 if they can be processed in two different configurations that are

impacting processing times of both operations. Similarly to (Dauzère-Pérès and Paulli, 1997) for

the Flexible Job-shop, different shape lines can connect operations in order to distinguish

configuration switches and machine disjunctions. The objective is to assign a configuration to each

operation and to defined edges that connect operations using the same machine. The Figure 1 gives

an example of a conjunctive-disjunctive graph after choosing configurations for operations.

For sake of clarity, two graphs are presented in Figure 1, the first one (A) concerns edges

related to machine disjunctions (dashed lines), and the second one (B) displays edges related to

configuration switches (dotted lines). In this figure, operations modeled with grey nodes are

processed into configuration 1, and the ones with white nodes are processed into configuration 2.

As operations of a given job are ordered, edges connecting two operations with different assigned

configurations can be removed (i.e. edge between (𝑀1; 𝑀3) on job 𝐽1 is useless) when other

operation are present between them.

124

Figure 1. Graph 𝐴 with edges for machine disjunctions and graph B with configuration disjunctions.

Modeling solutions is an important preliminary step before defining complex operators such as

metaheuristics or local search. Indirect representations are widely spread in literature for

scheduling problems (Cheng et al., 1996). For the incumbent problem two vectors are used. The

first one (𝑅) is a vector by repetition (Bierwirth et al., 1996) which is an ordered list of job

numbers (a job numbers is in the list 𝑚 times with 𝑚 the number of machines) and each

occurrence of a job corresponds to one of its operations. The second vector (𝐶) is the configuration

vector which is a list of configurations under which operations are processed. Both vectors

represent a solution which is an orientation of all arcs (Fig. 2) considering 𝑅 =
[1; 2; 2; 3; 3; 1; 2; 1; 3] and 𝐶 = [1; 2; 1; 1; 1; 2; 1; 2; 2]. Considering these vectors, defining a

solution consists in reading the vectors from left to right applying an extension of the Bierwith

vector rules for graph generation. Figure 2 shows the evaluated graph after execution of one

longest path algorithm.

Figure 2. Evaluated conjunctive graph

In Figure 2, dashed arrows define sequence of operations on machines, while dotted arrows

define reconfiguration switches. Each arc modeling reconfiguration switches are valued (𝑃𝑖𝑗
𝑘 +

𝑇𝑘𝑘′). Starting time and configuration of operations are in bold in the figure. According to the

vector 𝑅, the first operation scheduled is the first operation of job 𝐽1 and according to the vector 𝐶,

it is processed with configuration 1, hence its processing time is 10 according to Table 1. The

second operation in vector 𝑅 is the first of job 𝐽2 processed on 𝑀2 with configuration 2, hence a

reconfiguration switch occurs after operation 𝑂11 that required a 1 time unit of reconfiguration that

delay the operation 𝑂12 starting time at 11. The third scheduled operation is 𝑂22 on machine 𝑀1

and configuration 1 and a reconfiguration occurs after 𝑂12, and 𝑂22 will start at 24 (ending time of

𝑂12 plus reconfiguration time). The fourth scheduled operation is 𝑂13 that is the first operation on

𝑀3, also processed with configuration 1, and hence, it starts after the last operation that affected

𝑀3, with configuration 2. This process iterates until the end of both vectors 𝑅 and 𝐶. The obtained

Gantt chart is given in Figure 3.

Figure 3. Gantt chart corresponding to evaluated Graph

As stressed on Figure 3, 5 reconfigurations are operated along the time horizon and they are

respectively scheduled at times [10;11], [23;24],[39;40],[42;43] and [63;64]. As all machines are

affected by these reconfigurations, it is not possible to schedule operations earlier, considering the

given vectors 𝑅 and 𝐶.

The Gantt of figure 3 does not define an optimal solution and could be further improved by

local search operator for example. Future research is now directed on the design of a metaheuristic

125

that will consider the encoding vectors including specific operator such as construction heuristics,

neighborhoods and local search operators. An effective local search approach should rely on an

exploration of the critical paths that must create operator on the vector by changing order of

operations in vector 𝑅, changing configurations in vector 𝐶, or both.

3. Conclusion

This work is at the corner stone of both scheduling and reconfigurable manufacturing systems

communities since reconfigurations and setup times are very similar notions that are closed to the

flexible terminology used in scheduling. In this research project, the Job-shop is extended with

reconfiguration schemes. When a reconfiguration occurs, specific machines are affected and have

to be stopped in order to apply the new configuration to the production system. It is possible to

address small-scale instances using linear solvers but medium and large-scale instances remain

intractable. The use of metaheuristics seems appropriate and will concern the upcoming research

prospects. To this purpose, a conjunctive-disjunctive graph model is proposed. Adjoined with

proper representation of solutions it is possible to map an element from the coding space with the

proposed graph model through a decoding procedure. Two vectors are used to represent

orientations of arcs and selection of configurations in the graph. In addition with metaheuristics,

local search procedures relying on critical path exploration are currently investigated.

References

Azab, A., Naderi, B., 2015. Modelling the Problem of Production Scheduling for

Reconfigurable Manufacturing Systems. Procedia CIRP 33, 76–80.

Bierwirth, C., Mattfeld, D.C., Kopfer, H., 1996. On permutation representations for

scheduling problems. In: International Conference on Parallel Problem Solving from Nature.

Springer, pp. 310–318.

Borgia, S., Matta, A., Tolio, T., 2013. STEP-NC compliant approach for setup planning

problem on multiple fixture pallets. Journal of Manufacturing Systems 32, 781–791.

Cheng, R., Gen, M., Tsujimura, Y., 1996. A tutorial survey of job-shop scheduling problems

using genetic algorithms - I. Representation. Computers & Industrial Engineering 30, 983–

997.

Dauzère-Pérès, S., Paulli, J., 1997. An integrated approach for modeling and solving the

general multiprocessor job-shop scheduling problem using tabu search. Annals of Operations

Research 70, 281–306.

Essafi, M., Delorme, X., Dolgui, A., 2012. A reactive GRASP and Path Relinking for

balancing reconfigurable transfer lines. International Journal of Production Research 50,

5213–5238.

Ferjani, A., Ammar, A., Pierreval, H., Elkosantini, S., 2017. A simulation-optimization based

heuristic for the online assignment of multi-skilled workers subjected to fatigue in

manufacturing systems. Computers & Industrial Engineering 112, 663–674.

Grosse, E.H., Glock, C.H., Jaber, M.Y., Neumann, W.P., 2015. Incorporating human factors

in order picking planning models: framework and research opportunities. International

Journal of Production Research 53, 695–717.

Liles, D.H., Huff, B.L., 1990. A computer based production scheduling architecture suitable

for driving a reconfigurable manufacturing system. Computers & Industrial Engineering 19,

1–5.

Mehrabi, M.G., Ulsoy, A.G., Koren, Y., 2000. Reconfigurable manufacturing systems: Key

to future manufacturing. Journal of Intelligent Manufacturing 11, 403–419.

Roy, B., Sussmann, B., 1964. Les problemes d’ordonnancement avec contraintes disjonctives.

SEMA, Rapport de recherche n°9.

Sharma, P., Jain, A., 2016. A review on job shop scheduling with setup times. Proceedings of

the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230,

517–533.

Shen, L., Dauzère-Pérès, S., Neufeld, J.S., 2018. Solving the flexible job shop scheduling

problem with sequence-dependent setup times. European Journal of Operational Research

265, 503–516.

126

1

Near-Linear Approximation Algorithms for S
heduling

Problems with Setup Times

Max Deppert

1
and Klaus Jansen

1

University of Kiel, Germany

made,kj�informatik.uni-kiel.de

Keywords: S
heduling Theory, Approximation Algorithms, Setup Times.

1 Problem De�nition

S
heduling problems with setup times have been intensively studied for over 30 years

now; in fa
t, they allow very natural formulations of s
heduling problems.

In the general s
heduling problem with setup times, there are m identi
al and parallel

ma
hines, a set J of n ∈ N jobs j ∈ J , c ∈ N di�erent
lasses, a partition

⋃̇c

i=1Ci = J of

c nonempty and disjoint subsets Ci ⊆ J , a pro
essing time of tj ∈ N time units for ea
h

job j ∈ J and a setup (or setup time) of si ∈ N time units for ea
h
lass i ∈ [c]. The
obje
tive is to �nd a s
hedule whi
h minimizes the makespan while holding the following.

All jobs (or its
omplete sets of job pie
es) are s
heduled. Whenever a ma
hine swit
hes

pro
essing from one job to another, a setup may be ne
essary. There are various types of

setups dis
ussed; here we fo
us on sequen
e-independent bat
h setups, i.e. a setup only gets

ne
essary when swit
hing from one
lass of jobs to another di�erent
lass on a ma
hine

and it does not depend on the previous job/
lass. All ma
hines are single-threaded (jobs

(or job pie
es) and setups do not interse
t in time on ea
h ma
hine) and no setup is

preempted. There are three variants of s
heduling problems with setup times whi
h have

been gaining the most attention in the past. There is the non-preemptive
ase where no job

may be preempted, formally known as problem P|setup=si |Cmax. Another variant is the

preemptive
ontext, namely P|pmtn, setup=si |Cmax, where a job may be preempted at any

time but be pro
essed on at most one ma
hine at a time, so a job may not be parallelized.

In the generous
ase of splittable s
heduling, known as P|split, setup=si |Cmax, a job is

allowed to be split into any number of job pie
es whi
h may be pro
essed on any ma
hine

at any time.

2 Related results

Monma and Potts (1989) began their investigation of these problems
onsidering the

preemptive
ase. They found �rst dynami
 programming approa
hes for various single

ma
hine problems polynomial in n but exponential in c. Furthermore, they showed NP-

hardness for P|pmtn, setup=si |Cmax even if m = 2. In a later work Monma and Potts

(1993) found a heuristi
 whi
h resembles M
Naughton's preemptive wrap-around rule; see

also (M
Naughton 1959). It requires O(n) time for being (2 − (⌊m
2 + 1⌋)−1)-approximate.

Noti
e that this ratio is truly greater than

3
2 if m ≥ 4 and the asymptoti
 bound is 2

for m → ∞. Monma and Potts also dis
ussed the problem
lass of small bat
hes where

for any bat
h i the sum of one setup time and the total pro
essing time of all jobs in

i is smaller than the optimal makespan, i.e. si +
∑

j∈Ci
tj ≤ OPT . Most suitable for

this kind of problems, they found a heuristi
 that �rst uses list s
heduling for
omplete

bat
hes followed by an attempt of splitting some bat
hes so that they are s
heduled on two

di�erent ma
hines. This se
ond approa
h needs a running time of O(n+(m+c) log(m+c))
and
onsidering only small bat
hes it is (3

2 − 1
4m−4)-approximate if m ≤ 4 whereas it is

127

2

(5
3 − 1

m)-approximate for small bat
hes if m is a multiple of 3 and m ≥ 6. Then Chen (1993)
modi�ed the se
ond approa
h of Monma and Potts. For small bat
hes Chen improved the

heuristi
 to a worst
ase guarantee of max{ 3m
2m+1 , 3m−4

2m−2} if m ≥ 5 while the same time of

O(n + (m + c) log(m + c)) is required.
S
huurman andWoeginger (1999) studied the preemptive problem for single-job-bat
hes,

i.e. |Ci| = 1. They found a PTAS for the uniform setups problem si = s. Furthermore,

they presented a (4
3 + ε)-approximation in
ase of arbitrary setup times. Both algorithms

have a running time linear in n but exponential in 1/ε. Then Xing and Zhang (2000)

turned to the splittable
ase. Without other restri
tions they presented an FPTAS if m is

�xed and a

5
3 -approximation in polynomial time if m is variable. They give some simple

arguments that the problem is weakly NP-hard if m is �xed and NP-hard in the strong

sense otherwise. More re
ently Mä
ker et. al. (2015) made progress to the
ase of non-

preemptive s
heduling. They used the restri
tions that all setup times are equal (si = s)
and the total pro
essing time of ea
h
lass is bounded by γOPT for some
onstant γ, i.e.∑

j∈Ci
tj ≤ γOPT . Mä
ker et al. found a simple 2-approximation, an FPTAS for �xed m,

and a (1 + ε)min{ 3
2OPT, OPT + tmax − 1}-approximation (where tmax = maxj∈J tj) in

polynomial time if m is variable. Jansen and Land (2016) found three di�erent algorithms

for the non-preemptive
ontext without restri
tions. They presented an approximation ra-

tio 3 using a next-�t strategy running in time O(n), a 2-dual approximation running in

time O(n) whi
h leads to a (2 + ε)-approximation running in time O(n log(1
ε)), as well

as a PTAS. Re
ently Jansen et. al. (2019) found an EPTAS for all three problem vari-

ants. For the preemptive
ase they assume |Ci| = 1. They make use of n-fold integer

programs, whi
h
an be solved using the algorithm by Hemme
ke, Onn, and Roman
huk.

However, even after some runtime improvement the runtime for the splittable model is

2O(1/ε2 log3(1/ε))n2 log3(nm), for example. These algorithms are interesting answers to the

question of
omplexity but they are useless for solving a
tual problems in pra
ti
e. There-

fore the design of fast (and espe
ially polynomial) approximation algorithms with small

approximation ratio remains interesting.

3 New Results

For all three problem variants we give a 2-approximate algorithm running in time O(n)
as well as a (3

2 + ε)-approximation with running time O(n log(1
ε)). With some runtime

improvements we present some very e�
ient near-linear approximation algorithms with

a
onstant approximation ratio equal to

3
2 . In detail, we �nd a

3
2 -approximation for the

splittable
ase with running time O(n+c log(c+m)) ≤ O(n log(c+m)). Also we will see a 3
2 -

approximate algorithm for the non-preemptive
ase that runs in time O(n log(Tmin)) where

Tmin = max{ 1
mN, maxi∈[c](si + t

(i)
max)}, t

(i)
max = maxj∈Ci tj and N =

∑c
i=1 si +

∑
j∈J tj . For

the most
ompli
ated
ase of these three problem
ontexts, the preemptive
ase, we study

a

3
2 -approximation running in time O(n log(c + m)) ≤ O(n log n). For the long version

we refer to (Deppert and Jansen 2018). Espe
ially the last result is interesting; we make

progress to the general
ase where
lasses may
onsist of an arbitrary number of jobs.

The best approximation ratio was the one by Monma and Potts (1993) mentioned above.

All other previously known results for preemptive s
heduling used restri
tions like small

bat
hes or even single-job-bat
hes, i.e. |Ci| = 1. As a byprodu
t we give some new dual

lower bounds.

128

3

Referen
es

B. Chen. A better heuristi
 for preemptive parallel ma
hine s
heduling with bat
h setup times.

SIAM Journal on Computing, 22(6):1303�1318, 1993.

M. A. Deppert and K. Jansen. Near-linear approximation algorithms for s
heduling problems with

bat
h setup times. CoRR, abs/1810.01223, 2018.

K. Jansen, K. Klein, M. Maa
k, and M. Rau. Empowering the
on�guration-ip - new PTAS results

for s
heduling with setups times. In A. Blum, editor, Innovations in Theoreti
al Computer

S
ien
e Conferen
e (ITCS 2019), volume 124 of LIPI
s, pages 44:1�44:19, 2019.

K. Jansen and F. Land. Non-preemptive s
heduling with setup times: A PTAS. In P. Dutot and

D. Trystram, editors, European Conferen
e on Parallel and Distributed Computing (Euro-Par

2016), volume 9833 of LNCS, pages 159�170. Springer, 2016.

A. Mä
ker, M. Malatyali, F. Meyer auf der Heide, and S. Rie
hers. Non-preemptive s
heduling

on ma
hines with setup times. In F. Dehne, J. Sa
k, and U. Stege, editors, Symposium

on Algorithms and Data Stru
tures (WADS 2015), volume 9214 of LNCS, pages 542�553.

Springer, 2015.

R. M
Naughton. S
heduling with deadlines and loss fun
tions. Management S
ien
e, 6(1):1�12,

O
t. 1959.

C. L. Monma and C. N. Potts. On the
omplexity of s
heduling with bat
h setup times. Operations

Resear
h, 37(5):798�804, 1989.

C. L. Monma and C. N. Potts. Analysis of heuristi
s for preemptive parallel ma
hine s
heduling

with bat
h setup times. Operations Resear
h, 41(5):981�993, 1993.

P. S
huurman and G. J. Woeginger. Preemptive s
heduling with job-dependent setup times. In

R. E. Tarjan and T. J. Warnow, editors, Symposium on Dis
rete Algorithms (SODA 1999),

pages 759�767.

W. Xing and J. Zhang. Parallel ma
hine s
heduling with splitting jobs. Dis
rete Applied Mathe-

mati
s, 103(1-3):259�269, 2000.

129

1

Efficiency and Equity in the Multiple Organization
Scheduling Problem

Martin Durand, Fanny Pascual

Sorbonne Université, CNRS, LIP6, 4 place Jussieu, 75005 Paris, France
martin.durand@lip6.fr,fanny.pascual@lip6.fr

Keywords: multi agents scheduling, fairness, makespan minimization.

1 Introduction

The Multi Organization Scheduling Problem (MOSP) (Pascual et al. 2007) deals a set
of n organizations {O1, . . . , On} which each owns both a set of identical parallel machines,
and a set of sequential tasks to execute. The objective is to minimize the completion time
of the last task completed on the machines shared by the organizations (the makespan),
under an additional constraint: no organization should increase the last completion time of
its tasks in the shared system, compared to the case where it executes its own tasks on its
own machines. This last constraint is called the rationality constraint, and ensures that all
the organizations have incentive to share their machines. More formally, let us denote by
Ciloc is the makespan of Organization Oi if it schedules its own tasks on its owns machines
- this scheduled is assumed to be given by the organization (it can minimizes the makespan
of Organization Oi ,or not) - and is called the local makespan of Oi. Given any schedule
S of all the tasks on all the machines, we denote by Ci(S) the makespan of Oi, i.e. the
maximum completion time of a task of Oi in S. Our problem is the following one:

minimize Cmax(S) such that, for each i ∈ {1, . . . , n}, Ci(S) ≤ Ciloc.

Interest of cooperation. Let us first show that sharing machines does not only allow or-
ganizations which have many tasks and few machines to decrease theirs makespans by given
tasks to the other organizations, but that each organization may decrease its makespan. Let
us consider the following instance, in which all organizations can benefit from cooperating.

Fig. 1. An example in which each organization benefits from cooperating

There are n = 3 organizations, each one having only one machine. All the tasks are of
length 1. Organization O1 owns 3 tasks, O2 owns 6 tasks, and O3 owns 12 tasks. On figure 1
we can see on the left the local schedules (schedules in which each organization schedules
its own tasks on its owns machines), and on the right a schedule in which the organizations

130

2

share their machines. In this example, sharing the machines allow each organization to
decrease its makespan. This example can be extended for higher values of n. We have shown
that the best improvement which can be obtained for each organization simultaneously is
a factor n, and that this ratio can be obtained on some instances.

Focus of this paper and map of the paper. Besides analyzing the best possible benefit
that organizations can mutually have by sharing their machines, our aim is to focus on the
efficiency of algorithms (where the efficiency is thought in term of makespan – the date
at which all the tasks have been computed), and on the equity of algorithms for MOSP
(it is not suitable that, even if the returned schedule fulfills the rationality constraint, the
machines which are free are used only for the tasks of a single organization while some
tasks of the other organizations are waiting). These two aspects may be antagonist, and
our aim is to see to which extent, since what we want would be a schedule with a small
makespan and in which machines are shared with equity.

In Section 2, we focus on efficiency: we analyze the highest possible increase of a local
makespan which may occur if we want a schedule which minimizes the (global) makespan.
We then look at the problem where each organization agrees to increases its makespan
(compared to its local makespan) by a factor (1 + ε).

In Section 3, we focus on fairness: we introduce a new problem which consists in max-
imizing the minimal gain (decrease of its makespan) of an organization. Before presenting
these results, we start by reviewing existing work on MOSP.

State of art. The Multi Organization Scheduling Problem (Pascual et al. 2007) has
been introduced with parallel rigid tasks (tasks that need to be executed in parallel on
several machines) and has mainly been studied from an approximation viewpoint. The best
approximate algorithm is a 3-approximation algorithm when the organizations schedule
locally the tasks in decreasing order of their heights (the height of a task is the number
of machines needed to execute the task), or a 4-approximation algorithm in the general
case (Dutot et. al. 2011). For sequential tasks (tasks that need to be executed on one
machine only), the best known algorithm is a 2-approximate algorithm (Cohen et. al. 2010)
(in the sequel, all the papers – as well as our results – deal with sequential tasks).

Some papers also consider a relaxed version of MOSP: it is assumed that the organiza-
tions tolerate a bounded degradation on the makespan of their own tasks, and the aim is
to minimize the global makespan. This problem is denoted by (1 + α)-MOSP (Ooshita et.
al. 2009) when it is assumed that each organization accepts to increase the maximum com-
pletion time of its tasks by a factor at most (1+α). A 3

2 -approximate algorithm for 2-MOSP
has been given (Cordeiro et. al. 2011). The closest work in spirit to what we will do in
Section 2 is a study of (1+α)-MOSP on unrelated machines (Ooshita et. al. 2009, Ooshita
et. al. 2012). In this setting, Ooshita et al. show that, when there is no cooperation (α = 0),
the makespan can be m times higher than in the optimal makespan without the rational-
ity constraint. When α > 0, the authors also give a (2 + 2

α)-approximate algorithm for
(1 + α)-MOSP.

2 Efficiency vs. increase of the local makespans

In this section, we study how the aim of minimizing the makespan is in opposition with
the rationality constraint.

131

3

2.1 Necessary trade-off between the (global) makespan and the increase of
local makespans.

We have shown that in an optimal schedule for the makespan minimization, an orga-
nization may increase its makespan up to a factor m, where m is the number of machines
(due to lack of space the proof is omitted). This value, that could be called “the price of
efficiency”, is high. We will now assume that organizations may accept to increase their
makespans in order to get an efficient schedule, but only if this does not increase to much
their makespans. We will now assume that each organization agrees to increase a little bit
its makespan: it will accept a schedule in which its makespan is increased by a factor at
most (1 + ε) compared to its local makespan.

Let ε ≥ 0. We assume that each organization Oi agrees to have a makespan at most
equal to (1 + ε)Ciloc. If ε = 0, this is the MOSP. Otherwise, each organization agrees to
increase a little bit its makespan (the higher α is, the higher an organization agrees to
increase its makespan). We call (1+ ε)-MOSP, the problem where we wish to minimize the
makespan with these relaxed constraints:

minimize Cmax(S) such that, for each i ∈ {1, . . . , N}, Ci(S) ≤ (1 + ε)Ciloc.

Thanks to a specific instance, we give a lower bound on the approximation ratio of any
algorithm for (1 + ε)-MOSP with respect to the optimal makespan when there is no ra-
tionality constraints: this shows what we loose, in term of makespan, due to the relaxed
rationality constraint. When ε = 0, we obtain the following proposition.

Proposition 1 There is no algorithm which returns schedules which fulfill the rationality
constraint, and which is less than 2-approximate with respect to the global makespan.

This bound improves the previous one, 3
2 , which had been given (Pascual et al. 2007)

first for two organizations and then (Cohen et. al. 2010) for more than two organizations.
Furthermore, in (Cohen et al. 2011) the authors show that no approximation algorithm
for MOSP has a ratio asymptotically better than 2 w.r.t. the global makespan (when m
tends towards the infinity) when we add the constraint that on the returned schedule,
each machine schedules the tasks of its organization (if any) before the tasks of other
organizations. This constraint is thus not necessary to obtain the asymptotic ratio of 2.

2.2 A PTAS for the makespan minimization with a bounded increase on the
local makespan

We adapt the polynomial approximation scheme (PTAS) presented (Hall and Shmoys
1989) for a scheduling problem (makespan minimization with delivery times), to get a
PTAS with resource augmentation for our problem. More precisely: given a fixed ε > 0,
and a fixed number of organizations n, we will get a polynomial time algorithm which
returns a schedule with a makespan at most (1 + ε) times the optimal makespan, and
in which the makespan of each organization is at most (1 + ε) times its local makespan.
The rationality constraint may thus be violated, but the increase of the makespans of the
organizations is bounded, and may be acceptable if ε is small.

In the previous sections, we have assumed either that the rationality constraint should
be fulfilled (but we then had as only objective function to minimize the makespan, and the
gains for the organizations – the decrease of their makespans – in the returned schedule
could be very different), or we have even assumed than we can relax (in a bounded way)
the rationality constraint to get a schedule with an even smaller makespan. In the following
section, we focus on fairness issues: we will keep the rationality constraint, and our focus

132

4

will not be to decrease the makespan, but to get schedule in which all the organizations
decrease their makespans by a factor as large as possible.

3 Maximizing the Minimal Decrease of the Local Makespans

Given a schedule S , the gain gi(S) of Organization Oi represents how much Organi-
zation Oi has decreased its makespan in S in comparison to its local schedule:

gi(S) =
Ciloc
Ci(S)

.

The Maximal Minimal Gain problem, denoted as MaxMinGain, takes the same input
as MOSP. It builds a schedule of all the tasks of all the organizations on the m machines of
the organizations, in order to maximize the minimum gain among the organizations. The
returned schedule is thus S = argmax

S
min

i∈{1,...,N}
gi(S)

Problem MaxMinGain can be solved in polynomial time when all the tasks have the
same length. Moreover, in this case, it is possible to find a schedule S which is optimal
for MaxMinGain and which is optimal for problem (P ||Cmax): the global makespan is
minimized while the minimal gain of an organization is maximized. The algorithm is very
simple: it consists in scheduling the tasks greedily, by increasing local makespans.

When tasks can have different lengths, MaxMinGain is strongly NP-hard and hard to
approximate. We also show that there is no algorithm which is optimal for MaxMinGain
and which has an approximation smaller than 2 for MOSP. Naturally, this implies that
no algorithm can be optimal for MaxMinGain and have an approximation ratio smaller
than 2 for (P ||Cmax).

As seen in the previous section, a list scheduling by increasing local makespan is optimal
for MaxMinGain when tasks all have the same length. However, in the general case, such
a schedule can break the rationality constraint. We complete our results with a heuristic
that aims at returning a schedule as close as possible from a list schedule by increasing
local makespan but respecting the rationality constraint. On tested instances, this heuristic
returns a schedule with an average makespan below 1.07 times the optimal makespan and
an average minimum gain above 0.92 times the optimal one.

References

Cohen J., D. Cordeiro, D. Trystram, F. Wagner, 2010, “Analysis of Multi-Organization Scheduling
Algorithms", Euro-Par, Vol. 2, pp. 367-379.

Cohen J., D Cordeiro, D. Trystram, F. Wagner, 2011, “Multi-organization scheduling approxi-
mation algorithms", Concurrency and Computation: Practice and Experience, Vol. 23, pp.
2220-2234.

Cordeiro D., P. Dutot, G. Mounié, D. Trystram, 2011, “Tight Analysis of Relaxed Multi-
organization Scheduling Algorithms", IPDPS, pp. 1177-1186.

Dutot P., F. Pascual, K. Rzadca, D. Trystram, 2011, “Approximation Algorithms for the Multi-
organization Scheduling Problem", IEEE Transactions on Parallel and Distributed Systems,
Vol. 22, pp. 1888-1895.

Hall L. A., Shmoys D. B., 1989, “Approximation Schemes for Constrained Scheduling Problems",
FOCS, pp. 134-139.

Ooshita F., T. Izumi, T. Izumi, 2009, “A Generalized Multi-Organization Scheduling on Unrelated
Parallel Machines", PDCAT, pp. 26-33.

Ooshita F., T. Izumi, T. Izumi, 2012, “The Price of Multi-Organization Constraint in Unrelated
Parallel Machine Scheduling", Parallel Process Letters, Vol. 22.

Pascual F., K. Rzadca, D. Trystram, 2011, “Cooperation in Multi-organization Scheduling", Euro-
Par, pp. 224-233.

133

On the complexity of the crossdock truck-scheduling problem

Q. Fabry1,3, A. Agnetis2, L. Berghman1 and C. Briand3

1 Université de Toulouse - Toulouse Business School,
20 BD Lascrosses – BP 7010, 31068 Toulouse Cedex 7, France

l.berghman@tbs-education.fr
2 Università degli Studi di Siena, DIISM, Siena, Italy

agnetis@diism.unisi.it
3 LAAS-CNRS, Université de Toulouse, UPS, Toulouse, France

{quentin.fabry,cyril.briand}@laas.fr

Keywords: crossdocking, truck scheduling, complexity.

1 Introduction

Crossdocking is a warehouse management concept in which items delivered to a warehouse by inbound
trucks are immediately sorted out, reorganized based on customer demands and loaded into outbound trucks
for delivery to customers, without requiring excessive inventory at the warehouse (J. van Belle et al. 2012).
If any item is held in storage, it is usually for a brief period of time that is generally less than 24 hours.
Advantages of crossdocking can accrue from faster deliveries, lower inventory costs, and a reduction of the
warehouse space requirement (U.M. Apte and S. Viswanathan 2000, N. Boysen et al. 2010). Compared to
traditional warehousing, the storage as well as the length of the stay of a product in the warehouse is limited,
which requires an appropriate coordination of inbound and outbound trucks (N. Boysen 2010, W. Yu and
P.J. Egbelu 2008).

The crossdock truck-scheduling problem (CTSP), which decides on the succession of truck processing
at the dock doors, is especially important to ensure a rapid turnover and on-time deliveries. The problem
studied concerns the operational level: trucks are allocated to the different docks so as to minimize the
storage usage during the product transfer. The internal organization of the warehouse (scanning, sorting,
transporting) is not explicitly taken into consideration. We also do not model the resources that may be
needed to load or unload the trucks, which implies the assumption that these resources are available in
sufficient quantities to ensure the correct execution of an arbitrary docking schedule. In this abstract, we
present some new complexity results that refer to a situation in which the number of docks (or doors) at
the terminal is small, namely one or two. This situation has been indeed addressed in the literature, e.g. (A.
Chiarello et al. 2018). However most authors focus on tardiness objectives, while we focus on minimizing
overall soujourn time of the pallets, which is especially meaningful for perishable goods or for reducing stock
holding costs.

This abstract is structured as follows: Section 2 formalizes the problem and introduces some basic nota-
tions, Section 3 addresses the complexity of the crossdocking truck scheduling problem in various scenarios
(complexity proofs are not provided for the sake of conciseness), then a few concluding remarks are provided.

2 Detailed problem statement

We consider a crossdocking warehouse where inbound trucks i ∈ I need to be unloaded and outbound
trucks o ∈ O need to be loaded (where I is the set of all inbound trucks and O is the set of all outbound
trucks). The warehouse features n docks that can be used both for loading and unloading. The unloading
and loading processing times of trucks i ∈ I and o ∈ O are referred to as pi and po, respectively. Similarly,
let Wi (respectively, Wo) denote the number of pallets to be unloaded from i (respectively, to be loaded on
o). We let wio denote the number of pallets that must be transferred from i to o. It is sometime convenient
to visualize an instance of the problem through a bipartite graph GT = (I,O, P) called transfer graph. In
GT , the two node sets correspond to inbound and outbound trucks respectively, and there is an arc (i, o) if

134

wio > 0. The arc set P expresses start-start precedence constraints, i.e., if (i, o) ∈ P , truck o ∈ O cannot
start being loaded before truck i ∈ I starts being unloaded. In this paper we consider two scenarios:

(i) There is no relationship between the number of pallets that need to be loaded/unloaded and the pro-
cessing time of a truck. In this case, for any two trucks h and k, in general Wh/ph 6= Wk/pk. We say
that in this scenario processing times are unrelated ;

(ii) The loading/unloading time of a truck is proportional to the number of pallets that must be loaded/unloaded.
For simplicity, in this case we assume that the processing times are expressed in terms of number of pallets
being moved, i.e.,

pi = Wi =
∑

o∈O

wio,∀i ∈ I (1)

and
po = Wo =

∑

i∈I

wio,∀o ∈ O (2)

We say that in this scenario processing times are correlated. Notice that, in this case,
∑

o∈O

po =
∑

i∈I

pi. (3)

It is assumed that there is sufficient workforce to load/unload all docked trucks at the same time. Hence,
a truck assigned to a dock does not wait for the availability of a material handler.

Products can be transshipped directly from an inbound to an outbound truck if the outbound truck is
placed at a dock. Otherwise, the products are temporarily stored and will be loaded later on. The problem
is to determine time-consistent start times si and so of unload and load tasks i ∈ I and o ∈ O so as to
minimize the total time spent in the warehouse by all pallets (total flow time). For each pallet which has to
be transferred from i to o such a flow time equals so − si. Therefore, the total flow time is

∑

(i,o)∈P

wio(so − si). (4)

In what follows, CTSP (n,U) denotes the problem with n gates and unrelated processing times, while
CTSP (n,C) denotes the problem with n gates and correlated processing times.

Due to (1) and (2), it is easy to show that problem CTSP (n,C) consists in finding the feasible schedule
that minimizes ∑

o∈O

poso −
∑

i∈I

pisi. (5)

3 Complexity results

Let us first consider the problem CTSP when n = 1, i.e., the crossdocking platform has a single gate,
and let us start with the special case in which the transfer graph GT is complete, i.e., it is a "1-biclique"
(Figure 1). This means that wio > 0 for each i ∈ I and o ∈ O, i.e., each inbound truck has at least one pallet
that must be transferred to each outbound truck.

Let us consider the unrelated problem CTSP(1,U) in the "1-biclique" case. Since GT is complete, in any
feasible schedule all inbound trucks must be consecutively scheduled, before all outbound trucks. So, the
problem consists of deciding in which order they should be scheduled. The following property holds.

Theorem 1. When GT is a biclique, CTSP (1, U) is solved by first scheduling all inbound trucks in nonin-
creasing order of the ratio pi/Wi, then all outbound trucks in nondecreasing order of the ratio po/Wo.

ut
Note that such an optimal sequence can be obtained in O(n log n). Concerning problem CTSP (1, C),

recalling (1) and (2), Theorem 1 implies that, when GT is a biclique, CTSP (1, C) is solved by scheduling
all inbound trucks before all outbound trucks, in any order. Theorem 1 easily extends to the case in which
GT consists of k disjoint bicliques (e.g., see Figure 2 with k = 3).

135

1

2

3

4

5

6

7

8

Inbound
trucks

Outbound
trucks

Fig. 1. GT in the case of 1-biclique.

1

2

3

4

5

6

7

8

Inbound
trucks

Outbound
trucks

Fig. 2. GT in the case of 3-biclique.

1

2

3

4

5

6

7

8

Inbound
trucks

Outbound
trucks

Fig. 3. GT in the general case.

Corollary 1. When GT is a collection of bicliques, CTSP (1, U) is solved by sequencing the trucks involved
in each biclique consecutively as dictated by Theorem 1, and then sequencing the bicliques in any order. ut

Let us now turn to problem CTSP (1, U) when GT has a general structure (see Figure 3), which can be
stated in decision form as follows.

“Given a positive integer H, is there a truck sequence at the dock such that the total flow time does not
exceed H?”

The following result holds.

Theorem 2. CTSP(1,U) is NP-complete.

Proof. Reduction from OPTIMAL LINEAR ARRANGEMENT. ut
The complexity of CTSP (1, C) when GT has a general structure remains open.
Let us now turn to CTSP (2, C), i.e., the case in which there are two gates and processing times are

correlated. The following result holds:

Theorem 3. CTSP(2,C) is NP-complete even when GT is a 1-biclique.

Proof. Reduction from PARTITION. ut

4 Conclusion

In conclusion, we summarize our findings in the following table (where NPC stands for NP-Complete).
Note that the case where GT has a bi-clique structure is significant to determines the frontier between the
polynomial and NP-complete cases. Moreover, as it is always possible (by removing arcs) to transform a
general GT graph in order to give it a bi-clique structure, having efficient methods to solve the biclique case
can give good lower bounds for the general case.

n C , 1-biclique C U , 1-biclique U
1 O(n) open O(n log n) (Th. 1) NPC (Th.2)
2 NPC (Th.3) NPC (Th.3) NPC (Th.3) NPC (Th.3)

136

References

U.M. Apte and S. Viswanathan, Effective cross docking for improving distribution efficiencies, International Journal
of Logistics: Research and Applications, 3 (3), 291–302.

N. Boysen, Truck scheduling at zero-inventory cross docking terminals, Computers & Operations Research, 37, 32–41.
N. Boysen and M. Fliedner and A. Scholl, Scheduling inbound and outbound trucks at cross docking terminals, OR

Spectrum, 32, 135–161.
Chiarello, A., Gaudioso, M., Sammarra, M., Truck synchronization at single door crossdocking terminals, OR Spec-

trum 40(2), 395–447 (2018).
M. E. Dyer and L. A. Wolsey, Formulating the single machine sequencing problem with release dates as a mixed

integer problem, Discrete Applied Mathematics, 26, 255–270.
Garey, M.R., R.L. Graham, D.S. Johnson, D.E.Knuth, Complexity results for bandwidth minimization, SIAM Journal

on Applied Mathematics, 34, 477–495.
J.K. Lenstra and A.H.G. Rinnooy Kan and P. Brucker, Complexity of machine scheduling problems, Annals of

Discrete Mathematics, 1, 343–362.
M. Lombardi and M. Milano, A min-flow algorithm for Minimal Critical Set detection in Resource Constrained

Project Scheduling, Artificial Intelligence, 182-183, 58–67.
J. van Belle and P. Valckenaers and D. Cattrysse, Cross docking: State of the art, Omega,40 (6), 827–846.
W. Yu and P.J. Egbelu, Scheduling of inbound and outbound trucks in cross docking systems with temporary storage,

International Journal of Production Economics, 184, 377–396.

137

1

Linear inequalities for neighborhood based dominance
properties for the common due-date scheduling problem

Anne-Elisabeth Falq1, Pierre Fouilhoux1 and Safia Kedad-Sidhoum2

1 Sorbonne Université, CNRS, LIP6, 4 place Jussieu, 75005 Paris, France
anne-elisabeth.falq@lip6.fr, pierre.fouilhoux@lip6.fr

2 CNAM, CEDRIC, 292 rue Saint Martin, 75003 Paris, France safia.kedad_sidhoum@cnam.fr

Keywords: just-in-time scheduling, dominance properties, integer linear programming.

1 The common due-date problem

We consider a set of n tasks J that have to be processed non-preemptively on a sin-
gle machine around a common due-date d. Given for each task j ∈ J a processing time
pj and a unitary earliness (resp. tardiness) penalty αj (resp.βj), the problem denoted
1 | | ∑αj [d−Cj]++βj [Cj−d]+, aims at finding a feasible schedule that minimizes the sum
of earliness-tardiness penalties.

When d≥∑ pj , the due date is said unrestrictive, and the problem is NP-hard, even
if penalties are symmetric, i.e. αj=βj for all j∈J (Hall and Posner 1991). In the general
case, the problem is NP-hard, even if the task penalties are equal, i.e. αj = βj for all
j∈J (Hoogeveen and van de Velde 1991). In both cases to the dynamic programming algo-
rithms proposed in (Hall and Posner 1991, Hoogeveen and van de Velde 1991). A heuristic
method together with a benchmark is provided in (Biskup and Feldmann 2001). These
instances are efficiently solved by an exact method proposed in (F. Sourd 2009).

In this work, we focus on the problem with an unrestrictive due-date. We propose a
compact integer linear program modeling it. To improve the efficiency of this formulation,
we propose a new type of linear inequalities translating some neighborhood based domi-
nance properties. Moreover, for sake of brevity, we assume that the α-ratios αj/pj for j∈J
are different, as well as the β-ratios βj/pj . Nevertheless, the following results are still true
without this assumption.

2 A compact linear formulation based on structural dominance properties

In a given schedule, a task is early (resp. tardy), if it completes before or at d (resp.
after d), and a task is on-time if it completes exactly at time d. A schedule having an on-
time task is said V-shaped, if early (resp. tardy) tasks are ordered by increasing α-ratios
(resp. decreasing β-ratios). A schedule is called a block if it presents no idle time.

For the unrestrictive case, V-shaped blocks having an on-time task are dominant, which
means that there exists an optimal solution within this set of schedules (Hall and Posner
1991). Using this dominance property, a schedule can be completely described by the
partition between early and tardy tasks.
Indeed, if the set of early tasks E is given, the set of tardy tasks T = J \ E is also fixed,
and the earliness eu (resp. the tardiness tu) of any task u∈J , can be deduced as follows:

eu=

{
p
(
A(u) ∩ E

)
if u∈E

0 otherwise tu=

{
p
(
B(u)∩T

)
if u∈T

0 otherwise

where p(S)=
∑
j∈S

pj for any S⊆J , A(u)=
{
j∈J | αj

pj
> αu

pu

}
and B(u)=

{
j∈J | βj

pj
> βu

pu

}
.

138

2

Note that, for each task u, the sets A(u) and B(u) are defined from the instance, so
they can be pre-computed. We introduce, for each u ∈ J , Ā(u) = J \

(
A(u)∪{u}

)
and

B̄(u)=J \
(
B(u)∪{u}

)
.

Let us consider a boolean variable δj for each j ∈ J indicating if task j is early. i.e.
a vector δ ∈ {0, 1}J encodes the partition

(
E = {j∈J | δj=1}, T = {j∈J | δj=0}

)
. Al-

though these variables are sufficient to encode solutions, additional boolean variables are
introduced to replace quadratic terms appearing in the earliness and tardiness expression.
Since these terms are only products of boolean variables, we use the classical linearization
from (R. Fortet 1959) : for each couple in J< =

{
(i, j)∈J2 | i<j

}
, we add a new boolean

variable Xi,j and the four following inequalities coupling it with variables δi and δj .

∀(i, j)∈J<, Xi,j > δi−δj (1)
∀(i, j)∈J<, Xi,j > δj−δi (2)
∀(i, j)∈J<, Xi,j 6 δi+δj (3)
∀(i, j)∈J<, Xi,j 6 2−(δi+δj) (4)

If (δ,X)∈{0, 1}J× {0, 1}J<

satisfies inequalities (1)−(4), then Xi,j indicates if δi 6=δj ,
and more importantly δiδj=δi+δj−Xi,j and (1−δi)(1−δj)=2−δi−δj−Xi,j . The objective
function reduces then to the following linear function:

f(δ,X) =
∑

u∈J
αu


 ∑

j∈A(u)

pj
δj+δu−Xj,u

2


+ βu


(1−δu) pu +

∑

j∈B(u)

pj
2−δj−δu−Xj,u

2




By introducing the polyhedron P =
{

(δ,X) ∈ [0, 1]J× [0, 1]J
< | (1)−(4)

}
, and denoting

int(P) its integer points, the problem can be formulated as a linear integer program (A-E.
Falq, P. Fouilhoux and S. Kedad-Sidhoum 2019):

(F) min
(δ,X)∈int(P)

f(δ,X)

Since it has exactly n+n(n−1)/2 boolean variables and 4n(n−1)/2 inequalities, (F)
is a compact formulation. Note that no linear inequalities are needed to ensure the task
non-overlapping since it is handled through the encoding.

3 Linear inequalities for neighborhood based dominance properties

It is common, in local search procedures, to slightly change a solution S to obtain a
new one S ′, called a neighbor of S. If the neighbor S ′ is better, (i.e. if it has a smaller
total penalty in our case), we say that S is dominated (by S ′), it follows that S cannot be
optimal.

This simple observation leads to a dominance property for any neighborhood N
which associates to a solution the set of its neighbors. A solution S is said N -dominated
if there exists S ′ ∈ N (S) which is strictly better than S. Hence solutions which are not
N -dominated are dominant.

Here, as a schedule is encoded by a partition (E, T) between early and tardy tasks, we
consider two operations providing a neighbor (E′, T ′):
- the insertion operation, which consists in inserting an early task on the tardy side i.e.
E′=E\{u} and T ′=T∪{u} for some u∈E, or conversely in inserting a tardy task on
the early side i.e. E′=E∪{u} and T ′=T \{u} for some u∈T ,

- the swap operation, which consists in inserting an early task on the tardy side while
a tardy task is inserted on the early side i.e. E′=E\{u}∪{v} and T ′=T \{v}∪{u} for
some (u, v)∈E×T .

139

3

S

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

|

u

S ′

Ā(u)∩E A(u)∩E B(u)∩T B̄(u)∩T

d

|

u

Fig. 1. Insertion of an early task u on the tardy side of a schedule

Figure 1 illustrates the insertion of an early task on the tardy side. Let us fix a task
u ∈ J . The top part of the scheme shows the general form of an arbitrary schedule S in
which u is an early task. The bottom part shows the general form of the neighbor S ′ of
S obtained by inserting of u on the tardy side. Considering solutions as schedules (rather
than partitions) allows to easily express the penalty variation between S and S ′ as follows:

−αu p
(
A(u)∩E

)
+ βu

(
p
(
B(u)∩T

)
+ pu

)
− pu α

(
Ā(u)∩E

)
+ pu β

(
B̄(u)∩T

)

Using this the penalty variation expression, we produce a linear inequality
• which cuts all schedules in which u is early and which are dominated by the schedule

obtained by inserting u on the tardy side,
• which is valid for any other schedule, in particular for all optimal schedules since they

are non-dominated.

Two elements allow us to produce such an inequality. First, assuming that u is early in
the schedule encoded by a vector (δ,X) is equivalent to assume that the linear term 1−δu
equal zero. Secondly, if (δ,X) encodes a schedule where u is early, the penalty variation
induced by the insertion of u on the tardy side, denoted ∆av

u (δ) is linear in δ:

∆av
u (δ)=−αu

∑

i∈A(u)

pi δi + βu
∑

i∈B(u)

pi(1−δi) + βupu + pu

(∑

i∈B̄(u)

βi (1−δi)−
∑

i∈Ā(u)

αi δi

)

and bounded by a constant:

∀δ∈{0, 1}J , −∆av
u (δ)6Mav

u where Mav
u =αu p

(
A(u)

)
− βupu + pu α

(
Ā(u)

)

We finally deduce the following inequality, which translates the dominance of the set of
schedules non-dominated by the insertion of u:

∆av
u (δ)>−Mav

u (1−δu) (5u)

Following the same approach, we produce a similar inequality (6u) cutting exactly the
schedules in which u is tardy, and dominated by inserting u on the early side. We also
produce an inequality (7u,v), for given v 6= u, cutting exactly the schedules in which u is
early, v is tardy, and dominated by swapping u and v.

Note that inequalities of family (5), (6) and (7) are not standard reinforcement inequal-
ities. Classically, valid inequalities are added to cut extreme points which are not integer
and then do not encode a feasible solution, since they correspond to a too optimistic value.
On the contrary, these dominance inequalities cut some integer points which encode feasible
solutions because they correspond to dominated, and then non-optimal, schedules.

140

4

4 Exact resolution and rounding heuristic

Let us introduce the polyhedron reinforced by the previous dominance inequalities
P ′ =

{
(δ,X) ∈ [0, 1]J× [0, 1]J

< | (1)−(4), ∀u∈J, (5u), (6u), ∀(u, v)∈J<, (7u,v), (7v,u)
}
,

and the associated formulation : (F ′) min
(δ,X)∈int(P ′)

f(δ,X).

Theoretically, we know that both formulations (F) and (F ′) give the same value.To
compare them from a practical point of view, we implement them using a linear solver
(CPLEX version 12.6.3.0), and test them on the benchmark proposed by (Biskup and
Feldmann 2001). Under a time limit of one hour, formulation (F) using all CPLEX fea-
tures allows to exactly solve instances up with [50] tasks, while formulation (F ′) without
any CPLEX features allows to exactly solve instances up with [150] tasks.

Although designed for exact solving, (F) (resp. (F ′)) can be used to obtain a lower
bound, by solving its linear relaxation denoted F̄ (resp. F̄ ′), and to obtain an upper bound
together with a feasible schedule, by rounding the fractional solution of F̄ (resp. F̄ ′).

A first rounding procedure consists in rounding vector δ and then fixing X accordingly
so that we obtain x̂∈ int(P). We then obtain a feasible schedule and an upper bound UB1
for (F) (resp. UB1’ for (F ′)). Note that x̂ can violate some dominance inequalities, then
x̂ 6∈P ′ (that implies in particular that CPLEX does not accept x̂ as an incumbent solution).
So we add a repairing phase, which consists in applying swap and insert operations as
long as it is possible, i.e.while an insert inequality or a swap inequality is violated, mean-
ing that an insert or a swap operation strictly improves the solution. We finally obtain a
non-dominated schedule and a better upper bound UB2 (resp. UB2’).

Note that this repairing phase can also be applied to the heuristic solution provided by
the Biskup and Feldmann algorithm (Biskup and Feldmann 2001), which possibly trans-
forms their upper bound UB3 in a better upper bound UB4. We compare experimentally
these four upper bounds and show that UB2, UB2’ and UB4 are very strong : they are
exact for 45 over 50 instances (of size up to 150), and the average gap to the optimal value
for the 5 other instances is less than 0,1%.

References

D. Biskup and M. Feldmann, 2001, "Benchmarks for scheduling on a single machine against
restrictive and unrestrictive common due dates", Computers and operations research, 28:787–
801

A-E. Falq, P. Fouilhoux and S. Kedad-Sidhoum, 2019, Mixed integer formulations using natural
variables for single machine scheduling around a common due date. CoRR, abs/1901.06880,
2019.

R. Fortet, 1959, "L’Algèbre de Boole et ses applications en Recherche Opérationnelle", Cahiers
du Centre d’Études en Recherche Opérationnelle, 4:5

N.G. Hall and M.E. Posner, 1991, "Earliness-tardiness scheduling problems, I: weighted deviation
of completion times about a common due date", Operations Research, 39(5):836–846.

J.A. Hoogeveen and S.L. van de Velde, 1991, "Scheduling around a small common due date",
European Journal of Operational Research, Vol 55:237–242,

F. Sourd, 2009, "New exact algorithms for one-machine earliness-tardiness scheduling", INFORMS
Journal on Computing, 21(1):167–175

141

1

An acceleration procedure for several objective functions
in the permutation flow shop scheduling problem

Victor Fernandez-Viagas1, Jose M. Molina-Pariente1, Carla Talens1 and Jose M.
Framinan1

Industrial Management, School of Engineering, University of Seville, Spain
vfernandezviagas,jmolina1,cartafa,framinan@us.es

Keywords: Scheduling, Flowshop, flow shop, accelerations, speed-up, total completion
time, total tardiness, total earliness, just-in-time,critical path.

1 Introduction

In a flowshop layout, n jobs have to be processed on m machines following all jobs
the same route of machines. The flowshop scheduling problem involves the search of the
best order to process the jobs in each machine. Traditionally, a common simplification,
denoted as Permutation Flowshop Scheduling Problem (PFSP), is adopted to avoid an
extensive use of manpower or machines in the shop, where the order of jobs does not
change between machines. This particular problem is one of the most studied optimization
problems in Operations Research (Fernandez-Viagas et. al. 2017), probably due to the
following reasons: this flowshop layout is very common in real manufacturing scenarios
(Vakharia and Wemmerlov 1990); many job shops can be simplified to a reduced flow shop
under several constraints (Storer et. al. 1992); and many models and solution procedures
for different constraints and layouts have their origins in the flowshop scheduling problem.
The PFSP is denoted by Fm|prmu|γ, where γ is the goal to be solved. Due to the NP-hard
nature of the problem, many approximate algorithms have been proposed in the literature
for the traditional problem and/or related constrained PFSP. Without any doubt, one of
the key factor for the efficiency of these approaches is the use of methods to accelerate
the calculation of the objective functions or local search methods. In this regards, Taillard
(1990) proposed the first speed-up procedure for Fm|prmu|Cmax (denoted as Taillard’s
accelerations) in the literature. These accelerations have been incorporated in hundreds of
papers and its use is nowadays mandatory to obtain an efficient approximate algorithm for
the Fm|prmu|Cmax problem. Unfortunately, they can be only applied in a very few amount
of objectives and/or constraints, and the search for more efficient accelerations is still open
in the literature. Thereby, in the race for finding accelerations for approximate algorithms in
other related problems, different speed-up procedures have been proposed in the literature
taking into account their specific problem properties. In this paper, we propose a new
speed-up procedure for Fm|prmu|∑Cj , Fm|prmu|

∑
Tj , and Fm|prmu|∑Ej +

∑
Tj ,

using specific properties based on the critical path, which clearly outperforms previous
proposals.

2 Literature review

A number of speed-up procedures have been proposed to accelerate approximate al-
gorithms in the related flowshop problems. To the best of our knowlegde, the well-known
accelerations proposed by Taillard (1990) was the first proposal published in the litera-
ture for flowshop layouts. Using the specific properties of the Fm|prmu|Cmax problem,
the author develops a very efficient procedure to accelerate the evaluation of approximated

142

2

algorithms in this problem. More specifically, using this procedure the complexity of inser-
tion local search methods can be reduced from n3 ·m to n2 ·m. Due to the repercussion and
excellent results of this paper, several other authors have been adapted them to related
PFSP. Thereby, Mercado and Bard (1998) adapt the Taillard’s accelerations for the PFSP
with sequence-dependent and anticipatory setup times and makespan minimisation, i.e.
Fm|sijk, prmu|Cmax. Naderi and Ruiz (2010) adapted them for the distributed permuta-
tion flowshop scheduling problem to minimise makespan, DF |prmu|Cmax. For the blocking
PFSP and makespan minimisation (Fm|blocking|Cmax), they have been first proposed by
Wang et. al. (2010). For the no-idle case (idle times no allowed on machines), they are
adapted by Fatih Tasgetiren et. al. (2013) to minimise the makespan and by Pan and Ruiz
(2010) for the mixed no-idle permutation flowshop scheduling problem with makespan min-
imisation. In the non-permutation case also for makespan, they are extended by Benavides
and Ritt (2016). In the PFSP with time lags constraints, Wang et. al. (2018) adapt the Tail-
lard’s accelerations to minimise the makespan. Regarding other objective functions, these
accelerations have been only adapted in some very particular cases. For the no-idle case,
they have successfully adapted by Fatih Tasgetiren et. al. (2013) for total completion time
(Fm|prmu, no− idle|∑Cj) and total tardiness (Fm|prmu, no− idle|∑Tj), respectively.
Fernandez-Viagas and Framinan (2015) adapted the accelerations to a different objective
function, the Fm|prmu|ε(Cmax/Tmax) problem, but allowing some infeasible solutions that
should be repaired. They adapt the accelerations for Fm|prmu|ε(Cmax/Tmax). In addition,
they incorporated a bounded local search based on problem properties, also to reduce the
number of positions where the jobs are inserted.

Other accelerations have been also proposed in the PFSP literature, when the com-
pletion time of each job is needed to evaluate the objective function. Thereby, Frami-
nan and Leisten (2008) propose accelerations (denoted as FL’s accelerations) to reduce
the evaluation of insertion local search in the PFSP with minimisation of total tardiness
(Fm|prmu|∑Tj). Note that these accelerations can be easily extended to interchange
local search, or other related PFSP as e.g.: Fm|prmu|∑Cj , Fm|prmu|

∑
Ej +

∑
Tj ,

and DF |prmu|∑Cj . Finally, some methodologies -reducing the number of moves in local
searches- have also been proposed in the literature, denoted as bounded local searches.
Basically, they reduce these moves by evaluating some lower or upper bounds and com-
paring them against the so-far best solution found by the algorithm. This is the case of
the aforementioned bounded local search proposed by Fernandez-Viagas and Framinan
(2015) in Fm|prmu|ε(Cmax/Tmax) which bound the feasible positions where insert the
jobs. Fernandez-Viagas and Framinan (2014) also use such as a procedure avoiding the
insertion or interchange of jobs in factories for the distributed PFSP (DF |prmu|Cmax).
Finally, a lower bound is used in Pagnozzi and Stützle (2017) to discard the evaluation of
some insertions in the PFSP with weighted total tardiness (Fm|prmu|∑wjTj).

3 New speed up procedure

In this section, we propose a new speed up procedure, denoted as FMF accelerations,
for insertion-based local search methods in the PFSP. The procedure highly reduces the
CPU time of this type of local search methods by avoiding the calculation of a number
of operations. Basically, it is based in the fact that, when inserting job σ in position j,
only the completion times of the jobs between the critical path and job πj+1 need to be
calculated to obtain any objective function in the Fm|prmu|− problem because: jobs over
the critical path do not influence in the completion times on the critical path; and the
completion times of jobs before j + 1 are known from previous iteration. In Figure 1, we
present an example of a sequence composed of four jobs (1,2,4,5) where a new job 3 wants

143

3

to be inserted in position 3. The critical path is shown in solid gray and the only operations
whose completion times must be evaluated are with diagonal green lines. As a consequence
only the completion times of the jobs between the critical path and job πj−1 need to be
calculated to obtain any objective function in the Fm|prmu|− problem.

Fig. 1. Example of the new speed-up

With this in mind, the detailed procedure of the proposed accelerations can be explained
as follows. Firstly, we calculate eij , qij , fij for sequence Π (i.e. without job σ) according to
the following equations:

eij = max{ei,j−1, ei−1,j}+ piπj
, i = 1 . . .m, j = 1 . . . k − 1 (1)

qij = max{qi+1,j , qi,j+1}+ piπj
, i = m. . . 1, j = k − 1 . . . 1 (2)

fij = max{ei,j−1, fi−1,j}+ piσ, i = 1 . . .m, j = 1 . . . k (3)

In addition we introduce cpij as a variable to reproduce the critical path after the
insertion of the new job. cpij is then equals to 1 if there is no idle time between the
operation Oi,πj

and Oi,πj+1
, and 0 otherwise (i.e. when there is no idle time between Oi,πj

and Oi+1,πj
). Next, job σ is tested in each position j of sequence Π. In each of these

positions, we determine the machine i
′
where the forward and backward critical paths join,

i.e. i
′
= maxi=1...m{fij + qij}. Then, we calculate the value of the objective function for

all previous insertion. There, the variable cpij is used to reproduced the critical path. If
cpij = 1, the completion time of job in position j + 2 (which corresponds to job pij+1)
is the actual load of machine i (denoted Loadi) plus the processing time piπj+1 and the
completion time of this job in the other machines is updated. Otherwise, the critical path
moves to a higher machine and the completion time of job in position j + 1 can directly
be obtained adding the processing time to the load of previous machine.

4 Computational Results and Conclusions

In this section, we compare the proposed FMF accelerations against previous accel-
erations proposed in the literature. Three different experimentations have been carried
out by implementing the proposed accelerations in the following three different objective
functions: Experimentation #1: Total completion time (Fm|prmu|∑Cj); Experimenta-
tion #2: Total tardiness (Fm|prmu|∑Tj); and Experimentation #3: Total earliness and
tardiness (Fm|prmu|∑Ej +

∑
Tj).

The computational results have been developed on two well-known sets of extensive
instances with and without due dates, respectively. Results show the excellent performance
of the proposed accelerations, regardless the objective function and the benchmark. More
specifically, the proposed accelerations clearly outperform each other accelerations proposed
in the literature so far. Thereby, in the minimisation of total earliness and tardiness, the

144

4

CPU times are reduced in average 75.5% against the method without accelerations and
42.9% against the best so far accelerations found in the literature. For some instances the
reduction is around a 90% of the computational time (as compared not using accelerations).
In the total tardiness case, the average reduction of computational time is 63.5% against the
44.6% and 45.9% of the PS’s and FL’s accelerations respectively. Similarly, the reduction
in the total completion time is 50.8% against the 37.7% found by the FL’s accelerations.

Acknowledgements

This research has been funded by the Spanish Ministry of Science and Innovation, under
the project “PROMISE” with reference DPI2016-80750-P.

References

Taillard, E., 1990, “Some efficient heuristic methods for the flow shop sequencing problem", Eu-
ropean Journal of Operational Research, Vol. 47(1), pp. 65-74.

Vakharia A.J., Wemmerlov U., 1990, “Designing a cellular manufacturing system: a materials flow
approach based on operation sequences", IIE Transactions, Vol. 22.

Rios-Mercado R.Z. and Bard J.F., 1998, “Heuristics for the flow line problem with setup costs",
European Journal of Operational Research, Vol. 110, pp. 76-98.

Benavides A.J. and Ritt M., 2016, “Two simple and effective heuristics for minimizing the makespan
in non-permutation flow shops", Computers and Operations Research, Vol. 66, pp. 160-169.

Naderi B. and Ruiz R., 2010, “The distributed permutation flowshop scheduling problem", Com-
puters & Operations Research, Vol. 37, pp. 754-768.

Framinan J.M. and Leisten R., 2008, “Total tardiness minimization in permutation flow shops: A
simple approach based on a variable greedy algorithm", International Journal of Production
Research, Vol. 46, pp. 6479-6498.

Pan Q.K. and Ruiz R., 2010, “An effective iterated greedy algorithm for the mixed no-idle permu-
tation flowshop scheduling problem", Omega, Vol. 44, pp. 41-50.

Fernandez-Viagas V. and Framinan J.M., 2015, “Efficient non-population-based algorithms for the
permutation flowshop scheduling problem with makespan minimisation subject to a maximum
tardiness", Computers & Operations Research, Vol. 64, pp. 86-96.

Fernandez-Viagas V. and Framinan J.M., 2014, “A bounded-search iterated greedy algorithm for
the distributed permutation flowshop scheduling problem", International Journal of Produc-
tion Research, Vol. 53, pp. 1111-1123.

Pagnozzi F. and Stützle T., 2017, ‘Speeding up local search for the insert neighborhood in the
weighted tardiness permutation flowshop problem", Optimization Letters, Vol. 11(7), pp. 1283-
1292.

Storer R.H., Wu S.D. and Vaccari R., 1992, “New search spaces for sequencing problems with
application to job shop scheduling", Management Science, Vol. 38, pp. 1495-1509.

Fernandez-Viagas V., Ruiz R. and Framinan J.M., 2017, “A new vision of approximate meth-
ods for the permutation flowshop to minimise makespan: State-of-the-art and computational
evaluation", European Journal of Operational Research, Vol. 257(3), pp.707-721.

Wang L. and Pan Q.-K. and Suganthan P.N. and Wang W.H. and Wang Y.M., 2010, “A novel
hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems",
Computers and Operations Research, Vol. 37(3), pp.509-520.

Fatih Tasgetiren M. and Pan Q.K. and Suganthan P.N. and Buyukdagli O., 2013, “A variable
iterated greedy algorithm with differential evolution for the no-idle permutation flowshop
scheduling problem", Computers and Operations Research, Vol. 40(7), pp.1729-1743.

Wang B. and Huang K. and Li T., 2018, “Permutation flowshop scheduling with time lag con-
straints and makespan criterion", Computers Industrial Engineering, Vol. 120, pp. 1-14.

145

1

Scheduling problems with processing time dependent
profit: applications and a nice polynomial case

Florian Fontan, Nadia Brauner, Pierre Lemaire

Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, F-38000 Grenoble, France
{firstname.lastname}@grenoble-inp.fr

Keywords: scheduling, controllable processing time, polynomial algorithm, b-matching

We study the complexity of scheduling problems where jobs have a variable processing
time: one can decide the processing time of each job. The profit for a job then depends on
its allocated processing time. Detailed results and proofs for this problem can be found in
the thesis of Fontan (2019). This abstract presents an insight of that document.

In our experience, the problem originates from astrophysics and the search for exoplan-
ets (Lagrange et. al. 2016). Astrophysicists want to schedule observations on a telescope
and, for each possible target (star), there exist time-windows when it is visible, a required
duration for its observation, and an interest for observing it; the objective is to maximize
the total interest of the schedule. This primary version of the problem has been described
and solved by Catusse et. al. (2016); but it appears that shortening an observation would
be worth doing if that makes room for another one. More generally an observation remains
relevant even if its processing (observation) time is slightly less than the required value,
with an accordingly downgraded interest. Such a situation can be modeled by processing
time dependent profits. The general problem is NP-complete, and an efficient practical so-
lution algorithm has been proposed Fontan (2019). In the following, we present the model
for processing time dependent profit (Section 1), limited to the case where time-windows
only differ by their deadlines. Then in Section 2, we focus on a special polynomial case to
show a proof technique for those problems.

1 Processing time dependent profit

We consider a scheduling problem with n jobs and m identical parallel machines; each
job Tj has a deadline dj and a profit function wj(pj) that depends on the decided processing
time pj . Figure 1 shows three examples of profit functions.

A schedule is feasible if it satisfies the following conditions:

– every machine processes only one job at a time,
– a scheduled job Tj must start after 0 and end before its deadline dj ,
– preemption is not allowed.

The objective is to find a feasible schedule that maximizes the total profit:

max
n∑

j=1

wj(pj)

with the convention that pj = 0 if Tj is not scheduled.

146

2

p

wj(p)

pj

wj

p

wj(p)

p

wj(p)

Fig. 1. Examples of profit functions of: (a) a classical scheduling problem (wj(p) = wj if
p ≥ pj , 0 otherwise); (b) a basic (linear profit) problem; (c) the star observation problem

2 Focus on a polynomial case solved with maximum weight b-matching

In this section, we focus on a specific variant with a common deadline, i.e. dj=d for all
jobs Tj , and the following profit function:

wj(p) =

{
0 if p < pmin

wmin
j + bj(p− pmin) if p ≥ pmin

p

wj(p)

pmin

wmin
j

We exhibit a polynomial algorithm for this special processing time dependent profit
maximization scheduling problem with parallel machines. This algorithm uses as subprob-
lem the maximum weight b-matching which can be solved in polynomial time (Schrijver
2002): Given a graphG(V,E), a demand/supply bv for each vertex v ∈ V , and a weight/cost
ce for each edge e ∈ E, a b-matching of G is a vector x ∈ NE such that

∑
u,(uv)∈E x(uv) ≤ bv

for all v ∈ V . The weight of a b-matching x ∈ NE is defined as
∑

e∈E cexe. The maximum
weight b-matching problem is then the problem of finding a b-matching of maximum weight
in G.

A set of solutions is dominant if it contains at least one optimal solution. Our algorithm
consists in solving a polynomial number of maximum weight b-matching problems which
rely on the dominant set described below.

We consider the case d = qpmin + r, with q, r ∈ N, q ≥ 2, 0 < r < pmin. However, with
a similar reasoning, the results can be adapted for the case d = qpmin, q ∈ N, q ≥ 2. The
case d < 2pmin is trivial.

Lemma 1. Let U be the set of solutions such that for all S ∈ U :

– for all Tj ∈ S, pj ≥ pmin;
– on each machine, there exists at most one job Tj ∈ S such that pj 6= pmin;
– there exists at most one job Tj ∈ S such that pj /∈

{
d, pmin, pmin + r

}
. Such a job is

called a special job.

Then, U is dominant.

Figure 2 illustrates the structure of the solutions of U . The horizontal axis corresponds
to the time, each line represents a machine and each striped rectangle and its length

147

3

...

...

Fig. 2. Illustration of the structure of the solutions in U

represent a scheduled job and its processing time. The long jobs on the top machines are
those of length d; the smallest jobs are those of length pmin; the jobs at the end of the
bottom machines are those of length pmin + r; the job with vertical stripes is a special job.

Let S /∈ U be an optimal solution. The idea of the proof of Lemma 1, that we do not
detail here, is to build another solution S′ ∈ U from S without degrading its value.

Theorem 1. The processing time dependent profit scheduling problem with a common
deadline for all jobs and a profit function as decribed at the beginning of this section can
be solved in polynomial time.

Proof. Following Lemma 1, we only focus on solutions of U . Thus, we can partition the
jobs of a solution S ∈ U into 4 subsets depending on their processing time (and one more
for the non scheduled jobs):

U1(S) = {Tj ∈ S, pj = d}
U2(S) = {Tj ∈ S, Tj is a special job}
U3(S) =

{
Tj ∈ S, pj = pmin + r

}

U4(S) =
{
Tj ∈ S, pj = pmin

}

U0(S) = {Tj /∈ S}
In addition, we define nk(S) the cardinality of Uk(S) and t(S) the number of jobs

scheduled on the same machine as the job of U2:

∀k ∈ {0, . . . , 4}, nk(S) = |Uk(S)|

t(S) =

{
0, if U2(S) = ∅
d−pj

pmin , if U2(S) = {Tj}

Note that, if U2(S) = {Tj}, then pj = d− t(S)pmin.
We now infer the following relations. For all S ∈ U :

0 ≤ n1(S) ≤ m 0 ≤ t(S) ≤ n− 1

n2(S) =

{
0, if t(S) = 0
1, otherwise

n3(S) = m− n1(S)− n2(S)

n4(S) = (q − 1)n3(S) + t(S) (remember that q = bd/pminc)
n0(S) = n− n1(S)− n2(S)− n3(S)− n4(S)

148

4

Therefore, if n1(S) and t(S) are fixed, we can determine n2(S), n3(S), n4(S) and
n0(S). Thus, the optimal value is the best optimal value of the O(n2) problems with those
parameters fixed:

OPT = max
(n1,t)∈({0,...,m}×{0,...,n−1})

OPT(n1, t)

Now, we show that for all (n1, t) ∈ {1, . . . ,m} × {0, . . . , n − 1}, a maximum weight b-
matching model can compute OPT(n1, t). We create n nodes Tj , j = 1, . . . , n with supply
1, and 5 nodes Ui, i = 0, . . . , 4 with demand ni such that n2 = 0 if t ≤ 1, 1 otherwise;
n3 = m−n1−n2, n4 = (q−1)n3+ t, n0 = n−n1−n2−n3−n4. Then for all j = 1, . . . , n,
for all i = 0, . . . , 4, we add the arc (Tj , Ui) and cost:

cji =





wj(d) i = 1
wj(d− tpmin) i = 2
wj(p

min + r) i = 3
wmin

j i = 4
0 i = 0

A part of the graph including only one job is represented in Figure 3. Edges are only
between a node corresponding to a job and a node corresponding to a set Uk. If edge
(Tj , Uk) is used in the b-matching solution, then job Tj will be scheduled according to the
corresponding set in the corresponding solution of the scheduling problem. For example, if
Uk = U1, then pj(S) = d. Hence, the obtained solution thus corresponds to a schedule S
with n1(S) = n1, etc.

The size of the graph is polynomial compared to the size of the instance. Furthermore,
the number of problems that we have to solve is O(n2). Therefore, the problem can be
solved in polynomial time.

Tj

1

U3

n3

U2

n2

U1

n1

U4

n4

U0

n0

wj(d
)

wj(d
− tp

min)

wj(p
min + r)

wj (pmin
)

0

Fig. 3. A part of the graph showing only one job given as input of the maximum weight
b-matching problem

149

5

References

Anne-Marie Lagrange, Pascal Rubini, Nadia Brauner, Hadrien Cambazard, Nicolas Catusse, Pierre
Lemaire, and Laurence Baude. SPOT: an optimization software for dynamic observation
programming. In SPIE 9910, Observatory Operations: Strategies, Processes, and Systems VI,
991033 (July 18, 2016), Edinburgh, United Kingdom, July 2016.

Nicolas Catusse, Hadrien Cambazard, Nadia Brauner, Pierre Lemaire, Bernard Penz, Anne-Marie
Lagrange, and Pascal Rubini. A Branch-And-Price Algorithm for Scheduling Observations
on a Telescope. In Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI-16), pages 3060–3066. AAAI Press, 2016.

Florian Fontan. Theoretical and practical contributions to star observation scheduling problems.
PhD Thesis, Grenoble 2019.

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2002.

150

1

Planning problem in Healthcare domain?

Olivier Gérard12, Laure Brisoux Devendeville1 and Corinne Lucet1

1 MIS Laboratory (EA 4290), University Picardie Jules Verne, France
{olivier.gerard, laure.devendeville, corinne.lucet}@u-picardie.fr

2 Evolucare Technologies, France
o.gerard@evolucare.com

Keywords: Planning, healthcare, optimization, 0-1 linear programming

1 Introduction

The complexity of planning in healthcare domain is an issue that is increasingly be-
ing highlighted by hospitals. Many healthcare problems belong to the family of Resource
Constrained Project Scheduling Problems (RCPSP) that are NP-Hard (Garey M.R. and
Johnson D.S. 1979) (Baptiste P. et al. 2006). The RCPSP problem consists in finding the
best assignment of resources and start times to a set of activities. Scheduling problems
have been the subject of many studies for decades in various fields (Anthony R.N. 1965)
(Blazewicz J. et al. 2019), and they are of increasing interest in healthcare domain (Shnits
B. et al. 2019). Through better patient care and better management of staff time sched-
ules, health facilities want to reduce their costs while improving patient care. There is a
rich literature on the variety and the description of these problems (Hall R.W.et al. 2012).
Nowadays, schedules are mostly designed by hand, a difficult and time-consuming task
that can be challenged by kinds of unexpected events. The structure of the problems that
might be encountered differs according to the institutions, their size and the number of
resources taken into account. The institutions’ needs are various, and the criteria for eval-
uating a schedule may also change from one institution to another or from one department
to another within the same institution. In this paper we present a 0-1 linear programming
model able to cope with various real-world healthcare scenarios.

The rest of this article is structured as follows. In section 2, we describe and formalize
our scheduling problem. In section 3 we present some instances and the corresponding
results obtained by the CPLEX solver. In section 4, we conclude with some remarks and
perspectives.

2 0-1 Linear programming model

The horizon H is decomposed into timeslots. We have a finite set of resources R. Each
resource r ∈ R is characterised by a set of properties Πr that determines which roles a
resource will be able to hold in an appointment. To each resource r ∈ R is also associated a
set of timeslot t such that Availablert = 1 if resource r is available at timeslot t. For example,
an orthopedic surgeon who is available the first hour over H =< t1, t2, t3, t4 > will be
represented as ressource r with properties orthopedic surgeon and orthopaedist and with
the set of available timeslots < 1, 1, 0, 0 >. He will be able to perform surgical operations
and medical consultations. A is a set of appointments, such that each appointment a ∈ A
is characterized by its duration durationa, a feasibility interval ESa and LSa, qtreqπa the
amount of resources with property π required by a. Essentiala and Emergencya are two
coefficients used to respectivly quantify the importance and the urgency of appointment

? This project is supported by LORH project (CIFRE No 2018/0425 between Evolucare and MIS
Laboratory)

151

2

a. They both occur as penalties in the objective function. Each appointment a is also
defined by a set of resources Ra having one of the properties required by a and Πa the
set of properties required by a. PreAssigneda is a set of couples (resource, property)
pre-assigned to a. Ar is a set of appointments in which a resource r can participate.

We define decision variables x and y, with xr,πa = 1 if resource r with the property π is
assigned to appointment a and yta = 1 if appointment a starts at the timeslot t. Now, we
are going to present the hard constraints mentioned above.

A resource may have multiple properties, and thus be able to perform multiple roles.
However, resource r can only be allocated to appointment a with exactly one of its prop-
erties π if a is scheduled:

∀ a ∈ A,∀ r ∈ Ra,
∑

π∈Πr

xr,πa ≤ 1 (1)

If resource r does not have property π, it cannot be allocated to appointment a with
this property π:

∀ r ∈ R,
∑

π∈Π\Πr

∑

a

xr,πa = 0 (2)

If resource r does not have any of the properties π required by appointment a, it cannot
be allocated to a:

∀ a ∈ A,
∑

r∈R\Ra

∑

π∈Π
xr,πa = 0 (3)

Each appointment a must be planned into a feasibilty interval determined by ESa and
LSa:

∀a ∈ A, ESa ×
∑

t∈H
yta ≤ t×

∑

t∈H
yta ≤ LSa (4)

If appointment a is planned, it is necessary to allocate the required quantity of resources
with property π:

∀ a ∈ A,∀ π ∈ Πa,
∑

r∈Ra

xr,πa = qtreqπa ×
∑

t∈[ESa;LSa]

yta (5)

Each resource r, allocated to appointment a, must be available for the complete duration
of a:

∀ a ∈ A,∀ r ∈ Ra,∀ t ∈ [ESa;LSa],

durationa ×
∑

π∈Πa

xr,πa − yta ×
t+durationa−1∑

t′=t

disport ≤ (1− yta)×H (6)

An appointment a is at most scheduled once:

∀ a,∈ A
∑

t∈[ESa;LSa]

yta ≤ 1 (7)

Resources are not allocated if the appointment a is not scheduled:

152

3

∀ a ∈ A, |R| × |Π| ×
∑

t∈[ESa;LSa]

yta ≥
∑

r∈Ra

∑

π∈Πa

xr,πa (8)

Resource r cannot be allocated to different appointments on same timeslot t:

∀ r ∈ R,∀ a ∈ Ar,∀ b ∈ Ar − {a},∀ t ∈ [max(ESa;ESb); min(LSa;LSb)],

∑

π∈Πr

xr,πa +
t∑

t′=t−durationb+1

yt
′
a +

∑

π∈Πr

xr,πb +
t∑

t′=t−durationb+1

yt
′
b ≤ 3 (9)

In most cases, an appointment is associated to a specific resource. The following con-
straint ensures that the resources r with their property π in PreAssigneda are allocated
to appointment a:

∀a ∈ A,∀(r, π) ∈ PreAssigneda, xr,πa =
∑

t∈[ESa;LSa]

yta (10)

The quality of a solution is evaluated by an objective function f that computes the
sum of the unplanned appointments a ∈ A, weighted by the importance factor Essentiala
and the sum of the differences between the start date of an appointment a and ESa,
weighted by the emergency factor Emergencya. The purpose is to find a valid solution
while minimizing the objective function defined in equation 11.

f =
∑

a∈A
(1−

∑

t∈[ESa;LSa]

yta)×Essentiala +
∑

a∈A

∑

t∈[ESa;LSa]

yta ×
t− ESa

LSa − ESa
×Emergencya

(11)

3 Experimentations and results

We generated instances from four different scenarios with the help of various planners
from different health care facilities in France who face daily concrete problems.

Table 1. Description of the scenarios.

Scenario Number of resources Resources av. Appointments dur.
Number of

appointments Horizon
Per patient Total

SurgDep
π1 = patient 16 100%

3 - 7 timeslots 1 16 23π2 = surgeon 4 83%
π3 = room 4 83%

Admission
π1 = patient 8 75%

1 - 2 timeslots 9 72 120
π2 = specialist 4 75%

RehabCenter

π1 = patient 24 100%

4 timeslots 4 96 20
π2 = doctor 12 100%
π3 = physiotherapist 6 100%
π4 = ergotherapist 6 100%

CardioRehab
π1 = patient 16 77%

2 timeslots 8 128 104
π2 = specialist 10 77%

The characteristics of the scenarios are described in Table 1. For each scenario, we
give the number of resources per property π ∈ Π, the rate of resources availability, the
appointments duration, the number of appointments and the number of timeslots making
up the horizon.

From each of these four scenarios, we generated three instances, starting with neither
important nor urgent appointments and then increasing the number of essential (Ess) and

153

4

urgent appointments (Em). We implemented the model under CPLEX and we ran tests
on an Intel i5-8350U processor. We limited the computation time to two hours, and we
reported the results in Table 2.

Table 2. Results of CPLEX

Instance name Time Objective value

SurgDep Ess0Em0 797 0
SurgDep Ess1Em1 2737 5.8160
SurgDep Ess2Em2 2085 19.4235

CardioRehab Ess0Em0 >7200 0-4
CardioRehab Ess1Em1 >7200 12.7059-16.7059
CardioRehab Ess2Em2 >7200 18.8015-23.0589
Admission Ess0Em0 246 0
Admission Ess1Em1 659 4.5098
Admission Ess2Em2 671 9.1734

RehabCenter Ess0Em0 1117 0
RehabCenter Ess1Em1 3015 14.8852
RehabCenter Ess2Em2 6956 23.7496

The objective value column corresponds to the objective function in equation 11. If
CPLEX was unable to find an optimal solution within the time limit, we reported the
upper and lower bound. The time column is the running time in seconds that CPLEX
needs to work out the optimal solution. For all scenarios other than the CardioRehab
scenario, CPLEX found an optimal solution before the computation time limit. We noticed
that increasing the number of important and urgent appointments implied an increase in
computing time, except for the scenario SurgDep. The calculation time also increases with
the number of appointments involved in the scenario.

4 Conclusion & perspectives

In this paper we have described and formalized concrete scheduling problems. We pro-
posed a 0-1 linear programming model able to solve various scenarios in healthcare. We
implemented this model under CPLEX and generated some instances in order to test it.
The optimality has been reached for most instances and this model has proven to be effec-
tive on various scheduling issues in the medical domain. This will be a reliable benchmark
to compare different approaches addressing these problems. We plan to develop a genetic
algorithm to solve larger instances.

References

Anthony R. N., 1965, ”Planning and Control Systems : a framework for analysis”, Division of
Research, Graduate School of Business Administration, Harvard University.

Baptiste P., P. Laborie, C. Le Pape, C. and W.Nuijten, 2006, ”Constraint-Based Scheduling and
Planning.”, In Foundations of artificial intelligence (Vol. 2, pp. 761-799), Elsevier.

Blazewicz J. , K.H. Ecker, E. Pesch, G. Schmidt, M. Sterna and J. Weglarz, 2019, ”Handbook
on Scheduling”, Springer International Publishing, International Handbooks on Information
Systems.

Garey M.R. and D.S. Johnson, 1979, ”Computers and Intractability: A Guide to the Theory of
NP-Completeness”, Series of Books in the Mathematical Sciences, W. H. Freeman.

Hall R. W., 2012, ”Handbook of healthcare system scheduling”. Springer Science+ Business Media,
LLC.

Shnits B., I. Bendavid and Y.N. Marmor, 2019, ”An appointment scheduling policy for healthcare
systems with parallel servers and pre-determined quality of service”, Omega (pp. 102095),
Elsevier.

154

1

Solving the Multi-mode Resource Investment Problem
with Constraint Programming

Patrick Gerhards1

Helmut Schmidt University Hamburg, Germany
patrick.gerhards@hsu-hh.de

Keywords: Project Scheduling, Multi-mode Resource Investment Problem, Constraint
Programming

1 Introduction

When dealing with project scheduling problems, often a fixed deadline for the project
completion time is imposed. The main concern of the project manager is to plan the use
of resources in such a way, that the project finishes on time and the project costs are
minimised. In this work, we will investigate how we can solve a problem of this kind -
the multi-mode resource investment problem (MRIP) - using mixed-integer programming
(MIP) and constraint programming (CP) techniques. Since the efficiency of constraint
programming solvers increased significantly in recent years, we want to study if they are a
suitable procedure when solving this problem type.

2 Multi-mode Resource Investment Problem

The MRIP is a project scheduling problem and an extension of the resource investment
problem (RIP). The RIP, also known as resource availability cost problem (RACP), was
introduced by Möhring (1984) and has many practical application cases (e.g. software
development or construction projects). For the multi-mode variant, Hsu and Kim (2005)
presented a priority rule heuristic and Qi et al. (2015) applied a modified version of the
particle swarm optimisation metaheuristic to the MRIP. Kreter et al. (2018) tested MIP
as well as CP formulations of the RIP (and some of its extensions) and showed that CP
techniques work especially well. They solved many of the open instances to optimality.

Next, we give a formal definition of the MRIP. An instance of the MRIP consists of a
set of activities A = {0, . . . , n+1} with precedence relations E ⊂ A×A among them. The
activities are nonpreemptable and for each activity i, there is a set of modes Mi. Depending
on the chosen mode m ∈ Mi, the activity processing duration dim can vary. There are
two types of resources that are required by the activities in the MRIP: the renewable
resources in R replenish after each period and are useful to model workers or machines.
Non-renewables resourcesRn are consumed by activity execution and do not replenish. The
amount of required resource units of activity i depends on the mode m and the resource
k ∈ R (k ∈ Rn) and is denoted by rimk (rnimk). For the renewable resources, the peak
resource consumption in all periods needs to be lower than or equal to the resource capacity
ak allocated to the project. The renewable resource costs are computed by multiplying
the capacity with the resource unit cost factor ck. Similar, the non-renewable costs are
also the product of the resource unit cost factor cnk and the total non-renewable resource
consumption ank . In the MRIP, there is a also a deadline D given that restricts the project
completion. Using forward and backward calculation (Kelley 1963), we can compute bounds
on the earliest start (ESTi) and latest finish (LFTi) times of the activities. The goal is
to find a precedence feasible schedule and a mode assignment that minimises the resource
costs.

155

2

We present a mathematical model for the MRIP using so-called pulse variables ximt. It is
an adaption of a model for the resource constrained project scheduling problem (Artigues
2017). In preliminary experiments, the model based on pulse variables achieved better
results than the models with on-off or step variables. For each activity i ∈ A, mode
m ∈Mi and period t ∈ [ESTi, LFTi−dim] we introduce the binary decision variable ximt

that is equal to 1 if and only if activity i is processed in mode m and starts in period t.
Let us now show a model that can be used as a mixed-integer program to solve the

MRIP.

min
∑

k∈R
ck · ak +

∑

k∈Rn

cnk · ank (1)

s.t.
∑

m∈Mi

LFi−dim∑

t=ESi

ximt = 1 ∀i ∈ A (2)

∑

m∈Mi

LFi−dim∑

t=ESi

ximt(t+ dim) ≤
∑

m∈Mj

LFj−djm∑

t=ESj

xjmt · t ∀(i, j) ∈ E (3)

∑

i∈A

∑

m∈Mi

LFi−dim∑

t=ESi

ximt · rnimk ≤ ank ∀k ∈ Rn (4)

∑

i∈A

∑

m∈Mi

min(t,LFi−dim)∑

q=max(ESi,t−dim+1)

ximq · rimk ≤ ak ∀k ∈ R, t = 0, . . . , D (5)

ak ≥ 0, ank ≥ 0 ∀k ∈ Rn (6)
ximt ∈ {0, 1} ∀i ∈ A,∀m ∈Mi, t = ESi, . . . , LSi (7)

In the objective function (1), we minimise the sum of the resource costs. The renewable
part is the product of the peak resource usage ak and the given resource cost factor ck.
Similarly, we multiply the amount of consumed non-renewable resource units ank with its
resource cost factor cnk to get the non-renewable resource costs. The constraints (2) ensure
that each activity is executed in exactly one mode and exactly one start time is chosen.
We model the precedence constraints in a aggregated way and they are displayed in (3): if
(i, j) ∈ E, then the finish period of activity i (left side of the inequality) has to be lower
than or equal to the start period of activity j (right side). In constraint (4), we compute
the non-renewable resource consumption for each non-renewable resource and (5) shows
the renewable resource consumption in each time period t ∈ [0, D]. Lastly, (6) - (7) depict
the decision variables.

3 Constraint Programming Model

Next, we present a constraint programming model. We use the software IBM ILOG
CPLEX CP Optimizer (cf. Laborie et al. (2018)) to model and solve the MRIP using
CP-based techniques. The modelling language of CPLEX CP Optimizer offers the use of
so-called interval variables. They can be used to model the start and finish time of an
activity and with the keyword size, it is possible to specify the length of the interval
(i.e., the difference between the finish and start time). With optional, we can declare
that an activity can be left unperformed (useful in the context of different modes) and
presenceOf shows, if an interval variable is performed or not. Let us introduce the decision
variables used in our model: With act[i] we define a interval variable for each activity i ∈ A

156

3

(see (14)). Since activities can be performed in multiple modes, we introduce in (15) an
optional interval variable mode[i,m] for each mode with a specific duration dim. Among
interval variables, we can use time expressions such as endBeforeStart to model the
precedence restrictions as seen in (10). With the alternative expression, we can link the
act and mode interval variables. The constraint alternative(b, {b1, . . . , bn}) ensures that
if interval variable b is present, then exactly one of the interval variables in {b1, . . . , bn} is
also present and their start and end times coincide. This expression is used in (9) to ensure
that we choose exactly one processing mode for each activity. To model the peak resource
consumption, we use real valued decision variables ak and ank (see (13)). We make use of
a cumulative function named renewUsagek in (12) to represent the renewable resources.
There, we sum up over the resource consumptions of the present interval variables with
the so called pulse(a, h) expression (that adds the amount h between the start and end
time of interval variable a). The non-renewable resources are modelled by summing up the
respective resource consumptions of all present mode interval variables in (11). Finally, in
the objective function (8), we sum up the resource costs for the peak resource usage of the
renewable and non-renewable resources.

min
∑

k∈R
ck · ak +

∑

k∈Rn

cnk · ank (8)

s.t. alternative(act[i], {mode[i,m] : m ∈Mi}) ∀i ∈ A (9)
endBeforeStart(act[i], act[j]) ∀(i, j) ∈ E (10)
∑

i∈A

∑

m∈Mi

presenceOf(mode[i,m]) · rimk ≤ ank ∀k ∈ Rn (11)

renewUsagek =
∑

i∈A

∑

m∈Mi

pulse(mode[i,m], rimk) ≤ ak ∀k ∈ R (12)

ak ≥ 0 ∀k ∈ R ank ≥ 0 ∀k ∈ Rn (13)
interval act[i] ∀i ∈ A (14)
interval mode[i,m] optional size dim ∀i ∈ A,∀m ∈Mi (15)

The CPLEX CP Optimizer software features an automatic search that is complete
and tunes its parameters automatically. It uses propagation of the temporal network, fil-
tering algorithms for the cumulative resource constraints and large neighborhood search
techniques to solve complex scheduling problems (Laborie et al. 2018).

4 Computational Experiments

In order to test the performance of the two approaches presented above, we used the
benchmark instances of the RIPLib dataset1. It features MRIP instances with 30, 50 and
100 activities, 3 or 6 modes per activity and up to 8 renewable resources. In total, 4 950
instances were used in our experiments. We used version 12.9.0 of the CPLEX CP Optimizer
solver to solve the CP model depicted above and Gurobi 9.0.0 to solve the MIP model
presented before. The solvers were executed on an Intel Xeon Silver 4214 CPU running
at 2.20 GHz and the thread count for each solver was restricted to 1. As a stopping
criterion, we used time limits of 60, 600 and 3 600 seconds. In Table 1 we depict the
portion of instances that were solved to optimality by the MIP or CP solver. Surprisingly,
the CP method solved almost twice as many instances in 60 seconds than the MIP solver
in 3 600 seconds. With the 1 hour time limit, CP solved almost one third of the instances
1 https://riplib.hsu-hh.de/

157

4

Table 1. Percentage of instances solved to optimalitiy

Max runtime in seconds
Method 60 600 3 600

MIP 0.9 % 4.3 % 9.3 %
CP 14.6 % 22.6 % 28.4 %

to optimality. It shows clearly, that CP outperforms the MIP approach on these instances.
Further results will be presented at the conference due to space limitations and can also
be found in (Gerhards 2020).

References

Artigues, C., 2017, “On the strength of time-indexed formulations for the resource-constrained
project scheduling problem”, Operations Research Letters , Vol. 45, No. 2, pp. 154-159.

Gerhards, P., 2020, “The multi-mode resource investment problem: a benchmark library and a
computational study of lower and upper bounds”, OR Spectrum, Vol. 42, No. 4, pp. 901-903.

Hsu, C. C., D. S. Kim, 2005, “A new heuristic for the multi-mode resource investment problem”,
Journal of the Operational Research Society, Vol. 56 No. 4, pp. 406-413.

Kelley, J. E., 1963, “The critical-path method: Resources planning and scheduling”, Industrial
Scheduling, Vol. 13, no. 1, pp. 347-365.

Kreter, S., Schutt, A., Stuckey, P. J., Zimmermann, J., 2018, “Mixed-integer linear programming
and constraint programming formulations for solving resource availability cost problems”,
European Journal of Operational Research, Vol. 266, No. 2, pp. 472-486.

Laborie, P., J. Rogerie, P. Shaw, P. Viliím, 2018, “IBM ILOG CP optimizer for scheduling”,
Constraints, Vol. 23, No. 2, pp. 210-250.

Möhring, R. H., 1984, “Minimizing costs of resource requirements in project networks subject to
a fixed completion time”, Operations Research, Vol. 32, No. 1, pp. 89-120.

Qi, J. J., Y. J. Liu, P. Jiang, B. Guo, 2015, “Schedule generation scheme for solving multi-mode re-
source availability cost problem by modified particle swarm optimization”, Journal of Schedul-
ing, Vol. 18, No. 3 pp. 285-298.

158

Multi-Scenario Scheduling with Rejection Option to Minimize the

Makespan Criterion

Gilenson M and Shabtay D

Department of industrial engineering and management,

 Ben-Gurion university of the Negev, Beer-Sheva, Israel

e-mail: gilenson@post.bgu.ac.il, dvirs@bgu.ac.il

Keywords: single-machine scheduling, multi-scenario scheduling, complexity classification,

makespan, scheduling with rejection.

1. Introduction and problem definition

We study a set of single-machine scheduling problems, where job-processing times are

uncertain at the time-point at which the scheduler has to make his scheduling decisions. We

assume that there is a finite set of different scenarios that can affect the processing environment,

and thus processing times are scenario-dependent. Scheduling problems with scenario-dependent

processing times are mainly studied in the literature under the assumption that all jobs have to be

scheduled in shop (see, e.g., Daniels and Kouvelis 1995; Yang and Yu 2002; Aloulou and Croce

2008; Mastrolilli et al. 2013; Choi and Chung 2016; and Kasperski and Zielinski 2016), exposing

the manufacturer to a great deal of uncertainty (risk). The common way to control risk in the

multi-scenario scheduling literature is to find a robust schedule, which minimizes the maximal

value of the scheduling criterion between all scenarios (see, e.g., Daniels and Kouvelis 1995; Yang

and Yu 2002; Aloulou and Croce 2008; Mastrolilli et al. 2013; and Kasperski and Zielinski 2016).

A different approach to control risk is to reject the processing of some jobs by either outsourcing

them or rejecting them altogether.

Although scheduling with rejection and multi-scenario scheduling are two solid fields in the

scheduling literature, only Choi and Chung, (2016) consider these two approaches simultaneously.

We aim to extend the relevant literature on multi-scenario scheduling with rejection in order to

provide the manufacturer tools to coordinate outsourcing with scheduling decision in an uncertain

processing environment. In this paper, we focus on single-machine problems with the objective of

minimizing the makespan.

The set of problems we study is formally defined as follows: we are given a set
 of independent, non-preemptive jobs that are available for processing at time

zero. There is a set of different scenarios, each of which defines a different possible set of job

processing times (we consider both cases where is a constant and an arbitrary value). By

 we

denote the processing time of job on the single machine under scenario

). Moreover, by we denote the cost of rejecting job (e.g., outsourcing its processing to

a subcontractor).

A solution π=(,) is defined by (i) a partition = of set into two disjoint subsets

 and referring to the set of accepted and rejected jobs, respectively; and by (ii) a schedule

of the accepted jobs (jobs in set) on the machine. Given a solution let

be the total rejection cost. Moreover, let

 be the completion time of any job on the

single machine under scenario). For a given scheduling criterion , let be its

value under scenario), and let for . We measure the

quality of a solution by the following set of different solution values

 .

In this paper we consider the case where is the makespan criterion, accordingly we have that

As we measure the quality of any solution by different solution values, many different

problem variations can be considered (see, e.g., Gilenson et al. 2018). In this paper, we focus on

the following problem variations, which are commonly analysed in the multi-criteria literature:

159

 Problem Variation 1 (PV): Given a set of non-negative parameters, ,

find a solution, π, that minimizes the linear combination of , i.e., that

minimizes
 .

 Problem Variation 2 (PV): Find a solution, π, that minimizes subject to

 , where is a given upper bound on the value of .

 Problem Variation 3 (PV₃): Identify a single Pareto-optimal solution (also known as a

non-dominated or efficient solution) for each Pareto-optimal point, where a solution is

called Pareto-optimal with respect to if there is no other solution , such

that , with at least one of these inequalities being

strict. The corresponding Pareto-optimal point is given by .

We use the standard three-field notation introduced in Graham et al. (1979) to describe

our scheduling problems. The field describes the machine environment. If , it implies that

the scheduling is done on a single-machine. The field defines the job-processing characteristics

and constraints. When considering a multi-scenario scheduling problem we include the set of

scenario-dependent parameters in this field. If processing times are scenario-dependent, we include

 in this field. We also include the entry in the field for cases where rejection is allowed.

The scheduling criteria appear in the field.

2. Brief literature review

The single-scenario variant of the makespan minimization problem with rejection, i.e., the

 problem, was studied by De et al. (1990). They observed that the objective

function can be reformulated as

 .

Therefore, if job is included in , it contributes to the objective function value, and if job is

included in , it contributes to the objective function value. Accordingly, they concluded that

the following lemma holds:

Lemma 1: The problem is optimally solvable in time by applying

the following rule for then assign job to set . Otherwise, assign to set

 .

It follows from the above lemma that the optimal objective value of the

problem is in fact

To the best of our knowledge, only Choi and Chung (2016) studied a multi-scenario

scheduling problem with rejection to minimize the makespan. They studied the

 problem, where

 is the optimal (minimal) solution

value under scenario) and

 .

They proved that (i) the problem is ordinary NP-hard even when ; (ii) that when is

constant then the problem reduces to the min-max Shortest Path problem with scenarios and thus

admits an FPTAS (Fully Polynomial Approximation Scheme); (iii) that if is arbitrary then the

problem becomes strongly NP-hard; and that (iv) the special case where

 is a

scenario-dependent constant that is common to all jobs) is solvable in time. Moreover,

they designed a 2-approximation algorithm for the general problem (with arbitrary) which is

based on LP relaxation.

3. Our results

Consider first PV1, i.e., consider the

 problem. The fact

that

 =

 ,

where

 for , implies that the following lemma holds:

160

Lemma 2: Any instance of the

 problem reduces, in

 time, to an equivalent instance of the problem by setting

 for .

The following corollary is now straightforward from the results in Lemmas 1 and 2:

Corollary 1: The

 problem is solvable in time by

applying the following rule for

 , then assign job to set .

Otherwise, assign to set .

We then consider PV2. We show that PV is equivalent to the Multi-dimensional 0-1

Knapsack problem, where the problem parameters may take both negative and positive values. The

fact that the less general Multi-dimensional 0-1 Knapsack problem, with non-negative value of

parameters, is ordinary NP-hard for any constant number of dimensions, and is strongly NP-hard

when q is arbitrary (see, Garey and Johnson, 1979) leads to the following theorem:

Theorem 1: PV and PV₃ are at least ordinary NP-hard for any constant value of q and are

strongly NP-hard when q is arbitrary.

Although there is a pseudo-polynomial time algorithm for special cases of the Multi-

dimensional 0-1 Knapsack problem with both positive and negative parameters, when the number

of dimensions is constant (e.g., for Multi-dimensional 0-1 Knapsack problem with only non-

negative parameters, and for Subset Sum problem with both positive and negative parameters), we

did not find an evidence for the existence of such an algorithm for our equivalent problem.

Therefore, we still had to tackle the question whether PV2 and PV₃ are strongly or ordinary NP-

hard when q is constant.

We answer this question by showing that PV and PV₃ are ordinary NP-hard for any

constant value of q. We obtain this result by reducing each of the problems (PV and PV₃) to a

Multi-Criteria Shortest Path problem, which is solvable in pseudo polynomial time (Hassin 1992,

Garroppo et al. 2010).. Therefore, the following theorem holds:

Theorem 2: PV and PV₃ are ordinary NP-hard for any constant value of q.

We then show that our complexity results in Theorems 1 and 2 for PV and PV₃ are also

applicable for the absolute robustness problem variation (that is, the problem of finding a solution

that minimizes the maximal objective value under all possible scenarios, i.e., that minimizes

), leading for the following result as well:

Theorem 3: The absolute robustness problem variation is ordinary NP-hard for any constant

value of q and is strongly NP-hard when q is arbitrary.

Finally, we consider a special case of PV₃ , where for each job there are only two

scenarios of processing times. We provide a fast O(nlogn) time algorithm for finding the set of all

supported solutions (where a solution is called supported if there exists a set of non-negative

parameters , such that this solution is optimal for PV). We note that the set of all

supported solutions is a subset of the Pareto-optimal set of solutions.

References

Aloulou M A. and Della Croce F., 2008, "Complexity of single machine scheduling

problems under scenario-based uncertainty", Operations Research Letters, Vol. 36(3), pp.

338-342.

Choi B C. and Chung K., 2016, "Min-max regret version of a scheduling problem with

outsourcing decisions under processing time uncertainty", European Journal of Operational

Research, Vol. 252(2), pp. 367-375.

Daniels R L. and Kouvelis P., 1995, "Robust scheduling to hedge against processing time

uncertainty in single-stage production", Management Science, Vol. 41(2), pp. 363-376.

De P., Ghosh J B., and Wells C E., 1991, "Optimal delivery time quotation and order

sequencing", Decision Sciences, Vol. 22(2), pp. 379-390.

Garroppo R G., Giordano S., and Tavanti L., 2010, "A Survey on multi-constrained optimal

path computation: exact and approximate algorithms", Computer Networks, Vol. 54, pp.

3081-3107.

161

Garey M R. and Johnson D S., 1979, "Computers and intractability: a guide to the theory of

NP-completeness".

Gilenson M., Naseraldin H. and Yedidsion L., 2018, "An approximation scheme for the bi-

scenario sum of completion times trade-off problem", Journal of Scheduling, Vol. 22(3), pp.

289-304.

Graham R L., Lawler E L., Lenstra J K. and Kan A R., 1979, "Optimization and

approximation in deterministic sequencing and scheduling: a survey", Annals of Discrete

Mathematics, Vol. 5, pp. 287-326.

Hassin R., 1992, "Approximation schemes for the restricted shortest path problem",

Mathematics of Operations Research, Vol. 17(1), pp. 36-42.

Kasperski A. and Zieliński P., 2016, "Single machine scheduling problems with uncertain

parameters and the OWA criterion", Journal of Scheduling, Vol. 19(2), pp. 177-190.

Mastrolilli M., Mutsanas N. and Svensson O., 2013, "Single machine scheduling with

scenarios", Theoretical Computer Science, Vol. 477, pp. 57-66.

Yang J. and Yu G., 2002, "On the robust single machine scheduling problem", Journal of

Combinatorial Optimization, Vol. 6(1), pp. 17-33.

162

1

A Continuous-Time Model for the Multi-Site

Resource-Constrained Project Scheduling Problem

Mario Gnägi and Norbert Trautmann

Department of Business Administration, University of Bern, 3012 Bern, Switzerland
mario.gnaegi@pqm.unibe.ch, norbert.trautmann@pqm.unibe.ch

Keywords: Resource-Constrained Project Scheduling, Multiple Sites, Mathematical Pro-
gramming.

1 Introduction

In the Resource-Constrained Project Scheduling Problem (RCPSP), it is assumed that
all project activities are executed at a single site, and consequently all resources are located
at this site. In the multi-site RCPSP, which is a novel extension of the single-site RCPSP,
it is possible to consider the execution of the activities at several alternative sites. Further-
more, some units of the various renewable resource types are assumed to be permanently
located at a single site, whereas the other units can be moved between the sites. Hence, the
multi-site RCPSP includes the management of a so-called resource pooling because some
resource units can be shared among the di�erent sites. Finally, the spatial distance between
the sites gives rise to two di�erent types of transportation times that must be considered
in the project schedule. First, while a resource unit is moved between two sites, i.e., during
the transportation time, it cannot be allocated to the execution of an activity. Second, if
two activities that are interrelated by a precedence relationship are executed at di�erent
sites, then a minimum time lag between the completion of the �rst activity and the start
of the second activity must be taken into account, which corresponds to the time required
for transporting the �rst activity's output between the respective sites.

To the best of our knowledge, the multi-site RCPSP has only been treated by Laurent
et al. (2017), who provide a binary linear programming (BLP) model. The model belongs to
the class of discrete-time models, i.e., the planning horizon is divided into a set of equally-
long periods, and it is assumed that an activity can be completed at the end of such
a period only. Laurent et al. (2017) report results of a computational analysis performed
with CPLEX on a set of small-sized self-generated instances, where the number of activities
was varied between 5 and 30. It turned out that within a prescribed time limit of 3′600
seconds of CPU time, none of the instances with 30 activities could be solved to optimality;
therefore, Laurent et al. (2017) additionally propose four di�erent metaheuristics.

Subject of this paper is a novel continuous-time mixed-binary linear programming
(MBLP) model for the multi-site RCPSP. Besides an illustrative example, we provide
new computational results for instances with 30 activities and a varying number of sites.
We have tested the novel continuous-time model and the discrete-time model proposed by
Laurent et al. (2017) on a set of 960 instances also generated by Laurent et al. (2017).
It has turned out that when using the novel continuous-time model, feasible solutions are
devised for all instances; a large number of these instances can even be solved to optimality,
and the MIP gap for the remaining instances is relatively small. Moreover, when using the
novel continuous-time model, for a considerable number of instances a feasible solution is
devised which has a better objective function value than the best solution devised by the
discrete-time model and all the metaheuristics presented in Laurent et al. (2017).

The remainder of this paper is organized as follows. In Section 2, we illustrate the multi-
site RCPSP by an example. In Section 3, we explain the types of decision variables used

163

2

0

1

2

3

4

5

i j

Activity i 0 1 2 3 4 5

pi 0 2 2 3 2 0
ri1 0 1 1 1 2 0
ri2 0 1 0 0 0 0 0 1 2 3 4 5 6 7 8

1

1

2

3 4

4
1

2u = 1

u = 2

u = 1

k = 1

k = 2
Non-mobile
(at site B)

Non-mobile
(at site A)

Mobile

Site A Site B

t

Fig. 1. Illustrative example: duration, resource requirements and activity-on-node network (left);
optimal solution (right)

in the novel continuous-time model. In Section 4, we report our computational results. In
Section 5, we provide some conclusions and give an outlook for future research.

2 Illustrative Example

In this section, we illustrate the multi-site RCPSP by means of an example project
comprising n = 4 real activities {1, . . . , 4}. Two resource types k = 1 and k = 2 are
required for executing the activities. The project start and the project completion are
represented by the �ctitious activities 0 and n+1; both �ctitious activities have a duration
of 0 and do not require any unit of any resource type. The activity-on-node network of
the illustrative example is depicted on the left-hand side of Figure 1. Each node of this
network corresponds to exactly one activity of the project and vice versa, and an arc from
a node i to a node j of the network indicates that a precedence relationship is prescribed
between the completion of activity i and the start of activity j. The table below provides
the duration pi and the requirements rik for the two resource types k = 1 and k = 2 for
each activity i ∈ {0, 1, . . . , 5}. Furthermore, we assume that there are two sites A and B; a
transport between these sites takes 1 unit of time in any direction. Moreover, we assume
that there are two units of resource type k = 1; one of these units, e.g. unit u = 1, is mobile,
i.e., it can be moved between sites A and B, and the other unit u = 2 is non-mobile, i.e.,
it is permanently located at site A. There is one unit of resource type k = 2, and this unit
is non-mobile and permanently located at site B.

On the right-hand side of Figure 1, an optimal solution for our illustrative example
is visualized. For each activity, rectangles indicate to which resource units it is assigned,
and during which periods it is executed. First, there is a transportation time between the
completion of activity i = 3 and the start of activity j = 4, because the mobile resource unit
u = 1 of resource type k = 1, which is allocated to their execution, needs to be transported
from site B to site A. Second, there is a transportation time between the completion of
activity i = 1 and the start of activity j = 2, because these two activities are precedence-
interrelated, but activity i = 1 is executed at site B, and activity j = 2 is executed at site
A, i.e., the output of activity i = 1 must be transported from site B to site A.

3 Decision Variables Used in the Novel Continuous-Time Model

In this section, we explain the types of decision variables used in the novel continuous-
time model by means of our illustrative example; for a detailed presentation of the model,
we refer to Gnägi and Trautmann (2019). The notation used for the sets and parameters is
as follows. The set V comprises all activities including the �ctitious ones representing the

164

3

0 1 2 3 4 5 6 7 8

1

1

2

3 4

4

k = 2
u = 1

k = 1
u = 2

k = 1
u = 1

Site A Site BS0 = 0 S1 = 0

S2 = 3

S3 = 2

S4 = 6

S5 = 8

s1A = 0
s1B = 1

s2A = 1
s2B = 0

s3A = 0
s3B = 1

s4A = 1
s4B = 0

r102 = 0
r201 = 0
r101 = 0

r112 = 1
r211 = 0
r111 = 1

r122 = 0
r221 = 1
r121 = 0

r132 = 0
r231 = 0
r131 = 1

r142 = 0
r241 = 1
r141 = 1

r152 = 0
r251 = 0
r151 = 0

y14 = 1

y41 = 0

y32 = 0/1y23 = 0/1 y24 = 1

y42 = 0

y34 = 1

y43 = 0

t

Fig. 2. Types of decision variables used in the continuous-time model

project start and the project completion; we also use a set V̇ comprising all real activities
only. Furthermore, the set L comprises the alternative sites, and the set R comprises the
various resource types; for each resource type k ∈ R, we denote the available number of
units as Rk.

The model employs a set of continuous start-time variables Si (i ∈ V), together with
the following three sets of binary variables:

� site-selection variables sil indicate whether an activity i ∈ V̇ is executed at site l ∈ L,
� resource-assignment variables ruik indicate the assignment of an activity i ∈ V to the
various units u ∈ {1, . . . , Rk} of resource type k ∈ R, and

� sequencing variables yij indicate the sequences between all pairs of activities (i, j) ∈
V̇ × V̇ (i 6= j and (i, j) /∈ TE), where TE denotes the set of pairs of activities that
cannot be executed in parallel due to the prescribed precedence relationships.

We illustrate these types of decision variables in Figure 2 by means of the example
project introduced in Section 2. By convenience, the project starts at time 0, i.e., S0 := 0.

4 Computational Results

In this section, we report the results of our experimental performance analysis. We
tested the performance of both the discrete-time BLP model presented in Laurent et al.
(2017), hereafter referred to as LDGN17, and the novel continuous-time MBLP model,
hereafter referred to as GT20, on 960 test instances from the set MSj30 for the multi-
site RCPSP, each of which consisting of n = 30 activities with |L| = 2 or |L| = 3 sites;
these instances have been generated by Laurent et al. (2017) by adapting the well-known
single-site RCPSP instances j30 from the PSPLIB (cf. Kolisch and Sprecher 1996). We
implemented both models in Python 3.6, and we used the Gurobi Optimizer 8.1 as solver.
For each test instance, we prescribed a maximum computation time of 300 seconds, and
we limited the maximum number of threads to four. We did not change the default values
for any other solver setting.

Table 1 summarizes the computational results. We report the results for all tested in-
stances, but also for the subsets of instances for which both models devised at least a
feasible solution. # Feas and # Opt correspond to the number of instances for which a

165

4

Table 1. Computational results

Sites Subset Model # Feas # Opt GapLB (%) GapBKS (%) # BKS+ # Vars

2 All LDGN17 453 268 30.64 13.34 59 8,826

GT20 480 316 13.17 0.56 121 3,187

2 Feas LDGN17 453 268 30.64 13.34 59 8,873

GT20 453 313 11.23 0.57 108 3,237

3 All LDGN17 443 214 45.91 19.75 61 8,858

GT20 480 277 21.09 1.56 149 3,217

3 Feas LDGN17 443 214 45.91 19.75 61 8,906

GT20 443 274 17.85 1.40 138 3,269

feasible solution and to the number of instances for which a proven optimal solution, re-
spectively, has been found within the prescribed maximum computation time. GapLB (%)
corresponds to the average relative gap between the objective function value OFV and the
lower bound LB obtained by the solver (calculated as (OFV −LB)/LB), and GapBKS (%)
corresponds to the average relative gap between OFV and the best known solution BKS
that has been reported by Laurent et al. (2017) for their proposed metaheuristics (calcu-
lated as (OFV −BKS)/BKS). # BKS+ corresponds to the number of instances for which
a new best solution has been found. Finally, # Vars corresponds to the average number of
variables used in the tested models (before Gurobi's preprocessing).

5 Conclusions and Outlook

We studied the multi-site RCPSP, which extends the single-site RCPSP by considering
alternative sites for the activities' execution, the management of resource pooling among
the sites, and the arising transportation times between the sites. For the studied problem,
we have developed a novel continuous-time MBLP model, which turned out to outperform
the only known model from the literature with respect to various performance measures
on a set of standard test instances.

A promising direction for future research is to apply the novel continuous-time model
for a detailed analysis of the advantages of resource pooling in project management.

References

Laurent, A., Deroussi, L., Grangeon, N., and Norre, S., 2017, �A new extension of the RCPSP
in a multi-site context: Mathematical model and metaheuristics.", Computers & Industrial
Engineering, Vol. 112, pp. 634�644.

Gnägi, M., and Trautmann, N., 2019, �A continuous-time mixed-binary linear programming for-
mulation for the multi-site resource-constrained project scheduling problem.", In: Wang, M.,
Li, J., Tsung, F., and Yeung, A. (eds.): Proceedings of the 2019 IEEE International Conference
on Industrial Engineering and Engineering Management (IEEM), Macau, pp. 382�365.

Kolisch, R., and Sprecher, A., 1996, �PSPLIB-a project scheduling problem library.", European
Journal of Operational Research, Vol. 96(1), pp. 205�216.

166

Non-dominated sorting genetic algorithm for a bi-objective flexible

flow shop problem. A Case Study.

Ibeth Grattz Rodríguez1, Jose-Fernando Jimenez1, Eliana María González-Neira1,

Nicolás Eduardo Puerto Ordóñez2, Yenny Alexandra Paredes Astudillo3, Juan Pablo

Caballero-Villalobos1

1Industrial Engineering Department, Pontificia Universidad Javeriana, Colombia

E-mail: grattz.i, j-jimenez, eliana.gonzalez, juan.caballero@javeriana.edu.co

2Industrial Engineering Department, Universidad de los Andes, Colombia

E-mail: ne.puerto10@uniandes.edu.co

3Institucion Universitaria Politecnico Grancolombiano, Colombia

E-mail: yennyparedes@javeriana.edu.co

Keywords: Scheduling, flexible flow shop, genetic algorithm, non-dominated sorting genetic

algorithm, total weighted tardiness, total setup cost.

1. Introduction

Production scheduling is one of the most complex tasks for manufacturing industries. It

demands to allocate several productions orders or jobs within the machines aiming to optimize a

set of KPIs, such as operating, financial and/or sustainable indicators, among many others.

Certainly, the scheduling of this jobs could focus in fulfilling a single objective. However, for the

last decades, industries have explored the inclusion of multiple objectives for balancing the best

possible overall solution. This paper proposes Non-dominated genetic algorithm, for solving a

flexible flow shop problem (FFSP) that minimized the total weighted tardiness and total setup

cost.

For solving this problem, this paper focuses in the developing a metaheuristic for a case study

regarding the production process of a Colombian Soap Factory. The current research considers the

following factors: the total resources available, features related to the setup times of the machines,

processing times of the products and the due-date requirements of each customer order.

Additionally, it is included an extra factor related with the costs that can be reduced as a

consequence of the sequencing of jobs.

The manufacturing environment of the Soap Factory is a FFSP with a set of 19 stages (S), each

with a single machine but one that contains two unrelated parallel machines. All jobs have the

same processing route starting in stage 1 and finishing in stage 19. Nevertheless, due to

customizations, some jobs are allowed to skip some stages, depending on its characteristics. Once

each product completes the required operation on each stage, it must be added to the queue of the

next stage, where it must wait in a buffer of unlimited capacity to be processed. Finally, there are

sequence dependent setup times and the processing times are fixed (including the transportation

times between stages).

 FFSPs have been studied by multiple authors. Yu et al. (2018) studied a FFSP in which

there are unrelated parallel machines. Every machine has special characteristics that allow the

processing of certain types of products. In order to find a solution of this problem, the use of a

genetic algorithm is proposed, in which the effect of three different mutation operators is studied

to increase diversification in every iteration. The objective of this study was to minimize the total

tardiness. On the other hand, Rabiee et al. (2014) and Ahonen and de Alvarenga (2017) attempt to

minimize the makespan in a FFSP. The first authors implemented a hybrid algorithm using an

imperialist competitive algorithm, a simulated annealing, a variable neighborhood search and a

genetic algorithm; while the second authors performed a comparison between a simulated

annealing and a tabu search to find the solution to the stated problem.

Regarding the objective function, it can be said that a variety of studies focus on a single

objective analysis; even though, real implications of scheduling problems generally involve more

than one objective (Torkashvand et al., 2017). The above, due to the diversity of jobs that are

found in the real industry, the processing requirements of each product, as well as the flexibility in

167

terms of delivery to each customer. Consequently, Lassig et al. (2017) minimized both the

tardiness and earliness by applying a multiobjective genetic algorithm, in an FFSP. Alternatively,

Talbi (2009) showed that algorithms such as SPEA2 and NSGA2 are proper to approximate the

pareto optimal set solutions with an acceptable computational complexity and are relatively simple

in terms of its implementation.

Finally, in terms of the inclusion of cost analysis in scheduling problems, Yu and Seif (2016)

established a genetic algorithm to provide a solution to a flow shop scheduling problem in which

the target is to minimize the total tardiness and the total maintenance costs. Rohaninejad et al.

(2015) proposed a tabu search algorithm to minimize the sum of the total tardiness cost, the extra

time cost and the setup cost. Nevertheless, this research is made for a job shop scheduling

problem. It is also found that the analysis of costs in the objective functions of scheduling

problems is rarely studied in the literature, even less for a FFSP like the one proposed for

sequencing the jobs in JLS Soap Factory.

To the best of our knowledge, there is no evidence of the study of a multiobjective FFSP that

considers: the obtention of pareto solutions of total weighted tardiness and total setups costs, the

allowing of skipping stages and the consideration of sequence dependent setup times.

2. Proposed solution approach

To solve the stated FFSP an NSGA2 algorithm (Deb et al., 2002) is proposed, using a

crossover operator and three mutation operators, which pursue the diversification in the search of

solutions throughout the solution space (Peng et al., 2018). Moreover, the application of a

complete factorial design is proposed to determine the parameters of the metaheuristic application.

Initially, a population of size N is randomly generated. The population N will serve as parents

in the first generation of the algorithm. Each individual of the population is then evaluated in the

two objective functions that are going to be minimized. This process is performed in order to

compare the solutions and find those that are non-dominated. Once the set of non-dominated

solutions are found, they are assigned to a first F1 front. Subsequently, the solutions that were not

classified in the F1 front, are compared with each other once again. Then, a second set of non-

dominated points are found. This set is again classified in a second F2 front. This procedure is

repeated successively until all the Fn fronts are found, and each of the points generated by the

individuals of population N are classified.

Additionally, in order to favor the diversity of the solutions found, the density of points

surrounding each of the solutions classified in the F fronts is estimated. This procedure is

accomplished by calculating the average distance of two points that surround the evaluated

solution side by side.

By completing this process, it is possible to order the entire population N of initial parents,

first by the non-dominance of the resulting solutions and then, by the density of the points that

surround each of the solutions. Afterwards, the selection of the chromosomes that will be crossed

is done through a binary tournament. Then, a two-point crossover and three mutation operators

named as inverse, insert and swap operation, are used to enhance the diversity of the solutions

found.

Finally, the population of chromosomes chosen to be crossed and mutated, and the

chromosomes originated from the previous operations, are gathered in a set P, which will be

ordered according to the non-dominance of their solutions. This process allows to eliminate the

worst individuals until obtaining a population of size N again. The same procedure is performed

until the number of iterations defined as a parameter have reached its limit.

A diversity metric is applied to determine the quality of the combination of parameters in

terms of the distribution of points along the pareto approach. The equation for the calculation of

diversity is shown below:

 (1)

Where and correspond to the euclidean distances of the end points of the

generated front, corresponds to the euclidean distance between two consecutive points and is

the average of the euclidean distances of all the points found (Deb et al., 2002). Therefore, it is

168

expected for to be as close as possible to so as to avoid the concentration of solutions in a

single region of the approximated pareto front.

Four parameters are defined in order to analyze their influence in the quality of the solutions

found by the algorithm, and consequently, in the result of the diversity metric. These parameters

are probability of crossover (Pcross), probability of mutation (Pmut), initial population N (P_ini)

and number of iterations (Iter).

To estimate the parameters of the algorithm, a value of Pcross equals to 0.5 is fixed. As a

consequence, this study benefits diversification rather than intensification in the search throughout

the solution space. Two levels for each parameter are established for the factorial design, and 30

randomly generated replicates of each combination are completed. Table 1 shows the factors and

their respective levels defined for the experiment.

Table 1. Factors and levels of the factorial design.

Parameters

Levels P_ini Pmut Iter

Low 50 0.5 50

High 100 0.9 100

The diversity for each set of solutions generated by the combination of parameters is the

response variable of the experiment.

3. Results and discussion

According to the results, only the effect of Pmut is statistically significant (P-value <0.05), and

there are not interactions between parameters. As a result, in order to favor small values for the

diversity metric, a combination of [100, 0.5, 0.5, 100] in the parameters P_ini, Pcross, Pmut, and

Iter respectively, is chosen to be applied for all instances created to evaluate the metaheuristic.

Figure 1 shows the main effects plot and the interactions between factors plot.

 (a) (b)

Figure 1. (a) Main effects plot for diversity metric. (b) Interaction plot of the parameters studied in the

experiment.

The proposed approach was evaluated in thirty instances in order to assess the approximation

of the pareto front obtained with the application of the NSGA2 algorithm. Additionally, the

metaheuristic is compared with two priority rules: longest processing time of the jobs (LPT) and

shortest processing time of the jobs (SPT). For each of the instances evaluated, it is found that the

proposed NSGA2 algorithm can significantly improve the results obtained from the use of LPT

and SPT priority rules in both the total setup cost and total weighted tardiness. Finally, it is found

that each objective function presents a decreasing trend in each generation of the population,

which shows the ability of the metaheuristic to find non-dominated solutions in each iteration.

169

 (a)

 (b) (c)

Figure 3. a) Pareto front Approximation, b) total weighted tardiness evolution and c) total setup cost evolution.

References

Ahonen, H. and de Alvarenga, A.G., 2017. “Scheduling flexible flow shop with recirculation

and machine sequence-dependent processing times: formulation and solution procedures”.

The International Journal of Advanced Manufacturing Technology, Vol. 89(1-4), pp.765-777.

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T., 2002. “A fast and elitist

multiobjective genetic algorithm: NSGA-II”. IEEE transactions on evolutionary

computation, Vol. 6(2), pp.182-197.

Lassig, L., Mazzer, F., Nicolich, M. and Poloni, C., 2017. “Hybrid flow shop management:

multi objective optimisation”. Procedia CIRP, Vol. 62, pp.147-152.

Peng, K., Wen, L., Li, R., Gao, L. and Li, X., 2018. “An effective hybrid algorithm for

permutation flow shop scheduling problem with setup time”. Procedia CIRP, Vol. 72,

pp.1288-1292.

Rabiee, M., Rad, R.S., Mazinani, M. and Shafaei, R., 2014. “An intelligent hybrid meta-

heuristic for solving a case of no-wait two-stage flexible flow shop scheduling problem with

unrelated parallel machines”. The International Journal of Advanced Manufacturing

Technology, Vol. 71(5-8), pp.1229-1245.

Rohaninejad, M., Kheirkhah, A.S., Vahedi Nouri, B. and Fattahi, P., 2015. “Two hybrid tabu

search–firefly algorithms for the capacitated job shop scheduling problem with sequence-

dependent setup cost”. International Journal of Computer Integrated Manufacturing, Vol.

28(5), pp.470-487.

Talbi, E.G., 2009. Metaheuristics: from design to implementation (Vol. 74). John Wiley &

Sons.

Torkashvand, M., Naderi, B. and Hosseini, S.A., 2017. “Modelling and scheduling multi-

objective flow shop problems with interfering jobs”. Applied Soft Computing, Vol. 54,

pp.221-228.

Yu, A.J. and Seif, J., 2016. “Minimizing tardiness and maintenance costs in flow shop

scheduling by a lower-bound-based GA”. Computers & Industrial Engineering, Vol. 97,

pp.26-40.

Yu, C., Semeraro, Q. and Matta, A., 2018. “A genetic algorithm for the hybrid flow shop

scheduling with unrelated machines and machine eligibility”. Computers & Operations

Research, Vol. 100, pp.211-229.

170

1

An analytical model for budget allocation in risk

prevention and risk protection

Xin Guan1 and Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University, Belgium

xin.guan@ugent.be, mario.vanhoucke@ugent.be
2 Technology and Operations Management Area, Vlerick Business School, Belgium

3 UCL School of Management, University College London, UK

Keywords: project risk response, budget allocation, risk prevention, risk protection, an-
alytical model.

1 Introduction

In project risk management (PRM), the underlying risks that would affect the project
objectives will be identified and evaluated, and those risks above a certain level are consid-
ered intolerable, which need to be mitigated in the process of risk response. Since projects
are always executed within a limited budget, it is imperative for project managers (PMs)
to reduce project risks in a cost-efficient way. Therefore, the purpose of this study is to
propose a method to reasonably allocate budget for mitigating the project risks. Based
on the proposed method, the optimal budget allocation decision can be obtained and the
effects of the characteristics of the project risk and the risk response on the optimal budget
allocation are investigated according to the analytical solutions.

2 Budget allocation in project risk response

In the current practice, project risk is often reduced through prevention policies enforced
to reduce the occurrence likelihood of the risk or contingency measures taken to alleviate the
negative impacts after the risk occurs. In this study, taking measures before the risk occurs
aiming at preventing the risk from happening is defined as risk prevention. Implementing
actions after the risk occurs aiming at alleviating the negative impacts result from the
occurrence of the risk is recognized as risk protection. Despite that both risk prevention
and risk protection can contribute to the risk reduction in terms of either risk probability or
risk impact, any of them entails some cost, and the cost may be different. Thus, to reduce
the risk to a certain level, determining the budget allocated for risk prevention and/or risk
protection is of great practical need for effective project risk response.

Although budget allocation problems have become a central issue in project risk re-
sponse, few attempts have been made to solve it. Most of the existing studies related to
project risk response focused on the selection of risk response actions (Ben-David and
Raz 2001, Fan et. al. 2008, Sherali et. al. 2011, Dey 2012, Zhang and Fan 2014) rather
than the budget allocation problem. They typically assumed the costs and effects of risk
response actions are known. This assumption overlooks the complex relations between the
costs and effects of risk response actions, so that the generated decision support may be
not enough for practical application.

To the best of our knowledge, only two studies have focused on the budget allocation
problem in project risk response. Sherali et. al. (2008) modelled the possible progressive
consequences following the safety risk as an event tree and built an optimization model
to lower the losses of these consequences by allocating resources among safety measures.
Sato and Hirao (2013) proposed an optimization method to reduce the failure probabilities

171

2

of project activities and maximize the risk-based project value by allocating the available
budget among project activities. Although these two studies deal with the budget allocation
problem in project risk response, risk prevention in combination with risk protection are
not considered simultaneously. In addition, the characteristics of project risks and risk
response strategy are ignored, which may lead to an inferior performance or a misuse
of budget resources in project risk response. Therefore, this study will first analyse the
costs and effects of risk response with the consideration of the risk and risk response
characteristics. Then, an optimization model to obtain an optimal budget allocation is
constructed. Finally, some results are drawn from the analytical solutions.

3 Methodology

3.1 Risk response analysis

Since both risk prevention and risk protection can be used to mitigate the risk, the
total cost for risk response consists of the cost used for risk prevention and the cost used
for risk protection. Generally, the cost for achieving a certain reduction in risk probability
or loss depends on the characteristics of the risk and the risk response strategy. Thus, this
study models the cost for risk prevention or protection as linear and non-linear functions
of these characteristics.

Eqs. (1) - (2) present the linear functions of risk preventive cost and risk protective
cost, respectively.

ql = a(P0 − P), a > 1 (1)

rl = b(L0 − L), 0 < b < 1 (2)

with ql (rl) the risk preventive (protective) cost in linear relation, P0 (L0) the initial risk
probability (loss) referred as the risk characteristics, a (b) the unit preventive (protective)
cost recognized as the risk response characteristics and P (L) the ex-post probability (loss).

The non-linear functions of the costs for risk prevention and risk protection are shown
in Eqs. (3) - (4) (Fan et. al. 2008).

qn =

∫ P

P0

cP dP = a ln(
P0 − ε
P − ε), a > 0 (3)

rn =

∫ L

L0

cLdL = b ln(
L0 − δ
L− δ), b > 0 (4)

with qn (rn) the risk preventive (protective) cost in non-linear relation, ε (δ) the minimum
risk probability (loss) after risk prevention (protection) regarded as the risk characteristics,
and cP (cL) the marginal cost for risk prevention (protection), denoted as cP = − a

P−ε and

cL = − b
L−δ .

3.2 Model formulation

Based on the functions of the costs proposed above, a mathematical model for the
budget allocation problem (BAP) in project risk response, which aims at minimizing the
total cost (Z), is built as below.

BAP Minimize Z = q + r (5)

subject to
P · L = R (6)

172

3

q, r ≥ 0 (7)

Constraint (6) ensures the risk can be reduced to an accepted level R. Herein, the accepted
level is de�ned as a percentage of the initial expected loss, namely R = µP0L0. Thus, µ can
be regarded as the requirement for risk response. A small µ implies a strict risk response
requirement, which means a large amount of expected loss needs to be reduced. q and r
denote the cost for risk prevention and risk protection, respectively. In the linear relation,
q (r) equals to ql (rl). Otherwise, q (r) equals to qn (rn).

4 Results

We plan to analyse the optimality conditions of the model, propose some propositions
and proofs, and conduct some computational results, which is still work in process. So far,
we have obtained some preliminary results as presented in the followings.

The results with linear relations show that only one risk response strategy, either risk
prevention or risk protection, but never both, is required for risk response. The preference
for risk prevention or risk protection depends on the values of aP0 and bL0, but has no
relation with µ, which indicates the decision for using risk prevention or risk protection in
project risk response is affected by the characteristics of the risk and risk response. With
respect to the budget allocated for risk prevention and risk protection, the results report
that the optimal budget allocated to risk prevention has no relation to the initial risk loss
and the risk protection characteristics, but increases with the initial risk probability and
the unit risk preventive cost, and decreases with the risk response requirement. Similarly,
the optimal budget allocated for risk protection increases as the initial risk loss increases,
the unit protective cost increases or the risk response requirement becomes loose.

The results with non-linear relations suggest that risk prevention, risk protection or
a combination of them can be the optimal option for risk response. Risk prevention is
preferred at a high initial probability and a low initial loss, while risk protection is preferred
at a low probability and a high loss. When the initial risk probability and loss are taken
medium values, both risk prevention and risk protection are required. Regarding to budget
amount allocated to risk prevention and protection, the result shows that, if only risk
prevention is opted, the budget allocated for it depends on the initial probability, the risk
response requirement and the unit preventive cost. Specifically, more budget is required
at a strict risk response requirement, a low initial probability or a high unit preventive
cost. Similarly, when only risk protection is preferred, more budget is required at a strict
response requirement, a low initial loss or a high unit protective cost. The result that a
low initial probability (loss) leads to more budget is a little different from that in the
linear relations. If both risk prevention and risk protection are selected for risk response,
the effects of the risk characteristics, risk response characteristics and the risk response
requirements all have effects on the optimal budget allocation, and an interaction among
these effects are observed.

To conclude, the characteristics of the project risk and risk response can affect the
optimal budget allocation decision, and their effects vary with the relations between the
costs and the effects of risk response strategies.

References

Ben-David I., T. Raz, 2001, �An integrated approach for risk response development in project

planning", Journal of the Operational Research Society, Vol. 52, pp. 14-25.
Dey P. K., 2012, �Project risk management using multiple criteria decision-making technique and

decision tree analysis: A case study of Indian oil refinery", Production Planning & Control,

Vol. 23, pp. 903-921.

173

4

Fan M., N. P. Lin and C. Sheu, 2008, �Choosing a project risk-handling strategy: An analytical

model", International Journal of Production Economics, Vol. 112, pp. 700-713.

Sato T., M. Hirao, 2013, �Optimum budget allocation method for projects with critical risks",

International Journal of Project Management, Vol. 31, pp. 126-135.

Sherali H. D., E. Dalkiran and T. S. Glickman, 2011, �Selecting optimal alternatives and risk

reduction strategies in decision trees", Operations Research, Vol. 59, pp. 631-647.

Sherali H. D., J. Desai and T. S. Glickman, 2008, �Optimal allocation of risk-reduction resources

in event trees", Management Science, Vol. 54, pp. 1313-1321.

Zhang Y., Z. P. Fan, 2014, �An optimization method for selecting project risk response strategies",

International Journal of Project Management, Vol. 32, pp. 412-422.

174

1

Embedded vision systems buffer minimization with
energy consumption constraint

Khadija HADJ SALEM1, Tifenn RAULT1 and Alexis ROBBES1

Université de Tours, LIFAT EA 6300, CNRS, ROOT ERL CNRS 7002, 64 avenue Jean Portalis,
37200 Tours

{khadija.hadj-salem, tifenn.rault, alexis.robbes}@univ-tours.fr

Keywords: Embedded vision systems, Scheduling, Tool Switching Problem, Buffers, Lin-
ear Integer Programming, Constraint Programming.

1 Introduction

Designing embedded vision systems involves various optimization problems as schedul-
ing image processing. The limited resources of the devices imply to reduce drastically the
computation time, energy consumption, and memory cost. In (Hadj Salem et. al. 2018),
an image processing scheduling problem is modelized as a variant of the Job Sequencing
and tool Switching Problem (SSP). Furthermore, the first results were presented about
minimizing the makespan and minimizing the number of switches. However, the buffer
minimization is only mentioned and remains unstudied. The SSP is a NP-hard problems
that arise from computer and manufacturing systems, see (Catanzaro et. al. 2015). This
problem involves sequencing a finite set of jobs on a single machine and loading a restricted
subset of tools to a magazine with a limited capacity such that the total number of tool
switches is kept to a minimum. In our context, the magazine size is the available memory
and the number of switches correspond to the energy consumption.

In this paper, we tackle buffer minimization as a new extension of the SSP. This di-
mensioning problem is called Prefetch-Constrained Minimum Buffers Problem (P-C-MBP).
Our study provides the first results, an ILP modelization, and a CP approach. We com-
pare these two methods on instances from the literature of SSP and real-world ones. The
preliminary results are quite promising and show that the CP performs better than the
ILP.

2 The P-C-MBP Statement

The P-C-MBP involves scheduling a number of output tiles (jobs) on a single machine,
under a limited number of prefetches (number of tool switches), such that the resulting
number of buffers (magazine slots) is kept to a minimum. This can be formalized as follows:
let a P-C-MBP instance be represented by a 4-tuple, I = (X,Y,Ry, N) where:

– X = {1, . . . , X} is the set of X input tiles to be prefetched from the external memory
to the internal buffers;

– Y = {1, . . . , Y } is a set of Y independent non-preemptive output tiles (also called
tasks) to be computed;

– (Ry)y∈Y is the X-dimensional column vector, where Ry ⊆ X , which defines the set of
required input tiles (called prerequisites or tools). These Ry tiles have to be prefetched
from the external memory and must be present in the buffers during the whole corre-
sponding computation step.
In the same way, we denote by (Rx)x∈X the Y -dimensional row vector, where Rx ⊆ Y,
which defines the set of used output tiles for each input tile x.

175

2

– N is an integer non-negative number of prefetches, i.e., each input tile can be loaded
more than one time. It is assumed that X <

∑

y∈Y
|Ry|, otherwise the problem is trivial.

The solution to such an instance is a sequence y1, . . . , yY determining the order in which the
output tiles are computed (executed), and a sequence (x, z)1, . . . , (x, z)N of prefetch config-
urations determining which input tiles are prefetched (loaded) in which buffers (magazine
slots) at a certain time.

The function objective of P-C-MBP is to minimize the number of buffers, denoted by Z.
We proved that the P-C-BMP problem is NP-hard by showing that if an algorithm

exists for solving the P-C-BMP, it can be called iteratively a polynomial number of times
to solve the SSP problem. As a consequence, if P-C-BMP was polynomial, so would SSP.

3 A position-based Integer Linear Programming

Due to the relation between the P-C-BMP and the SSP, we can draw inspiration from
the existing SSP’s ILPs. In fact, (Catanzaro et. al. 2015) proposed and compared several
ILPs with different categories. In our study, we focused on a position-based ILP, which is
very similar to the standard one given by (Tang and Denardo 1987), to which strengthening
inequalities are added.

For all y ∈ Y, j ∈ Y and x ∈ X , we define three sets of binary variables: cyj is equal
to 1 if output tile y is computed at position j and 0 otherwise. Similarly, exj equal to 1 if
input tile x exists in buffer at position j (is already loaded) and 0 otherwise. Finally, pxj
is equal to 1if input tile x has just been prefetched at position j and 0 if it was already
loaded. Then, a valid formulation for the P-C-BMP is the following:

min Z

Subject to

∑

j∈Y
cyj = 1,∀ y ∈ Y (1)

∑

y∈Y
cyj = 1,∀ j ∈ Y (2)

∑

x∈Ry

exj ≥ |Ry| ∗ cyj ,∀ y ∈ Y, j ∈ Y (3)

px1 = ex1,∀ x ∈ X (4)
pxj ≤ exj ,∀ x ∈ X , j ∈ Y\{1} (5)

pxj ≤ 1− exj−1,∀ x ∈ X , j ∈ Y\{1} (6)
pxj ≥ exj − exj−1,∀ x ∈ X , j ∈ Y\{1} (7)

∑

x∈X

∑

j∈Y
pxj ≤ N (8)

∑

x∈X

∑

j∈Y
pxj ≥ |X | (9)

∑

j∈Y
pxj ≥ 1,∀ x ∈ X (10)

∑

j∈Y
pxj ≤ |Rx|,∀ x ∈ X (11)

Z ≥
∑

x∈X
exj ,∀ j ∈ Y (12)

Z ≥ max
y∈Y
|Ry|,∀ y ∈ Y (13)

Z ≤ |X | (14)
cyj ∈ {0, 1},∀ y ∈ Y, j ∈ Y (15)

exj , pxj ∈ {0, 1},∀ x ∈ X , j ∈ Y (16)

The objective function minimizes the number of buffers defined by Z, under constraints (1)
— (16). Constraints (1) — (2) are a set of standard assignment constraints. Constraints (3)
are the requirement constraints that define the relation between prefetches and computa-
tions steps. Similarly, constraints (4) — (7) define the relation between the loading and
prefetching of input tiles. Constraint sets (8) — (9) and (10) — (11) give bounds on

176

3

prefetches number and on prefetches number for each input tile x, ∀x ∈ X , respectively. In
the same way, constraints (12) compute a lower bound of Z in relation to the prefetches
number for each computation position j,∀j ∈ Y, while constraints (13) — (14) give an
upper/lower bounds on buffers number. Finally, constraints (15) — (16) set the ranges of
the variables.

To strengthen the ILP given before, we provide two valid inequalities (17) — (18), in
which constraint (17) ensures that the first computation must take place during the first
half of the possible position, while constraints (18) gives a lower bound on the number of
times in which input tiles must exist in the buffer.

|Y|/2∑

j=1

c1j = 1 (17)

∑

x∈X

∑

j∈Y
exj ≥

∑

y∈Y
|Ry| (18)

4 A Constraint Programming Approach

To the best of our knowledge, it appears that the constraint programming paradigm
(CP) has been little considered in the SSP’s literature. Thus, we introduce here a new CP
model for the P-C-MBP using concepts present in IBM ILOG CP Optimizer.

We first define two sets of variables as follows:

– Iy: the interval variable for each output tile (task) y ∈ Y.
– Ix,j : the interval variable for each input tile (prerequisite) x ∈ X , and for each interval

number j ∈ {1, . . . , jmax}, where jmax = N−|X |+1. If j = 1 this variable is mandatory,
while for j > 0 the interval is optional. This means that an input tile x is loaded at
least once, and possibly more.

We also use the following Cumul functions:

– nbXScheduled =
∑

x∈X ,j∈{1,...,jmax}
StepAtStart(Ix,j , 1);

– nbOverlap =
∑

x∈X ,j∈{1,...,jmax}
Pulse(Ix,j , 1);

– necessaryTiles [y] =
∑

x∈Ry,j∈{1,...,jmax}
Pulse(Ix,j , 1),∀y ∈ Y.

The objective is to minimize the buffers number Z, subject to the following constraints:

noOverlap(Iy) ∀ y ∈ Y (19)
nbOverlap(Ix,j) ∀ x ∈ X ,∀j ∈ {1, .., jmax} (20)

nbXScheduled ≤ N (21)
nbOverlap ≤ Z (22)

alwaysIn(necessaryTiles[y], Iy, |Ry|, |Ry|) ∀y ∈ Y (23)

5 Computational Experiments

To evaluate the different approaches, we present the first numerical results. All experi-
ments were performed on an Intel Core i5 processor, a 2.67 GHz machine, equipped with
4 GB of RAM and operating system Windows. The ILP is solved by CPLEX and the CP
approach is implemented using IBM ILOG CP Optimizer. The CPU time limit for each

177

4

run on each problem instance is 300 seconds. The number of prefetches N is set to |X |,
which is its smallest possible value.

Experiments were made using two kinds of data-sets possessing different characteristics.
We first considered a collection of 16 data-sets for the well-known SSP, downloadable at
http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm. We then considered a set of 10 bench-
marks from real-life non-linear image processing kernels for MMOpt software already used
in (Hadj Salem et. al. 2018). These instances are reduced by using a dominance property,
which removes each output tile that needs a subset of input tiles, which is already used at
least once by another output tile.

In our preliminary tests on SSP data-sets (instances goes from size 9× 10 to 40× 60),
both ILP and CP models were able to solve within the time limit optimally, only instances
with (X,Y) under (15, 10) input/output tiles. In contrast, they give similar results for the
other instances, except for few ones for which the CP is a bit better.
In the case of bigger instances of MMOpt (greater than 64×64 input/output tiles), Table 1
gives the detailed numerical results of ILP and CP models. In this table, the Gap(%) is
computed as follow: 100 ∗ (ZILP − ZCP)/ZCP.

Table 1. Numerical results for ILP & CP using MMOpt instances

Instance |X | |Y| ZILP timeILP ZCP timeCP Gap(%)
test_2D_0 256 64 4 101.39 4 0.09 0
test_2D_1 64 256 1 2,5 1 0,11 0
test_polaire_0 146 90 146 300 68 300 114.7
test_polaire_1 80 60 80 – 46 – 73.91
test_polaire_2 244 82 244 – 142 – 71.83
test_fisheye_0 176 103 176 – 109 – 61.46
test_fisheye_1 224 103 224 – 139 – 61.15
test_fisheye_2 360 103 360 – 230 – 56.52
test_fd_0 429 300 429 – 349 – 22.92
test_fd_1 2272 206 2272 – 2081 – 9.17

As illustrated in Table 1, we can see that both ILP and CP models can solve only the
first two instances. For the rest, the CP model is definitely better than ILP and provides
relatively good upper bounds.

Overall, the ILP model fails to find good bounds, specifically in the case of MMOpt
instances. On the other hand, the CP model seems to be able to handle well this kind
of problem. Nonetheless, extensive tests, some improvements, and comparison with other
mat-heuristics should be considered.

References

Catanzaro D., L. Gouveia and M. Labbé, 2015, “Improved integer linear programming formula-
tions for the job Sequencing and tool Switching Problem", European Journal of Operational
Research, Vol. 244, pp. 766–777.

Hadj Salem K., Y. Kieffer and M. Mancini, 2018, “Meeting the Challenges of Optimized Memory
Management in Embedded Vision Systems Using Operations Research", Recent Advances in
Computational Optimization: Results of the Workshop on Computational Optimization WCO
2016, pp. 177–205.

Tang C.S., E.V. Denardo, 1987, “Models arising from a flexible manufacturing machine, Part I:
Minimization of the number of tool switches", Operations Research, pp. 767–777.

178

1

Multi-project scheduling problems with shared

multi-skill resource constraints

Meya HAROUNE1,2, Cheikh DHIB2, Emmanuel NERON1, Ameur SOUKHAL1,Hafedh
MOHAMED BABOU2 and Mohamedade NANNE2

1 Laboratoire d'Informatique Fondamentale et Appliquée de Tours LIFAT EA 6300 ROOT
ERL-CNRS 7002, France(2)

meya.haroune@etu.univ-tours.fr,{emmanuel.neron, ameur.soukhal}@univ-tours.fr
2 Unité de recherche Documents Numériques et Interaction de l'Université de

NouakchottAl-Asriya DNI, Mauritanie
dhib.cheikh@iscae.mr, hafedh.mohamed-babou@esp.mr, farouk@una.mr

Keywords: Operational research, Project scheduling, Personnel constraints, Skills man-
agement, ILP, Heuristics, Tabu search.

1 Introduction

Companies are increasingly concerned by the organization of their projects, taking into
account skills of their teams, in order to answer to customer requests. Thus, in this context,
several project managers can compete for renewable resources (human or machines) to carry
out their projects and to avoid delay that may be expensive (Dhib et. al. (2016)).

In this paper, we study a problem of multi-project scheduling where several project
managers manage one or more projects. Projects share the same resources. Shared resources
are human teams available with limited capacities and various skills. Our aim is to propose
to the project managers a schedule of their activities within a �xed time horizon. This
schedule must take into account the completion time of each phase of the project to reduce
the weighted cost of realization of the projects (payment of the penalties). Our goal is to
study a relevant industrial model, by integrating the particularities and the characteristics
of persons and activities, as realistic as possible.

Project scheduling problems have been widely studied and the dedicated literature
on this subject is very important. The most well known are RCPSP (for Resource Con-
strained Project Scheduling Problem) Artigues et. al. (2008), the MM-RCPSP (for Muli-
modeProjects Scheduling Problem) Bianco et. al. (1998), MSPSP (for Multi-skill Project
Scheduling Problem)Bellenguez-Morineau (2006). Some other works focused on schedul-
ing in a multi-project context. Concerning the studied problem, it has been introduced
by Néron et. al. (2011), that corresponds to a real case of multi-project planning. This
problem can be encountered in IT companies.

In the next section, the studied problem and the used notations are formally presented.

2 Problem description

Multiple projects are running simultaneously and share common human resources. Each
project Kl,l=1...,L consists of a set of independent and preemptive activities. An activity Ji
is characterized by an estimated load pi expressed in day. There are release dates ri, due
dates di and late penalties wi expressed in week.

Each person Mj , has a quota per project Qj,l, determining his/her maximum rate
of participation to the project Kl. The periods of availability per week of each person,
are known and are divided between the di�erent projects in proportion to the rate of
his/her intervention. Each resource has a skill level for performing an activity. Thus, the
processing time (nominal load) of an activity is computed according to the e�ciency of the

179

2

person in charge of its processing. It is de�ned for activity Ji and person Mj as follows:
pi,j = (2− vi,j)pi, where vi,j is the given e�ciency level of resource Mj in carrying out the
activity Ji, 0 ≤ vi,j ≤ 1. Durations and availabilities are measured by a half of a day as
time unit.

An activity is assigned to a single person throughout its realization, even if it is spread
over several weeks. At a time t, a person Mj can work only on one activity. The number
of activities on which a person may be assigned during the same week can not exceed
the given value bj . So, this limitation reduces the number of context changes and thus
increases the e�ciency of the person. However, a minimum (resp. maximum) load Cmin

i

(resp. Cmax
i) is de�ned for each activity Ji to frame the quantities of its realization per

week. One solution to this problem is to check whether there is a possible schedule within
the �xed time horizon of persons to di�erent project activities. The schedule of di�erent
activities within the week is not considered here. We are interested in determining the time
spent per week and per person on each activity while respecting the constraints mentioned
above and minimizing the total weighted tardiness, Z =

∑
wiTi, where Ti is the number

of weeks of delay of activity Ji.
The originality of this model is the consideration of the notion of skill and the min-

imum/maximum activities loads. This problem is NP-hard since the activity scheduling
problem on uniform parallel machines noted Qm | ri, pmtn | ∑wiTi known as NP-hard,
is a special case of the studied problem (Brucker et. al. (1997)).

Example: Let's consider two projects (K1, K2) to be planned over a three-week hori-
zon. Two persons (M1, M2) work on these projects. The data are given in Table 1. In this
table we particularly specify the project to which the activities belongs, resources that are
able to perform the activity and the e�ciencies of the resources to perform an activity. Ta-
ble 2 presents the characteristics of the resources, represented by their weekly availability
and their quotas per project.

Table 1. Characteristics of activities

J1 J2 J3 J4

Interval {ri, di} {1,3} {2,3} {2,2} {1,2}
Load (pi) 8 4 7 6

Cmax
i 6 6 5 8

Penalty(wi) 10 20 15 10
Project K1 K1 K2 K2

Skill {M1,M2} {M2} {M1} {M1,M2}

E�ciencie vi,j
M1 1.0 - 0.5 0.0
M2 0.5 1.0 - 1.0

Table 2. Characteristics of resources

M1 M2

Availability
W1 8 6
W2 10 10
W3 5 8
K1 50% 70%

Quotas
K2 60% 60%

Fig. 1. Example of feasible solution

Figure 1 presents a feasible solution. Only the activity J3 is late, i.e. a one-week delay
(T3 = 1). Hence, the total cost due to this delay is 15.

3 Heuristics approaches

To optimally solve the studied problem, an integer linear programming is proposed by
Meya et. al. (2019). This ILP solves small and medium sized instances up to 40 activities

180

3

over 8 weeks in reasonable time. To solve large size instances two heuristics are developed:
a local search algorithm and a tabu search algorithm.

3.1 2-phases heuristics

The 2-phase algorithm operates in 2 phases: With the �rst phase, we seek to build an
initial solution, i.e. a possible assignment of operators to the di�erent activities of each
project. For this purpose, we use a combination of a priority rule (to determine which
activity should be considered �rst) and algorithm developed to solve bin packing problem
(to determine which person should execute the current activity). Di�erent priority rules
have been tested: weighted earliest due dates WEDD; shortest (resp. longest) processing
time SPT (LPT) where the e�ciency coe�cients to perform activity is taken into account.
To assign activities to persons, two known algorithms are considered: First-�t algorithm
(the �rst operator found with availability large enough to process the activity is chosen);
Best-�t algorithm (the operator with the smallest large enough availability on project of the
activity is chosen). The preliminary results show that the combination of WEDD and Best-
�t algorithm outperforms all other heuristics. In the second phase, with a given assignment,
we should determine a compatible schedule of each person over time. In this second phase,
we should solve NP-hard problem. So, heuristic based on a maximum �ow with minimum
cost (MF-MC) is proposed. The graph is de�ned by three levels of nodes plus two dummy
nodes. Note that this graph is built by person (see �gure 2 where 3 activities belong to 2
projects are assigned to one operator).

Fig. 2. Max Flow-Min Cost: 3 activities assigned to one person

In order to minimize the total weighted tardiness, we add costs on the edges between
'Activity' node and node 'project, week'. This cost represents the cost of delay of the
activity multiplied by the index of the week.

3.2 Local search algorithm

Two neighborhood functions have been developed to improve the assignment of activi-
ties. The �rst function V 1 tries to reassign late activities to other person, where the second
function V 2 tries to free up time for a person performing a late activity (an activity on-time
can be reassigned to another person). To determine a compatible schedule of each person
over time, we recall MF-MC algorithm.

3.3 Tabu search algorithm

The basic idea of our developed tabu search is described as follow. Initial assignment of
activities to operators is given by the best 2-phases heuristic. Two neighbourhood operators
are used: the �rst one is V 1. According to the second neighbourhood operator, denoted V 3,
late or incomplete activity is switched with another activity. Swapping is only possible if the

181

4

execution time of these two activities overlaps. The best solution is kept as a starting point
for the next iteration. At each iteration, the number of neighbors generated depends on the
quality of the solution selected to be the current solution. If each time the current solution
is improved, the neighborhood size is expanded. Otherwise, if after a certain number of
iterations, the found best solution is not improved, a diversi�cation strategy is applied. This
strategy consists in replacing a current solution with another one generated by applying one
of the priority rules previously introduced. We then obtain a new assignment of activities
to operators. The tabu search is therefore restarted with this new assignment.

3.4 Experimental results

The generated instances are inspired by a practical case: 2 and 3 projects with 60 and
90 activities per project and between 10 and 15 persons. These projects run simultaneously
over a horizon of 12 and 14 weeks. The experiments were performed using Cplex 12.8.0
solver where the calculation time is limited to 3600sec.

Tables 4 and 5 summarize the obtained results where the �rst column represents the
percentage of instances for which heuristics found a feasible solution (reminder that each
project should be performed during a given period); The second column gives the percent-
age of the instances that are optimally solved by heuristics; The third column shows the
average deviation of instances not solved to optimal and the last column gives the execution
time in seconds. All these values correspond to 34 instances for which ILP found feasible
solutions within 3600sec.

Table 3. Local search approach (LS)

Method
%
Feas

%
Opti

%
GAP

Total
GAP

Time
(m)

InitAssignment 36 22,4 58,4 45 0,06
LS with V1 69 46,2 29 15,3 1,2
LS with V2 64,4 47 23,3 14,5 1,8

LS with V1 & V2 86,3 64,5 22,5 7 3,1

Table 4. Tabu search algorithm (TS)

Method
%
Feas

%
Opti

%
GAP

Total
GAP

Time
(m)

InitAssignment 36 22,4 58,4 45 0,06
TS with V1 82 53 22,1 13,4 1,5
TS with V3 64,5 59,5 20,1 11,7 3,6

TS with V1 & V3 92,8 73 15 4,6 5,2

We can see in both tables that the neighborhood operator V1 is more e�cient com-
pared to the other neighborhood operators V2 and V3. We note that TS with V1 and V3
outperforms all other heuristics. Over the 34 instances, the mean deviation is at most 4,6%
(see total Gap column where 73% of instances are optimally solved). Over the 27% of the
remaining instances, the mean deviation from the optimal solution given by TS with V1
and V3 is at most 15%.

References

Brucker P., B. Jurisch and A. Krämer, 1997, "Complexity of scheduling problems with multipur-
pose machines", Annals of Operations Research, Vol. 70, pp. 57-73.

Dhib Ch., A. Soukhal and E. Néron, 2016, "Solving Methods for a Preemptive Project Sta�ng and
Scheduling problem", Handbook on Project Management and Scheduling, Vol. 1&2, Springer.

Artigues C., S. Demmasey and E. Néron, 2008, "Resource-constrained project scheduling problem:
Models, Algorithms, Extension and Applications", Control systems, robotics and manufactur-

ing series, Wiley.
Bianco, P. Dell'Olmo and M.G. Speranza, 1998, "Heuristics for multi-mode scheduling problems

with dedicated resources", European Journal of Operational Research, Vol. 107(2), 260-271.
Bellenguez-Morineau 0., 2006, "Méthodes de résolution pour un problème de gestion de projet

avec prise en compte de compétences", Thèse de doctorat de l'université de Tours.
Néron E., A. Soukhal, R. Semur, F. Tercinet and S. Bouamer, 2011, "plani�cation de projets

-modèle et méthode de résolution", ROADEF(2011).
Haroune M., Dhib Ch., Néron E., A. Soukhal, H. Babou, and F. Nanne, 2019, "Ordonnancement

multi-projets à contraintes de ressourcespartagées multi-compétences", ROADEF(2019).

182

1

Solving large, long-horizon resource constrained multi
project scheduling problems with genetic algorithms

Brendan Hill1, Adam Scholz1, Lachlan Brown1, and Dr Ana Novak2

1 School of Mathematics and Statistics, University of Melbourne, Australia
brendan.hill@gmail.com, adam.scholz@unimelb.edu.au,

l.brown25@student.unimelb.edu.au
2 Joint and Operations Analysis Division, Defence Science and Technology Group, Australia

ana.novak@dst.defence.gov.au

Keywords: RCMPSP, priority rules, genetic algorithms, large-scale/long-horizon.

1 Introduction

In this paper we adapt the priority rule based approach to the Resource Constrained
Multi-Project Scheduling Problem (RCMPSP) (Villafáñez, F.A. et. al. 2018) for large-scale,
long-horizon scheduling problems, combining the expressiveness of the priority rule frame-
work with genetic algorithms (GA) to overcome the limitations of current methods. An
efficient scheduling algorithm is described which runs in approximately linear time, enabling
the use of sampling-intensive search methods in the priority rule space.

Although the algorithm can be applied to any long horizon scheduling problem, we
evaluate the method in the context of a simulation of recruits flowing through military
training schools. Recruit training can take years, and ensuring sufficient supply of the right
people at the right time requires planning over a long horizon. Integral to this planning
effort is an understanding of the yearly capacity of each training facility in progressing
students through the relevant training syllabus.

We find that the the problem can be usefully framed as a RCMPSP where lessons are
activities, and infrastructure and instructor specifications are resource requirements, and so
the long range optimisation of training activities can be defined in project scheduling terms.
Previous work in this area by the research team involved randomly sampling priorities and
heuristic based optimisation of training activities along with ongoing work with Mixed
Integer Linear Programming (MILP). The RCMPSP is NP-hard as it is a generalisation
of the Resource Constrained Project Scheduling Problem (RCPSP) (Blazewicz, J. et. al.
1983). Current approaches tend to focus on heuristic methods, in particular, priority rule
based methods such as found in Vázquez, E.P.et. al. (2013); Kurtulus IB. and Davis, E.W.
(1982). Here, we adopt this representation and apply search methods over the space of
possible priority rules to optimise over long-horizon objective, and find that a random key
genetic algorithm (“RKGA”) method outperforms baseline methods considered.

2 Problem formulation

A training school defines a syllabus for each student consisting of lessons of varying
durations, dependencies on previous lessons and resource requirements (both infrastructure
and instructor based). We define each individual student as a project and each of their
lessons as an activity, possibly dependent on earlier activities, and specifying local resource
requirements which must be satisfied in accordance with the global resource constraints
of the training facility. We model over Y = 20 years where ∆ = 20 students per year are
introduced, spread evenly throughout the year, defining the release time of each initial
activity in each project.

183

2

The aim is to maximize average yearly throughput of students over the horizon, i.e.
average number of projects completed per year. As such we adopt as our primary objective
measure z1 the number of projects completed within the horizon G(h) for some feasible
schedule h. Additionally we consider the degree of partial completion of remaining projects
G(h) and hence the average remaining progress, z2 is added. Since z1 ∈ N and necessarily
z2 ∈ [0, 1) this forms a lexicographical ordering within the multi-objective function:

max
h

z(h) = z1 + z2 = |G(h)|+ 1

|G(h)|
∑

p∈G(h)

Activities completed in project p
Total activities in project p

(1)

The modelling involves 20 projects per year over 20 years, each with 500 activities resulting
in 200000 activities in total. We assumed 250 active training days per year with 10 hours
periods of 30 minute blocks for a total of 100000 discrete time steps. Activities which could
not be scheduled within the horizon were discarded.

3 The standard Priority Rule Scheduling Algorithm (PRSA)

The high volume of activities to be scheduled, combined with the need to apply sam-
pling intensive methods, necessitates the implementation of a computationally efficient al-
gorithm. We have adapted the priority rule scheduling algorithm (PRSA) from Vázquez,
E.P.et. al. (2013) which accepts as input a set of activities A with durations and re-
source constraints, and a priority rule φ : A → R. Activities with no dependencies are
added to the priority queue Q first. Then, activities are initialized when one or more
dependencies are scheduled, and queued when all dependencies have been added to the
schedule. Among the queued activities, we iteratively select the highest priority activity
a∗ = argmax{φ(a) : a ∈ Q} to be scheduled. We then identify the earliest time a∗ can be
added to the schedule in accordance with global resource constraints, the release time of
the activity and completion time of all dependencies (*). If a time cannot be found within
the horizon, a∗ and all subsequent dependencies are discarded. This continues until Q = ∅.

A feature unique to our application is that many activities are defined by the same
lesson, with the same resource requirements. This means that the earliest schedulable time
for each lesson can be tracked and updated, avoiding the need to search the entire horizon
in step (*) - a significant computational saving. The generation of a single schedule with
200000 activities for a fixed φ took on average 80ms on an i7 machine with 32GB RAM. A
review of the runtime performance of extreme problem sizes up to 50M activities suggested
that the algorithm had approximately linear time complexity in the number of activities.

4 Searching the priority rule space

For this PRSA algorithm, a priority rule φ must define the priority value for each
activity, specifying the sequence in which activities are added to the schedule. Given that
many activities relate to the same underlying lesson type, we define the priority rule in
terms of these lessons.

4.1 Representations of priority rules space

We considered two representations of the priority rule space, firstly the direct represen-
tation, where αi ∈ R defines the priority value of lesson i and hence all related activities:

φ = [α1, . . . , αn]

184

3

Secondly we developed a feature-based representation of the activities, where the feature
vector ζi defines the duration, resource requirements and other properties of lesson i. Then
the actual priority rule was the weighted linear combinations β of the lesson features,where
βj defines the weighting of feature j:

φ = βT [ζ1, . . . , ζn]

Let hφ,x = PRSA(φ, x) be the schedule resulting from applying PRSA to problem instance
x with priority rule φ. Now, the problem is identifying φ∗ = argmaxφz(hφ,x).

4.2 Searching with Random Key Genetic Algorithm and baseline methods

We develop a stochastic optimizer based on the Random Key Genetic Algorithm (RKGA)
(Gonçalves, J.F. and Resende, M.G. 2011) as follows. The priority rule φ is taken to be
the chromosome, with a random key representation φi ∈ [0, 1), where the ranks within
φ defined the relative priorities of activities to schedule. The k-point crossover method
(Umbarkar, A.J. and Sheth, P.D. 2015) with γ = 0.05 point-wise mutation probability
in each chromosome element in each generation were used, with a population size of 50.
The population was evolved using GA until the function valuation limit was exceeded to
provide a fair comparison with other sampling methods.

For comparison, we also applied three baseline methods:

– NOPRIORITY: Fixes φ := [0, . . . , 0] to remove all prioritization of activities and
default to tie-breaking rules

– RANDOM: Samples uniformly at random φ ∈ [0, 1]n up to function evaluation limit
– N/M: Deterministic search with Nelder-Mead optimisation over φ ∈ Rn

The RANDOM, N/M and RKGA methods were each evaluated for both the direct repre-
sentation, and the feature based representation (“FEAT-*”).

5 Preliminary experimentation

We generated 100 random problem instances which had comparable complexity to real
world training facility problems in terms of numbers of activities, resources, durations and
interdependencies between activities. Each search method was applied to each problem
instance with a function evaluation limit of 10000. Early indications showed that RKGA
consistently outperformed other methods and so a multi-start, longer-running version of
this was implemented to identify the “BESTKNOWN” solution for each problem in-
stance, in the absence of an exact solution or approximation bound. Then, the objective
value of each search method for each instance, relative to the BESTKNOWN, was ex-
tracted as the performance measure, and the distribution of this measure over all problem
instances was computed. The results are shown in Figure 1.

6 Discussion and future work

While all methods outperformed NOPRIORITY, we note that RKGA found the best
solution in 92% of cases, obtaining on average 96.6% of best known objective value within
the function evaluation limit, and showed significant potential for further gains with a
greater limit. We observed that Nelder-Mead frequently converged on a local minimum
significantly far from the best known, and may be unsuited given the high dimensionality.

Contrary to our expectations the feature based methods (“FEAT-*”) performed consis-
tently worse on average than their direct representation counterparts, possible because the

185

4

Fig. 1. Distribution of objective values relative to best known for each method (means labelled)

linear combination of raw features as φ = βT [ζ1, . . . , ζn] weights features independently
and does not encapsulate feature combinations. Identifying a more expressive feature set
is an important task for future work.

In parallel, we are developing a MILP formulation of the same problem but operating
over a much shorter horizon e.g. 1 week, with an approximate objective function. A key
research question is to compare the MILP vs RKGA models on a common set of problem
instances and evaluate over a long horizon. This will allow us to directly compare the value
of long-horizon metaheuristic solutions v.s. a sequence of short-horizon exact solutions. A
further task of interest is to evaluate the RKGA method over a standard, public set of
RCMPSP instances for direct comparison with other methods in literature.

We conclude that the RCMPSP representation is highly applicable to the long-horizon
training scheduling problem. The PRSA developed is extremely efficient for large-scale
RCMPSP instances scaling up to millions of activities. This enables the use of genetic
algorithms and other sampling intensive metaheuristics in the automated search for efficient
priority rules, while optimising directly with respect to the long-horizon objective function.

Acknowledgements

We wish to thank Prof. Terry Caelli for his insightful comments and editorial feedback.

References

Blazewicz, J., Lenstra, J.K., Kan, A H.G. Rinnooy, 1983, “Scheduling subject to resource con-
straints : Classification and Complexity”, Discrete Applied Mathematics, Vol. 05, pp. 11-24

Gonçalves, J.F. and Resende, M.G., 2011, “Biased random-key genetic algorithms for combinatorial
optimization”, Journal of Heuristics, Vol. 17(5), pp.487-525.

Kurtulus IB. and Davis, E.W., 1982, “Multi-project scheduling: Categorization of heuristic rules
performance”,Management Science, Vol. 28(2), pp.161-172.

Umbarkar, A.J. and Sheth, P.D., 2015, “Crossover operators in genetic algorithms: A review”,
ICTACT journal on soft computing, Vol. 06(1).

Vázquez, E.P., Calvo, M.P. and Ordóñez, P.M., 2015, “Learning process on priority rules to solve
the RCMPSP”, Journal of Intelligent Manufacturing, Vol. 26(1), pp.123-138.

Villafáñez, F.A., Poza, D., López-Paredes, A. and Pajares, J., 2018, “A unified nomenclature for
project scheduling problems (RCPSP and RCMPSP)”. Dirección y Organización, Vol. 64, pp.
56-60.

186

1

A mixed integer programming approach for scheduling
aircraft arrivals at terminal airspace fixes and runway

threshold

Sana Ikli1, Catherine Mancel1, Marcel Mongeau1, Xavier Olive2 and Emmanuel
Racheslon3

1 ENAC, Université de Toulouse, France
sana.ikli, catherine.mancel, mongeau@recherche.enac.fr

2 ONERA DTIS, Université de Toulouse, France
xavier.olive@onera.fr

3 ISAE-SUPAERO, Université de Toulouse, France
emmanuel.rachelson@isae-supaero.fr

Keywords: Aircraft landing scheduling, Delay minimization, Mixed integer linear pro-
gramming.

1 Introduction and motivation

The continuous growth of air transportation demand exposes the Air Traffic Manage-
ment (ATM) system to a serious risk of saturation, especially the terminal airspace – known
as the Terminal Maneuvering Area (TMA) – of hub airports. A better utilization of cur-
rent airport infrastructures can alleviate the saturation problem, for instance by reducing
delays.

Several research works in the literature are interested in the optimization of runway se-
quences. However, most of such work focuses on the runway system. For instance, Beasley
et al. (2000) propose a Mixed Integer Programming (MIP) approach for scheduling air-
craft landings on multiple runways. Furini et al. (2015) consider the problem of scheduling
simultaneously aircraft take-offs and landings on a single runway. Recently, Prakash et al.
(2018) adapt the model of Beasley et al. (2000) to incorporate take-offs, and attempt at
minimizing the schedule makespan. Readers may refer to the survey of Bennell et al. (2011)
for a comprehensive review of the proposed solution approaches in the literature.

In this work, we propose a new Mixed Integer Linear Programming (MILP) approach
for sequencing and scheduling aircraft arrivals at critical TMA points, called the Initial
Approach Fixes (IAF), as well as on the runway threshold. What drives this work is that
runway operations depend on other operations from the TMA, while the majority of works
in the literature consider the runway as an independent resource. Another motivation comes
from the observation of inbound traffic in the TMA, which reveals unbalanced traffic flows
among the IAFs. Our objective is to re-distribute arriving aircraft among the existing
TMA fixes and runways, so as to balance traffic volume. Preliminary results show that the
average delay at runways can be reduced using our model.

2 Analogies and complexity

The problem of scheduling aircraft arrivals considering only runways is called the Air-
craft Landing Problem (ALP) in the literature. It is similar to a number of classical com-
binatorial optimization problems, namely, the job-shop scheduling problem, the Traveling
Salesman Problem (TSP), and the Vehicle Routing Problem (VRP).

The analogy between the ALP and a job-shop scheduling problem can be derived from
Beasley et al. (2000) as follows. Runways correspond to machines, aircraft to be sequenced

187

2

correspond to jobs, and the safety separation between two successive landings (see Sec-
tion 3) correspond to the sum of the processing time of the previous job, and the sequence-
dependent set up time. The typical objective function is to minimize the landing of the
last aircraft in the sequence. It corresponds to minimizing the makespan of the schedule.
In this case, if we consider a single runway, the problem is then equivalent to the TSP.

The analogy between the ALP and the VRP is pointed out in Briskorn and Stolletz
(2014). In this context, runways represent vehicles to dispatch, aircraft represent customers
to serve, and the safety separation between two successive landings correspond to the
distance between two customers. The target landing times usually considered in the ALP,
correspond to times at which customers prefer to be served. Upper and lower bounds
on these target times correspond to the classical time-window restrictions. The objective
function consists then in landing (serving) each aircraft (customer) within its time window,
such that the cost associated to deviations from target times is minimized.

It can be deduced from these analogies that even the simplest versions of the ALP,
involving only runways, are NP-hard problems. However, some versions of the ALP that
impose particular restrictions can be solved in polynomial times. These include ALP with
Constrained Position Shifting (CPS), as shown in Balakrishnan and Chandran (2006), and
the ALP with aircraft classes, presented in Briskorn and Stolletz (2014).

3 Problem context and formulation

In this work, we consider the problem of sequencing and scheduling aircraft arrivals at
two levels: first, over initial approach fixes, which are the points where the initial approach
segment of an Instrument Flight Rule (IFR) approach begins (Figure 1), and then at the
runway threshold.

Fig. 1. A diagram of a typical IFR approach, with two IAFs and one runway (IF and FAF are
intermediate way points on the approach trajectory). Source: Kelly and Painter (2006)

We propose a MILP formulation of this problem. The given data includes, for each
aircraft: a target landing time, a latest acceptable landing time (based on fuel consider-
ations), and the transition time between each IAF and the runways. Two types of safety
constraints are considered:

– The pairwise separation of 3 Nautical Miles (NM) at each IAF.
– the Wake-Vortex (WV) separation at the runway threshold (Table 1), which corre-

sponds to the minimal International Civil Aviation Organization (ICAO) separation
requirements between two successive landings.

In our MILP formulation, two kinds of decision variables are proposed. First, binary
variables are introduced for sequencing purposes as well as for runway and IAF assign-

188

3

Table 1. Minimum time separation between two successive landings in seconds, according to the
three WV aircraft categories: Heavy (H), Medium (M), and Light (L). Source: Balakrishnan and Chandran
(2006)

Following aircraft
H M L

H 96 157 196
Leading aircraft M 60 69 131

L 60 69 82

ments. Continuous optimization variables for assigning times at the IAF and at the run-
way threshold for each aircraft. The objective function is the total schedule delay to be
minimized.

4 Preliminary results

The proposed model is implemented and solved via DoCplex, the Python API of CPLEX
solver. The test problem instances are generated from real traffic in Paris-Orly airport.
These instances feature three IAFs, and two runways (denoted R1 and R2 in Table 2).

We compare the three following solutions:

– FCFS: The basic technique usually used by air traffic controllers. It consists in assigning
aircraft to the closest IAF according to its origin airport, then to the closest runway
from the IAF. The sequence of aircraft is defined based on the First-Come First-Served
(FCFS) order.

– RAS-MILP: The runway assignment and sequencing using our MILP model, without
IAF assignment decisions.

– RIAS-MILP: The runway and IAF assignment and sequencing using our MILP model.

The results are reported in Table 2 in terms of average delay per aircraft (Avg Delay)
of each schedule; it is computed as follows. The set F denotes the set of aircraft in the
schedule, Tf and tf are respectively the target and the scheduled time of aircraft f ∈ F .
The average delay of the schedule is then given by Equation (1).

Avg Delay =

∑

f∈F
(tf − Tf)

|F| (1)

The results of Table 2 show to what extent an optimization approach can be beneficial
for realistic instances of the problem of sequencing and scheduling aircraft, even in the
case RAS-MIP – in which IAF assignment is fixed according to the airport of origin –
compared to the traditional solution used by controllers (FCFS). Moreover, our complete
MILP (RIAS-MILP) yields average delays that are, as expected, further reduced (more
degrees of freedom).

The gain remains moderate for these instances, but we are currently working on more
congested problems for which our approach is likely to be more valuable.

5 Conclusion and perspectives

This work focuses on the problem of sequencing and scheduling aircraft arrivals at
critical terminal airspace fixes and at the runway threshold. We propose a Mixed Integer

189

4

Table 2. Average delay comparison between three solution techniques (in seconds), for 10 problem
instances from 12:00 am to 10:00 pm

FCFS RAS-MILP RIAS-MILP
Time Nb Flights R1 R2 Avg Delay R1 R2 Avg Delay R1 R2 Avg Delay

12:00-13:00 28 18 10 53 12 16 23 15 13 17
13:00-14:00 20 9 11 57 7 13 14 12 8 6
14:00-15:00 15 6 9 60 6 9 20 8 7 13
15:00-16:00 17 11 6 58 8 9 18 10 7 8
16:00-17:00 22 11 11 100 9 13 52 10 12 25
17:00-18:00 21 9 12 64 8 13 17 12 9 0
18:00-19:00 19 9 10 58 8 11 15 13 6 10
19:00-20:00 22 13 9 47 10 12 17 13 9 6
20:00-21:00 18 8 10 62 8 10 24 13 5 4
21:00-22:00 26 11 15 64 14 12 24 15 11 11

Min 15 6 6 53 6 9 14 8 5 0
Max 28 18 15 100 14 16 52 15 13 25

Linear Programming approach that takes into account safety requirements, and maximum
acceptable delay based on fuel considerations. The preliminary results show that the aver-
age delay can be reduced using our model, compared to the traditional technique used by
controllers. In future studies, we plan to validate our model on more congested data from
other airports, such as the Paris Charles-de-Gaulle Airport. Then, we aim at discussing
further with air traffic controllers so as to improve our model, to render it more realistic,
in order to evaluate the viability of our approach in a real-time application.

References

Balakrishnan, H., Chandran, B., 2006, “ Scheduling aircraft landings under constrained position
shifting", AIAA guidance, navigation, and control conference and exhibit, pp. 6320.

Beasley, J. E., Krishnamoorthy, M., Sharaiha, Y. M., Abramson, D., 2000, “Scheduling aircraft
landings–The static case", Transportation science, Vol. 34, pp. 180-197.

Bennell, J. A., Mesgarpour, M., Potts, C. N., 2011, “Airport runway scheduling", 4OR, Vol. 9„ pp.
115.

Briskorn, D., Stolletz, R, 2011, “Aircraft landing problems with aircraft classes", Journal of
Scheduling, Vol. 17, pp. 31-45.

Furini, F., Kidd, M. P., Persiani, C. A., Toth, P., 2015, “Improved rolling horizon approaches to
the aircraft sequencing problem", Journal of Scheduling, Vol. 18, pp. 435-447.

Kelly, W. E., Painter, J. H., 2006, “Flight segment identification as a basis for pilot advisory
systems", Journal of aircraft, Vol. 43, pp. 1628-1635.

Prakash, R., Piplani, R., Desai, J., 2015, “An optimal data-splitting algorithm for aircraft schedul-
ing on a single runway to maximize throughput", Transportation Research Part C: Emerging
Technologies, Vol. 95, pp. 570-581.

190

Optimization of order for containers placement schedule in rail

terminal operations

Nadiia Kalaida1, Rémy Dupas2 and Igor Grebennik1

1Dept. of System Engineering Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

e-mail: nadiia.kalaida@nure.ua, igorgrebennik@gmail.com

2 Laboratory IMS University of Bordeaux, Bordeaux, France

e-mail: remy.dupas@gmail.com

Keywords: rail terminal operations, container, mathematical model, combinatorial optimization.

1. Introduction

During the transportation of goods by rail, the processing of trains and performing rail terminal

operations at the transshipment yard (TSY) in the railway station raise problems of optimization

(Boysen et al.,2012; Boysen et al., 2011; Dotoli et al.,2013; Cicheński et al., 2017).

The work of the railway transshipment station includes the following processes:

1. Arrival of the train at the railway transshipment station.

2. Train service (unloading / loading of containers).

3. Departure of the train from the station.

Serving a train involves moving containers from one train to another, reloading the container

from the train to storage area and from storage area to the train.

The components of a modern railway transshipment yard (Figure 1) are proposed in (Boysen et

al., 2012):

1. A platform with parallel railway tracks on which trains are located;

2. Container storage area, which is located parallel to the tracks;

3. Gantry cranes are used to reload containers.

Figure 1 - Scheme of a railway transshipment yard

The operation of the transshipment yard is as follows: a train with containers (source train)

arrives at the transshipment yard, containers from an incoming train are loaded onto the target train

(if it is present at the station) or in the storage area. Containers from other trains and containers

from the storage area can also be loaded onto the source train. At the end of processing, the train

leaves the transshipment yard.

(Boysen et al., 2011 and 2012) describe the general problem of planning the work of a

transshipment yard, in which the following levels are distinguished:

1. Service slot planning (transshipment yard scheduling problem, TYSP);

2. Assignment of trains to railway tracks in one slot;

3. Determining the position of the containers on trains;

4. Determining of zones of action of gantry cranes;

5. Determining the order of the moves of the containers done by the cranes.

191

(Boysen et al., 2012) solve the problem at level 1: the authors propose a mathematical model

for creating a schedule for visiting trains at the transshipment yard. This approach aims at

distributing the trains on service slots.

(Grebennik et al., 2017) extended the study of the level 1 problem and proceed to level 2. The

authors propose to form time intervals for servicing trains (service slots) and to assign each train of

such a service slot to a specific railway track of the transfer station. The proposed mathematical

model is based on combinatorial configurations, see for example (Sachkov, 1996). (Grebennik et

al., 2019) offer a solution of the level 3 problem which is based on the results of studies given in

(Grebennik et al., 2017). The optimal position of the containers to be moved on the target train is

determined. The combinatorial optimization model is proposed and analyzed.

In this paper, we consider the following hypotheses:

1. The cost of moving containers from the source train to the target train depends on the

distance between the trains;

2. If the source train and the target train are in the same service slot, they must be located on

the nearest tracks;

3. If the trains are assigned to different service slots, it is necessary to minimize the move of

the gantry crane;

4. The cost of moving containers is estimated by the distance that the gantry crane travels.

This work is a continuation of the studies of (Boysen et al.,2012; Grebennik et al.,2017;

Grebennik et al.,2019). Its purpose is to determine the optimal order of moves of containers

between the trains and the storage area in the formed service slots.

2. Problem definition

The problem analyzed in this paper is based on two problems: the transshipment yard scheduling

problem (TYSP) and the containers placement in rail terminal operations problem (CPRTOP). A

set of trains with a certain number of empty freight platforms and containers and their known

location on the train is considered. All the trains arriving at a transfer station have to be allocated

to service slots. The number of trains that can be serviced simultaneously (in one slot) should not

exceed the number of parallel tracks at the transshipment yard. The optimal service slot is

constructed as the solution of the combinatorial optimization problem. Trains that are served in a

single service slot need to reload containers from train to train, from train to storage area, or from

storage area to train. Given the coordinates of the location of the containers for moving and the

coordinates of the free platforms in the target trains and storage area, the problem of the optimal

containers placement is solved as combinatorial optimization problem. Based on the results of

solving the problem at levels 1-3 (Grebennik et. al., 2017; Grebennik et. al., 2019) we assume that

the following data are available and known: positions of the trains selected in one slot, the

assignment of each train on a railway track and the assignment of each container to a specified

platform in this slot. Therefore the problem of the relocation order of containers at a transshipment

yard (ROCTY) can be stated as follows: let a service slot with specified locations of trains on the

tracks is defined, the coordinates of containers and free platforms on trains and in the storage area

are determined; for each container has to be moved, the 2D coordinates of the platform on which it

has to be placed are known. Let us determine the order of relocation of containers with a gantry

crane, minimizing the cost of servicing the entire service slot.

3. Mathematical model of the problem of relocation order of containers at a

transshipment yard

Let , where

 , be set of coordinates of the geometric centers of

the relocating containers on source trains and in the storage area, free platforms on target trains

and in the storage area, n is the number of the containers and the free platforms. We form set

 , where

 is ordered pair of elements from set , for which the

container relocation is intended from a source point of coordinates

 to the target point of

coordinates
 , m is number of containers have to be moved.

Set a mixed graph , where is set of vertices, is union

of the set of arcs (which correspond to the relocation of containers from place to place) and

undirected edges (which correspond to move of the gantry crane without container). Set of edges

192

 is constructed in such way that graph is a complete undirected graph. For graph ,

we calculate the edge length matrix based on the distance between the vertices of the graph

which is calculated according to the Manhattan metric:

 ,

 .
We firstly choose the initial position of the crane at one of the vertices of the graph . Then,

using the description of the crane problem given in (I. I. Melamed et. al., 1989), we construct the

traveling salesman route in graph , with the following condition if arcs come out of a vertex and

edges are connected with it, then you can move along the edge only if you cannot move along the

arc. In accordance with the approach in (I. I. Melamed et. al., 1989), we transform this problem

into the traveling salesman problem, see for example (Applegate, 2006). For this purpose, we put

the lengths of all arcs of the graph equal to zero and then combine each pair

of vertices connected by an arc into one vertex. In this case, the distance between the combined

vertices is determined as follows. If vertex is obtained by the union of vertices and ,

vertex is obtained by the union of vertices and , then .

Lastly, we solve the traveling salesman problem with the matrix using one of the known

methods, for example, using one of the modern solvers Concorde TSP solver (available at

http://www.math.uwaterloo.ca/tsp/concorde.html).

To obtain a solution to the crane problem, and then to solve the ROCTY problem, we return to

the original graph and add all arcs from the set to the found traveling salesman route. The

move route that is found as a result of solving the crane problem on graph is the solution of the

ROCTY problem.

4. An example of solving the ROCTY problem

Let be set of vertices, where , , ,
 , , , , , , ;
 be set of arcs, where , , ,
 , ; Figure 2.a describes the set of vertices and set of arcs , which connect

pairs of vertices from set ; Figure 2.b shows the calculated distance matrix .

a) b)

Figure 2 – a) Vertices and arcs of the graph, b) Distance matrix

Combine the vertices connected by arcs: ; ; ;

 ; . Distance matrix for complete graph with vertices

 is represented on Figure 3. To solve the traveling salesman problem with a

matrix we use a public web service, as a result of which a closed route of moves between the

vertices is obtained : .

193

Figure 3 – Distance matrix

To construct the gantry crane path along the vertices of the original graph , we add all arcs of

the set to the found closed route. The result of such a transformation will be the route of the

gantry crane over the set of vertices ,; the final solution for the input dataset is:

 .

5. Conclusions

The paper considers the problems of the functioning of the railway transshipment yard. The

known problems of the transshipment yard scheduling problem (TYSP) and the containers

placement in rail terminal operations problem (CPRTOP) are presented. Based on their solutions,

problem of the relocation order of containers at a transshipment yard (ROCTY) is formulated. An

optimization model of the ROCTY problem is constructed, which can be transformed into the

traveling salesman problem. Based on the solution of the traveling salesman problem, the solution

of the ROCTY problem is constructed. A computational experiment is carried out, its results are

discussed.

References

Applegate D., Robert E. Bixby, Vasek Chvátal & William J. Cook, 2006, The Traveling

Salesman Problem: A Computational Study, Princeton University Press.

Boysen, Jaehn, and Pesch, 2011, “Scheduling Freight Trains in Rail-Rail Transshipment

Yards,” Transportation Science, Vol. 45(2), pp. 199–211.

Boysen N., F. Jaehn, and E. Pesch, 2012, "New bounds and algorithms for the transshipment

yard scheduling problem", J. Sched., Vol.15, pp. 499–511.

Cicheński M., and F. Jaehn, and G. Pawlak, and E. Pesch, and G. Singh, and J. Blazewicz,

2017, "An integrated model for the transshipment yard scheduling problem", Journal of

Scheduling, Vol. 20, pp.57-65.

Dotoli M., N. Epicoco, M. Falagariob, D. Palmaa, B. Turchianoa, 2013, “A Train Load

Planning Optimization Model for Intermodal Freight Transport Terminals: A Case Study”,

Proceedings - 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC

2013. pp. 3597-3602.

Grebennik I., R. Dupas, O. Lytvynenko and I. Urniaieva, 2017, “Scheduling Freight Trains in

Rail–rail Transshipment Yards with Train Arrangements,” International Journal of Intelligent

Systems and Applications (IJISA), Vol. 9(10), pp.12–19.

Grebennik I., R. Dupas, I. Urniaieva, N. Kalaida and V. Ivanov, 2019, "Mathematical Model

of Containers Placement in Rail Terminal Operations Problem," 2019 9th International

Conference on Advanced Computer Information Technologies (ACIT), pp. 129-132.

Melamed I. I., S. I. Sergeev, I. Kh. Sigal, 1989, “The traveling salesman problem. Issues in

theory”, Autom. Remote Control, Vol. 50(9), pp. 1147–1173.

Sachkov V., 1996, Combinatorial Methods in Discrete Mathematics, Cambridge University

Press, Cambridge.

194

A Generation Scheme for the Resource-Constrained
Project Scheduling Problem with Partially Renewable

Resources and Time Windows

Mareike Karnebogen and Jürgen Zimmermann

Clausthal University of Technology, Germany
mareike.karnebogen@tu-clausthal.de, juergen.zimmermann@tu-clausthal.de

Keywords: Project scheduling, Partially renewable resources, RCPSP/max,π

1 Introduction

Partially renewable resources are a generalized form of renewable and non-renewable
resources. For each partially renewable resource a capacity is given, which only applies
to predetermined time periods. This type of resources was first mentioned by Böttcher et
al. (1996) in the context of projects restricted by precedence constraints (RCPSP/π). In
this paper the resource-constrained project scheduling problem with partially renewable
resources and time windows (RCPSP/max,π) is considered, which for example allows to
take more flexible working arrangements in case of deployment planning into account. The
RCPSP/max,π is a generalization of the RCPSP/π and thus hard to solve (NP-hard).
Therefore, we present a generation scheme for the RCPSP/max,π to construct feasible
solutions within a short period of time. Section 2 contains a general description of the
problem and a mixed-integer linear formulation (MILP). In Section 3 the developed gener-
ation scheme is presented. Finally, Section 4 includes a preliminary performance analysis,
in which the results of our generation scheme are compared to results obtained by IBM
CPLEX applied on the MIP model of Watermeyer et al. (2018).

2 Problem description

The activities and temporal constraints of the resource-constrained project scheduling
problem with time windows and partially renewable resources (RCPSP/max,π) can be
represented graphically as an activity-on-node network. The nodes correspond to the ac-
tivities of the project V = {0, 1, . . . , n+1} consisting of the fictitious project start 0, n real
activities, and the fictitious project completion n + 1. Each activity i ∈ V has a determin-
istic processing time pi ∈ Z≥0 during which the activity can not be interrupted. General
temporal constraints between two activities i, j ∈ V are represented by arcs 〈i, j〉 between
the corresponding nodes of the network. The arc weight δij ∈ Z of an arc 〈i, j〉 ∈ E corre-
sponds to a minimal time lag between the start times of activity i and activity j which has
to be satisfied. The maximal project duration given by d̄ can be represented by an arc from
n + 1 to 0 weighted with −d̄. As it is common practice in literature, let dij be the longest
distance from node i ∈ V to node j ∈ V in the project network which can be calculated by
the Floyd-Warshall tripel algorithm. Then ESi = d0i and LSi = −di0 are the earliest and
latest start time of activity i ∈ V , respectively, and Ti = {ESi, ESi + 1, ..., LSi} implies all
time-feasible integer start time points of activity i.

When executing the activities a set of partially renewable resources R = {1, . . . , m}
have to be observed. Each activity i ∈ V has a resource demand rik ∈ Z≥0 for each
period it is executed. In addition each partially renewable resource k ∈ R has a resource
capacity Rk, which only applies to a subset of not necessarily consecutive time periods of

195

the given planning horizon Πk ⊆ {1, 2, . . . , d̄}. For all time periods not contained in Πk it
is assumed that the capacity is not restricted. Obviously, the relevant composite resource
consumption of activity i of resource k depends on the number of time periods activity i
is in execution during the capacitated time periods of resource k and can be calculated by
rc

ik(Si) = |{Si + 1, Si + 2, . . . , Si + pi} ∩ Πk| · rik (Watermeyer et al. 2018).
The objective of our problem is to find a time- and resource-feasible schedule S =

(S0, S1, . . . , Sn+1) which minimizes the project duration Sn+1. A schedule is called time-
feasible, if Sj −Si ≥ δij ∀〈i, j〉 ∈ E, what means that all temporal constraints are observed.
To obtain a resource feasible schedule the accumulated resource demand occurring across
all capacitated periods must not exceed Rk for any partially renewable resource k ∈ R.
Formally, the RCPSP/max,π described above can be formulated as follows:

Minimize f(S) = Sn+1

subject to Sj − Si ≥ δij (〈i, j〉 ∈ E)

S0 = 0
∑

i∈V
rc

ik(Si) ≤ Rk (k ∈ R)

Si ∈ Z≥0 (i ∈ V)

3 Generation scheme

Algorithm 1 shows our generation scheme which is based on the generation scheme
for the RCPSP/max developed by Franck et al. (2001). Let C be the set of scheduled
activities. In the initialization process project start 0 is fixed at t = 0 and appended to
C. Also counter u is set to zero. In the main step for each partially renewable resource
k ∈ R and each activity not scheduled so far the minimal composite demand rmin

ik and the
maximal composite demand rmax

ik is calculated. As well as the remaining capacity RCk

Algorithm 1 Generation Scheme
1: C := {0}, S0 := 0, u := 0
2: rik(t) for all i ∈ V and k ∈ R and t ∈ Ti

3: while C 6= V do
4: rmin

ik := mint∈Ti rik(t) for all i ∈ V \ C and k ∈ R
5: rmax

ik := maxt∈Ti rik(t) for all i ∈ V \ C and k ∈ R
6: RCk := Rk −

∑
i∈V \C rmin

ik −
∑

i∈C rik(Si) for all k ∈ R
7: for all k ∈ R do
8: if RCk >

∑
i∈V \C rmax

ik then R = R \ {k}
9: E := {i ∈ V \ C | P red≺D (i) ⊆ C}

10: priority based choice of an activity j∗ ∈ E to be scheduled next
11: Zj∗ := {t ∈ Tj∗ \ T abuj∗ |rj∗kt − rmin

j∗k ≤ RCk for all k ∈ R and
mink∈R{rj∗kt − rj∗kτ } < 0 for all τ ∈ Tj∗ |τ < t}

12: if Zj∗ = ∅ then u := u + 1 and Unschedule
13: else
14: priority based choice of a point in time t∗ ∈ Zj∗ as start time of j∗

15: Sj∗ := t∗, C := C ∪ {j∗}
16: for all h ∈ V \ C do (∗ update ESh and LSh ∗)
17: ESh := max(ESh, Sj∗ + dj∗h)
18: LSh := min(LSh, Sj∗ − dhj∗)
19: return S

196

which results from Rk minus the consumption of all scheduled activities i ∈ C as well as the
minimal necessary resource consumption rmin

ik of all not yet scheduled activities i ∈ V \C. If
RCk outruns the maximal potential resource consumption rmax

ik of all activities i ∈ V \ C,
the resource has no longer to be taken in consideration. Afterwards, the eligible set E
containing all activities i ∈ V \ C whose immediate predecessors regarding the distance
order ≺D are scheduled is established (Neumann et al. 2003). An activity j∗ ∈ E is selected
based on a certain priority rule and the related set Zj∗ of resource- and time-feasible start
times which are not dominated by an earlier feasible start time is determined. If Zj∗ = ∅
an unscheduling step is performed and counter u is increased by one. Otherwise a point in
time t∗ ∈ Zj∗ is chosen based on a priority rule and assigned as Sj∗ while j∗ is added to C.
Finally, for all unscheduled activities i ∈ V \ C ESi and LSi are updated. This procedure
is repeated until all activities i ∈ V are scheduled time- and resource-feasible.

Algorithm 2 Unschedule
1: if u ≥ û then terminate
2: if ESj∗ 6= d0j∗ then U := {i ∈ C | ESj∗ = Si + dij∗ }
3: if LSj∗ 6= −dj∗0 then U := U ∪ {i ∈ C | LSj∗ = Si − dj∗i}
4: if U := ∅ then U := {i ∈ C | min {rikSi , rj∗k} > 0 for at least one k ∈ R}
5: for all i ∈ U do
6: C := C \ {i}
7: T abui = T abui ∪ {Si}
8: T abuj∗ := ∅
9: for all i ∈ C with Si > minh∈U Sh do

10: C := C \ {i}
11: for all h ∈ V \ C do
12: ESh := d0h

13: LSh := −dh0
14: for all i ∈ C do
15: ESh := max(ESh, Si + dih)
16: LSh := min(LSh, Si − dhi)

Algorithm 2 shows the unscheduling step which is performed if no time- and resource-
feasible starting point of activity j∗ exists. In case u is higher than a prescribed maximal
number of unscheduling steps û the algorithm terminates. Otherwise a set U of activities
i ∈ C which have to be unscheduled and rescheduled in order to obtain a feasible schedule
is determined. For this purpose, we first examine if one or more activities i ∈ C restrict
the scheduling timeframe of the chosen activity j∗ i.e. increases ESj∗ or decreases LSj∗ .
If U = ∅, we determine all those activities i ∈ C using some resources k ∈ R activity
j∗ also requires for execution. Afterwards, all activities i ∈ U are removed from C as
well as all activities i ∈ C with Si > minh∈U Sh because some of them could possibly be
executed earlier. Moreover, for all activities i ∈ U the current start point Si is forbidden
by storing in the tabu-list Tabui whereas Tabuj∗ is cleared. Points in time t ∈ Tabui can
not be choosen as start time of activity i in the scheduling phase of the generation scheme
(compare Algorithm 1 line 11). Finally, for all activities i ∈ V \ C the values for ESi and
LSi are recalculated.

4 Performance analysis

In order to evaluate the performance of our generation scheme we conduct a compu-
tational study performed on an Intel Core i7-7700K CPU with 4.2 GHz and 64 GB RAM
under Windows 10. The generation scheme was coded in FICO R© Xpress Optimization. The

197

instance set we used was established by Watermeyer et al. (2018) including 729 instances
with 10, 20, and 50 activities and is based on the well-known UBO instances of Schwindt
(1998) extended by 30 partially renewable resources with varying specifications.

Within the computational study for the choice of the activity scheduled next the pri-
ority rules LSTd (smallest "Latest Start Time dynamic" first) and TFd (smallest "Total
Float dynamic" first), whereas for the choice of the scheduling point in time the objectives
Tmin (earliest "Start Time"), RD (minimal total "Resource Demand") and RL ("Resource
Leveling") were tested. Starting with d̄ as the RCPSP/max upper bound

∑
〈i,j〉∈E |δij |,

we perform a preprocessing to specify d̄ including two deterministic runs with the priority
rules LSTd-Tmin and TFd-Tmin. In the main step for each of the six combinations of the
priority rules 100 runs were conducted per instance, whereby the choice of j∗ and t∗ is
taken randomly based on selection probabilities. If a feasible solution with Sn+1 < d̄ is
found, d̄ is set to Sn+1 − 1.

Table 1 shows preliminary results for all combinations of the established priority rules.
Displayed are the percentage of instances (%feas) our generation scheme was able to find
a feasible solution, the average percentage gap (%Gap) with regard to the best solution
of the MIP found in at most 3.600 seconds and the average computing time (∅CPU) in
seconds required per run.

Table 1. Preliminary results of the computational study

UBO10π UBO20π UBO50π

Tmin RD RL Tmin RD RL Tmin RD RL
%feas 99.04 99.59 99.45 96.16 97.39 97.94 95.58 96.25 96.28

LSTd %Gap 1.36 1.28 1.40 5.34 5.28 4.92 18.79 19.72 20.86
∅CPU 0.63 0.61 0.61 2.42 2.09 2.05 35.71 32.59 33.35
%feas 98.90 99.45 99.60 96.85 97.40 97.94 95.89 96.38 96.50

TFd %Gap 1.40 1.47 1.36 5.89 5.70 5.73 18.81 19.78 21.07
∅CPU 0.62 0.61 0.60 2.31 1.96 1.94 34.28 31.22 31.37

The results show that our generation scheme is able to generate feasible solutions for
nearly all tested instances in particular by using the resource-based priority rules RD and
RL. Note, that for some instances of UBO50π the generation scheme is able to find better
solutions than the MIP in one hour. For the tested instances the quality of the solutions
generated with the priority rules LSTd and TFd is very similar. For smaller instances the
resource-based rules RD and RL mostly outperform the time-based rule Tmin, whereas for
larger instances it turns into its opposite. Besides higher gaps it can be observed that the
computation time increases by a growing number of activities. In a next step the generation
scheme should be coded in C++ and further priority rules should be examined.

References
Álvarez-Valdés R., E. Crespo, J.M. Tamarit and F. Villa, 2008, “GRASP and path relinking for project scheduling

under partially renewable resources”, European Journal of Operational Research, Vol. 189, pp. 1153-1170.
Böttcher J., A. Drexl, R. Kolisch, F. Salewski, 1996, “Project scheduling under partially renewable resource con-

straints”, Technical Report, Manuskripte aus den Instituten für Betriebswirt-schaftslehre 398, University
of Kiel.

Franck B., K. Neumann and C. Schwindt, 2015, “Truncated branch-and-bound, schedule-construction, and
schedule-improvement procedures for resource-constrained project scheduling”. OR Spektrum, Vol. 23,
pp. 297-324.

Neumann K., C. Schwindt, J. Zimmermann, 2003, “Project scheduling with Time Windows and Scarce Resources”,
ed.2, Springer, Berlin.

Schirmer A., 1999, “Project scheduling with scarce resources: models, methods and applications”, Dr. Kovač,
Hamburg.

Schwindt C., 1998, “Generation of resource-constrained project scheduling problems subject to temporal con-
straints”, Technical Report WIOR-543, University of Karlsruhe.

Watermeyer K. and J. Zimmermann, 2018, “A Branch-and-Bound Procedure for the Resource-Constrained Project
Scheduling Problem with Partially Renewable Resources and Time Windows”, Proceedings of the 16th
International Conference on Project Management and Scheduling, Rom, pp. 259-262.

198

1

On a Polynomial Solvability of the Routing Open Shop

with a Variable Depot

Antonina P. Khramova1, Ilya Chernykh1,2,3

1 Sobolev Intitute of Mathematics, Russia
akhramova@math.nsc.ru idchern@math.nsc.ru

2 Novosibirsk State University, Russia
3 Novosibirsk State Technical University, Russia

Keywords:Open shop, routing open shop, unrelated travel times, variable depot, computational
complexity, exact algorithm, approximation algorithm.

1 Preliminaries

The open shop problem to minimize �nish time (Gonzalez and Sahni 1976) is one of
the classical multistage scheduling problems and can be described as follows. Let M =
{M1, . . . ,Mm} be a set of m machines and J = {J1, . . . , Jn} be a set of n jobs. Each
job Jj consists of m operations (Oj1, . . . , Ojm). The operation Oji takes pji time units
and has to be processed on machine Mi, and no two operations of the same job can be
processed at the same time, as well as no machine can process two jobs simultaneously.
However, unlike �ow shop model, the operations of a job can be processed in any order.
We follow standard notation (Lawler et. al. 1993) to denote this problem as Om||Cmax.

It is known (Gonzalez and Sahni 1976) that if the number of the machines is at
least three, Om||Cmax is NP-hard. However, O2||Cmax is polynomially solvable. Several
algorithms are known to solve this problem in linear time. The �rst one was introduced by
Gonzalez and Sahni (1976). Other algorithms for this problem were proposed by Pinedo
and Schrage (1982), de Werra (1989), and Soper (2015).

The routing open shop problem is a certain generalization of the open shop problem
and can be described as follows. Each job is assigned to a node of a transportation network
given by an undirected edge-weighted graph G. The weight of an edge represents the time
required by any machine to travel between the respective nodes. To process a job, a machine
has to move to the node where the job is located. So, machines have to travel over the
transportation network in order to process the jobs. It is assumed that any number of
machines can travel over the same edge at the same time. All machines start at the same
node, called the depot, and must return to the depot after completing all jobs. The goal is to
minimize the makespan (i.e. the completion time of the last activity of a machine), denoted
by Rmax. The notation ROm||Rmax denotes the problem in case of m machines. We also
use notation ROm|G = X|Rmax in order to specify the structure X of the transportation
network.

The routing open shop problem is a generalization of both the open shop problem
(consider every edge of the graph to be of zero weight) and the metric traveling salesman
problem (consider every operation to be of zero processing time), so it is obviously NP-
hard in general case. The routing open shop problem was introduced and proved to be
NP-hard even in the simplest case with two machines and G = K2 in (Averbakh et.

al. 2006). We further extend the problem statement with the following options introduced
in (Chernykh 2016).

1. The depot in ROm||Rmax may be either �xed, i.e. de�ned in the problem instance, or
variable, i.e. it has to be chosen while composing a schedule. We write ROm|variable−
depot|Rmax to indicate the latter case.

199

2

2. The travel times between the nodes may di�er for each machine. In particular, they
can be identical, uniform, i.e. for any two machinesMi1 andMi2 there is some k > 0 so
that any edge forMi1 is k times longer then it is forMi2 , or unrelated. In the three-�eld
notation, we write Qtt or Rtt in the last two cases respectively.

We write easy − TSP in three-�eld notation if the structure of the transportation
network G allows solving the underlying TSP in polynomial time. While the problem
RO2|variable− depot|Rmax is still NP-hard, being a generalization of the metric TSP, the
algorithmic complexity of the problem RO2|easy − TSP, variable − depot|Rmax was an
open question. The special case RO2|G = tree,Rtt, variable − depot|Rmax was proved to
be polynomially solvable in (Chernykh 2016).

In this paper, we present a linear time algorithm for the RO2|G = cycle, Rtt, variable−
depot|Rmax problem, which also induces a new linear algorithm for classic open shop model.
An important corollary of the result is the polynomial solvability of RO2|Qtt, easy −
TSP, variable − depot|Rmax, which provides an answer to the open question mentioned
above. As a by-product, we also provide an approximation result for theRO2|Qtt, variable−
depot|Rmax problem.

2 A linear time algorithm for RO2|G = cycle, Rtt, variable− depot|Rmax

Let G be a transportation network for an instance of general routing open shop problem.
We use the lower bound R for the optimal makespan, de�ned by the formula R = max

i
{`i+

Ti, dmax}, where dmax = max
j

m∑
i=1

pji is the maximum job length, `i =
n∑
j=1

pji is the load of

the machine Mi, and Ti is the length of a minimal route over G for Mi.
For any list of jobs π = (J1, J2, . . . Jn), de�ne S(π) to be an early schedule such that:
(a) the machine M1 performs operations in order O21 → O31 → . . .→ On1 → O11;
(b) the machine M2 performs operations in order O12 → O22 → O32 . . .→ On2;
(c) for any job but J1, the order of operations is Oj1 → Oj2.
The notation π+k is used for a shifted list (Jk, Jk+1, . . . , Jn, J1, . . . , Jk−1).

For RO2|G = cycle, Rtt, variable− depot|Rmax, consider the following
Algorithm A:
Input: An instance of the RO2|G = cycle, Rtt, variable− depot|Rmax problem.

1. Let π = (J1, J2, . . . Jn) be a list of jobs such that in the list of respective nodes
(v1, v2, . . . , vn) we have either vi = vi+1 or vi and vi+1 are adjacent in G for all
i ∈ {1, . . . , n− 1}. Choose the node v = v1 to be a depot.

2. If necessary, re-enumerate the machines so that `1 + T1 ≤ `2 + T2.
3. Compose a schedule S(π).
4. If Rmax(S(π)) = R, then Output S(π).

Else
(a) Let Jk from a node u be the job that is processed after the last time the second
machine idles in the schedule S(π).
(b) Taking u to be the depot, Output S(π+k).

Theorem 1. Algorithm A returns a schedule of length R in O(n) time.

Proof. Note that if Rmax(S(π)) > R, then M2 idles at some point. Indeed, if M2 does not,
then M1 must. By de�nition of S(π), the machine M1 may only idle before starting O11,
which is only possible ifO12 is processed in that idle interval. ThenRmax(Sπ) = max{d1, l2+
T2} ≤ R, a contradiction.

200

3

Let t be the completion moment of the last idle interval of M2, which is also the
starting time of Ok2 for a certain k ∈ {1, . . . , n}. Consider the schedule S′(π) that is
obtained by shifting operations O12, . . . , Ok−1,2 in S(π) to the right so that M2 only idles
before processing of O21 starts as shown in Figure 1. The makespan of the schedule remains
the same. De�ne the blocks (i.e. ordered sets of operations and travel times between the
corresponding nodes) A1, A2, B1, and B2 as follows:

A1 = → O21 → . . .→ Ok1 ; A2 = → Ok+1,1 → . . .→ On1 → O11 ;

B1 = O12 → . . .→ Ok−1,2 → ; B2 = Ok2 → . . .→ On2 → .

The arrows denote the corresponding travel times.

Fig. 1. Example of schedule S′(π)

Let ∆ be the moment the processing of B1 starts, so that Rmax(S
′(π)) = ∆+ l2 + T2.

Note that the processing of A2 ends at l1 + T1, and l1 + T1 ≤ l2 + T2 implies

∆ ≤ Rmax(S
′(π))− (l1 + T1). (1)

Consider an schedule obtained by placing the block A2 before A1, and the block B2 in
front of B2 as shown in Figure 2.

Fig. 2. Result of the block permutation

The schedule derived by the permutation is feasible due to the inequality (1), unless
operations of Jk overlap, and in fact, it is exactly S(π+k). In case Ok2 does end later
thanOk1 starts, we obtain S(π

+k) by shiftingOk1 to the right accordingly. By the construction
of the schedule, the machine M2 never idles, and M1 may only idle before processing Ok1,
so Rmax(S(π

+k)) is either the length of Jk, or Rmax(S(π
+k)) = max{l1 +T1, l2 +T2} ≤ R.

Hence Rmax(S(π
+k)) = R, as wanted.

It is evident that an early schedule can be obtained in linear time. Thus, Algorithm A
runs in linear time, too. ut

3 Corollaries

Note that the problem O2||Cmax is a special case of RO2|variable− depot|Rmax when
the travel time between any two nodes is zero. Thus, Algorithm A induces a linear

201

4

algorithm for the classic two-machine open shop problem that di�ers qualitatively from
the algorithms proposed before.

The main principle of Algorithm A is composing an early schedule such that the
orders of operation processing for the two machines are identical up to cyclic permutation
of jobs, with both machines following their optimal route at the same time. With that, we
consider two subcases of RO2|Rtt, variable − depot|Rmax that can be easily proved to be
solvable with the use of Algorithm A.

Corollary 1. The problem RO2|Qtt, easy − TSP, variable − depot|Rmax is solvable in

time O(n+ tTSP), where tTSP is the time required to solve TSP on G.

Corollary 2. The problem RO2|Rtt,G = cactus, variable−depot|Rmax is solvable in O(n).

In case we have an approximate solution to TSP instead of an exact one, we can use
Algorithm A to obtain the same approximation for RO2|Qtt, variable− depot|Rmax. In
particular, by applying Christo�des-Serdyukov algorithm (Christo�des 1976, Serdyukov
1978), we derive the following

Corollary 3. There exists a 3
2 -approximate algorithm for RO2|Qtt, variable−depot|Rmax.

Acknowledgements

This research was supported by the Russian Federation for Basic Research, project
20-01-00045.

References

Averbakh, I., Berman, O., Chernykh, I., 2006, �The routing open shop problem on a network:
complexity and approximation�, Eur. J. Oper. Res., Vol. 173(2), p. 531-539.

Chernykh, I., 2016, �Routing open shop with unrelated travel times�, In: DOOR 2016,Vladivostok,
Russia, September 16-23, 2016, Proceedings, pp. 272-283.

Christo�des, N., 1976, �Worst-case analysis of a new heuristic for the travelling salesman problem�,
Report 388, Graduate School of Industrial Administration, CMU.

Gonzalez T., Sahni S., 1976, �Open shop scheduling to minimize �nish time�, J. ACM, Vol. 23(4),
pp. 665-21679.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A., Shmoys, D.B., 1993, Chapter 9: Sequencing and
scheduling: Algorithms and complexity, In: Logistics of Production and Invertory, Handbooks
in Operations Research and Management Science, Vol. 4, pp. 445-522. Elsevier.

Pinedo, M., Schrage, L., 1982, �Stochastic shop scheduling: a survey�, In: Deterministic and
Stochastic Scheduling, Dempster, M., Lenstra, J.K., Rinnooy Kan, A. (eds.) NATO Advanced

Study Insitute Series, Vol. 84, pp. 181-196. Springer, Dordrecht.
Serdyukov, A., 1978, �On some extremal routes routes in graphs� (in Russian), Upravlyaemye

Sistemy, Vol. 17, pp. 76-79.
Soper, A., 2015, �A cyclical search for the two machine �ow shop and open shop to minimize �nish

time�, J. Sched, Vol. 18, pp. 311-314.
de Werra, D., 1989, �Graph-theoretical models for preemptive scheduling�, In: Advances in Project

Scheduling, Slowinski, R., Weglarz, J. (eds.) pp. 171-185. Elsevier, Amsterdam.

202

1

A Stochastic Programming Model to Schedule Projects
under Cash Flow Uncertainty

Berfin Kutlağ1, Nazlı Kalkan2, Serhat Gul1 and Öncü Hazır3

1 Department of Industrial Engineering, TED University, Turkey
berfin.kutlag,serhat.gul@tedu.edu.tr

2 Department of Industrial Engineering, Bilkent University, Turkey
nazli.kalkan@bilkent.edu.tr

3 Rennes School of Business, 2 Rue Robert d’Arbrissel,35065, Rennes, France
oncu.hazir@rennes-sb.com

Keywords: project scheduling, stochastic programming, NPV maximization.

1 Introduction

The uncertainties inherent in project scheduling lead to a challenging problem for
project managers. Many studies in the relevant literature ignore this factor even though the
consideration of uncertainty is critical. Several of the stochastic project scheduling studies
consider only the uncertainty in activity durations. However, there exists other uncertainty-
inducing factors such as disruptions in resource usages/availabilities or delays in cash flows
that are important while managing projects (see Hazir and Ulusoy 2019 for an extensive
review of the subject). The delays in cash inflows are particularly common, because the
financial positions of the clients depend on several uncontrollable factors. To the best of
our knowledge, there does not exist any study in the project scheduling literature that
considers delays in client payments.

In this article, we investigate the uncertainties associated with delays in client payments
and model the effects of these in the net present value (NPV), which is a common criterion
used to assess the financial feasibility of the projects. We formulated our project scheduling
problem as a two-stage stochastic mixed integer program. The activity start times are the
main decision variables in the model. The actual client payment times are represented as
second-stage decision variables. The objective function maximizes the expected NPV.

Our research is related to two main streams of past research on project scheduling
with financial objectives. The articles that proposed approaches different from stochastic
programming models are grouped within the first category. Our research belongs to the
second category of articles in which the stochastic programming models are formulated.

Russell (1970) is known as the leading work in the first category of articles. They
maximized the NPV in the objective function and proposed a first-order Taylor series
approximation based approach to linearize it. This work was followed by many others that
consider NPV in the objective function (Elmaghraby and Herroelen 1990, Herroelen and
Gallens 1993, Kazaz and Sepil 1996). Buss and Rosenblatt (1997) assumed uncertainty
in activity durations and determined the optimal amount of delays beyond the earliest
activity start times. Wiesemann et al. (2010) considered uncertainty in activity durations
and cash flow amounts based on a discrete set of scenarios. They enforced nonanticipativity
by imposing target process times for activities at each scenario. They solved the model
using a branch and bound algorithm. Sobel et al. (2009) also considered randomness in
activity durations and cash flow amounts. They investigated the optimal adaptive schedule
by developing a continuous-time Markov decision chain model. Creemers et al. (2015)
used a stochastic dynamic programming approach in their study where they considered
technological uncertainty and stochastic activity durations. Their model incorporates the

203

2

risk of activity failure which may result in project failure. Creemers (2018) maximized the
ENPV in the objective function by studying with stochastic activity durations that are
modeled using phase-type distributions. They used a new continuous-time Markov chain
and a backward stochastic dynamic program to determine the optimal policy.

In the second category of articles, Klerides and Hadjiconstantinou (2010) developed
two path-based two-stage stochastic integer programming models. The models include un-
certainty in activity durations and costs. The main decision is about the execution mode
of an activity. The objective functions in the models minimize the total cost and ex-
pected project duration, respectively. They proposed a decomposition-based algorithm to
solve the model. Davari and Demeulemeester (2019) considered uncertainty in a resource-
constrained project scheduling problem (RCPSP). To deal with the uncertainty, they stud-
ied the chance-constrained resource-constrained project scheduling problem (CC-RCPSP),
which was introduced recently. They formulated the sample average approximation (SAA)
counterpart of the CC-RCPSP (SAA-RCPSP) due to the large size of finite supporting
set of realizations. They used a branch-and-bound algorithm (B&B) to solve the SAA-
RCPSP. Lamas and Demeulemeester (2015) also modeled an RCPSP. Their model con-
tains stochastic activity durations. They aimed to create a new procedure for generating a
baseline schedule for the problem. They also studied the SAA of their original model. They
- implemented a branch-and-cut algorithm to find a robust baseline schedule considering a
new robustness measure that they introduced.

Our study is different from both category of articles, because we propose a two-stage
stochastic programming model that consider uncertainty in client payment delays.

2 Problem Description

We formulated our problem as a two-stage stochastic mixed integer program (SMIP).
The start time for each activity is set at the first stage under uncertainty related to the
delay of client payment times. The actual times of cash inflows, which depend on activity
completion times and delays in payments, are modeled as the second-stage variables. The
cash outflows are observed at the beginning of each activity, however the inflows are ob-
served at the completion of a given set of activities. A deadline is enforced on the project
completion time, but the client payments are allowed to be received after this deadline.
The objective is to maximize the expected net present value of the project. Following is a
detailed description of our formulation.
Indices and Sets:
i, j: node (i.e. project activity) index
(i, j): index of the arc from node i to node j
t: time index
ω: scenario index
V : set of all nodes
V I : set of cash-generating activities
E: set of all arcs (i.e. immediate precedence relationships)
T i: set of time periods at which activity i ∈ V can start (i.e. time periods between the
earliest and latest start times for an activity)
P i: set of time periods at which payment can be received for the completion of activity
i ∈ V I (i.e. time periods after the earliest completion time for an activity)
Ω: set of all scenarios
Parameters:
pi: duration of activity i ∈ V
d : deadline for the completion of the project

204

3

n: number of activities of the project, excluding dummy nodes for project beginning (node
0) and project completion (node n+ 1)
cF+
i : cash inflow due to the completion of activity i ∈ V I (cF+

i > 0)
cF−i : cash outflow due to the initiation of activity i ∈ V (cF−i < 0)
β: discount rate per time period
eωi : delay in payment after the completion of activity i ∈ V I under scenario ω ∈ Ω
First-Stage Decision Variables:

xit =

{
1 if activity i ∈ V starts at time t ∈ T i;
0 otherwise,

Second-Stage Decision Variables:

qωit =

{
1 if payment for activity i ∈ V I is received at time t ∈ P i under scenario ω ∈ Ω;
0 otherwise,

max
∑

i∈V

∑

t∈T i

cF−i
(1 + β)t

xit +Q(x) (1)

s.t.
∑

t∈T i

xit = 1 ∀i ∈ V (2)

∑

t∈T j

txjt ≥
∑

t∈T i

txit + pi ∀(i, j) ∈ E (3)

∑

t∈Tn+1

tx(n+1)t + pn+1 ≤ d (4)

xit ∈ {0, 1} ∀i ∈ V, t ∈ T i (5)
where Q(x) = Eξ[Q(x, ξ(ω))] is the expected recourse function, and

Q(x, ξ(ω)) = max
∑

i∈V I

∑

t∈P i

cF+
i

(1 + β)t
qωit

s.t.
∑

t∈P i

tqωit =
∑

t∈T i

txit + pi + eωi ∀i ∈ V I (6)

∑

t∈P i

qωit = 1 ∀i ∈ V I (7)

qωit ∈ {0, 1} ∀i ∈ V I , t ∈ P i (8)

The objective function (1) includes the net present value of the summation of the cash
outflows that depend on the activity start times, and the expected second-stage function.
The expected second-stage function maximizes the net present value of the cash inflows that
occur after a possible delay following the activity completion time. First-stage constraints
are represented by (2)-(5). We assume that the earliest/latest start times of each activity
were calculated in advance using the forward-backward passes. Constraints (2) ensure that
an activity starts in between its earliest and latest start time. Constraints (3) maintain
that the start time of an activity is greater than or equal to the completion time of the
activity that immediately precedes it. Constraints (4) require that the project is completed
before the deadline. Constraints (5) enforce binary restrictions on the first-stage variables.

In the second stage, constraints (6) calculate the time of cash inflow by considering
possible delay after the activity completion time.Constraints (7) ensure that the cash inflow

205

4

for a completed activity is received as a lump-sum amount at a single period. Constraints
(8) represent the binary restrictions on the second-stage variables.

3 Conclusion

We apply a sample average approximation (SAA) algorithm to solve the SMIP model
(Kleywegt et al. 2002). The SAA algorithm approximates the true objective value by solv-
ing instances created by sampling N scenarios. The algorithm can be used to assess the
optimality gap as well as for obtaining a solution. The SAA solves M instances, each having
N scenarios to obtain an estimate of the lower bound. Then, an upper bound is calculated
for each instance solution by evaluating its objective value over N′ scenarios. Note that N′
is generally set to a much larger value than N.

In our experiments, we intend to illustrate the impact of randomness in the delay
of client payments into the activity start times. We also show the benefit of considering
uncertainty in payment delays. We examine how the deadline constraint (i.e. constraint
(4)) affects the net present value and optimal activity start times.

References

Buss A.H., M.J. Rosenblatt, 1997, “Activity Delay in Stochastic Project Networks", Operations
Research, Vol. 45, pp. 129-139.

Creemers S., 2018, “Maximizing the expected net present value of a project with phase-type
distributed activity durations: An efficient globally optimal solution procedure", European
Journal of Operational Research, Vol. 267, pp. 16-22.

Creemers S., B. De Reyck and R. Leus, 2015, “Project planning with alternative technologies in
uncertain environments", European Journal of Operational Research, Vol. 242, pp. 465-476.

Davari M., E. Demeulemeester, 2018, “A novel branch and bound algorithm for the chance-
constrained resource-constrained project scheduling problem", International Journal of Pro-
duction Research, Vol. 57, pp. 1265-1282.

Elmaghraby S.E., W.S. Herroelen, 1990, “The scheduling of activities to maximize the net present
value of projects", European Journal of Operational Research, Vol. 49, pp. 35-49.

Hazir O., G. Ulusoy, 2019, “A classification and review of approaches and methods for modeling
uncertainty in projects", International Journal of Production Economics, in press.

Herroelen W.S., E. Gallens, 1993, “Computational experience with an optimal procedure for the
scheduling of activities to maximize the net present value of projects", European Journal of
Operational Research, Vol. 65, pp. 274-277.

Kazaz B., C. Sepil, 1996, “Project Scheduling with Discounted Cash Flows and Progress Pay-
ments", Journal of Operational Research Society, Vol. 47, pp. 1261-1272.

Klerides E., E. Hadjiconstantinou, 2010, “A decomposition-based stochastic programming ap-
proach for the project scheduling problem under time/cost trade-off settings and uncertain
durations", Computers and Operations Research, Vol. 37, pp. 2131-2140.

Kleywegt A.J., A. Shapiro and T. Homem-de-Mello, 2002, “The sample average approximation
method for stochastic discrete optimization", SIAM Journal on Optimization, Vol. 12, pp.
479-502.

Lamas P., E. Demeulemeester, 2015, “A purely proactive scheduling procedure for the resource-
constrained project scheduling problem with stochastic activity durations", Journal of
Scheduling, Vol. 19, pp. 409-428.

Russell A.H., 1970, “Cash flows in networks", Management Science, Vol. 16, pp. 357-372.
Sobel M.J., J.G. Szmerekovsky and V. Tilson, 2009, “Scheduling projects with stochastic activity

duration to maximize expected net present value", European Journal of Operational Research,
Vol. 198, pp. 667-705.

Wiesemann W., D. Kuhn and B. Rustem, 2010, “Maximizing the net present value of a project
under uncertainty", European Journal of Operational Research, Vol. 202, pp. 356-367.

206

1

Multi-Objective Robotic Assembly Line Balancing
Problem: A NSGA-II Approach Using Multi-Objective

Shortest Path Decoders

Lahrichi Y., Deroussi L., Grangeon N. and Norre S.

LIMOS-CNRS, Université Clermont Auvergne, Aubière, France
{youssef.lahrichi,laurent.deroussi,nathalie.grangeon,sylvie.norre}@uca.fr

Keywords: Robotic Assembly Line Balancing Problem, Multi-objective optimization,
NSGA-II, Multi-objective decoder, Shorthest path.

1 Problem statement

The Robotic Assembly Line Balancing Problem (RALBP) is a combinatorial optimiza-
tion problem that is concerned with simultaneously assigning a set of operations to a set of
workstations placed among a serial assembly line and assigning to each workstation a type
of robot. The processing time of an operation i depends on the type of robot r used and is
denoted dri . Each type of robot r is also characterised by its cost cr. Besides, operations are
linked by precedence relations. The workload of a workstation represents the sum of the
processing times of the operations assigned to it. The cycle time stands for the maximum
workload among the stations and is a key performance indicator of the assembly line.

The RALBP is of significant importance due to the growing robotization of assembly
lines. In this study, we consider an additional parameter which is sequence-dependent setup
times: in addition to processing times, setup times tri,i′ should be considered if operation i is
performed just before operation i′ in some workstation equipped by a robot of type r. The
workload of a workstation is the sum of processing times and sequence-dependent setup
times induced by the operations assigned to it. Sequence-dependent setup times raises an
additional decision which is the sequencing of operations in each workstation. Sequence-
dependent setup times have been rarely considered in literature for the RALBP despite
their industrial importance. We study the problem while minimizing simultaneously three
objectives:

(Z1): Minimizing cycle time,
(Z2): Minimizing the total cost of robots used,
(Z3): Minimizing the number of workstations used.

The problem has been introduced in Rubinovitz et al. (1993) where the basic assump-
tions are presented. Most authors consider the single objective of minimizing cycle time
as Nilakantan et al. (2015) and Borba et al. (2018) and few perform multi-objective study
(Yoosefelahi et al. (2012), Çil et al. (2016)). Sequence-dependent setup times have not been
considered until very recently in Janardhanan et al. (2019). Table 1 positions our study in
literature.

2 Example

We illustrate the problem with a small instance. We consider 8 operations and 3 types
of robots. Precedence relations are illustrated in the precedence graph (Fig. 1). Process-
ing times and sequence-dependent setup times are supposed given. A feasible solution is
depicted in Fig. 2.

207

2

Table 1. Position of our study in the literature.

Article
Objectives Sequence-dependent
Z1 Z2 Z3 setup times

Rubinovitz et al. (1993)
Levitin et al. (2006)
Gao et al. (2009)

Yoosefelahi et al. (2012)
Nilakantan et al. (2015)

Çil et al. (2016)
Borba et al. (2018)

Janardhanan et al. (2019)
Our study

Fig. 1. Precedence graph

Fig. 2. Feasible solution

Let’s compute the cost of this solution:

(Z1) The total cost of robots used:
Z1 = c1 + c3 + c1

where c1 is the cost of a robot of type 1 and c3 is the cost of a robot of type 3.
(Z2) Cycle time : Its is obtained by computing the maximum among the workloads of the

workstations:
– On the first workstation, the workload is given by:

d12 + t12,3 + d13 + t13,5 + d15 + t15,2

208

3

– On the second workstation, the workload is given by:

d31 + t31,8 + d38 + t38,7 + d37 + t37,1

– On the third workstation, the workload is given by:

d14 + t14,6 + d16 + t16,4

(Z3) The number of workstations used:
Z3 = 3

3 Optimization method

We first derive a pseudo-polynomial time exact algorithm to compute all the Pareto
optimal solutions provided the giant sequence of operations is given (in Figure 2, the giant
sequence is O2, O3, O5, O1, O8, O7, O4, O6). We use then this algorithm as a decoder in a
NSGA-II metaheuristic. For this purpose, we suggest a generalization of NSGA-II that
supports multi-objective decoders.

3.1 Fixed giant sequence

We suppose that the giant sequence σ is fixed. Without lose of generality, we suppose
σ = (1, 2, . . . , n). The problem is equivalent to finding a multi-criteria shortest path in an
auxiliary graph HI(σ).
HI(σ) = (V,A) is a bi-valued oriented multi-graph. V = {0, 1, . . . , n} is the set of

vertices. Vertex i (i > 0) represents operation Oi while vertex 0 is fictitious. A is the
multi-set (each element can have several duplicates) of arcs. It contains all arcs from i to
j where i < j. An arc (i, j) represents a workstation to which the sequence of operations
Oi+1, Oi+2, . . . , Oj is assigned. Each arc (i, j) is duplicated as many times as there are
robots type r. A duplicate of (i, j) for robot type r is denoted (i, j)r. The graph is bi-
valued, each arc (i, j)r is weighted in R2 as follows:

w((i, j)r) = [cr,

j∑

k=i+1

drk +

j−1∑

k=i+1

trk,k+1 + trj,i+1]

The first weight represents the cost of the robot used in the workstation and the second
weight represents the workload of the workstation, which means the duration to perform
the sub-sequence (i+ 1, . . . , j) with a robot of type r.

A path from vertex 0 to vertex n stands for a feasible solution of the balancing sub-
problem. Solving optimally the multi-objective balancing problem given a giant sequence
σ can be done by solving the multi-objective shortest path problem from vertex 0 to vertex
n in HI(σ) minimizing simultaneously the sum of the first weights among the path, the
sum of the second weights among the path and the number of arcs in the path.

All Pareto optimal solutions for the multi-objective shortest path problem can be com-
puted thanks to a pseudo-polynomial algorithm (which we denote Split) withinO(cmax.Nr.n

3)
where cmax is the maximum cost of a robot,Nr the number of robot types and n the number
of operations.

3.2 General case

We derive an approximate method embedding the split to solve the problem in the
general case where the giant sequence is not given. To encode a solution, we use a giant

209

4

sequence. The split algorithm is used to decode a giant sequence. The general scheme of the
metaheuritic is a NSGA-II (Non-dominated Sorting Genetic Algorithm). However, NSGA-
II does not support multi-objective decoders, i.e decoders yielding several non-dominated
solutions. For this reason we suggest a novel generalization of NSGA-II supporting multi-
objective decoders.

4 Conclusion

In this study, a pseudo-polynomial algorithm is presented for solving the RALBP with
sequence-dependent setup times given a fixed giant sequence in a multi-objective context.
Then we derive an approximate method for solving the problem in the general case using a
novel generalization of NSGA-II. Experiments are actually being held and the first results
are encouraging.

Acknowledgements

The authors acknowledge the support received from the Agence Nationale de la Recherche
of the French government through the program "Investissements d’Avenir"(16-IDEX-0001
CAP 20-25).

References

Borba, Leonardo, Marcus Ritt, and Cristóbal Miralles. 2018. “Exact and heuristic meth-
ods for solving the robotic assembly line balancing problem.” European Journal of
Operational Research 270 (1): 146–156.

Çil, Zeynel Abidin, Süleyman Mete, and Kürşad Ağpak. 2016. “A goal programming ap-
proach for robotic assembly line balancing problem.” IFAC-PapersOnLine 49 (12):
938–942.

Gao, Jie, Linyan Sun, Lihua Wang, and Mitsuo Gen. 2009. “An efficient approach for type
II robotic assembly line balancing problems.” Computers & Industrial Engineering 56
(3): 1065–1080.

Janardhanan, Mukund Nilakantan, Zixiang Li, Grzegorz Bocewicz, Zbigniew Banaszak,
and Peter Nielsen. 2019. “Metaheuristic algorithms for balancing robotic assembly
lines with sequence-dependent robot setup times.” Applied Mathematical Modelling
65:256–270.

Levitin, Gregory, Jacob Rubinovitz, and Boris Shnits. 2006. “A genetic algorithm for
robotic assembly line balancing.” European Journal of Operational Research 168 (3):
811–825.

Nilakantan, J Mukund, Sivalinga Govinda Ponnambalam, N Jawahar, and Ganesan Kana-
garaj. 2015. “Bio-inspired search algorithms to solve robotic assembly line balancing
problems.” Neural Computing and Applications 26 (6): 1379–1393.

Rubinovitz, Jacob, Joseph Bukchin, and Ehud Lenz. 1993. “RALB–A heuristic algorithm
for design and balancing of robotic assembly lines.” CIRP annals 42 (1): 497–500.

Yoosefelahi, A, M Aminnayeri, H Mosadegh, and H Davari Ardakani. 2012. “Type II
robotic assembly line balancing problem: An evolution strategies algorithm for a multi-
objective model.” Journal of Manufacturing Systems 31 (2): 139–151.

210

1

The Group Shop Scheduling Problem with power
requirements

Damien Lamy1 and Simon Thevenin2

1 Mines Saint-Etienne, Institut Henri Fayol, F - 42023 Saint-Etienne, France
Damien.lamy@emse.fr

2 IMT Atlantique, LS2N - UMR CNRS 6004, F-44307 Nantes, France
simon.thevenin @imt-atlantique.fr

Keywords: Scheduling, Energy-Efficiency, Group-shop, Linear Programming.

1 Introduction

The last few years have seen a growing interest in reducing the energy consumption of
production systems since they are responsible for more than 50% of the global delivered
energy worldwide (U.S. Energy Information Administration 2016). Besides technological
advances, the consideration of energy consumption during operations management is an
efficient approach to reduce energy wastes. Three main energy efficiency measures exist in
scheduling : (1) total energy consumption; (2) time-of-use pricing; (3) peak power limit.
This work focuses on power peak constraint, which prevents to exceed the power threshold
contracted between the factory and its energy supplier. In other words, this constraint
prevents the simultaneous processing of multiple operations with high energy consumption.
Most of the literature on scheduling with energy constraints concerns the total energy
consumption and time-of-use pricing, and very few works consider peak power limitations
(Giret et. al. (2015)). Recently, Kemmoe et. al. (2017) proposed a method for the job shop
scheduling problem with power thresholds. In the present work, we investigate the extent
to which a more flexible shop-floor organization (namely, the group shop) improves the
productivity under power limitations.

The Group-Shop Scheduling Problem (GSP) generalises the Job-Shop Scheduling Prob-
lem (JSP) and the Open-Shop Scheduling Problem (OSP). On the one hand, in the JSP,
jobs are composed of operations to schedule according to pre-given routes. On the other
hand, in an OSP the routing is a decision of the scheduling problem. The GSP stands at the
frontier of these two problems since it gives the operations’ routing partially. As the JSP
and the OSP are NP-hard (Garey and Johnson 1979), the GSP is NP-hard too. Therefore,
multiple metaheuristics have been proposed to solve the GSP, such as the ant colony opti-
mization (Blum and Sampels 2004), tabu search and simulated annealing (Liu et. al. 2005),
genetic algorithms (Ahmadizar and Shahmaleki 2014). In addition, some extension of the
classical GSP have been considered, such as stochastic processing time and release dates
(Ahmadizaret. al. 2010), or the GSP with sequence-dependent setup and transportation
times (Ahmadizar and Shahmaleki 2014). However, to the best of our knowledge, the
present work is the first to consider the GSP with power limitation constraints. The closest
work is Liu et. al. (2019), where the authors consider an ultra-flexible Job-shop, but the
objective is to minimize total energy consumption rather than to schedule operations with
a power limitation.

The rest of the paper is organized as follows. Section 2 gives a formal description of
the considered problem and a mixed-integer linear programming formulation, and Section
3 reports experimental results that assesses the impact of the flexibility offered by the
group-shop to efficiently schedule operations subjected to a power limitation. Finally, a
conclusion ends the paper.

211

2

2 Problem description

This section formally states the Group-Shop scheduling Problem with Power Require-
ments (GSPPR), before to give its mathematical formulation.

The GSPPR is to schedule a set of n jobs, where each job j consists of a set Oj =
{Oj1 . . . Ojm} of operations to perform on machineM1 . . .Mm, respectively. Each operation
k of the entire set of operation O is associated with a duration Pk and a power requirement
Wk. The objective of the considered problem is to minimize the makespan cmax, that is,
the completion time of the last performed job. However, the schedule must respect some
precedence constraints between the operations. More precisely, the set of operations of a
job j is partitioned into groups, and Gjk denotes the kth group of job j. The precedence
constraints require to complete all the operations of the group Gjk before the start of any
operation of the group Gjl if k ≤ l. However, the operations of a group can be scheduled
in any order. In addition, the schedule must respect the energy threshold, that is the total
energy consumption of the operations performed simultaneously must be lower than the
threshold Wmax. Finally, the operations are non-preemptive and available at time 0.

In short, the GSPPR requires to schedule all operations efficiently without exceeding
the power threshold. Note that the GSP generalizes the JSP and the OSP. Indeed, an
instance of the GSP with a single operation per group is an instance of the JSP, and an
instance of the GSP with a single group per job is an instance of the OSP.

The disjunctive formulation with the flow representation of energy is classically used for
the JSP (Kemmoe et. al. 2017), and the model (1) - (8) is the adaptation of this formulation
for the GSPPR. Model (1) - (8) is based on the following variables:
– xij is equal to 1 if operation i is processed before operation j, and 0 otherwise
– φij represents the flow transferred from operation i to j
– si is the starting time of operation i

min cmax (1)
s.t.

cmax ≥ si + Pi ∀ i ∈ O (2)
sj ≥ si + Pi −M(1− xij) ∀ i, j ∈ O (3)
∑

j∈O
φ0j ≤ Wmax (4)

φij ≤ xijWi ∀ i, j ∈ O (5)
∑

j∈O−{i}
φij ≤ Wj ∀ i ∈ O (6)

φ0j +
∑

i∈O−{j}
φij = Wi ∀ j ∈ O (7)

xij + xji = 1 ∀ i, j ∈ O (8)

To respect the precedence constraint, xoo′ is set to 1 if operations o and o′ belong to
the same job j, o ∈ Gjk and o′ ∈ Gjl with k ≤ l. Equations (3) compute the start time
of each operation based on its predecessors, and equations (2) set the makespan to the
completion time of the last operation. The energy consumption is modeled with a flow.
Constraint (4) ensures that the source transmits at most Wmax units of energy in total,
and Constraints (5) states that each operation can transmit the energy flow to one of its
successors only. Equations (6) state that each operation j must receive Wj units of energy,
whereas equations (7) forbid an operation to transmit more energy than it received. Finally,
the redundant constraints (8) are introduced to strengthen the formulation.

212

3

3 Computational experiments

As this paper is the first to consider the GSPPR, no instances exist in the literature.
Therefore, we generated the instances randomly, with a number of jobs and machines
selected in the interval [3, 10], and operations assigned randomly to groups. The duration
of each operation i, Pj , is generated randomly in the interval [1, 100], while its power
requirement is generated randomly in the interval [1, 30]. Finally, three different values
for the power limit Wmax are considered: MaxThreshold (i.e. enough power to process
all operations), MaxThreshold/2 and MaxThreshold/3. For each couple (m, Wmax), 10
instances are generated.

The integer linear program (1) - (8) is implemented with CPLEX 12.8, and the exper-
iments were run on a Xeon E3-1505M processor with a time limit of 600 seconds.

Table 1. Results on small instances with different power thresholds

m
MaxThreshold MaxThreshold/2 MaxThreshold/3

AVG_CPU(s) AVG_GAP(%) NB_OPT AVG_CPU(s) AVG_GAP(%) NB_OPT AVG_CPU(s) AVG_GAP(%) NB_OPT
3 92.75 3.94 7 456.125 27.29 2 526 50.73 1
4 222.75 5.71 6 383 28.81 3 600 66.17 0
5 224.5 6.49 6 450.25 31.05 2 600 68.12 0
6 237.5 6.24 5 388.625 23.46 3 539 53.87 1
7 280.75 10.29 5 450.5 33.41 2 526 57.96 1
8 328.625 12.36 4 455.375 32.47 2 525 55.07 1
9 300.5 11.38 5 402.125 27.00 3 600 45.31 1
10 451.25 23.90 2 457.625 40.36 2 526 50.40 1

Table 1 reports the performance of the CPLEX solver for different power thresholds.
Each row of the table corresponds to a set of instances with the same number of machines
(m). When the power threshold is high, the optimal solutions (see NB_OPT) is easy to
reach. On the contrary, CPLEX has some difficulties to find optimal solutions for low
power thresholds (closed to the minimal value under which it is not possible to schedule
operations). Actually, CPLEX was not able to find an upper bound for a fifth of the
instances in this scenario.

Fig. 1. Gantt chart of the optimal solution of the GSP (on the right), and the solution
of the Job-shop instance (on the left) created by adding random precedences between the
operations of a group.

213

4

Figure 1 compares the makespan in GSP and JSP. The left side gives the Gantt chart
of the optimal solution of a GSPPR instance, whereas the left side shows the solution of
JSSPR instance obtained by adding random precedences between the operations of each
group. The GSPPR instance has a makespan of 318 versus 391 for JSPPR. Moreover, the
power thresholds of the GSPPR instance can be reduced up to 30%, and the makespan
remains lower than the one of the JSPPR with the initial power limit.

In production management, the process plans (the operation to perform and their order)
are classically decided before to schedule the operation. This study shows that integrating
these decision yields some flexibility on the shop floor, and this allows better performance,
or to operate with lower energy thresholds.

4 Conclusion

This paper investigates the problem of minimizing the makespan in a Group-shop
Scheduling Problem with power requirements and a power limitation (GSPPR). As the
Group-shop allows some flexibility in the processing order of the operations of a job, pre-
liminary results show that the Group-shop leads to a significant reduction of the makespan
in the context of power-constrained schedules when compared to the classical Job-shop.
For instance, an operation with a low power requirement can be scheduled at the right
moment, when the available power is not used by other operations. As CPLEX solves
small size instances only, future works include the development of metaheuristics and con-
strained programming approaches for the GSPPR. In addition, extensions of the GSPPR
are of practical interest. For instance, the present model contains only operations with con-
stant power requirements, which is close to cumulative problems (as stressed in Baptiste
et. al. (2001)), and it could be extended to more real power profiles. Also, in the presence
of human operators, there exist some uncertainties on the processing time of the opera-
tion. These random processing times lead to random power limit excesses, and the design
of schedule robust to these uncertainties is crucial to avoid exceeding contracts based on
power thresholds.

References

Ahmadizar, F., Ghazanfari, M. and Fatemi Ghomi, S.M.T. 2010, ”Group shops scheduling with
makespan criterion subject to random release dates and processing times", Computers Oper-
ations Research, Vol. 37 No. 1, pp. 152-162.

Ahmadizar, F. and Shahmaleki, P., 2014, ” Group-shop scheduling with sequence-dependent set-up
and transportation times", Applied Mathematical Modelling, Vol. 38 No. 22, pp. 5080-5091.

Baptiste P., Le Pape C., Nuijten W., 2001, ” Cumulative Scheduling Problems", In: Constraint-
Based Scheduling. International Series in Operations Research Management Science, Vol. 39.,
pp. 149-158.

Blum, C. and Sampels, M., 2004, ”An ant colony optimization algorithm for shop scheduling
problems", Journal of Mathematical Modelling and Algorithms, Vol. 3 No. 3, pp. 285-308.

Garey, M.R. and Johnson, D.S., 1979. ”Computers and intractability", vol. 29, New York: wh
freeman.

Giret, A., Trentesaux, D. and Prabhu, V., 2015, ”Sustainability in manufacturing operations
scheduling: A state of the art review", Journal of Manufacturing Systems, Vol. 37, pp. 126-140.

Kemmoe, S., Lamy, D. and Tchernev, N., 2017, ”Job-shop like manufacturing system with variable
power threshold and operations with power requirements", International Journal of Produc-
tion Research, Vol. 55 No. 20, pp. 6011-6032.

Liu, N., Zhang, Y.F. and Lu, W.F., 2019, ”Improving Energy Efficiency in Discrete Parts Man-
ufacturing System Using an Ultra-Flexible Job Shop Scheduling Algorithm", International
Journal of Precision Engineering and Manufacturing-Green Technology.

214

5

Liu, S.Q., Ong, H.L. and Ng, K.M., 2005, ”A fast tabu search algorithm for the group shop
scheduling problem", Advances in Engineering Software, Vol. 36 No. 8, pp. 533-539.

215

1

A two-stage robust approach for minimizing the
weighted number of tardy jobs with profit uncertainty

Henri Lefebvre1, François Clautiaux2 and Boris Detienne2

1 DEI, University of Bologna, Italy
henri.lefebvre@unibo.it

2 IMB, University of Bordeaux, Inria Bordeaux Sud-Ouest, France
francois.clautiaux,boris.detienne@math.u-bordeaux.fr

Keywords: Single machine scheduling, Robust optimization, Exact algorithm.

1 Introduction

We investigate a stochastic variant of the well-know 1|rj |
∑
wjUj problem, in which the

jobs are subject to unexpected failure which leads to additional costs. The decision maker
is then allowed to take recourse actions such as outsourcing or spending more time on the
jobs to fix them. We are interested in worst-case optimization, with polyhedral uncertainty
set affecting the objective function.

In our problem, called Two-Stage Robust Weighted Number of Tardy jobs (2SRWNT) in
the sequel, an instance consists of a set of jobs J , each of which is characterized by a release
date rj , a due date dj , and a nominal processing time pj . A weight wj can be interpreted
as the cost for executing the job tardy, or the opposite of the profit of processing the job
on time. At the first stage, here-and-now decisions are to select a subset of jobs J ∗ ⊆ J to
process. After that, a subset of the jobs can be affected by unexpected failures, those being
governed by the uncertainty set Ξ =

{
ξ ∈ R|J|+

∣∣∣ ξj ≤ 1,∀Jj ∈ J and
∑
j|Jj∈J ξj ≤ Γ

}
.

The realization of alea ξ ∈ Ξ determines a profit degradation for each job Jj ∈ J defined
as δj(ξ) = δ̄jξj , where δ̄j is the maximum additional cost linked to the job’s failure. Input
parameter Γ is the largest number of jobs that can incur their maximum degradation. At
the second stage recourse actions have to be taken. For each j ∈ J ∗, one can choose (i)
to keep the revealed profit ; (ii) to repair the job, adding τj time units to its processing
time to recover its initial profit ; or (iii) to reject the job, and pay a fixed outsourcing cost
fj . Finally, jobs in J ∗ that are not rejected must be scheduled so that they meet their
time windows. The objective is to select a subset of jobs as well as the recourse actions
that minimize the worst-case overall cost (equivalently, maximizes the overall worst-case
profit).

(van den Akker, Hoogeveen and Stoef 2018) also study a variant of 1||∑Uj where
the processing times are uncertain. Given a discrete scenario-based uncertainty set, one
has to determine an initial, feasible for nominal processing times, sequence of jobs. At
second stage, once the scenario of actual processing times is revealed, the sequence must
be made feasible for those actual processing times by rejecting some jobs. The objective
is to minimize the expected cost of the repaired solution. Exact methods are proposed for
this problem. Our study differs by the basic problem (we consider unequal release dates
and weights), the nature of the uncertainty set (polyhedral vs. discrete, scenario-based),
the uncertain data (objective vs. constraints) and the possible recourse actions.

Robustness is known to be a hard issue in scheduling. (Aloulou and Della Croce 2008)
and (Yang and Yu 2002) show that even simple scheduling problems become NP-hard as
soon as the uncertainty set contains more than one scenario. A possible way to address our
problem is to use the so-called finite adaptability model of (Bertsimas and Caramanis 2010).
This heuristic approach consists in restricting the problem by determining at first stage a

216

2

set of K recourse solutions, while the second stage is reduced to choosing the best of those
for the revealed alea. On the one hand, when K is small enough, this approach has the
advantage to produce tractable problems. On the other hand, it may produce suboptimal
solutions, since it restricts the number of resource actions that can be performed.

The contribution of this abstract is to propose the first exact method for this problem.
It is based on an MILP formulation based on a recent result of (Arslan and Detienne 2018).
We solve the model using a branch-and-price algorithm.

2 Mixed Integer Linear Programming model

We first recall the idea of the ILP model proposed in (Detienne 2014) for 1|rj |
∑
wjUj ,

which we extend to the robust case. Their approach is based on the fact that minimizing the
weighted number of tardy jobs can be decomposed into two distinct decisions: (1) decide
which jobs are to be executed tardy and (2) in what order the on-time jobs are executed.
We know that if the jobs have agreeable time windows (i.e., that the tasks can be ordered in
such a way that for each Ji before Jj we have ri ≤ rj and di ≤ dj), then a feasible sequence
of on-time jobs exists iff the earliest due-date first rule (EDD) yields a feasible solution.
The main idea of (Detienne 2014) is to reformulate the general 1|rj |

∑
wjUj problem into

a problem of selecting jobs with agreeable time windows. To do so, a set of so-called job
occurrences is created from the original set of jobs in such a way that EDD may still be
applied. Formally, consider a job Ji ∈ J . For any job Jj ∈ J whose time window is not
agreeable with that of Ji (i.e., ri < rj , di > dj , and ri + pi + pj ≤ dj), we create a job
occurrence Jk ∈ J̃ such that rk = ri, pk = pi, wk = 0, fk = fi, δ̄k = δ̄j , τk = τj and a hard
deadline d̄k = dj and which represents the scheduling of Ji before Jj . The original job Ji is
also added to the set of job occurrences J̃ , with a null weight as well. We define, for every
job Jj ∈ J , Gj as the set gathering all the job occurrences related to Jj . The following
proposition, established in (Detienne 2014), naturally extends to the robust case.

Proposition 1. There is at least one optimal solution of 2SRWNT such that selected job
occurrences are scheduled according to a non-decreasing order of their deadlines with ties
being broken in a non-decreasing order of their release dates.

In the remainder, we assume that job occurrences are sorted according to a non-decreasing
order of their deadlines and denote by •k the data • of the kth occurrence in that order
(e.g., pk now denotes the processing time of the kth job occurrence in that order). Similarly
to (Detienne 2014), we assign reversed time windows to each job occurrence given by
[r̂j , d̂j] = [maxi di − dj ,maxi di − rj], which helps writing an ILP model with a stronger
linear relaxation.

For every job Jj ∈ J , we introduce decision variable Uj which is equal to 1 if Jj is tardy,
0 otherwise. For every job occurrence Jk ∈ Gj , we denote by yk the selection variable of the
kth job occurrence, and zk the decision variable indicating whether the job occurrence is
repaired or not. More precisely, if Uj = 0, then Jj is decided to be executed on-time in the
first stage. Once the uncertainty is revealed, the sequencing of the jobs and the recourse
actions have to be decided. The following cases may arise: (i) ∃Jk ∈ Gj , yk = zk = 1,
i.e. the job is executed and repaired ; (ii) ∃Jk ∈ Gj , yk = 1 and zk = 0, i.e. the job
is executed and the deteriorated profit is undertaken ; (iii) ∀Jk ∈ Gj , yk = zk = 0, the

job is outsourced. Let us introduce the set Y ⊂ {0, 1}|J̃ | × {0, 1}|J̃ | ×R|J̃ |+ of all feasible

217

3

second-stage solutions:

Y =





ρk = pkyk + τkzk ∀k|Jk ∈ J̃
zk ≤ yk ∀k|Jk ∈ J̃
∑

k|Jk∈Gj

yk ≤ 1 ∀Jj ∈ J

t̂k + ρk −Mk(1− yk) ≤ d̂k ∀k|Jk ∈ J̃
t̂k−1 − t̂k − ρk ≥ 0 ∀k 6= 1|Jk ∈ J̃
t̂k ≥ r̂k, ρk ≥ 0 ∀k|Jk ∈ J̃
yk, zk ∈ {0, 1} ∀k|Jk ∈ J̃

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Here, t̂k is the variable equal to the (reverse) starting time of occurrence k, while ρk is equal
to the processing time of occurrence k, and Mk is a large constant. Constraints (1) define
the processing time of a job with respect to the recourse action. Constraints (2) enforce that
a job may be repaired only if it is scheduled. Constraints (3) limits the number of selected
occurrences to one per job. Constraints (6) and (4) respectively enforce that no job starts
before its release date or finish after its deadline, while constraint (5) makes sure that no
two jobs overlap. By denoting Y(U) = {(y, z, t̂, ρ) ∈ Y | ∑k|Jk∈Gj yk ≤ 1− Uj ∀Jj ∈ J }
the set of feasible second-stage solutions that are consistent with first-stage solution U , the
objective function is given by:

min
U∈{0,1}|J |

∑

j|Jj∈J
wjUj + fj(1− Uj) + max

ξ∈Ξ
min

(y,z,t̂,ρ)∈Y(U)
R(ξ, y, z)

where R(ξ, y, z) denotes the cost of recourse action (y, z) corresponding to scenario ξ given
by: R(ξ, y, z) =

∑
j|Jj∈J

∑
k|Jk∈Gj

[
(δ̄kξj − fk)yk − δ̄kξjzk

]
. Note that the outsourcing cost

has been moved to the first-stage: it is assumed that outsourcing is always paid for on-
time jobs unless the job is scheduled in the second stage. Also, remark that for a given
U ∈ {0, 1}|J | the recourse function Q(U, ξ) = min(y,z)∈Y(U)R(ξ, y, z) is not a convex
function of ξ. That implies that the worst-case is in general not achieved at an extreme
point of Ξ, so that more than Γ jobs might see their profit degraded by a small amount.

This formulation of 2SRWNT possesses interesting features. First, the uncertainty is
polyhedral and only enters the objective function. Second, the constraints linking the first
and second stages

∑
k|Jk∈Gj yk ≤ 1 − Uj ∀Jj ∈ J can be expressed as γ ≤ β, with γ

and β vectors of binary decision variables associated respectively with the second and first
stage. This allows us to use the methodology introduced in (Arslan and Detienne 2018)
to reformulate 2SRWNT, which is based on the following successive steps: (i) replacing
Y(U) with its convex hull expressed in terms of its extreme points (using Minkowski-
Weyl theorem) ; (ii) permuting the inner max and min (using von Neumann theorem) ;
(iii) linearizing the inner max using LP duality (Bertsimas and Sim 2004). Denoting by
(ye, ze), e ∈ E the extreme points of conv Y, we obtain the following MILP model:

(ColGen) : min
∑

Jj∈J
[wjUj + fj(1− Uj) + vj] + Γu−

∑

k|Jk∈J̃

[
fk

∑

e∈E
ye
kαe

]

s.t.
∑

e∈E
αe = 1 (8)

∑

e∈E
ye
kαe ≤ 1− Uj ∀k|Jk ∈ Gj , ∀Jj ∈ J (9)

u+ vj ≥
∑

k|Jk∈Gj

[
δ̄k

∑

e∈E
(ye

k − zek)αe

]
∀j|Jj ∈ J (10)

218

4

Uj ∈ {0, 1} ∀Jj ∈ J , αe ≥ 0 ∀e ∈ E, u ≥ 0, vj ≥ 0 ∀Jj ∈ J
Here, decision vector α represents the convex combination multipliers from the reformu-
lation of conv(Y) while u and v are the dual variables associated to the constraint ξ ∈ Ξ.
Constraint (9) links the recourse action with the first-stage decision. Constraint (8) en-
forces that the recourse actions are convex combinations of the extreme points of conv(Y).
Finally, constraint (10) embeds the dualized cost associated to the worst-case scenario.

Problem 2SRWNT is trivially NP-hard. This formulation proves as a corollary, that
quite surprisingly for a min-max-min problem with integer recourse, it lies inside class NP
and is thus NP-complete (Arslan and Detienne 2018).

3 Numerical experiments

We develop a branch-and-price algorithm to solve model (ColGen), based on the C++
library BapCod (Vanderbeck 2005). The pricing problem consists in finding a solution in
Y minimizing the reduced-cost. This variant of 1|rj |

∑
wjUj with two possible modes per

job (normal or repaired) is solved with a MILP solver. Our approach is compared against
the finite adaptability method of (Hanasusanto, Kuhn and Wiesemann 2015), which is the
method that is the closest to our ours, although it results in a heuristic formulation. We
solve this model directly using a general purpose commercial solver.

We compare both approaches on a set of 3200 randomly generated instances. Our
branch-and-price algorithm solves to optimality all 20 job-instances of our test bed within
one hour, and 85% of the 25 job-instances. Our method provides as by-product, for each
solved instance, the number K∗ of recourse solutions required to achieve optimality. When
using K∗ as the parameter of the finite adaptability model, it fails at solving some 10
job-instances. It solves less than 17% of the instances for which K∗ ≥ 2 and |I| = 25.

4 Conclusion

We have proposed a numerically effective algorithm to solve a hard robust scheduling
problem exactly. It compares favorably to the finite adaptability approach, in terms of
computing time and quality of solutions.

References

Aloulou, M. A. and Della Croce, F.: 2008, Complexity of single machine scheduling problems under
scenario-based uncertainty, Oper. Res. Lett. 36(3), 338–342.

Arslan, A. N. and Detienne, B.: 2018, Reformulation approaches for a two-stage robust knapsack
problem, International workshop on robust optimization, 2018, Avignon.

Bertsimas, D. and Caramanis, C.: 2010, Finite Adaptability in Multistage Linear Optimization,
IEEE Transactions on Automatic Control 55(12), 2751–2766.

Bertsimas, D. and Sim, M.: 2004, The Price of Robustness, Operations Research 52(1), 35–53.
Detienne, B.: 2014, A mixed integer linear programming approach to minimize the number of

late jobs with and without machine availability constraints, European Journal of Operational
Research 235, 540–552.

Hanasusanto, G. A., Kuhn, D. and Wiesemann, W.: 2015, K-adaptability in two-stage robust
binary programming, Operations Research 63(4), 877–891.

van den Akker, M., Hoogeveen, H. and Stoef, J.: 2018, Combining two-stage stochastic program-
ming and recoverable robustness to minimize the number of late jobs in the case of uncertain
processing times, Journal of Scheduling 21(6), 607–617.

Vanderbeck, F.: 2005, Bapcod - a generic branch-and-price code.
URL: https://realopt.bordeaux.inria.fr/?page_id=2

Yang, J. and Yu, G.: 2002, On the robust single machine scheduling problem, Journal of Combi-
natorial Optimization 6(1), 17–33.

219

Scheduling of battery charging tasks with limited common power
source

Lemański T.1, Różycki R.1, Waligóra G.1, and Węglarz J.1

1Poznan University of Technology, Poland
e-mail: Rafal.Rozycki@cs.put.poznan.pl

Keywords: continuous resource, e-mobility, scheduling, makespan.

1. Introduction
In this work we consider a problem of scheduling battery charging tasks, assuming that the

available amount of shared power is limited, and insufficient to charge all batteries in parallel. The
battery charging process is very complex, and depends mainly on the type of batteries. A very
popular type of battery is a Li-ion battery, used in both portable electronic equipment and electric
cars. There are four main charging periods (Manwell, McGowan(1993)), of which the longest is
the saturation phase. In this phase, along with the passing of time, approximately a linear decrease
in power usage is observed. Therefore, it is justified to model this process using a linear function.

In this work we consider the problem of charging a set of batteries of the same type with
different capacities and degrees of discharge. For simplicity, we will assume that charging each
battery is limited to the saturation phase only.

Moreover, we assume that the number of charging points (a discrete resource) is unlimited,
and the only limited resource is the available power, which by its nature can be allocated to
charging tasks in any amounts from a certain range, i.e. it is a continuous renewable resource
(Błażewicz et al. (2007)). Once started, the charging task cannot be interrupted, as it would impair
the properties of the battery being charged. As one can see, such a non-classical scheduling
problem is non-trivial, because one should specify the order of charging tasks that would lead to
feasible schedules with the best value of the adopted criterion. In our case, this criterion is the
length of the schedule.

In the next part of the work we will present the formulation of the problem, selected properties
of the problem solution, and the results of a computational experiment.

2. Problem formulation
We consider a problem of scheduling n independent, non-preemptable jobs (charging tasks).

Each job requires for its processing some amount of power, and consumes some amount of energy
during its execution. The number of machines (a machine represents a single charging point) is
unlimited and discrete resources have no influence on the final solution. Each job i, i = 1,2,…,n, is
characterized by the amount ei of consumed energy, which represents the size of the job, the initial
power usage P0i, and the power usage function pi(t). This function can be, in general, arbitrary,
however, in this research we assume decreasing linear power usage functions of jobs, as discussed
in the Introduction. Moreover, at the completion of a job its power usage is equal to 0.
Consequently, a job is sufficiently described by only two parameters, namely: ei, P0i, in our
simplified situation. The model of a job is showed on Fig. 1, where si, ci represent the start and
completion times of job i, respectively.

Thus, the assumed job model can be given as follows:

𝑝!(𝑡) = &

0																					𝑓𝑜𝑟	𝑡 < 𝑠!
𝑃"! −

#!"
$"
(𝑡 − 𝑠!)	𝑓𝑜𝑟	𝑠! ≤ 𝑡 ≤ 𝑐!

0																					𝑓𝑜𝑟	𝑡 > 𝑐!

 (1)

220

Figure 1. Graphical presentation of the job model

Notice that having defined the size ei of a job, its initial power usage P0i, and the power usage

function pi(t), the processing time di of job i can be calculated using the following equation (2):

 𝑑𝑖 = 2𝑒𝑖 𝑃0𝑖⁄ (2)

Thus, we have a set of jobs, from among which each is graphically represented, in the system

of coordinates p and t, by a rectangular triangle of height P0i and length di.
The objective of the problem is to minimize the schedule length. However, the total amount of

power available at a time is limited. We denote by P the total amount of power available at time t.
Obviously, it must hold that 𝑃 ≥ max

!'(,…,+
{𝑃"!}, otherwise no feasible schedule exists. Let 𝑝(𝑡) be

the total power used by all jobs processed at time t, i.e.:

𝑝(𝑡) = < 𝑝!(𝑡)
!∈-#

 where 𝐴𝑡 is the set of jobs processed at time t. Taking into account equation (1) we can write:

𝑝(𝑡) = ∑ ?𝑃"! −
#!"
$"
(𝑡 − 𝑠!)@!∈-# 															(3)	

 and consequently, the considered problem can be mathematically formulated as:

Problem T

minimize	 𝐶/01 = max
!'(,…,+

{𝑐!}	 (4)

subject	to	 𝑐! = 𝑠! + 𝑑! ,			𝑖 = 1,2,… , 𝑛	 (5)

	 ∑ ?𝑃"! −
#!"
$"
(𝑡 − 𝑠!)@!∈-# ≤ 𝑃			for	any	𝑡				

 (6)

Thus, the problem is to find a vector 𝐬 = [𝑠(, 𝑠2, … , 𝑠+] of starting times of jobs that minimizes

the schedule length 𝐶𝑚𝑎𝑥 subject to the above constraints..

221

3. Properties of solutions
Let us now discuss some properties of the defined problem that can be useful for the developed

solution approach.
Since due to insufficient power, in general it is not possible to start all tasks in parallel, the

question arises - how to construct a schedule of the minimal length. Suppose we know a certain
order of job execution, i.e. there exists a list JL where jobs are ordered according to their
non-decreasing starting times. For each job in position q, q = 2, 3,…, n, on JL the following
condition holds:

𝑠67[9] ≥ 𝑠67[9;(]	, 𝑞 = 2,… , 𝑛

which means that job JL[q] in position q on JL must not start before any of its predecessors on JL.
In this situation, the following property is useful.

 Property 1. For a defined job list 𝐽𝐿, an optimal schedule is obtained by scheduling each

successive job 𝑖 from the list at the earliest possible time when the required amount 𝑃0𝑖 of power
becomes available.

Note that the consequence of Property 1 is that in the optimal schedule, at time 0 one should

run as many initial jobs from the JL list as possible. The moment of starting the next job from the
list with the initial power consumption equal 𝑃"< can be obtained by transforming (3) to the
following formula:

𝑠< =
#!$;#=∑ #!""∈&# =∑ '!"

("
?""∈&#

∑ '!"
("

"∈&#
 (7)

In this formula, the key role is played by the information how many tasks are actually
performed at the moment of starting task j, because some of the tasks may have already been
finished. On the basis of Property 1, the following algorithm can be proposed, which for the
known job order (represented by a particular JL list) determines the optimal moments of starting
consecutive jobs for the considered scheduling criterion.

Algorithm A
Step 1. At time 0 run the maximum number of initial jobs from the JL list enabled by the

available amount of power
Step 2. If any job remains on the JL list, repeat:
Step 2a. Find the moment to start the next job from the JL list from (7) based on information

about jobs being currently performed.
Step 2b. If the calculated starting time is later than the fastest-ending job being completed,

Then: remove the fastest-ending job from the set of jobs being currently performed;
Otherwise: remove the consecutive job from the JL list, put it in the schedule at the

calculated start time, and add to the set of jobs being currently performed.
Return to the beginning of Step 2

Step 3. Take the finish time of the last job as the schedule length.

Algorithm A has the complexity of O(n2) which results from Step 2. The importance of

Property 1 follows from the fact that optimal schedule can be found by using Algorithm A for each
possible job permutation on the JL list. Of course, a full enumeration technique has an exponential
complexity and is computationally inefficient. However, the solutions found in that way can be a
useful reference point for assessing solutions obtained using heuristic algorithms.

Another immediate consequence of the above property is the following natural observation for
the identical jobs case (i.e. P0i = P0 and ei = e for i = 1,2,…,n).

Property 2. For identical jobs, Algorithm A finds an optimal schedule.

It is obvious that for identical jobs the choice of the next job to perform is of no importance –

each job is represented by the same profile of power usage. As a result, the jobs can be scheduled
in an arbitrary order, e.g. according to their increasing indices.

222

Let us denote by 𝑛(the number of jobs started at the moment 0 and by 𝑠67[+)=(]	the moment
when the next job from JL will be launched (calculated from (7)). The following property may also
be relevant for the situation where, additionally, the number of charging connections is limited.

Property 3. The maximum number of jobs performed at a given moment does not exceed the
number 𝑛(+ 1 + 𝑥, where x is the maximum integer for which the inequality is met:

𝑠67[+)=(] +<
1

𝑛(+ 𝑖

1

!'(

< 1

4. Computational experiment
Simple priority rules can be used to set a suboptimal order of jobs in the JL list. The

parameters that can be taken into account are the following: P0i, di and the ratio P0i/di. Of course,
one can sort the jobs on the list according to non-decreasing or non-increasing values of these
parameters.
In order to examine the suitability of individual priority rules, preliminary computational
experiments were carried out. The assumptions of the experiments were as follows:

- number of jobs, n = 12; available power amount P = 12;
- values of P0i, i = 1, 2,…, n, were chosen randomly according to discrete uniform

distribution from the set {1,.., P0max}, and P0max took the following two values in particular
groups of experiments: 3 (a large number of jobs run in parallel in the resulting schedule),
8 (a small number of jobs executed in parallel in the resulting schedule)

- values di, i = 1, 2,…, n, were chosen randomly according to discrete uniform distribution
from the set {1,.., dmax}, and dmax took the following two values in particular groups of
experiments: 12 (short jobs) and 50 (long jobs).

Ten test instances were generated for each case. Both: non-decreasing and non-increasing values
of the chosen parameters were tested. For each sequence of jobs in JL, the final schedule was
generated by using Algorithm A. The results obtained in this way were compared to optimal
solutions obtained by the full enumeration technique (all possible permutations of n jobs on a JL
list) and with random sequence of jobs on JL. The obtained results of the experiment show that
under the adopted assumptions for the considered scheduling problem, the best rule for ordering
jobs on JL is according to non-increasing order of di. The representative results for the experiment
with P0max = 8 and dmax = 12 are shown in Table 1, where average (Dave) and maximum (Dmax)
deviations from the optimal solutions are presented for each tested rule.

Table 1. Exemplary results of the computational experiment

Rule: random ­P0i ¯P0i ­di ¯di ­P0i/di ¯ P0i/di
Dave 0.29 0.23 0.34 0.32 0.06 0.11 0.3
Dmax 0.58 0.43 0.54 0.5 0.14 0.22 0.5

5. Conclusions
In this work we have considered a problem of scheduling non-preemptable and independent

jobs with power demands linearly decreasing with time in order to minimize the schedule length.
We have shown that in an optimal schedule each job should be started as soon as the required
power amount becomes available. As a result, in order to find a globally optimal schedule, all
sequences of jobs have to be examined, in general. Thus, some priority rules can be applied to look
for an optimal job permutation. We have performed computational tests to examine a few simple
priority rules. They have shown that ordering the jobs according to their non-increasing processing
times leads to the best suboptimal solutions.

References
Manwell J. F., McGowan J. G.,1993, “Lead acid battery storage model for hybrid energy
systems”, Solar Energy, vol. 50, pp 399 -405, 1993.
Błażewicz J., Ecker K., Pesch E., Schmidt G., Sterna M., Węglarz J., “Handbook on
Scheduling: from Theory to Applications”, Springer, Heidelberg, 2019.

223

Computational Experiments for the Heuristic Solutions of the Two-
Stage Chain Reentrant Hybrid Flow Shop and Model Extensions

Lowell Lorenzo1

1Department of Industrial Engineering and Operations Research, University of the Philippines
Diliman 1101 Quezon City, Philippines

e-mail: Lowell.Lorenzo@up.edu.ph

Keywords: scheduling, reentrant hybrid flow shop, flexible job shop, heuristics.

1. Introduction

This is the second part of a research paper for the two-stage chain reentrant hybrid flow shop. In
the first part of the research paper which was presented in Lorenzo (2017), this problem was shown
to be strongly NP-hard. Lower bounds for the solution were derived and were used to develop
heuristic solutions for the problem. For this paper, we now explore the performance of these heuristic
solutions against the best derived lower bounds via computational experiments. Then, we develop
model extensions namely the reverse two-stage chain reentrant hybrid flow shop and the two-stage
flexible job shop with the corresponding heuristic solutions and computational experiments.

The outline of this paper is as follows. A short discussion of the definition of the problem and
the derived lower bounds are in Sections 2 and 3. Section 4 presents the base heuristic algorithms
and then the discussion on the results of the computational experiments is in Section 5. Finally,
model extensions of the problem, modified heuristic algorithms, solutions and computational
experiments are then presented in Sections 6-9.

2. Background and Problem Definition

Consider a simple flow shop with m stages. At every stage i,i=1,…,m, there is a single machine
𝑀௜ available to process an operation of a job. Let 𝜙௞ be the stage visited to perform the kth operation
of a job where 𝜙௞ ∈ ሼ1,2, … , 𝑚ሽ. Then 𝜙 ൌ ሺ𝜙ଵ, 𝜙ଶ, … , 𝜙௠ሻ ൌ ሺ1,2, … , 𝑚ሻ is the stage flow
sequence for all jobs and consists of m elements or operations. In a simple flow shop, the number of
operations a job undergoes is equal to the number of stages. In an m-stage chain reentrant flow shop,
its stage flow sequence 𝜙 ൌ ሺ1,2, … , 𝑚, 1ሻ has now (m+1) operations due to an occurrence of a
single reentrant operation. The single reentrant characteristic occurs in the (m+1)th operation which
is performed at stage 1 and is referred to as the finishing operation.

When there are 𝑚௜ identical parallel machines available in stage i, the resulting system is referred
to as a hybrid flow shop. Let this group of 𝑚௜ machines in stage i be referred to as work center 𝑊𝐶௜
in stage i.

In the two-stage chain reentrant flow shop, each job 𝐽௝, 𝑗 ൌ 1, … , 𝑛 has a stage flow sequence 𝜙 ൌ
ሺ1,2,1ሻ. The processing time of the first operation of job 𝐽௝ is 𝑎௝, its processing time in the second
operation is 𝑏௝ and the reentrant processing time for the finishing operation is 𝑐௝. Let the processing
time vector for each job be ሺ𝑎௝, 𝑏௝, 𝑐௝ሻ or simply referred to now as the processing times of 𝐽௝ in the
two-stage chain reentrant flow shop. Since each job is processed in every operation in the chain
reentrant flow shop, then 𝐴 ൌ ሺ𝑎ଵ, … , 𝑎௡ሻ, 𝐵 ൌ ሺ𝑏ଵ, … , 𝑏௡ሻ, 𝐶 ൌ ሺ𝑐ଵ, … , 𝑐௡ሻ are the vectors of
processing times for each operation in 𝜙 respectively.

In the two-stage chain reentrant hybrid flow shop, there are two work centers 𝑊𝐶ଵ and 𝑊𝐶ଶ with
𝑚ଵ and 𝑚ଶ identical machines in parallel at stages and respectively. There are n jobs that have
to be processed and the completion time of 𝐽௝ occurs when the third or finishing operation at any of
the 𝑚ଵ machines in 𝑊𝐶ଵ is completed. Let 𝐶𝑅𝐹௠భ,௠మ

 be a two-stage chain reentrant hybrid flow
shop where our objective is to find a schedule that minimizes the maximum completion time. Using
the three-tuple convention of defining scheduling problems proposed by Graham et al. (1979),
minimizing makespan in 𝐶𝑅𝐹௠భ,௠మ

 can be identified by 𝐹ሺ𝑚ଵ, 𝑚ଶሻ|𝑐ℎ𝑎𝑖𝑛 𝑟𝑒𝑒𝑛𝑡𝑟𝑎𝑛𝑡|𝐶௠௔௫ for

which the optimal objective function value is 𝐶஼ோி೘భ,೘మ

∗ .

224

The 𝐶𝑅𝐹௠భ,௠మ
 system is a general case of the two-stage chain reentrant flow shop studied by

Wang et al. (1997). In their paper, they study the makespan minimization of 𝐶𝑅𝐹ଵ,ଵ and derive a
Johnson based heuristic solution with complexity O(nlogn) and worst-case error bound of 3 2⁄ is
derived. In Drobouchevitch and Strusevich (1999), another heuristic solution is presented for the
same problem with complexity O(nlogn) and an improved worst-case error bound of 4 3⁄ .

For the two-stage chain reentrant hybrid flow shop 𝐶𝑅𝐹௠భ,௠మ
, we construct two auxiliary two-

stage flow shops. These two auxiliary two-stage flow shops are 𝐴𝐹1ଵ,ଵ and 𝐴𝐹2ଵ,ଵ with their

respective processing times ቀ
ଵ

௠భ
𝑎௝,

ଵ

௠మ
𝑏௝ቁ and ቀ

ଵ

௠మ
𝑏௝,

ଵ

௠భ
𝑐௝ቁ and their corresponding makespans

𝐶஺ிଵభ,భ
and 𝐶஺ிଶభ,భ

. The AFs just introduced help in the development of lower bounds and this is the
focus of the next section.

3. Lower Bounds for 𝑪𝑪𝑹𝑭𝒎𝟏,𝒎𝟐

∗

Lower bounds for 𝐶஼ோி೘భ,೘మ

∗ can be developed from the constructed auxiliary two-stage flow

shops described in the previous section. Since the proofs of these lower bounds were already
presented in Lorenzo (2017), these will not be shown here anymore.

Lemma 1. Let 𝐿𝐵ଵ ൌ 𝑚𝑎𝑥 ቀ𝐶஺ிଵభ,భ
, 𝐶஺ிଶభ,భ

,
ଵ

௠భ
∑ ൫𝑎௝ ൅ 𝑐௝൯௡

௝ୀଵ ቁ. Then 𝐿𝐵ଵ ൑ 𝐶஼ோி೘భ,೘మ

∗ .

Lemma 2. There is a permutation 1,2,…,n associated with an arbitrary schedule S such that for every

1 ൑ 𝑖 ൑ 𝑛, there is a 1 ൑ 𝑘௜ ൑ 𝑖 such that
ଵ

ଶ
∑ ቀ

௔ೕ

௠భ
൅

௕ೕ

௠మ
ቁ௜

௝ୀଵ ൑ ଵ

௠భ
∑ 𝑎௝

௞೔
௝ୀଵ ൅ ଵ

௠మ
∑ 𝑏௝

௜
௝ୀ௞೔

.

Lemma 3. There is a permutation 1,2,…,n associated with an arbitrary schedule S such that for

every 1 ൑ 𝑖 ൑ 𝑛, there is a 1 ൑ 𝑘௜ ൑ 𝑖, such that
ଵ

௠భା௠మ
∑ ൫𝑎௝ ൅ 𝑏௝൯௜

௝ୀଵ ൑
ଵ

௠భ
∑ 𝑎௝

௞೔
௝ୀଵ ൅

ଵ

௠మ
∑ 𝑏௝

௜
௝ୀ௞೔

.

Lemma 4. There is a permutation 1,2,…,n associated with an arbitrary schedule S such that for every

1 ൑ 𝑖 ൑ 𝑛, there is a 1 ൑ 𝑘௜ ൑ 𝑖 such that
ଵ

௠భାଵ
∑ ቀ𝑎௝ ൅

௕ೕ

௠మ
ቁ௜

௝ୀଵ ൑
ଵ

௠భ
∑ 𝑎௝

௞೔
௝ୀଵ ൅

ଵ

௠మ
∑ 𝑏௝

௜
௝ୀ௞೔

.

Lemma 5. There is a permutation 1,2,…,n associated with an arbitrary schedule S such that for every

1 ൑ 𝑖 ൑ 𝑛, there is a 1 ൑ 𝑘௜ ൑ 𝑖 such that
ଵ

௠మାଵ
∑ ቀ

௔ೕ

௠భ
൅ 𝑏௝ቁ௜

௝ୀଵ ൑ ଵ

௠భ
∑ 𝑎௝

௞೔
௝ୀଵ ൅ ଵ

௠మ
∑ 𝑏௝

௜
௝ୀ௞೔

.

Lemma 6. There is an optimal schedule 𝑆∗ for 𝐶𝑅𝐹௠భ,௠మ
 such that, for every 1 ൑ 𝑘ଵ ൑ 𝑘ଶ ൑ 𝑛,

ଵ

௠భ
∑ 𝑎௝

௞భ
௝ୀଵ ൅ ଵ

௠మ
∑ 𝑏௝

௞మ
௝ୀ௞భ

൅ ଵ

௠భ
∑ 𝑐௝

௡
௝ୀ௞మ

 ൑ 𝐶஼ோி೘భ,೘మ

∗ .

Lemma 7. Let 𝐶௃஺భ
 be the makespan derived by Johnson’s Algorithm (JA) for the auxiliary two-

stage flow shop problem with processing times ൫𝑎௝
ᇱ ൅ 𝑏௝

ᇱ, 𝑐௝
ᇱ൯. For any of the following set of values

of 𝑎௝
ᇱ, 𝑏௝

ᇱ and 𝑐௝
ᇱ,

𝑎௝
ᇱ ൌ ଵ

ଶ௠భ
𝑎௝, 𝑏௝

ᇱ ൌ ଵ

ଶ௠మ
𝑏௝, 𝑐௝

ᇱ ൌ ଵ

௠భ
𝑐௝ or (1)

𝑎௝
ᇱ ൌ

ଵ

௠భା௠మ
𝑎௝, 𝑏௝

ᇱ ൌ
ଵ

௠భା௠మ
𝑏௝, 𝑐௝

ᇱ ൌ
ଵ

௠భ
𝑐௝ or (2)

𝑎௝
ᇱ ൌ

ଵ

௠భାଵ
𝑎௝, 𝑏௝

ᇱ ൌ
ଵ

௠మሺ௠భାଵሻ
𝑏௝, 𝑐௝

ᇱ ൌ
ଵ

௠భ
𝑐௝ or (3)

𝑎௝
ᇱ ൌ

ଵ

 ௠భሺ௠మାଵሻ
𝑎௝, 𝑏௝

ᇱ ൌ
ଵ

௠మାଵ
𝑏௝, 𝑐௝

ᇱ ൌ
ଵ

௠భ
𝑐௝, (4)

 𝐶௃஺భ
 ൑ 𝐶஼ோி೘భ,೘మ

∗ .

Let 𝐶௃஺మ
 be the makespan derived by JA for the auxiliary two-stage flow shop problem with

processing times ൫𝑏௝
ᇱᇱ ൅ 𝑐௝

ᇱᇱ, 𝑎௝
ᇱᇱ൯, For any of the following set of values of 𝑎௝

ᇱᇱ, 𝑏௝
ᇱᇱ, and 𝑐௝

ᇱᇱ,

𝑎௝
ᇱᇱ ൌ ଵ

௠భ
𝑎௝, 𝑏௝

ᇱᇱ ൌ ଵ

ଶ௠మ
𝑏௝, 𝑐௝

ᇱᇱ ൌ ଵ

ଶ௠భ
𝑐௝ or (5)

𝑎௝
ᇱᇱ ൌ

ଵ

௠భ
𝑎௝, 𝑏௝

ᇱᇱ ൌ
ଵ

௠భା௠మ
𝑏௝, 𝑐௝

ᇱᇱ ൌ
ଵ

௠భା௠మ
𝑐௝ or (6)

𝑎௝
ᇱᇱ ൌ

ଵ

௠భ
𝑎௝, 𝑏′௝

ᇱ ൌ
ଵ

௠మሺ௠భାଵሻ
𝑏௝, 𝑐௝

ᇱᇱ ൌ
ଵ

௠భାଵ
𝑐௝ or (7)

𝑎௝
ᇱᇱ ൌ

ଵ

௠భ
𝑎௝, 𝑏′௝

ᇱ ൌ
ଵ

௠మାଵ
𝑏௝, 𝑐௝

ᇱᇱ ൌ
ଵ

௠భሺ௠మାଵሻ
𝑐௝, (8)

 𝐶௃஺మ
 ൑ 𝐶஼ோி೘భ,೘మ

∗ .

225

4. Heuristic Algorithms for 𝑭ሺ𝒎𝟏, 𝒎𝟐ሻ|𝒄𝒉𝒂𝒊𝒏 𝒓𝒆𝒆𝒏𝒕𝒓𝒂𝒏𝒕|𝑪𝒎𝒂𝒙

Since makespan minimization in 𝐶𝑅𝐹௠భ,௠మ
 is a general case of makespan minimization in 𝐶𝑅𝐹ଵ,ଵ,

then it is NP-hard as well. This motivates the development of heuristics that will enable in the
formulation of a solution to the problem. Towards this end, we also make the following observations.
The makespan of 𝐶𝑅𝐹௠భ,௠మ

 is attained in 𝑊𝐶ଵ, where the first and third operations are processed.
The following lemma establishes an optimal property for the scheduling of these operations in 𝑊𝐶ଵ.
Proofs of these lemmas and theorems have been presented in the paper of Lorenzo (2017) and will
therefore not be discussed.
Lemma 8. To minimize the makespan of 𝐶𝑅𝐹௠భ,௠మ

, it is sufficient to consider a schedule wherein
all the first operations of all jobs always precede the third operations of all jobs in any of the 𝑚ଵ
machines in 𝑊𝐶ଵ.

In the development of a chain reentrant flow shop heuristic, you first need a sequence to specify
the schedule of the jobs. Aside from the sequence you also need to assign each operation on the
available machines in the corresponding stage. To do the assignment of operations to machines, we
will utilize the first available machine (FAM) and last busy machine (LBM) rules. As the name
implies, the FAM rule assigns a job from a sequence based on the first machine that becomes
available. The LBM rule on the other hand is a mirror image of the FAM rule. Specifically, the
assignment of jobs to machines for example in the second operation using the LBM rule is as follows.

Given a constant 𝑇 ൐ 0 and a sequence 𝑆ᇱ,
Step 1. Set 𝑡௠ ൌ 𝑇 for 𝑚 ൌ 1, … , 𝑚ଶ.
Step 2. Let 𝐽௝ be the last unscheduled job in 𝑆ᇱ and 𝑚 ൌ 𝑚𝑎𝑥ଵஸ௠ஸ௠మ

ሼ𝑡௠ሽ. Schedule 𝐽௝ on machine
m such that it finishes at time 𝑡௠.
Step 3. Set 𝑡௠ ൌ 𝑡௠ െ 𝑏௝. 𝑆ᇱ ൌ 𝑆ᇱ െ ሼ𝑗ሽ. If 𝑆ᇱ ൌ ሼ∅ሽ, stop else go to step 2.

Three heuristics will now be presented for 𝐶𝑅𝐹௠భ,௠మ
.

Heuristic H1

Let 𝑆ଵ be the JA schedule for the AF with processing times ቀ
ଵ

௠భ
𝑎௝,

ଵ

௠మ
𝑏௝ቁ and 𝑆ଶ be the JA

schedule for the AF with processing times ቀ
ଵ

௠మ
𝑏௝,

ଵ

௠భ
𝑐௝ቁ.

Step 1. Using the sequence 𝑆ଵ,
a. Apply FAM on A on the stage 1 machines.
b. Apply LBM on B on the stage 2 machines and schedule these tasks as early as possible. Let 𝑇ᇱ

be the largest completion time until the second operation.
c. Apply FAM on C on the stage 1 machines from 𝑇ᇱ and schedule these tasks as early as possible.
d. Calculate the makespan, 𝐶ௌభ

.
Step 2. Emulate Step 1 by using the sequence 𝑆ଶ instead of 𝑆ଵ. Replace A with C in step 1a, replace
C with A in step 1c and calculate the makespan, 𝐶ௌమ

.

Step 3. The makespan of the heuristic is 𝐶ுଵ ൌ 𝑚𝑖𝑛൫𝐶ௌభ
, 𝐶ௌమ

൯.

Theorem 1. Let 𝐶∗ ൌ 𝐶஼ோி೘భ,೘మ

∗ , then
஼ಹభ

஼∗ ൑
ଷ

ଶ
ቀ2 െ

ଵ

௠
ቁ, where 𝑚 ൌ 𝑚𝑎𝑥ሺ𝑚ଵ, 𝑚ଶሻ.

Heuristic H2
In Heuristic H2, Step 1c of Heuristic H1 is replaced by an LBM procedure namely:

Step 1c: Apply LBM on C on the stage 1 machines from 𝑇ᇱ ൌ ∑ ൫𝑎௝ ൅ 𝑏௝ ൅ 𝑐௝൯௡
௝ୀଵ and schedule

these tasks as early as possible.

Theorem 2. Let 𝐶∗ ൌ 𝐶஼ோி೘భ,೘మ

∗ , then
஼ಹమ

஼∗ ൑
ଷ

ଶ
ቀ2 െ

ଵ

௠
ቁ, where 𝑚 ൌ 𝑚𝑎𝑥ሺ𝑚ଵ, 𝑚ଶሻ.

Heuristic H3
Heuristics H1 and H2 use two symmetric JA sequences derived from two of the three processing

times of the problem. With the lower bounds that have been derived in Lemma 7 based on the three
processing times of the problem, we can modify the heuristic's input to now use two symmetric JA
sequences based on all three processing times. In Lemma 7, the set of values (1), (2), (3) and (4) are
symmetric to (5), (6), (7) and (8) respectively.

Consider the two AF problems with processing times ൫𝑎௝
ᇱ ൅ 𝑏௝

ᇱ, 𝑐௝
ᇱ൯ and its symmetric pair

൫𝑏௝
ᇱᇱ ൅ 𝑐௝

ᇱᇱ, 𝑎௝
ᇱᇱ൯. Apply JA to these AF problems to obtain their corresponding schedule 𝜎௞ k=1,2.

Replace 𝑆ଵ and 𝑆ଶ with 𝜎ଵ and 𝜎ଶ in steps 1 and 2 respectively in H1.

226

We can use any of the following four pairs of three processing time JA schedules in H3. We
distinguish them by the following:

1. H3.1 when the pair of JA schedules is based on (1) and (5).
2. H3.2 when the pair of JA schedules is based on (2) and (6).
3. H3.3 when the pair of JA schedules is based on (3) and (7).
4. H3.4 when the pair of JA schedules is based on (4) and (8).

5. Computational Experiments for 𝑭ሺ𝒎𝟏, 𝒎𝟐ሻ|𝒄𝒉𝒂𝒊𝒏 𝒓𝒆𝒆𝒏𝒕𝒓𝒂𝒏𝒕|𝑪𝒎𝒂𝒙

A computational experiment using various parameter values was conducted to assess the
performance of the heuristic algorithms H1 and H3. H1 uses a two processing time JA schedule
input while H3 uses a three processing time JA schedule. For each combination of values below, we
generated 10 problem instances using: number of jobs, n, number of machines in stage i, 𝑚௜ and the
processing times, 𝑎௝, 𝑏௝ and 𝑐௝ which were randomly generated from U(l,u), which is a discrete
uniform distribution in [l,u]. The values considered for these parameters are shown in Table 1.

Table 1 shows the average deviation of the heuristic solution from the lower bound, 𝐿𝐵ଵ which
was established in Lemma 1. Since 𝐿𝐵ଵ dominates all the lower bounds established in Lemma 7, it
is used in the calculation of the average deviation. The average deviation AD is given by the formula,
𝐴𝐷 ൌ ሺ𝐶ሺሺ𝐻௜ሻ െ 𝐿𝐵ଵሻ ∗ 100%/𝐿𝐵ଵ where 𝐶ሺ𝐻௜ሻ is the makespan obtained in heuristic 𝐻௜.

The following can be observed from the computational experiment.
1. The average deviation increases as 𝑚ଵ increases. This can be explained by the behavior of the

lower bound 𝐿𝐵ଵ. Recall that 𝐿𝐵ଵ ൌ 𝑚𝑎𝑥 ቀ𝐶஺ிଵభ,భ
, 𝐶஺ிଶభ,భ

,
ଵ

௠భ
∑ ൫𝑎௝ ൅ 𝑐௝൯௡

௝ୀଵ ቁ where 𝐶஺ிଵభ,భ
 is the

makespan from a JA schedule with processing times ቀ
ଵ

௠భ
𝑎௝,

ଵ

௠మ
𝑏௝ቁ and 𝐶஺ிଶభ,భ

 is the makespan from

a JA schedule with processing times ቀ
ଵ

௠మ
𝑏௝,

ଵ

௠భ
𝑐௝ቁ. When 𝑚ଵ is small, the lower bound is dominated

by
ଵ

௠భ
∑ ൫𝑎௝ ൅ 𝑐௝൯௡

௝ୀଵ . As the value of 𝑚ଵ increases, the lower bound now gets dominated by either

𝐶஺ிଵభ,భ
 or 𝐶஺ிଶభ,భ

.

2. The H3 heuristic generated a better solution than H1 based on the observed lower average
deviation. In all the problem cases, each variant of H3 yielded a lower average deviation versus H1.
Among the variants of the H3 heuristic, H3.3 generated the smallest overall average deviation of
0.81%. However, H3.3 did not generate the smallest average deviation per problem scenario.

3. From Table 1, we can see that as the number of jobs increases, the average deviation decreases.
When n = 40, the average deviation is 1.82% and when n = 80, it decreases to 0.89%. This can be
explained by the higher utilization of the machines in the work centers when there are more jobs.

4. As the variability of processing time increases, the average deviation in H3 also increases.
When the processing times are uniformly distributed in the interval [1,20], the average deviation is
0.78% and when the processing times are uniformly distributed in the interval [10,50] it increases to
1.24%. This cannot be extended for H1 as seen in Table 1.

227

6. Model Extensions

Consider the two-stage flexible job shop problem 𝐹𝐽ሺ𝑚ଵ, 𝑚ଶሻ|𝑜 ൌ 3|𝐶௠௔௫ where 𝑜ଵ, … , 𝑜௡ ൌ 3
is the number of operations of job 𝐽௝. In this problem, there are two work centers 𝑊𝐶ଵ and 𝑊𝐶ଶ with
𝑚ଵ and 𝑚ଶ identical machines in parallel respectively. In the two-stage flexible job shop, each job
𝐽௝ can either start in 𝑊𝐶ଵ or 𝑊𝐶ଶ and must complete three operations wherein no two consecutive
operations are done on the same work center. There are thus two types of jobs, type 1 jobs which
start in 𝑊𝐶ଵ and type 2 jobs which start in 𝑊𝐶ଶ. There are 𝑛ଵ type 1 jobs and 𝑛ଶ type 2 jobs. Type
1 jobs are therefore processed in a 𝐶𝑅𝐹௠భ,௠మ

system with processing times ൫𝑎௝, 𝑏௝, 𝑐௝൯ for operations

one, two and three respectively. Type 2 jobs have processing times ൫𝑥௝, 𝑦௝, 𝑧௝൯ for operations one,
two and three respectively wherein the x and z tasks are performed in 𝑊𝐶ଶ and the y task is processed
in 𝑊𝐶ଵ. Let 𝑋 ൌ ሺ𝑥ଵ, … , 𝑥௡ሻ, 𝑌 ൌ ሺ𝑦ଵ, … , 𝑦௡ሻ, 𝑍 ൌ ሺ𝑧ଵ, … , 𝑧௡ሻ be the vectors of processing times for
each operation of the type 2 jobs. Let us refer to this two-stage flexible job shop as 𝐹𝐽௠భ,௠మ

 where
our objective is to minimize makespan which is attained at 𝐶ி௃೘భ,೘మ

∗ . Whereas the makespan of

𝐶𝑅𝐹௠భ,௠మ
 is always attained in 𝑊𝐶ଵ, the makespan of 𝐹𝐽௠భ,௠మ

 can either occur in 𝑊𝐶ଵ or 𝑊𝐶ଶ.
Lemma 8 established an optimal property of the arrangement of the first operations and third
operations of the type 1 jobs in 𝑊𝐶ଵ for 𝐶𝑅𝐹௠భ,௠మ

. In 𝐹𝐽௠భ,௠మ
, the work centers 𝑊𝐶ଵ ሺ𝑊𝐶ଶሻ aside

from processing the first operations and third operations of the type 1 (2) jobs also process the second
operations of the type 2 (1) jobs. The following lemma establishes an order between the three
operations of the jobs in an optimal solution.
Lemma 9. To minimize the makespan of 𝐹𝐽௠భ,௠మ

, it is sufficient to consider an optimal schedule
wherein all the A (X) tasks precede the B (Y) and the C (Z) tasks.
Proof: The proof is similar to Lemma 8.∎

This lemma however does not establish the optimality of the precedence of a Y (B) task before a
C (Z) task. Without loss of generality, consider 𝑊𝐶ଵ and 𝑊𝐶ଶ where each work center consists of
one machine. Consider also two identical type 1 jobs with processing times (0,0,1) and one type 2
job with processing times (3,2,0). The optimal solution is shown in Figure 1. The optimal solution
shows the C tasks precede the Y task. Making the Y task precede the C tasks will result to an increase
of the optimal makespan. Thus, we cannot establish the precedence of a second operation before a
third operation in an optimal solution.

Although the previous lemma does not establish the optimality of the precedence of a second

operation before a third operation, we can utilize this property in the development of a heuristic
algorithm for this problem. But first, we develop some lower bounds for 𝐶ி௃೘భ,೘మ

∗ .

7. Lower Bounds For 𝑪𝑭𝑱𝒎𝟏,𝒎𝟐

∗

Type 1 jobs are symmetric to type 2 jobs because their stage flow sequence for each operation
and the number of machines at each stage are interchanged. Since type 1 jobs are processed in a
𝐶𝑅𝐹௠భ,௠మ

 system, a symmetric system must likewise be defined for the type 2 jobs. Let 𝑅𝑅𝐹௠మ,௠భ

be the reverse two-stage chain reentrant hybrid flow shop which is applicable for the type 2 jobs.
Since the type 2 jobs are processed first in 𝑊𝐶ଶ, the 𝑅𝑅𝐹௠మ,௠భ

 system therefore has a stage flow

228

sequence 𝜙 ൌ ሺ2,1,2ሻ.
Consider 𝑅𝑅𝐹௠మ,௠భ

 where the processing time vector for a job 𝐽௝ is ൫𝑥௝, 𝑦௝, 𝑧௝൯. Two auxiliary
two-stage flow shops 𝐴𝐹3ଵ,ଵ and 𝐴𝐹4ଵ,ଵ can be constructed with their respective processing times

ቀ
ଵ

௠మ
𝑥௝,

ଵ

௠భ
𝑦௝ቁ and ቀ

ଵ

௠భ
𝑦௝,

ଵ

௠మ
𝑧௝ቁ. By applying JA to these auxiliary flow shops, their corresponding

makespans are 𝐶஺ிଷభ,భ
 and 𝐶஺ிସభ,భ

. By appropriately substituting 𝐶஺ிଷభ,భ
 and 𝐶஺ிସభ,భ

 in Lemma 1, we

have 𝑚𝑎𝑥൫𝐶஺ிଷభ,భ
, 𝐶஺ிସభ,భ

൯ ൑ 𝐶ோோி೘మ,೘భ.
∗ ሺ32ሻ

Lemma 10. Let 𝐿𝐵ଶ ൌ 𝑚𝑎𝑥 ቀ
ଵ

௠భ
∑ ൫𝑎௝ ൅ 𝑦௝ ൅ 𝑐௝൯௡

௝ୀଵ ,
ଵ

௠మ
∑ ൫𝑥௝ ൅ 𝑏௝ ൅ 𝑧௝൯௡

௝ୀଵ ቁ. Then 𝐿𝐵ଶ ൑

𝐶ி௃೘భ,೘మ

∗ .

Proof: If the makespan is attained in 𝑊𝐶ଵ, then
ଵ

௠భ
∑ ൫𝑎௝ ൅ 𝑦௝ ൅ 𝑐௝൯௡

௝ୀଵ ൑ 𝐶ி௃೘భ,೘మ

∗ and if the

makespan is attained in 𝑊𝐶ଶ, then
ଵ

௠మ
∑ ൫𝑥௝ ൅ 𝑏௝ ൅ 𝑧௝൯௡

௝ୀଵ ൑ 𝐶ி௃೘భ,೘మ

∗ .∎

Lemma 11. 𝐶ோோி೘మ,೘భ
∗ ൑ 𝐶ி௃೘భ,೘మ

∗ and 𝐶஼ோி೘భ,೘మ

∗ ൑ 𝐶ி௃೘భ,೘మ

∗ .

Proof: The proof is obvious.∎
Consider again 𝑅𝑅𝐹௠మ,௠భ

 and the auxiliary two-stage flow shop now with processing times

൫𝑥௝
ᇱ ൅ 𝑦௝

ᇱ, 𝑧௝
ᇱ൯. Let 𝐶௃஺య

be the makespan derived by JA for this AF. By appropriately substituting the

following set of values of 𝑥௝
ᇱ, 𝑦௝

ᇱ and 𝑧௝
ᇱ in Lemma 7, we have 𝐶௃஺య

 ൑ 𝐶ோோி೘మ,೘భ
∗ ൑ 𝐶ி௃೘భ,೘మ

∗ .

𝑥௝
ᇱ ൌ

ଵ

ଶ௠మ
𝑥௝, 𝑦௝

ᇱ ൌ
ଵ

ଶ௠భ
𝑦௝, 𝑧௝

ᇱ ൌ
ଵ

௠మ
𝑧௝ or (9)

𝑥௝
ᇱ ൌ ଵ

௠భା௠మ
𝑥௝, 𝑦௝

ᇱ ൌ ଵ

௠భା௠మ
𝑦௝, 𝑧௝

ᇱ ൌ ଵ

௠మ
𝑧௝ or (10)

𝑥௝
ᇱ ൌ

ଵ

௠మାଵ
𝑥௝, 𝑦௝

ᇱ ൌ
ଵ

௠భሺ௠మାଵሻ
𝑦௝, 𝑧௝

ᇱ ൌ
ଵ

௠మ
𝑧௝ or (11)

𝑥௝
ᇱ ൌ

ଵ

 ௠మሺ௠భାଵሻ
𝑥௝, 𝑦௝

ᇱ ൌ
ଵ

௠భାଵ
𝑦௝, 𝑧௝

ᇱ ൌ
ଵ

௠మ
𝑧௝, (12)

By symmetry, let 𝐶௃஺ర
 be the makespan derived by JA for the AF with processing times

൫𝑦௝
ᇱᇱ ൅ 𝑧௝

ᇱᇱ, 𝑥௝
ᇱᇱ൯.By appropriately substituting the following set of values of 𝑥௝

ᇱᇱ, 𝑦௝
ᇱᇱ and 𝑧௝

ᇱᇱ in Lemma

7, we have, 𝐶௃஺ర
 ൑ 𝐶ோோி೘మ,೘భ

∗ ൑ 𝐶ி௃೘భ,೘మ

∗ .

𝑥௝
ᇱᇱ ൌ

ଵ

௠మ
𝑥௝, 𝑦௝

ᇱᇱ ൌ
ଵ

ଶ௠భ
𝑦௝, 𝑧௝

ᇱᇱ ൌ
ଵ

ଶ௠మ
𝑧௝ or (13)

𝑥௝
ᇱᇱ ൌ ଵ

௠మ
𝑥௝, 𝑦௝

ᇱᇱ ൌ ଵ

௠భା௠మ
𝑦௝, 𝑧௝

ᇱᇱ ൌ ଵ

௠భା௠మ
𝑧௝ or (14)

𝑥௝
ᇱᇱ ൌ

ଵ

௠మ
𝑥௝, 𝑦′௝

ᇱ ൌ
ଵ

௠భሺ௠మାଵሻ
𝑦௝, 𝑧௝

ᇱᇱ ൌ
ଵ

௠మାଵ
𝑧௝ or (15)

𝑥௝
ᇱᇱ ൌ

ଵ

௠మ
𝑥௝, 𝑦′௝

ᇱ ൌ
ଵ

௠భାଵ
𝑦௝, 𝑧௝

ᇱᇱ ൌ
ଵ

௠మሺ௠భାଵሻ
𝑧௝, (16)

8. Heuristic Algorithms for 𝑭𝑱ሺ𝒎𝟏, 𝒎𝟐ሻ|𝒐 ൌ 𝟑|𝑪𝒎𝒂𝒙

Since 𝐶𝑅𝐹௠భ,௠మ
 and 𝑅𝑅𝐹௠మ,௠భ

 are special cases of the more general problem 𝐹𝐽௠భ,௠మ
, the

heuristics H1 and H3 can be modified accordingly to solve it. Since it was observed that as the
number of jobs increased in 𝐶𝑅𝐹௠భ,௠మ

, the performance of the heuristics H1 and H3 also improved.
With this insight, a modification of these heuristics can be constructed to solve 𝐹𝐽௠భ,௠మ

.
Lemma 9 does not establish the precedence of the second operation before the third operation in

an optimal solution. However, in order to establish some structure in the heuristic, we will make the
second operation always precede the third operation. The following heuristic illustrates the use of
this property together with the optimal property stated in Lemma 9. The modified versions of H1
and H3 are now presented as H1a and H3a respectively.

Heuristic H1a

Let 𝑆ଵ.ଵ be the JA schedule for the AF with processing times ቀ
ଵ

௠భ
𝑎௝,

ଵ

௠మ
𝑏௝ቁ and 𝑆ଵ.ଶ be the JA

schedule for the AF with processing times ቀ
ଵ

௠మ
𝑥௝,

ଵ

௠భ
𝑦௝ቁ. Let 𝑆ଶ.ଵ be the JA schedule for the AF with

processing times ቀ
ଵ

௠మ
𝑏௝,

ଵ

௠భ
𝑐௝ቁ and 𝑆ଶ.ଶ be the JA schedule for the AF with processing times

ቀ
ଵ

௠భ
𝑦௝,

ଵ

௠మ
𝑧௝ቁ.

229

Step 1. Using the sequence 𝑆ଵ.ଵ for A, B and C and 𝑆ଵ.ଶ for X, Y and Z:
a. Apply FAM on A and X in 𝑊𝐶ଵ and 𝑊𝐶ଶ respectively.
b. Apply LBM on B and Y in 𝑊𝐶ଶ and 𝑊𝐶ଵ respectively and schedule them as early as possible.
c. Apply FAM on C and Z in 𝑊𝐶ଵ and 𝑊𝐶ଶ respectively.
d. Calculate the makespan 𝐶𝑆௙.
Step 2. Emulate Step 1 by using the sequences 𝑆ଶ.ଵ and 𝑆ଶ.ଶ instead of 𝑆ଵ.ଵ and 𝑆ଵ.ଶ respectively.

Replace A with C and replace X with Z in step 1a. Replace C with A and Z with A in step 1c and
calculate the makespan, 𝐶𝑆௕.

Step 3. The makespan of the heuristic 𝐶ுଵ௔ ൌ min൫𝐶𝑆௙, 𝐶𝑆௕൯.
Heuristic H3a
Similar to H3, consider the two AF problems with processing times ൫𝑥௝

ᇱ ൅ 𝑦௝
ᇱ, 𝑧௝

ᇱ൯ and its

symmetric pair ൫𝑦௝
ᇱᇱ ൅ 𝑧௝

ᇱᇱ, 𝑥௝
ᇱᇱ൯. Apply JA to these AF problems to obtain their corresponding

schedule k, k = 1,2. Recall that in H3, 𝜎ଵ and 𝜎ଶ replaced 𝑆ଵ and 𝑆ଶ respectively in H1. Similarly,
replace 𝑆ଵ.ଵ and 𝑆ଵ.ଶ with 𝜎ଵ and 𝜎ଶrespectively and 𝑆ଶ.ଵ and 𝑆ଶ.ଶ with 𝜏ଵ and 𝜏ଶ respectively in H1a.

We can use any of the following four pairs of three processing time JA schedules in H3a. We
distinguish them by the following:

1. H3.1a when the two pairs of JA schedules are based on (1) and (5) for A, B and C and (9) and
(13) for X, Y and Z.

2. H3.2a when the two pairs of JA schedules are based on (2) and (6) for A, B and C and (10) and
(14) for X, Y and Z.

3. H3.3a when the two pairs of JA schedules are based on (3) and (7) for A, B and C and (11) and
(15) for X, Y and Z.

4. H3.4a when the two pairs of JA schedules are based on (4) and (8) for A, B and C and (12)
and (16) for X, Y and Z.

9. Computational Experiments for 𝑭𝑱ሺ𝒎𝟏, 𝒎𝟐ሻ|𝒐 ൌ 𝟑|𝑪𝒎𝒂𝒙

Similarly as in Section 5, a computational experiment using various parameter values was
conducted to assess the performance of the heuristic algorithms H1a and H3a. H1a uses a two
processing time JA schedule input while H3a uses a three processing time JA schedule. For each
combination of values below, we generated 10 problem instances using: number of jobs, 𝑛ଵ and 𝑛ଶ,
number of machines in stage i,𝑚௜ and the processing times, 𝑎௝, 𝑏௝, 𝑐௝, 𝑥௝, 𝑦௝ and 𝑧௝ which were
randomly generated from U(l,u), which is a discrete uniform distribution in [l,u]. The values of these
parameters are shown in Table 2.

Table 2 shows the average deviation of the heuristic solution from the lower bound, 𝐿𝐵ଶ which
was established in Lemma 10. From the computational experiments, we find that 𝐿𝐵ଶ dominates all
the lower bounds established for 𝐹𝐽௠భ,௠మ

 and is thus used in the calculation of the average deviation
AD.

Since the utilization of the machines in the two work centers increases when processing both
types 1 and 2 jobs, it is expected that the average deviation of the heuristic solutions will improve
over the values seen in Table 1. This is validated by the results shown in Table 2. The following
additional observations can be made from the computational experiment.

1. The H3a heuristic generates a better solution than H1a based on the observed lower average
deviation. The average deviation for H3a was 0.21% while it was 0.96% for H1a. In all the problem
cases, each variant of H3a yielded a lower average deviation versus H1a. Among the variants of the
H3a heuristic, H3.3a generated the smallest overall average deviation of 0.18%. However, H3.3a
did not generate the smallest average deviation per problem scenario.

2. As the number of jobs increases, the average deviation decreases. When n = 40, the average
deviation of H1a is 1.27% and it decreases to 0.65% when n = 80. For H3a, the average deviation is
0.30% when n = 40 and it decreases to 0.11% when n = 80. This can be explained by the higher
utilization of the machines in the work centers when there are more jobs.

3. As the variability of processing times increases, the average deviations in H3a also increase.
This is observed when the average deviation of 0.15% for the interval [1,20] increases to 0.27% for
the interval [10,50].

230

10. Conclusion

This paper evaluated the performance of the heuristic solutions developed by Lorenzo (2017)
for the 𝐹ሺ𝑚ଵ, 𝑚ଶሻ|𝑐ℎ𝑎𝑖𝑛 𝑟𝑒𝑒𝑛𝑡𝑟𝑎𝑛𝑡|𝐶௠௔௫ problem against the best established lower bound
through computational experiments. The results showed that the heuristic solutions gave very good
approximations to the optimal solution. The 𝐶𝑅𝐹௠భ,௠మ

model is then extended to include features of
the 𝑅𝑅𝐹௠మ,௠భ

 model which leads to the formulation of the 𝐹𝐽௠భ,௠మ
 model. The previous heuristic

solutions and lower bounds developed for the 𝐶𝑅𝐹௠భ,௠మ
 model are then modified for the

𝐹𝐽ሺ𝑚ଵ, 𝑚ଶሻ|𝑜 ൌ 3|𝐶௠௔௫ problem and the computational experiments again yield very good
approximations to the optimal solution. Future research shall be directed towards the improvement
of the heuristic solutions for 𝐶𝑅𝐹௠భ,௠మ

 which may yield better worst-case error bounds.

Acknowledgements

The author would like to thank the Paul Dumol PCA from the UP Diliman College of
Engineering and the UP Diliman ERDT/FRDG program for providing funding for this research
paper and attendance to the 17th International Conference on Project Management and Scheduling
respectively.

231

References

Aldakhilallah K A., Ramesh R., 2001, “Cyclic scheduling heuristics for a re-entrant job shop
manufacturing environment”, International Journal of Production Research, Vol.12, pp. 2635-
2657.
Bispo C., Tayur S., 2001, “Managing simple reentrant flow lines: theoretical foundation and
experimental results”, Vol. 33, IIE Transactions, pp. 609-623.
Buten R E., Shen V Y., 1973, “A scheduling model for computer systems with two classes of
processors”, Proc. 1973 Sagamore Computer Conference on Parallel Processing, pp. 130-138.
Drobouchevitch I G., Strusevich VA., 1999, “A heuristic algorithm for two-machine re-entrant
shop scheduling”, Annals of Operations Research, Vol. 86, pp. 417-439.
Graham R L., Lawler, E L. and Lenstra J K., 1979, “Optimization and approximation in
deterministic sequencing and scheduling: a survey”, Ann. Discrete Math, Vol. 5, pp. 287-326.
Guinet A G., Solomon M M.. 1996, “Scheduling hybrid flowshops to minimize maximum
tardiness or maximum completion time”, Vol. 34, pp. 1643-1654.
Gupta J N D., Tunc E A., 1994, “Scheduling a two-stage hybrid flowshop with separable setup
and removal times”, Vol. 77, pp. 415-428.
Hall N G., Lee T E., Posner M E., 2002, “The complexity of cyclic shop scheduling problems”,
Journal of Scheduling, Vol. 5, pp. 307-327.
Hoogeveen J A., Lenstra J K., Veltman B., 1996, “Preemptive scheduling in a two-stage
multiprocessor flow shop is NP-hard”, European Journal of Operational Research, Vol. 89, pp.
172-175.
Hwang H, Sun J U., 1997, “Production sequencing problem with reentrant work flows and
sequence dependent setup times” Vol. 33, pp. 773-776.
Johnson S M., 1954, “Optimal two and three-stage production schedules with setup times
included”, Naval Research Logistics Quarterly, Vol. 1, pp. 61-68.
Koulamas C., Kyparisis G J., 2000, “Asymptotically optimal linear time algorithms for two-
stage and three-stage flexible flow shops”, Naval Research Logistics, Vol. 47, pp. 259-268.
Kubiak W., Lou S X., Wang Y., 1996, “Mean flow time minimization in reentrant job shops
with a hub”, Operations Research, Vol. 44, pp. 764-776.
Lee C Y., Vairaktarakis G L., 1994, “Minimizing makespan in hybrid flowshops”, Operations
Research Letters, Vol. 16, pp. 149-158.
Lev V., Adiri I., 1984, “V-Shop scheduling”, European Journal of Operational Research, Vol.
18, pp. 51-56.
Lorenzo, L., 2017, “Minimizing Makespan in a Class of Two-Stage Chain Reentrant Hybrid
Flow Shops”, Proc. of the World Congress on Engineering (WCE) 2017, Vol. I, pp. 50-56.
Lu S, Kumar P. R., 1991, “Distributed scheduling based on due dates and buffer priorities”,
IEEE Trans. on Automatic Control, Vol. 12, pp. 1406-1416.
Wang M Y., Sethi S P. and van de Velde S L., 1997, “Minimizing makespan in a class of
reentrant shops”, Operations Research Vol. 45, pp. 702-712.

232

1

Minimizing Flow Time on a Single Machine with Job
Families and Setup Times.

Malapert Arnaud1 and Nattaf Margaux2

1 Université Côte d’Azur, CNRS, I3S, France
arnaud.malapert@univ-cotedazur.fr

2 Univ. Grenoble Alpes, CNRS, Grenoble INP??, G-SCOP, 38000 Grenoble, France
margaux.nattaf@grenoble-inp.fr

Keywords: single machine scheduling ; flow time ; job families ; setup times

Context and problem description In (Mason and Anderson 1991), the authors con-
sider a one machine scheduling problem with the goal of minimizing the average weighted
flow time. In this problem, jobs are grouped into families with the property that a setup
time is required only when processing switches from jobs of one family to jobs of another
family. Furthermore, setup times are additive: each setup for a new family of job consists of
the setdown from the previous family followed by a setup of the new family. These additive
setups are considered as sequence-independent. Note that a setup is required at time 0
before the very first job is processed. For this problem, they define several properties of an
optimal solution. These properties are then used in a branch-and-bound procedure.

If jobs belonging to the same family have equal processing times and unit weights,
the application of their results directly leads to a polynomial time algorithm. However,
if no setup time is required at time 0, i.e. before the very first job, their results cannot
be applied directly. The first goal of this paper is to prove this affirmation. The second
objective is to show how their results can be adapted in this special case. These results
are then used to define a polynomial time algorithm to compute the optimal flow time for
this special case. More generally, the objective is to use this algorithm for solving a parallel
machine scheduling problem with time constraints and machine qualifications described
in (Malapert and Nattaf 2019).

The problem considered in this paper is now formally described. Consider the problem
of scheduling a set N of n jobs on one machine. Each job belongs to a family f ∈ F and
the family associated with a job j is denoted by fj . Each family is then associated with
a number of jobs to process nf , a processing time pf , and a sequence independent setup
time sf . Thus, switching the production from family f to f ′ 6= f will require a setup time
sf ′ . Note that no setup time is needed between two jobs of the same family. The important
difference to the original problem is that the setup times are not additive anymore because
no setup time is required at time 0 before the very first job is processed. The goal is to
minimize the flow time which is the sum of the finishing time of all jobs.

Optimal solution properties The goal of this section is to describe several properties
and characteristics of an optimal solution. The properties will then be used to design our
polynomial-time algorithm.

To represent a solution, let S be a sequence representing an ordered set of n jobs.
Then, S can be seen as a series of blocks, where a block is a maximal consecutive sub-
sequence of jobs in S from the same family. Let Bi be the i-th block of the sequence
S = {B1, B2, . . . , Br}.
?? Institute of Engineering Univ. Grenoble Alpes

233

2

Successive blocks contain jobs from different families. Therefore, there will be a setup
time before each block (except the first one). The idea is to adapt SPT Smith’s rule (Smith
1956) for blocks instead of individual jobs. To this end, blocks are considered as individual
jobs with processing time Pi and weight Wi with: Pi = sfi + |Bi| · pfi and Wi = |Bi| where
fi denotes the family of jobs in Bi (which is the same for all jobs in Bi).

The following theorem states that there exists an optimal solution S containing exactly
|F| blocks and that each block Bi contains all jobs of the family fi.

Theorem 1. Let I be an instance of the problem. There exists an optimal solution S∗ =
{B1, . . . , B|F|} such that |Bi| = nfi where fi is the family of jobs in Bi.

Proof. Consider an optimal solution S = {B1, . . . , Bu, . . . , Bv, . . . , Br} with two blocks Bu

and Bv (u < v), containing jobs of the same family fu = fv = f . We show that moving
the first job of Bv at the end of block Bu can only improve the solution.

Let us define P and W as: P =
∑v−1

i=u+1 Pi + sf and W =
∑v−1

i=u+1 |Bi|. Note that
P (resp. W) is the total time of all jobs, including setups, (resp. the number of jobs)
performed between the last job of Bu and the first job of Bv. Let us call π this partial
sequence.

Let S′ be the sequence formed by moving the first job of Bv, say job jv, at the end of
block Bu , that is swapping the position of π and jv (see Fig. 1).

. . . Bu π jv Bv
. . .

(a) Sequence S

. . . Bu jv π Bv
. . .

(b) Sequence S′

Fig. 1. Construction of sequence S′ from sequence S.

First, the difference on the flow time is computed in the cases where |Bv| > 1 and where
|Bv| = 1.
If |Bv| > 1 (that is there are still jobs left in Bv after the removal of job jv), then the flow
times of jobs sequenced before Bu or after Bv do not change. All the jobs in π have their
flow times increased by pf and jv has its flow time decreased by P , giving a difference in
the total flow time of:

FTS′ − FTS =W · pf − P
If |Bv| = 1, then Bv is left with no jobs after moving job jv, and so the setup time associated
with Bv is deleted from the sequence. This reduces the flow times of all jobs sequenced
after π by the amount of sf , giving an additional reduction in the total net flow time:

FTS′ − FTS =W · pf − P −
r∑

i=v+1

|Bi| · sf

Hence, if one can prove that P/W ≥ pf , FTS − FTS′ < 0 and the flow time can only
be improved in S′.

Lemma 1. P
W ≥ pf

Proof. Consider the sequence S and suppose that pf > P/W . Let S′′ be the sequence
formed by moving the last job of Bu at the beginning of block Bv. If |Bu| > 1, then the
difference of flow time is: FTS′′ − FTS = P −W · pf . Since, by definition, pf > P/W , we
have that FTS′′ − FTS < 0 which contradict the fact that S is optimal.

234

3

If |Bu| = 1, FTS′′−FTS =

{
W · pf − P −

∑r
i=v+1 |Bi| · sf if u 6= 1

W · pf − P −
∑r

i=v+1 |Bi| · sf −
∑r

i=u+1 |Bi| · sfu+1 if u = 1
And then, S′′ is a better solution than S which is a contradiction. Hence, we have P/W ≥
pf . �

Therefore, by Lemma 1, FTS′ − FTS ≤ 0. Hence, swapping the position of job jv with π
leads to a solution S′ at least as good as S. Repeated applications of this operation yield
the result.

The mean processing time of a block Bi can be defined as MPT (Bi) = Pi/Wi. Theo-
rem 2 generalized the SPT rule for blocks.

Theorem 2. In an optimal sequence of the problem, the blocks 2 to |F| are ordered by
SMPT (Shortest Mean Processing Time). That is, if 1 < i < j then MPT (Bi) ≤
MPT (Bj).

This theorem is not exactly the same as the one in (Mason and Anderson 1991). Indeed,
their theorem allows the ordering of all blocks according the SMPT rule while Theorem 2
orders only blocks 2 to |F|. Figure 2 gives a counterexample showing that the SMPT rule
is not optimal when there is no setup at time 0.

f (nf × pf + sf)÷ nf =MPTf

1 2 11 2 12
2 3 12 9 15

(a) Problem instance with 2 families
and 5 jobs.

Family 1 precedes family 2 (SMPT).

FT = 19811 22 43 55 67

FT = 181

Family 2 precedes family 1 (No SMPT).

12 24 36 49 60

(b) Scheduling jobs of a family before those of the other
(Numbers are completion times of the jobs).

Fig. 2. The SMPT rule may lead to suboptimal solutions when no setup time is required at time 0.

Proof (Th. 2). Let S = {B1, B2, . . . , Bu, Bu+1, . . . , B|F|} be a sequence in which blocks Bu

and Bu+1, 1 < u ≤ u+1 ≤ |F|, are not in SMPT order; that is,MPT (Bu) > MPT (Bu+1).
Consider the change in total flow time if the processing order of Bu and Bu+1 is reversed.
Clearly the flow times of any jobs originally scheduled before run Bu will not be changed.
Also, the total time to complete blocks Bu and Bu+1 will not be changed, so the flow times
of any jobs scheduled after Bu+1 will not be altered. Hence, only the flow times of the jobs
in blocks Bu and Bu+1 needs to be considered. Each job in Bu+1 has its completion time
reduced by Pu and each job in Bu has its completion time increased by Pu+1. Thus, the
change in weighted flow time is given by:

∆Fw =Wu · Pu+1 −Wu+1 · Pu

But, since MPT (Bu) > MPT (Bu+1), Pu ·Wu+1 > Pu+1 ·Wu, and so ∆Fw < 0.

The following section explains how these results are used to define a polynomial time
algorithm for solving the problem.

235

4

Polynomial-time algorithm Theorem 1 states that there exists an optimal solution
S containing exactly |F| blocks and that each block Bi contains all jobs of family fi.
Theorem 2 states that the blocks B2 to B|F| are ordered by SMPT . Finally, one only
needs to determine which family is processed in the very first block.

Algorithm 1 take as input the jobs grouped in blocks and in SMPT orders. The algo-
rithm starts by computing the flow time of this schedule. Each block is then successively
moved to the first position (see Figure 3) and the new flow time is computed. The solution
returned by the algorithm is therefore the one achieving the best flow time.

B1, . . . , Bf−1 sf Bf sf+1Bf+1, . . . , B|F|

(a) SMPT Sequence

Bf s1 B1, . . . , Bf−1 sf+1Bf+1, . . . , B|F|

(b) Bf is moved in the first position.

Fig. 3. SMPT Sequence and Move Operation.

For sake of readability, let F (f) denote the internal flow time of the block f , i.e the
flow time of its jobs when starting at time 0:

∑nf

1 i× pf
Algorithm 1: SMPT Scheduling without setup at time 0.
Data: nf , pf , sf for f ∈ F in SMPT order (MPTf ≤MPTf+1) such that nf > 0.
Result: The optimal flow time FT .
// Compute the flow time FT1 of the SMPT sequence {B1, . . . , B|F|}
FT1 ← F (1); P ← n1 × p1;
for f ← 2 to |F| do

// shift jobs of Bf and add their internal flow times
FT1 ← FT1 + nf × (P + sf) + F (f)
P ← P + sf + (nf × pf) // Ending time of Bf

// Note that P is the makespan of the SMPT sequence
// Compute the flow time when the block Bf is in the first position
FT ← FT1; W ← n;
for f ← |F| to 2 do

W ←W − nf // Number of jobs in {B1, . . . , Bf−1}
P ← P − sf − (nf × pf) // Ending time of Bf−1 in the SMPT sequence
// Compute the variations of the flow time
∆f ← −(P + sf)× nf // For Bf

∆− ← (nf × pf + s1)×W // For {B1, . . . , Bf−1}
∆+ ← (s1 − sf)× (n− nf −W) // For {Bf+1, . . . , B|F|}
FTf ← FT1 +∆− +∆f +∆+ // For the entire sequence
if FTf < FT then FT ← FTf // Update the best flow time

The complexity for ordering the families in SMPT order is O(|F| log |F|). The com-
plexity of Algorithm 1 is O(|F|). So, the complexity for finding the optimal flow time is
O(|F| log |F|).

References

Malapert A., Nattaf M., 2019, “A New CP-Approach for a Parallel Machine Scheduling Problem
with Time Constraints on Machine Qualifications” CPAIOR 2019, pp. 426-442.

Mason, A. J. and Anderson, E. J., 1991, “Minimizing flow time on a single machine with job classes
and setup times” Naval Research Logistics (NRL), Vol. 38(3), pp. 333-350.

Smith, W. E., 1956, “Various optimizers for single-stage production” Naval Research Logistics
(NRL), Vol. 3(1-2), pp. 59-66.

236

1

Using exponential smoothing to integrate the impact of
corrective actions on project time forecasting

Annelies Martens1 and Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University, Belgium
annelies.martens@ugent.be, mario.vanhoucke@ugent.be

2 Technology and Operations Management Area, Vlerick Business School, Belgium
3 UCL School of Management, University College London, UK

Keywords: project management, project time forecasting, exponential smoothing.

1 Introduction

During project execution, uncertainty and risks often result in deviations from the plan.
Therefore, project time forecasting is an important aspect of project management. The aim
of this study is to improve the accuracy of project time forecasting by using exponential
smoothing to account for the impact of corrective actions during project execution. The
well-known project monitoring methodologies Earned Value Management (EVM, Flem-
ing and Koppelman (2010)) and Earned Duration Management (EDM, Khamooshi and
Golafshani (2014)) serve as a basis to forecast the final project duration. The forecasting
accuracy of the approach presented in this study is evaluated for eight real-life projects
that have been conducted in recent years and have been followed-up in real-time.

2 Project time forecasting

Project time forecasting is used to predict the final project duration during execution,
given the current project performance. In recent literature, this topic has been explored
in several studies. Barraza et. al. (2004) applied the concept of stochastical S-curves to
improve the forecasting accuracy. De Marco et. al. (2009) reviewed the practicality and
predictability of traditional forecasting methods by means of an empirical study. Monte
Carlo simulations were used by Elshaer (2013) to incorporate the activity sensitivity mea-
sures in the project time forecasting process. Further, Kim and Kim (2014) examined
the sensitivity of EVM forecasting methods to the characteristics of the planned value
and earned value S-curves. Wauters and Vanhoucke (2015) used historical data and con-
ducted a simulation experiment to study the stability and accuracy of EVM forecasts.
Furthermore, Wauters and Vanhoucke (2016) and Wauters and Vanhoucke (2017) applied
artificial intelligence methods for project time forecasting. Finally, exponential smoothing
for project time forecasting has been applied by Khamooshi and Abdi (2016) and Batselier
and Vanhoucke (2017) to give greater weights to the project performance of recent periods.

Exponential smoothing is a technique for time series forecasting that assigns exponen-
tially decreasing weights from recent to older observations. Both Khamooshi and Abdi
(2016) and Batselier and Vanhoucke (2017) use simple exponential smoothing, which can
be expressed as follows:

s0 = x0 (1)

st = αxt + (1− α)st−1 (2)

with xt the raw data, st the forecasted values and α the smoothing parameter. The smooth-
ing parameter α indicates the level of forecasting responsiveness to the most recent periods

237

2

and can vary from 0 to 1. The closer α is set to 1, the more weight is assigned to recent
observations.

Since determining an appropriate value for α is important to achieve accurate project
time forecasts, Batselier and Vanhoucke (2017) introduced two viewpoints to select a value
for α, namely a static viewpoint and a dynamic viewpoint. The static viewpoint entails that
a constant value for α is selected for the entire project execution. A dynamic viewpoint
implies that the value for α may vary for different periods during project execution. In
this viewpoint, the smoothing parameter may be adjusted based on human insight of
the project manager (qualitative dynamic viewpoint) or by using a quantitative approach
(quantitative dynamic viewpoint). While Khamooshi and Abdi (2016) applied the static
viewpoint, Batselier and Vanhoucke (2017) applied both the static and the quantitative
dynamic viewpoint.

In this study, a qualitative dynamic viewpoint to set the smoothing parameter will be
applied in order to account for the impact of corrective actions. More precisely, correc-
tive actions are interventions taken by the project manager to get the project back on
track. Since these interventions affect the project progress, the smoothing parameter α
will be adapted when a corrective action has been taken during the most recent period.
The methodology section describes the applied procedure to select adequate smoothing
parameter values and discusses the case study data used to evaluate this procedure.

3 Methodology

3.1 Selection of smoothing parameter values

Since both EVM and EDM are established methodologies for project time forecasting,
our approach will be applied to both EVM and EDM project time forecasting. In order to
account for the impact of corrective actions on the project outcome, two distinct smoothing
parameters will be used (α1 and α2). The α1 smoothing parameter will be used when no
corrective actions have been taken in the previous period, otherwise smoothing parameter
α2 is used to forecast the expected project duration with exponential smoothing.

In the empirical experiment, the forecasting accuracy for α1 and α2 will be evaluated
for values ranging from 0.1 until 1 (in steps of 0.1) in order to determine which values for
the smoothing parameters are appropriate. A total of 10 × 10 combinations of α1 and α2

will thus be analysed. The forecasting accuracy of the best performing combination of α1

and α2 will be compared to the traditional EVM and EDM forecasting methods and to
EVM/EDM project time forecasting with exponential smoothing.

3.2 Case study

Since the presented approach requires the timing of corrective actions throughout the
project execution, real-life projects had to be followed up in real time to document the
required information on the project progress and timing of corrective actions taken during
this progress. Therefore, eight recent projects have been followed up in real-time. The main
characteristics of these projects are summarised in Table 1. The columns #acts and #TPs
represent the number of activities and the number of tracking periods at which a forecast
has been made, respectively.

238

3

Table 1. Main characteristics of table

ID Project Baseline Baseline Industry BAC # acts #TPs
description start end (EUR)

P1 Apartment complex 30/07/15 14/08/17 Residential building 1.192.979 86 10
P2 Social Housing 20/01/17 28/05/18 Residential building 734.602 18 10
P3 Emergency Department 15/07/16 13/02/18 Civil construction 967.878 17 22
P4 Nuclear Healthcare 06/01/16 09/06/17 Civil construction 4.318.950 33 24
P5 Fuel Tank Filter 09/05/16 20/05/18 Production 1.456.000 15 10
P6 Production line change 31/10/16 01/09/18 Production 1.512.000 23 11
P7 Gluing machine 11/09/17 06/04/18 Production 107.500 8 10
P8 Labeling machine 04/09/17 09/02/18 Production 114.700 7 9

4 Results

In the empirical experiment, the forecasting accuracy is measured using the Mean Ab-
solute Percentage Error (MAPE):

MAPE =
1

T

T∑

t=1

|A− Ft

A
| (3)

with T the number of periods, A the project duration at completion and Ft the forecasted
project duration at period t. First, the presented approach is evaluated for EVM and EDM.
Further, the most adequate combination of values for α1 and α2 is determined. Finally, the
forecasting accuracy of the presented approach is compared to existing EVM and EDM
forecasting methods. This comparison is made over the entire project lifecycle and for
different stages of the project (early stage = < 30% completion, middle stage = between
30% and 70 % completion and late stage = > 70% completion).

The first part of the experiment showed that the presented approach applied to EDM
resulted in a higher forecasting accuracy than EVM, for each combination of values for α1

and α2. More precisely, the MAPE for EDM is on average 14.49% lower than the EVM
MAPE. This result is in line with previous studies on project time forecasting (Khamooshi
and Abdi 2016, de Andrade et al. 2019). Further, the most accurate combination of smooth-
ing parameters consists of a low value for α1 (0.1) and a high value for α2 (0.7). The low
value for α1, i.e., the smoothing parameter when no corrective actions have been taken in
the previous period, is in line with the results of Khamooshi and Abdi (2016) and Batselier
and Vanhoucke (2017). The higher smoothing parameter α2 allows to emphasise that the
project progress has been improved during the previous period due to a corrective action.
Finally, compared to the traditional methods and exponential smoothing with a single
smoothing parameter, the forecasting accuracy of the presented approach is slightly more
accurate. However, when the forecasting accuracy is evaluated over the different project
phases, the following observations are made. In the early phase, the accuracy of all forecast-
ing methods is relatively low (average MAPE of 20%). This can be explained by the limited
information that is available in this phase. In the middle and late phase, the accuracy of all
forecasting methods improves. In these phases, the presented approach clearly outperforms
the other forecasting methods. Compared to the standard EDM forecasting methods, the
MAPE of the presented approach is more than 50% lower in the middle phase and 10%
lower in the late phase. Compared to exponential smoothing with 1 smoothing parameter,
the MAPE of the presented approach is 30% lower in the middle phase and 10% lower in
the late phase.

To conclude, to obtain the most accurate project time forecasts during project ex-
ecution, standard EDM forecasting can be used in the early project phase, while it is

239

4

recommended to use the presented approach with α1 = 0.1 and α2 = 0.7 from the middle
phase until project completion.

Future research could focus on collecting on additional projects to improve the currently
available data on corrective actions during project execution. With this additional data,
the most adequate smoothing parameters for different types of corrective actions and for
different types of project can be determined.

References

Barraza, G.A., Back, W.E. and F. Mata, 2004, “Probabilistic forecasting of project performance
using stochastic S curves”, Journal of Construction Engineering and Management, Vol. 130,
pp. 25-32.

Batselier, J. and M. Vanhoucke, 2017, “Improving project forecast accuracy by integrating earned
value management with exponential smoothing and reference class forecasting”, International
Journal of Project Management, Vol. 35, pp. 28-43.

de Andrade, P., Martens A. and M. Vanhoucke, 2019, “Using real project schedule data to com-
pare earned schedule and earned duration management project time forecasting capabilities”,
Automation in Construction, Vol. 99, pp. 68-78.

De Marco, A., Briccarello, D. and C. Rafele, 2009, “Cost and schedule monitoring of industrial
building projects: Case study”, Journal of Construction Engineering and Management, Vol.
135, pp 853-862.

Elshaer, R., 2013, “Impact of sensitivity information on the prediction of project’s duration using
earned schedule method”, International Journal of Project Management, Vol. 31, pp.579-588.

Fleming, Q. and J. Koppelman, 2010, “Earned value project management”, Project Management
Institute, Newton Square, Pennsylvania, 3rd edition.

Khamooshi, H. and H. Golafshani, 2014, “EDM: Earned Duration Management, a new approach
to schedule performance management and measurement”, International Journal of Project
Management, Vol. 32, pp. 1019-1041.

Khamooshi, H. and A. Abdi, 2016, “Project duration forecasting using earned duration manage-
ment with exponential smoothing techniques”, Journal of Management in Engineering, Vol.
33.

Kim, B.-C. and H.-J. Kim, 2014, “Sensitivity of earned value schedule forecasting to S-curve
patterns”, Journal of Construction Engineering and Management, Vol. 140.

Wauters, M. and M. Vanhoucke, 2015, “Study of the stability of earned value management fore-
casting”, Journal of Construction Engineering and Management, Vol. 141, pp. 1-10.

Wauters, M. and M. Vanhoucke, 2016, “A comparative study of Artificial Intelligence methods for
project duration forecasting”, Expert systems with applications, Vol. 46, pp.249-261.

Wauters, M. and M. Vanhoucke, 2017, “A Nearest Neighbour extension to project duration fore-
casting with Artificial Intelligence”, European Journal of Operational Research, Vol. 259, pp.
1097-1111.

240

1

An Experimental Investigation on the Performance of
Priority Rules for the Dynamic Stochastic Resource

Constrained Multi-Project Scheduling Problem

Philipp Melchiors1, Rainer Kolisch1 and John J. Kanet2

1 Technical University of Munich, Germany
rainer.kolisch@tum.de

2 University of Dayton, USA
jkanet1@udayton.edu

Keywords:Multi-project, Project Arrival, Stochastic Activity Duration, Priority Policies.

1 Introduction

Project-based organizations such as R&D, are often matrix organizations with numer-
ous functional departments. Projects arrive in a stochastic manner and their activities
having typically stochastic durations are processed by the resources available in the func-
tional departments. As a consequence projects suffer from delay and missed due dates. A
common method for approaching these real-life complicated conditions is via implementing
a dynamic scheduling policy using a priority rules for specifying the order of processing
of activities by a resource. Despite the practical relevance of this dynamic stochastic re-
source constrained multi-project scheduling problem (DSRCMPSP) only limited research
has been undertaken so far to address it. A major part of the literature related to the
multi-project scheduling problem is dedicated to the static and deterministic case with the
set of projects given at the outset and all parameters such as activity durations known
in advance. Thus, the objective of our research is to provide a comprehensive compari-
son of well-known priority rules, which have been proposed for simpler settings for the
weighted tardiness objective and to adapt them as needed for application to the more
practically relevant DSRCMPSP. From the literature, we identify a number of priority
policies which have shown good performance in prior computational studies. Whereas all
these rules have shown promising results for the weighted tardiness objective they have
never been compared together in the same study nor in the dynamic stochastic resource
constrained setting. In order to introduce the problem formally, we follow the framework
of (Adler et. al. 1995) and depict an organization as a set R of resources. Resource r ∈ R
comprises cr identical units, each capable of processing one activity at a time. Projects ar-
rive dynamically according to a stochastic arrival process. We consider a stream of projects
j = 1, . . . , J where each project j arriving at time aj is of type pj ∈ P and is assigned
a due date Dj . The idea of project types reflects the fact that often projects have struc-
ture in common such as new development projects or reformulation projects. Project type
p ∈ P has a weight wp, an interarrival rate λp and is comprised of a set of activities Vp
and a set of precedence relations Ap of the type finish-to-start with minimum time lag of
0. Each precedence relation between activity i and i′ is written as a tuple (i, i′) ∈ Ap. In
order to be processed, activity i ∈ Vp seizes one unit of resource rip ∈ R for a stochastic
duration di with mean dip. Er(t) refers to the set of activities being processed by resource r
at time t where each activity i of project j is referred to by tuple (i, j). Define the random
variable Cij as the realized completion time for activity i of project j and Cj the realized
completion date of the project with Cj = maxi∈Vj

Cij . The objective is to minimize the
long term expected weighted project tardiness with J being the total number of projects

241

2

arriving at the system:

MinZ = limJ→∞E


 1

J

J∑

j=1

wj(0, Cj −Dj)
+


 (1)

subject to the following constraints

aj + dij ≤ Cij ∀j = 1, . . . , J ; i ∈ Vj (2)
Cij + di′,j ≤ Ci′,j ∀j = 1, . . . , J ; (i, i′) ∈ Apj (3)
|Er(t)| ≤ cr ∀r ∈ R, t ≥ 0 (4)

Cj ≥ Cij ∀j = 1, . . . , J, i ∈ Vj (5)

The objective function (1) minimizes the long term expected weighted project tardiness
Z where J denotes the number of arrived projects and (x)+ is max(0, x). Constraints
(2) forces each activity i of a project j not to start before the project has arrived at aj .
Constraints (3) specify the precedence constraints between the activities of each project
j. Constraints (4) depict the resource constraints: At any point in time t the number of
activities that are in process by resources r, |Er(t)|, must not be greater than the number
of available units, cr of that resources. Constraint (5) defines the project completion time
for project j.

2 Priority rules and experimental design

Rules addressing the weighted tardiness objective typically combine information about
the input parameters: due date, activity processing time, and weight. There two main
approaches according to which the pieces of information are combined. The first approach
is to consider some ratio involving due dates and processing times. A second approach
is to consider a time-sensitive binary switch in emphasis from due date to processing
time. Thus, we distinguish between ratio rules and binary switch rules. Probably the first
evidence of the "ratio" approach is found in the work of (Carroll 1965) and his so-called
"c over t" dispatching rule which was inspirational for a series of work by (Lawrence and
Morton 1993), and (Morton and Pentico 1993). For binary switch rules the seminal work
is provided by (Baker and Bertrand 1982) with their "modified due date" priority rule
and later further developed by (Baker and Kanet 1983), (Dumond and Mabert 1988),
(Anderson and Nyirenda 1990), and (Kanet and Li 2004).

The following ratio rules have been considered:

– BD with Myopic Activity Costing (BD-MC)
– BD with Global Activity Costing and Uniform Resource Pricing (BD-GC-U)
– BD with Global Activity Costing and Dynamic Resource Pricing (BD-GC-D)

The major rules falling into the category of binary switching rules include the various
forms of the "modified due date" approach first provided by Baker and Bertrand (Baker and
Bertrand 1982). We study several variations of the modified due date approach applying
it to the DSRCMPSP.

– Weighted Modified Due Date (WMDD)
– Weighted Modified Operation Due Date (WMOD)
– Weighted Critical Ratio and Shortest Processing Time (W(CR+SPT))
– Weighted Critical Ratio and Global Shortest Processing Time (W(CR+GSPT))
– Weighted Due Date Modified Shortest Activity from Shortest Project (WSASP-DD)

242

3

Finally, for benchmarking purposes we have added some simple but well known rules.
They have been selected as they are frequently used in related studies of multi-project and
job shop scheduling problems:

– First-Come, First-Serve (FCFS)
– Weighted Minimum Slack (WMINSLK)
– Weighted Shortest Processing Time (WSPT)
– Random (RAN)

For our study we created a number of problem instances with various parameters being
controlled. In brackets the values used are indicated.

– αp (20%,80%): Percentage of tardy projects of type p when using the RAN scheduling
policy. This implicitly controls due date tightness.

– R (1, 3, 5, 10, 15, 20): Number of resources.
– ρ (0.7, 0.9): Resource utilization.
– CVd ([0, 0.4], [0.8, 1]): Coefficient of variation of the expected durations belonging to

the activities processed by each resource.
– OS (0, 0.2, 0.4, 0.6, 0.8, 1.0): Order strength of the project networks.

In each problem instance we have two project types (p ∈ {1, 2}) having two different
networks respectively but with the same order strength and number of activities (20).
Finally, we obtained 1, 152 instances. For each problem instance we simulate each of the
11 priority policies in a simulation run which results in 12, 672 runs.

3 Summary of the results

In the following we provide the results of the simulation study. The performance of a rule
is measured as the normalized weighted tardiness Zn(π) given by Zn(π) = Z(π)/Z(πRAN).
Duncan tests were undertaken to detect groups of rules where rules in different groups
show a significant difference in performance while rules in the same group do not. Table
1 provides the performance of all priority rules as well as the group a rules belongs to,
according to the Duncan test. W(CR+SPT) is the best rule being significantly superior
to all other rules. This extends the findings of (Kutanoglu and Sabuncuoglu 1999) for the
dynamic job shop problem.

Rule Z
n
(π) Group

W(CR+SPT) 0.31 g
BD-GC-D 0.44 f
BC-MC 0.46 f
WMOD 0.51 f
WMINSLK 0.62 e
FCFS 0.63 e
WSASP-DD 0.81 d
BD-GC-U 0.95 c
WSPT 0.98 bc
W(CR+GSPT) 1.07 ab
WMDD 1.11 a

Table 1. Overall performance of the priority rules and group according to the Duncan
test

243

4

References

Adler A.S., V. Nguyen and E. Schwerer, 1995, “From Project to Process Management: An
Empirically-based Framework for Analyzing Product Development Time.", Management Sci-
ence, Vol. 41, pp. 458-484.

Anderson E. J., Nyirenda J.C., 1990, “Two new rules to minimize tardiness in a job shop.",
International Journal of Production Research, Vol. 28, pp. 2277-2292.

Baker K. R., Bertrand J. W. M., 1982, “A dynamic priority rule for scheduling against duedates.",
Journal of Operations Management, Vol. 1, pp. 37-42.

Baker K. R., Kanet J. J._B, 1983, “Job shop scheduling with modified due dates.", Journal of
Operations Management, Vol. 4, pp. 11-22.

Carroll D. C., 1965, “Heuristic Sequencing of Single and Multiple Component Jobs", PhD thesis,
Sloan School of Management, MIT.

Dumond J., Mabert V. A., 1988, “Evaluating Project Scheduling and Due date Assignment Pro-
cedures: An Experimental Analysis.", Journal Title, Vol. 34, pp. 101-118.

Kanet J. J., Li X., 2004, “A weighted modified due date rule for sequencing to minimize weighted
tardiness.", Journal of Scheduling, Vol. 7, pp. 261-276.

Kutanoglu E., Sabuncuoglu I., 1999, “An analysis of heuristics in a dynamic job shop with weighted
tardiness objectives.", International Journal of Production Research, Vol. 37, pp. 165-187.

Lawrence S. R., Morton T. E., 1993, “Resource-constrained multi-project scheduling with tardy
costs: Comparing myopic, bottleneck, and resource pricing heuristics.", European Journal of
Operational Research, Vol. 64, pp. 168-187.

Morton T. E.,Pentico D. W., 1993, “Heuristic Scheduling Systems", Wiley Series in Engineering
& Technology Management, John Wiley and Sons,Inc..

244

1

Conditional Value-at-Risk of the Completion Time
in Fuzzy Activity Networks

Carlo Meloni1, Marco Pranzo2 and Marcella Samà3

1 Politecnico di Bari, Italy
carlo.meloni@poliba.it

2 Università di Siena, Italy
marco.pranzo@unisi.it

3 Università Roma Tre, Italy
sama@ing.uniroma3.it

Abstract. The research deals with the evaluation of the Conditional Value-at-Risk
(CVaR) for the completion time in scheduling problems represented as temporal
activity networks where we assume that only a fuzzy representation for the activity
integer valued durations is known to the scheduler. More precisely, we address the
evaluation of the CVaR associated to a feasible schedule, and we extend the approach
recently proposed for the case of interval valued durations. We develop and analyze
a suitable computational method to obtain the fuzzy evaluation of the CVaR of
the completion time of a given schedule. The proposed method enables to use the
CVaR as quality criterion for wide classes of scheduling approaches considering risk-
aversion in different practical contexts when only a fuzzy representation of activity
durations is known.

Keywords: CVaR, Project Scheduling, Makespan, Fuzzy intervals, Activity Networks

1 Introduction

This paper addresses the evaluation of the Conditional Value-at-Risk (CVaR) of the
completion time (hereinafter indicated as makespan) when the scheduling problem is rep-
resented by a temporal network (Elmaghraby 1977). At this aim, we consider scheduling
models with a fixed and given set of precedence relations, but (independent) fuzzy process-
ing times. More specifically, this research work assumes that non-deterministic durations
are considered as fuzzy sets (Słowiński and Hapke 2000). The objective is to evaluate the
CVaR of the makespan which is in general an NP-complete problem (Hagstrom 1988). We
extend the approach recently proposed in (Meloni and Pranzo 2020), by developing and
analyzing a suitable computational method to obtain the fuzzy evaluation of the CVaR
of the makespan of a given schedule. The proposed algorithms are pseudo-polynomial in
the general case, but they have been tested on a wide set of realistic instances for the
experimental validation of their efficiency. The evaluation of the CVaR of the uncertain
makespan Cmax is an issue arising in several practical applications such as: project or task
bidding, risk evaluation and mitigation, due date setting or acceptance, order proposal and
acceptance, and robust scheduling (Elmaghraby 2005, Lawrence and Sewell 1997). The
goals of this research is to propose and test a method for computing the CVaR of the
makespan in the case of fuzzy durations, and to stimulate future research works devoted
to the development of algorithms and/or other useful performance measures.

245

2

2 The CVaR of the makespan

In many applications the scheduler may be risk-averse and may prefer solutions that
do not just perform well “on average", but that also perform satisfactorily “in most cases"
(Elmaghraby 2005). Nevertheless there is no universally accepted single risk measure. In
fact, each measure has its own advantages and disadvantages (Bertsimas et. al. 2004) and
the choice also reflects a subjective preference of the decision makers. Several scalar per-
formance indicators have been used to characterize the makespan Cmax of a stochastic
activity network. They include the CVaR at a probability level γ:
CVaRγ(Cmax) = E(Cmax|Cmax ≥ qγ(Cmax)). It is also called γ-Tail Expectation or Ex-
pected shortfall (at level γ) of the makespan, and is related to the Value-at-RiskVaRγ(Cmax)

(Bertsimas et. al. 2004, Rockafeller 2007): CVaRγ(Cmax) = 1
1−γ

∫ 1

γ
VaRβ(Cmax) dβ.

Where VaRγ(Cmax) = inf{t : prob(Cmax ≤ t) ≥ γ} is a measure commonly used in
finance which are gaining momentum also in scheduling (Lawrence and Sewell 1997, Sarin
et. al. 2014). VaRγ(Cmax) represents a threshold that is exceeded in (1 − γ)100% of all
cases, while the CV aRγ(Cmax) represents the expected value of all cases exceeding the
threshold VaRγ(Cmax). Considering the definitions, the following holds for all γ ∈ [0, 1]:
VaRγ(Cmax) ≤ CV aRγ(Cmax). If a decision maker is not only concerned with the fre-
quency of undesirable outcomes, but also with their severity, CVaRγ is recommended in-
stead of VaRγ (Bertsimas et. al. 2004, Sarin et. al. 2014). Higher values of γ are cho-
sen by decision makers who are more risk-averse, and γ = 0 represents the risk-neutral
choice. In fact, as γ tends to 1 (i.e., its upper extremum), the CVaRγ(Cmax) tends to the
worst case W ; while when γ tends to 0, CVaRγ(Cmax) tends to the expected value of the
makespan E(Cmax). The features offered by CVaR are also useful in planning and schedul-
ing problems based on stochastic activity networks models (Meloni and Pranzo 2020, Sarin
et. al. 2014).

3 Fuzzy temporal activity networks

A fuzzy temporal activity network (FTAN) is a temporal activity nertwork with fuzzy
valued durations. It can be defined by the pair (G,D), where G = (N,A) is the prece-
dence DAG, the set of nodes N is associated to events, the set A of arcs represents the
activities, and D = (D1, . . . ,Dm) is the vector of m fuzzy durations associated to the
m arcs in A representing the activities. The network is directed, connected, and acyclic
with single source and sink nodes. In a FTAN, all quantities that depend on the activ-
ity durations have a fuzzy characterization. Therefore, the starting and completion time
of any activity, and the makespan Cmax are all fuzzy quantities, i.e., fuzzy sets of the
real line IR. A fuzzy set M of the universe of values X is characterized by a member-
ship function µM which takes its value in interval [0, 1]. For each element x ∈ X, µM (x)
defines the degree to which x belongs to M = {x ∈ X;µM (x) ∈ [0, 1]}. An α-level cut
(or α-cut, for short) of M is the crisp set Mα = {x ∈ X|µM (x) ≥ α}. The support
of M is the crisp set supp(M) = {x ∈ X|µM (x) > 0}. The duration of all the activi-
ties is a fuzzy number which is defined as a bounded support fuzzy quantity whose α-
cuts are closed intervals. More specifically, we consider integer fuzzy numbers which are
characterized as follows: i) the support is a closed integer interval denoted as [M,M];
ii) M is normal, i.e., there exists x̂ ∈ [M,M]|µM (x̂) = 1; iii) for any x1, x2 ∈ [M, x̂],
µM (x1) ≤ µM (x2) holds; and iv) for any x1, x2 ∈ [x̂,M,], µM (x1) ≥ µM (x2) holds. Given
the fuzzy durations D = (D1, . . . ,Dm), the extension principle (Zadeh 1965) provides a
powerful technique to extend a real continuous function of the activity durations (such as
CVaRγ(Cmax)) to a fuzzy function F (D) of the fuzzy durations D. Moreover, the decom-

246

3

position by α-cuts can be used to compute that fuzzy function by means of a decomposition
method (Nguyen 1978): [F (D)]α = F ([D1]α, . . . , [Dm]α). According to this method, the
membership function µF (x) of F (D) can be reconstructed from its α-cuts Fα as follows:
µF (x) = max{α : x ∈ Fα}. We adopt a piecewise linear model for the membership func-
tion of the activity durations to simplify either information collection and computational
aspects. We use a representation based on the full breakpoints ordered sequence which is
very general and can be easily adapted to the cases of popular models such as triangular,
trapezoid, and six-points approximated functions (Fortemps 1997).

4 Evaluation of the CVaR of the makespan in FTANs

The case of crisp (i.e., ordinary) interval durations can be considered as a special case
of FTAN. For this special case, in (Meloni and Pranzo 2020) an algorithmic approach
has been proposed and experimentally validated. This approach is based on a counting
approach to evaluate the CVaRγ for the makespan. The counting approach, starting from
the pessimistic makespan (i.e., the worst possible makespan W), counts backwards how
many configurations lead to each possible makespan value. This process is implemented as
an iterative procedure which continues until sufficient information has been gathered to
compute the CVaR at a desired probability level γ.

On the basis of the computational results reported in (Meloni and Pranzo 2020), in this
work we adopt an algorithm configuration for the crisp case which is able to determine a
fast and extremely good estimation of CVaR of the makespan in O(Γ 2m2), where m is the
number of arcs of the network, and Γ is the amount of uncertainty of the activity network
represented by the size (in terms of number of integers) of the time interval [Cmax, Cmax],
where Cmax (Cmax) is the makespan when all the activities durations are at their minimum
(maximum) value. According to the α-cuts decomposition method, we follow an approx-
imated approach for the evaluation of CVaRγ of the makespan for more general FTANs.
To this aim, the basic algorithm for CVaRγ evaluation involving ordinary (i.e., non-fuzzy)
intervals can be extended to solve the fuzzy cases, by the decomposition of the membership
functions of the activity durations into a finite number of α-cuts. In the proposed method
the basic algorithm can be applied on the instances associated to the selected α-levels to
obtain the corresponding α-cuts of the desired fuzzy CVaRγ evaluation. This finite number
of α-cuts are used to obtain an approximated reconstruction of the membership function
µF (x) of CVaRγ . Applying the general reconstruction rule described in the previous section
(i.e., µF (x) = max{α : x ∈ Fα}) to a finite set of α-cuts produces a stepped function that
can be interpolated with a piece-wise linear function using the extreme points of the α-cuts
as breakpoints. More specifically, in the α-cuts decomposition, for each selected level α,
each fuzzy duration is cut at level α. This decomposition gives a set of activity networks
with interval valued durations, each of which can be solved as a crisp instance. Then, in
the successive fuzzy reconstruction procedure, an approximation of the fuzzy membership
function of CVaRγ is determined from their α-cuts (e.g., see (Fargier et. al. 2000)).

This method is simple to implement but it could be intractable if ran for too many
cuts and can be carried out only on a selection of suitably chosen level-cuts. Thus an issue
comes from the selection of the relevant α-cuts. Possible solutions include: i) to choose
α-cuts arbitrarily, e.g., according to a precision degree fixed by the user; ii) to use a given
number of α-cuts at fixed α levels. Since we consider fuzzy durations represented by piece-
wise linear functions, we adopt a more suitable choice of the levels α allowing for an accurate
computation of the fuzzy quantities of interest. In fact, the resulting fuzzy quantities will
be described by piece-wise linear functions too. Hence, the relevant α-cuts will be those
corresponding to the breakpoints (i.e., of the right or left parts) of these fuzzy intervals.

247

4

Assuming these levels known (otherwise they can be easily determined in a pre-processing
phase), an exact (approximate) interval-based procedure applied to the breakpoint values
would compute the actual (approximate) fuzzy CVaR values. In the proposed method, the
α-cuts decomposition has a preliminary step devoted to determine the α-levels to adopt on
the basis of either a specific input or default setting. We can then apply the algorithm to
solve the case of interval valued durations to know the corresponding α-cuts of the CVaRγ .
The fuzzy CVaRγ is then reconstructed from its α-cuts and returned as output. Considering
the number K of α-cuts used in the adopted decomposition, the overall complexity of the
algorithm is O(KΓ 2m2). In particular, associating the α-cuts to breakpoints (which is
adopted as default scheme in our method) yields to a complexity O(KBΓ

2m2), where KB

is the overall number of the different α values in breakpoints in the durations contained in
the FTAN.

A computational study is conducted to test the proposed approach on a benchmark
set of realistic project scheduling problems. The overall speed and quality of the proposed
method makes it an enabling tool for the use of CVaR as an analysis criterion in fuzzy
scheduling problems, while the trade-off between accuracy and computation effort indicates
a possible research direction regarding the strategies for choosing the decomposition scheme
in terms of both structure and size of the α sample set. Further research directions include
the application of the proposed methodology in real contexts, and the improvement in the
performance of the algorithm devoted to solve crisp-interval instances.

References

Bertsimas D., Lauprete G.J., Samarov A., 2004, “Shortfall as a risk measure: properties, optimiza-
tion and applications", Journal of Economic Dynamics & Control 28, (7), 1353-1382.

Elmaghraby S.E., 2005, “On the fallacy of averages in project risk management". European Journal
of Operational Research 165, (2), 307-313.

Fargier H., Galvagnon V., Dubois D., 2000, “Fuzzy PERT in series-parallel graphs". Ninth IEEE
International Conference on Fuzzy Systems. FUZZ-IEEE 2000 vol. 2, 717–722.

Fortemps P., 1997, “Jobshop Scheduling with Imprecise Durations: A Fuzzy Approach". IEEE
Transactions on Fuzzy Systems 5, (4), 557–569.

Hagstrom J.N., 1988, “Computational Complexity of PERT Problems". Networks 18, (2), 139–147.
Lawrence S.R., Sewell E.C., 1997, “Heuristic, optimal, static, and dynamic schedules when pro-

cessing times are uncertain", Journal of the Operations Management 15, 71–82.
Meloni C., Pranzo M., 2020, “Expected shortfall for the makespan in activity networks under

imperfect information". Flexible Services and Manufacturing Journal, 32, 668-692.
Nguyen H.T., 1978, “A note on the extension principle for fuzzy sets". Journal of Mathematical

Analysis and Applications vol. 64, 369–380.
Rockafeller R.T., 2007, “Coherent approaches to risk in optimization under uncertainty". IN-

FORMS Tutorials in Operations Research, 38â“-61.
Sarin S.C., Sherali H.D., Liao L., 2014, “Minimizing conditional-value-at-risk for stochastic schedul-

ing problems". Journal of Scheduling 17, 5–15.
Elmaghraby S.E., 1977, Activity Networks: Project Planning and Control by Network Models.

Wiley, New York.
Słowiński R., Hapke M., (Eds.), 2010, Scheduling under Fuzziness. Physica-Verlag, Heidelberg.
Zadeh L., 1965, “Fuzzy sets". Journal of Information and Control vol. 8, 338–353.

248

1

A column generation algorithm for the single machine

parallel batch scheduling problem

Onur Ozturk1

Telfer School of Management, University of Ottawa, 55 Laurier Avenue East, Ottawa, ON,
Canada K1N 6N5

oozturk@uottawa.ca

Keywords: Batch scheduling, dynamic programming, column generation, truncated solu-
tions

1 Introduction

Batch scheduling is the type of scheduling where jobs are grouped into batches and
processed together. In parallel batch scheduling (p-batch), jobs of the same batch are all
processed at the same time and in the same machine. In our problem, jobs have di�er-
ent release dates, rj , di�erent processing times, pj , and sizes, vj . Batches have a �xed
capacity B that sum of job sizes in a batch must not exceed. Once their composition is
determined, batches may also have di�erent processing times such that each batch must
be processed at least as long as the longest processing time of jobs included in that batch.
We aim to minimize the total �ow time, i.e.,

∑
Cj . Inspired from Graham's notation

((Graham, Lawler, Lenstra & Rinnooy Kan 1979)), our problem can be represented as
1/p−Batch, rj , pj , vj , B/

∑
Cj . Most solution methods for p-batch problems in the litera-

ture are metaheuristic methods ((Jia, Zhang, Long, Leung, Li & Li 2018)). In this study, we
develop a time indexed column generation model capable of �nding high quality solutions
within short computational times. Inspired from a 0-1 set partitioning model, each column
represents a set of jobs to be processed in the same batch at a given instant. At the end of
each iteration, we heuristically obtain primal solutions derived by iteratively rounding the
linear programming solution of the column generation model.

2 Set partitioning formulation for the Master Problem

The input of the problem is twofold: n jobs, indexed from 1 to n to be batched complying
with batch capacity and a total length T before which all batches must be processed at
an instant t such that 1 ≤ t ≤ T . Thus for each batch b with processing duration pb and
processing starting time t, time indices t′ ∈ {t, t+1, ..., t+ pb− 1} indicate the consecutive
discrete time instants during which batch b is processed. Let Setb ∈ {b1, b2, ..., bP } be the
set of all feasible job assignments and Cb the cost of processing batch b, i.e., the sum
of job completion times of batch b. Let ajb be equal to 1 if job j is assigned to batch b
(∀j ∈ {1, ..., n}), 0 otherwise. Also let atb be equal to 1 if batch b is being processed at
instant t (∀t ∈ {n + 1, ..., T}), 0 otherwise. Then we have the following conditions for a
feasible job assignment and batch processing:

∑n
j=1 ajbvj ≤ B, pb = max{ajb∗pk} (∀j ≤ n)

and
∑n+T

t=n+1 atb = pb. Let Cb be the cost of processing batch b, i.e., total �ow time of jobs
included in batch b. Cb is calculated as Cb =

∑n
j=1 ajb ∗ Cj where Cj = max{t ∗ atb}).

The decision to take is then if a batch b with a precise processing starting time should
be included in the solution. Hence, let the binary decision variable xb be equal to 1 if batch
(column) b is part of the solution and 0 otherwise (b = 1, ..., P). We can model the master
problem as follows:

249

2

Min
∑P

b=1 xb ∗ Cb (1)

s.t. (2)P∑

b=1

ajb ∗ xb = 1 j = 1, .., n (3)

P∑

b=1

atb ∗ xb ≤ 1 t = n+ 1, .., n+ T (4)

xb ∈ {0, 1} ∀b = 1, ..., P (5)

In the MP model above, the objective function is the minimization of total �ow time.
The �rst constraint set assigns each job to a single batch. The second constraint set indi-
cates that a time instant can be occupied by the processing of at most one batch. We relax
the integrity condition for variable xb and solve the linear relaxation of the MP model by
column generation. The master problem is initiated with a restricted set of columns where
initial batches are generated with a heuristic regardless of job release dates and processing
times. This heuristic generates intervals of di�erent lengths covering iteratively 1, 2,..., n
jobs. Then jobs whose release dates fall into the same interval are batched together with the
�rst �t decreasing heuristic. Finally, batches are scheduled as if there is a single machine
to have a su�ciently large value for T .

3 Column generation for solving the sub-problem

The sub-problem aims to search for the column with the most negative reduced cost
and not currently included in the master problem. The sub-problem is an optimization
problem whose constraints are de�ned by the three fundamental dimensions of the original
problem: batch sizes cannot be greater than B, a batch cannot be processed before the
greatest release date of jobs included in that batch, batch processing time is given by the
longest processing time of jobs in the batch. The dual values of the master problem and
the cost of processing the new generated batch, i.e., new column, help to determine the
objective function of the sub-problem. The objective function is expressed as

∑n
j=1 Cj −

(
∑n

j=1 yj ∗ πj −
∑n+T

j=n+1 yj ∗ πj) where Cj is the completion time of job j in the column,
yj is the binary variable indicating if job j makes part of the column (∀j ∈ {1, ..., n}) and
if instant t is occupied by the processing of the column (∀j ∈ {n + 1, ..., T}), �nally πj is
the dual variable corresponding to constraint j in the master model (∀j ∈ {1, ..., T}). We
can present the sub-problem in the form of the following minimization problem:

Min
∑n

j=1 Cj − (
∑n

j=1 yj ∗ πj −
∑n+T

j=n+1 yj ∗ πj) (6)

s.t. (7)
n∑

j=1

yj ∗ vj ≤ B (8)

rb ≥ yj ∗ rj j = 1, .., n (9)

pb ≥ yj ∗ pj j = 1, .., n (10)

rb ≤ t+Q(1− yj) j = n+ 1, .., n+ T , t = j − n− 1 (11)

rb + pb − 1 ≥ yj ∗ t j = n+ 1, .., n+ T , t = j − n− 1 (12)

n+T∑

j=n+1

yj = pb (13)

250

3

Cj ≥ rb + pb −Q(1− yj) j = 1, .., T (14)

yj ∈ {0, 1}, Cj ≥ 0, rb ≥ 0, pb ≥ 0 (15)

Constraint 8 is the capacity constraint. Constraint sets 9 and 10 determine the starting
time, rb and the processing duration, pb, of the new generate batch b. Constraint sets 11,
12 and 13 ensure the continuity of the processing for pb units of time. Finally, constraint
set 14 sets the �ow time value for jobs in the batch.

Solving the sub-problem with the above model is time consuming. Thus, we developed
a pseudo-polynomial dynamic programming (DP) algorithm which solves the sub-problem
faster than the above integer model for the case of integer job sizes. The idea of the DP
algorithm is to decide what should be the length of the batch (i.e., processing duration) and
at which instant the batch should be processed. Then, jobs inducing the smallest reduced
cost can be found complying with the batch capacity. Hence, the DP algorithm is controlled
by four parameters: processing beginning instant t, processing duration pb, jobs in batch
j, capacity use noted cap. Let f(.) be a four dimensional array to enumerate recursively
the minimum reduced cost. We de�ne f(t, pb, j, cap) as the reduced cost of including job j
in a batch whose used capacity is cap with processing duration pb and processing starting
instant t. Initially we set f(t, pb, j, cap) to in�nity ∀t ∈ {0, ..., T}, pb ∈ {p1, ..., pn}, cap ∈
{0, ..., B}, j ∈ {1, ..., n}. Then, for each di�erent processing time pb and potential batch

processing instant t, we set f(t, pb, 0, varg(pj=pb)) = Carg(pj=pb)−πarg(pj=pb)+
∑n+t+pb−1

j=n+t πj
∀rarg(pj=pb) ≤ t. The interpretation of this calculation is the following: batch processing
time pb is computed for all di�erent job processing times as long as release date of the job
determining pb is available before (or at) batch processing instant t. The forth dimension
of function f(.) is then set to the size of the job determining pb. Then, for all other jobs
which are not currently in the batch, we recursively compute the minimal reduced cost
value: f(t, pb, j, cap) = min∀j′<j,cap′≤capf(t, pb, j′, cap′) + t+ pb − πj

The smallest reduced cost is then equal to min∀t,pb,capf(t, pb, n, cap). There are n possi-
ble di�erent processing times for pb and the parameter t is bounded by T . For each di�erent
value of j, two for loops can be run for each of j′ and cap′ which are bounded by n and B,
respectively. Thus, the DP can be implemented in O(n3BT) time.

4 Obtaining primal solutions

We implement a rounding technique similar to the one applied by (Mourgaya & Vanderbeck
2007). Primal solutions are obtained by truncating the relaxed solutions of the MP model.
After solving the linear relaxation of the initial MP by column generation, we lookup
columns/batches whose decision variable value is equal one, i.e., xb = 1. If there is such a
column, then it is registered as a validated batch. If there is no such column, then we select
the column having the largest xb value. (If there are multiple columns with the same xb
value, tie is broken by selecting the column with the smallest Cb value where Cb is the sum
of job completion times in batch b.) Then, that column is selected as a validated batch.
After validating a batch, jobs of that batch are erased from the original problem instance
and a residual problem is obtained. Afterwards, the same solution methodology is applied
to the residual problem until all jobs are batched.

Once all batches are obtained, it is now time to schedule them on the single machine.
The problem is equivalent to a single machine problem in the presence of jobs with di�erent
processing times, release dates and weights since batches can contain di�erent numbers of
jobs. Inspired from Graham's notation, it can be noted as 1/rj/

∑
wjCj which is also

an NP-hard problem ((Belouadah, Posner & Potts 1992)). However, this problem can be
e�ciently solved with a time indexed modeling as suggested by (Unlu & Mason 2010).

251

4

5 Numerical experimentation

We tested instances containing 10 to 50 jobs in the presence arbitrary release dates
generated in the following three ways: rj ∈ U [0, 5], rj ∈ U [0, 25] and rj ∈ U [0, 5 ∗ n]. Job
processing times were generated with pj ∈ U [1, 10] distribution and batch capacity B was
set to 5, 25 and 50 while integer job sizes were generated with a U[1, B/2] distribution.
For each combination of number of jobs, release date type and batch capacity, 5 problem
instances were generated and tested. We used CPLEX 12.8 for all numerical tests.

Table 1. Average optimality gaps

Cap = 5 Cap = 25 Cap = 50

Nbr jobs: 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

rj ∈ U [0, 5] 4.5 3.5 5.4 1.6 3.8 0.9 5 10.2 13 22.5 5.6 8.3 10.4 1.9 4.5

rj ∈ U [0, 25] 0.6 4.5 6.3 5.3 9.1 3.5 7.1 14.2 13.4 21 2.7 4.7 6.9 11.1 19.5

rj ∈ U [0, 5 ∗ n] 0 0.9 0.4 0.2 0 2.1 0.1 0.1 0.2 0.2 0 0.5 0.5 0 0

We compared the solution quality of our method to the solutions given by a straightfor-
ward mixed integer linear programming model of the problem where the solution time limit
is set to 1800 seconds. Table 1 shows the average optimality gaps of our solution method.
We see that the hardest instances are those with a large batch capacity in the presence
of medium release dates, i.e., rj ∈ U [0, 25]. Other than that the results are promising and
most of the time the optimality gap is close to zero when rj ∈ U [0, 5n]. Moreover, the
solution times with the column generation model are very small. The largest instances,
containing 50 jobs with a batch capacity of 25, are solved in the worst case within 400
seconds of CPU time.

6 Conclusion

We presented in this study a column generation solution method for the parallel batch
scheduling of jobs with di�erent release dates, processing times and sizes. Numerical tests
show that the proposed solution method is able to give high quality solutions within short
computational times. For future work, we aim to accelerate the sub-problem to decrease
the overall solution time of the algorithm.

References

Belouadah, H., Posner, M. E. & Potts, C. N. (1992), `Scheduling with release dates on a single ma-
chine to minimize total weighted completion time', Discrete applied mathematics 36(3), 213�
231.

Graham, R., Lawler, E., Lenstra, J. & Rinnooy Kan, A. (1979), `Optimization and approximation
in deterministic sequencing and scheduling: a survey', Annals of Discrete Mathematics 5, 287�
326.

Jia, Z.-h., Zhang, H., Long, W.-t., Leung, J. Y., Li, K. & Li, W. (2018), `A meta-heuristic for
minimizing total weighted �ow time on parallel batch machines', Computers & Industrial

Engineering 125, 298�308.
Mourgaya, M. & Vanderbeck, F. (2007), `Column generation based heuristic for tactical planning

in multi-period vehicle routing', European Journal of Operational Research 183(3), 1028�1041.
Unlu, Y. & Mason, S. J. (2010), `Evaluation of mixed integer programming formulations for

non-preemptive parallel machine scheduling problems', Computers & Industrial Engineering

58(4), 785�800.

252

1

Mixed-Integer Programming Formulations

for the Anchor-Robust Project Scheduling Problem

Adèle Pass-Lanneau1,2, Pascale Bendotti1,2, Philippe Chrétienne2 and Pierre Fouilhoux2

1 EDF R&D, Palaiseau, France

{adele.pass-lanneau, pascale.bendotti}@edf.fr
2 Sorbonne Université, CNRS, LIP6, Paris, France

{philippe.chretienne, pierre.fouilhoux}@lip6.fr

Keywords: project scheduling, robust 2-stage optimization, anchored decisions, mixed-
integer programming.

1 Introduction

In project management, computing a schedule ahead of time is often necessary to ensure
the availability of equipment or sta�. When the schedule is about to start, the project data
may have changed, e.g., some jobs may be longer than expected in the �rst place. Hence
the schedule computed previously has to be modi�ed accordingly. However, in the context
of an industrial complex project, some jobs might be di�cult or costly to reschedule. The
decision maker thus needs a guarantee over the starting times of these jobs when choosing
an initial schedule.

The present work follows the general framework of (Bendotti et al. 2017), (Bendotti
et al. 2019) to integrate such a criterion. We consider a project scheduling problem where
jobs must be scheduled while respecting precedence constraints. Processing times of jobs
have a nominal value but they may deviate from it by an uncertain amount, which is
supposed to be lying in an uncertainty set. A baseline schedule is a schedule of the instance
with nominal processing times that satis�es a given global deadline M . Given a baseline
schedule x, subsets of anchored jobs are de�ned as subsets whose starting times in x can be
guaranteed whatever the realization of processing times in the uncertainty set. Each job is
associated with an anchoring weight, and the Anchor-Robust Project Scheduling Problem
(AnchRob) is to �nd a baseline schedule x and an anchored subset H, so that the total
weight of H is maximized.

The (AnchRob) problem was introduced in (Bendotti et al. 2019) as a tool for achieving
a trade-o� between robust-static project scheduling � where a schedule is computed for the
worst-case processing times � and the adaptive robust project scheduling problem studied
in (Minoux 2008) � where a makespan is computed, but no baseline schedule. (AnchRob)
produces a baseline schedule whose makespan is controlled by the deadline M , and the
adaptiveness of the solution is controlled through anchored jobs. (AnchRob) was studied
in the case of budgeted uncertainty, where at most Γ processing times may deviate from
their nominal values at a time. It was proven NP-hard and a MIP formulation was provided:
it has a polynomial number of variables and constraints, but it has a poor linear relaxation
value due to �bigM� values. Instances up to 200 jobs were solved in up to 4 minutes using
this formulation.

Contributions. The present work investigates improved MIP formulations for (An-
chRob). We introduce two MIP formulations, that are valid for a wider class of uncertainty
sets beyond budgeted uncertainty. Two types of decisions variables are considered: for each
job i ∈ J an anchoring variable hi ∈ {0, 1} to indicate whether job i is anchored, for
each job i ∈ J̄ a continuous variable zi ≥ 0 for the starting time of job i in the baseline
schedule. The �rst formulation Fzh uses both types of variables, and it has polynomial size.

253

2

The second formulation Fh uses only anchoring variables. It has an exponential number
of constraints for which separation algorithms are proposed. We also prove that Fzh can
be projected explicitely on anchoring variables, thus yielding an alternative formulation
in anchoring variables only. We establish that formulations Fzh and Fh are not compara-
ble, and that they both give a better bound than the MIP formulation from (Bendotti et
al. 2019). From this analysis, we design a customized MIP formulation that takes advan-
tage of Fh and Fzh. In particular polyhedral properties are used to improve the separation
of inequalities from Fh and devise an e�cient Branch-and-Cut algorithm.

For the sake of brevity all proofs are omitted.

2 The Anchor-Robust Project Scheduling Problem

Let us de�ne more formally the Anchor-Robust Project Scheduling Problem. A set of
jobs J must be scheduled while respecting precedence constraints, represented by a directed
acyclic graph G. The vertex-set of G is J̄ = J ∪ {s, t} where s (resp. t) is a source (resp.
sink) representing the beginning (resp. the end) of the schedule. Each job i ∈ J has a
processing time pi ∈ R+, and ps = 0 by convention. Given a vector p ∈ RJ , let G(p) be
the weighted digraph obtained from G by weighting every arc (i, j) with pi. A schedule of
G(p) is a vector of starting times x ∈ RJ̄+ such that xj−xi ≥ pi for every arc (i, j) of G(p).
We consider a 2-stage framework where the processing times of jobs are uncertain. In �rst
stage, the decision maker has an instance G(p) to solve, called baseline instance, where p is
the nominal value of processing times. The project is given a deadline M ≥ 0. A baseline
schedule is a schedule of G(p) with makespan at mostM . In second stage, the instance will
be some G(p+ δ), where the vector δ ∈ RJ+ is a disruption. In general a baseline schedule
will not remain feasible in second stage. As done classically in robust optimization, we
consider that the decision maker wants to hedge against a collection (G(p + δ))δ∈∆ of
second-stage instances, where ∆ ⊆ RJ+ is the uncertainty set. Given a baseline schedule x0,
a subset H of jobs is anchored with respect to x0 if for every δ ∈ ∆, the baseline schedule
can be repaired into a feasible solution without changing starting times of jobs in H, i.e.,
for every δ ∈ ∆ there exists a schedule xδ of G(p + δ) such that x0

i = xδi for every i ∈ H.
Finally, each job i ∈ J is associated with an anchoring weight ai ∈ R+. (AnchRob) is then
to �nd a baseline schedule x0 and subset of jobs H anchored w.r.t. x0, so that the total
weight of anchored jobs

∑
i∈H ai is maximized.

Let us now recall a characterization of anchored jobs from (Bendotti et al. 2019) that
will be used in the sequel. Given i, j ∈ J̄ and δ ∈ RJ+ let Lδ(i, j) denote the length of the
longest i−j path in G(p + δ) (and −∞ if there is no such path). In particular, L0(i, j) is
the length of the longest i−j path in G(p). Let L∆(i, j) denote maxδ∈∆ Lδ(i, j).

Proposition 1. (Bendotti et al. 2019) Let x be a schedule of G(p). A set H is anchored
w.r.t. x i� xj − xi ≥ L∆(i, j) for every i ∈ H ∪ {s}, j ∈ H.

In this work, the set ∆ is supposed to be a subset of RJ+ such that: for every δ ∈ ∆,
for every J ′ ⊆ J , the vector δ′ de�ned by δ′i = δi if i ∈ J ′, and δi = 0 otherwise is still an
element of ∆. We consider that the values L∆(i, j) for every i, j ∈ J̄ are known and given
as input. No other information on the uncertainty set ∆ is required. The values L∆(i, j)
will appear explicitely in the constraints of the proposed mixed-integer formulations. The
computation of the L∆(i, j) values can be done in polynomial time for some uncertainty
sets, such as: budgeted uncertainty sets (Bertsimas and Sim 2004), uncertainty sets de-
�ned by a polynomial number of scenarii, and their convex hulls. It can also be done with
a pseudo-polynomial algorithm for uncertainty sets with several uncertainty budget con-
straints introduced in (Minoux 2007). When the computation of the L∆(i, j) values can

254

3

be done in a preprocessing step, then the proposed algorithmic framework can be applied
using the L∆(i, j) values.

3 Two MIP formulations

3.1 A compact MIP formulation with anchoring and schedule variables

Theorem 1. A valid formulation for (AnchRob) is

(Fzh) max
∑
i∈J aihi

s.t. zj − zi ≥ L0(i, j) + (L∆(i, j)− L0(i, j))hj ∀i ∈ J̄ , j ∈ J̄ \ {t}
zt − zi ≥ L0(i, t) ∀i ∈ J
zt ≤M
zj ≥ 0 ∀j ∈ J̄
hj ∈ {0, 1} ∀j ∈ J

Note �rst that for a feasible pair (z, h) of Fzh, the set H associated with h is anchored
w.r.t. z, thanks to Proposition 1. The proof of the validity of formulation Fzh relies on a
dominance argument: we prove that for any set H anchored w.r.t. some baseline schedule,
there exists a baseline schedule z for which H is anchored and (z, h) is feasible for Fzh.
Note also that this formulation has a polynomial number of variables and constraints.

3.2 An exponential formulation with anchoring variables only

Let G be a weighted graph de�ned as the transitive closure of G, where every arc (i, j)
has arc-length L∆(i, j) if j 6= t, and L0(i, t) otherwise. Let P (resp. P>M) denote the set
of s−t paths of G (resp. the set of s−t paths of G that have length > M). Given P ∈P,
let V (P) denote the jobs of J along path P . We show the following result.

Theorem 2. A valid formulation for (AnchRob) is

(Fh) max
∑
i∈J aihi

s.t.
∑
i∈V (P) hi ≤ |V (P)|−1 ∀P ∈P>M (PathCov)

hj ∈ {0, 1} ∀j ∈ J

The family of path covering inequalities (PathCov) imposes that there is at least one non-
anchored job along any path of P>M . Note that it is necessary: if all jobs along the path
were anchored, then with Proposition 1 every associated baseline schedule would have
makespan > M . Formulation Fh has an exponential number of constraints, thus we study
the separation of (PathCov) inequalities. The separation problem is a constrained longest
path problem in G, that is, the problem of �nding a path with length > M , and sum of
1− hi over vertices at least 1. Formally, we show that

Theorem 3. Separation of (PathCov) is weakly NP-hard and admits a pseudo-polynomial
algorithm based on dynamic programming. Separation of (PathCov) is polynomial-time
solvable in an integer point h ∈ {0, 1}J .

We mention that, given h ∈ {0, 1}J feasible for Fh, a baseline schedule for which the
corresponding set H is anchored can be found in polynomial time. Indeed it is su�cient to
compute an earliest schedule that satis�es the precedence constraints from G(p) and the
precedence constraints from Proposition 1. In particular, this justi�es that we obtained a
valid formulation for (AnchRob) with only h variables.

255

4

4 Algorithmic framework

4.1 Comparison of formulations for budgeted uncertainty

Consider budgeted uncertainty. Then three formulations for (AnchRob) are available:
formulations Fzh and Fh, and the formulation from (Bendotti et al. 2019) denoted by Fxh.
It can be shown that the optimal values of the linear relaxation of Fzh and Fh are always
better than the optimal value of the linear relaxation of Fxh. We thus focused on Fzh and
Fh; it appears that the two formulations cannot be compared w.r.t. their linear relaxations.

Theorem 4. Fh and Fzh are not comparable, i.e., there exists instances where the optimal
value of the linear relaxation of Fh is better than the optimal value of the linear relaxation
of Fzh, and vice versa.

We also provide an explicit formulation of the projection of formulations Fzh and Fxh on
the space of anchoring variables. E.g., for Fzh formulation:

Proposition 2. Let h ∈ {0, 1}J . There exists z such that (z, h) is feasible for Fzh if and
only if h satis�es the inequalities

∑
(i,j)∈P L0(i, j) + (L∆(i, j)− L0(i, j))hj ≤M ∀P ∈P.

4.2 Dedicated Branch-And-Cut algorithm

Theorem 4 suggests the use of a combination of Fh and Fzh to solve e�ciently larger
instances of (AnchRob). We formulate the problem with z and h variables. All constraints
from Fzh are enforced in a static way. (PathCov) inequalities from Fh are separated in a
heuristic way to strengthen the formulation. Namely, we only separate (PathCov) inequal-
ities in integer points, thus in polynomial time.

Additional features are considered to improve the e�ciency of separated (PathCov)
inequalities, relying on polyhedral considerations. In particular, it can be shown that if
inequality associated with path P ∈ P>M is facet-de�ning, then it must satisfy: for any
i ∈ P , the path P ′ := P \ {i} is not an element of P>M . We enforce this property during
the separation process: an inequality (PathCov) is separated, then vertices are removed
from the path until the property is satis�ed. We will give numerical results to illustrate
the relevance of the proposed Branch-And-Cut algorithm.

References

P. Bendotti, Ph. Chrétienne, P. Fouilhoux, A. Quillot, 2017, �Anchored reactive and proactive

solutions to the CPM-scheduling problem", European Journal of Operational Research, Vol.

261, pp. 67�74.

P. Bendotti, Ph. Chrétienne, P. Fouilhoux, A. Pass-Lanneau, 2019, �The Anchor-Robust Project

Scheduling Problem", Preprint, https://hal.archives-ouvertes.fr/hal-02144834.

D. Bertsimas and M. Sim, 2004, �The Price of Robustness", Operations Research, Vol. 52, pp.

35�53.

M. Minoux, 2007, �Models and Algorithms for Robust PERT Scheduling with Time-Dependent

Task Durations". Vietnam Journal of Mathematics, Vol. 35, pp 387�398.

M. Minoux, 2008, �Robust linear programming with right-handside uncertainty, duality and ap-

plication", Encyclopedia of Optimization, Springer, pp. 3317�3327.

256

1

Search space reduction in MILP approaches for the
robust balancing of transfer lines

Aleksandr Pirogov1,2, André Rossi3, Evgeny Gurevsky4, and Alexandre Dolgui1

1 LS2N, IMT Atlantique, Nantes, France
2 CENTRAL, Lancaster University, UK

3 LAMSADE, Université Paris-Dauphine (PSL), France
4 LS2N, Université de Nantes, France

Keywords: transfer line, balancing, robustness, MILP, model enhancements, assignment
intervals.

1 Problem description

This abstract deals with the transfer line balancing problem which consists in dis-
tributing n non-preemptive production tasks among m linearly ordered machines linked
by a conveyor belt such that the load of any machine does not exceed the fixed cycle
time T , and precedence constraints are satisfied. At each machine, the corresponding tasks
are allocated to blocks, where the tasks are executed simultaneously. Thus, the working
time of the block is equal to the longest processing time among the tasks allocated to
it. Up to rmax tasks can be attributed to the same block and at most bmax blocks may
be arranged at one machine. The blocks of the same machine are activated sequentially.
As a consequence, the load time of the machine is equal to the sum of the working time
of its blocks. We denote by U = {1, . . . ,mbmax} the set of all possible blocks, and by
U(p) = {(p−1)bmax+1, . . . , pbmax} the set of blocks for any machine p ∈W = {1, . . . ,m}.

The nominal processing time of task j is tj for any j ∈ V = {1, . . . , n}. A given
nonempty subset Ṽ ⊆ V of tasks is the set of uncertain tasks, i.e., the set of tasks whose
processing time may vary and can be larger than tj . The tasks in V \Ṽ are called certain
tasks and its processing time remains deterministic.

The set of tasks allocated to blocks for a given number of machines and satisfying
the mentioned above constraints forms a so-called feasible line configuration. For each
such configuration, we study a specific robustness measure, named stability radius. It is
calculated as the maximum increase of the nominal processing time that may affect any
uncertain task without compromising the feasibility of the corresponding line configuration
by breaking the cycle time constraint. The problem, denoted by P1 and studied in this
abstract, seeks naturally a line configuration, which possesses the maximal value of its
stability radius.

The first mixed-integer linear programming (MILP) formulation of P1 is due to Pirogov
(2019). This MILP is given in the next section. In order to solve it more efficiently, we
propose some improvements in that formulation, as well as tighter assignment intervals for
the tasks. Indeed, because of the precedence constraints, each task j has an assignment
interval [lj , uj] of indices of blocks which are available to perform this task.

2 Initial MILP formulation

P1 has originally been formulated as a MILP on the following decision variables: ρ1 is
the stability radius value to maximize; xj,k is a binary variable that is set to one if and
only if the task j is allocated to the block k; yk is equal to 1 if the block k is not empty and
0, otherwise; τk ≥ 0 determines the working time of the block k; ∆(p)

min ≥ 0 represents the

257

2

minimal value of the save time among all the blocks arranged at the machine p. The save
time is defined only for the blocks having uncertain tasks. It is calculated as the difference
between the nominal processing time of the longest uncertain task allocated to it and its
working time; ap is a non-negative variable, which is positive if the machine p processes at
least one uncertain task; zk is set to 1 if an uncertain task is allocated to the block k and
0, otherwise. The central idea of the MILP formulation for P1 consists in maximizing ρ1,
expressed as the minimum idle time over all the machines that process uncertain tasks.

Maximise ρ1∑

k∈U
xj,k = 1 ∀j ∈ V (1)

∑

j∈V
xj,k ≤ rmax ∀k ∈ U (2)

xj,k ≤ yk ∀k ∈ U, ∀j ∈ V (3)

yk ≤
∑

j∈V
xj,k ∀k ∈ U (4)

yk+1 ≤ yk ∀p ∈W, ∀k ∈ U(p) \ {pbmax} (5)
tj · xj,k ≤ τk ∀k ∈ U, ∀j ∈ V (6)

∆
(p)
min ≤ T · (2− yk − zk) + τk − tj · xj,k ∀p ∈W, ∀k ∈ U(p), ∀j ∈ Ṽ (7)

xj,k ≤ zk ∀k ∈ U, ∀j ∈ Ṽ (8)
∑

k∈U(p)

τk ≤ T ∀p ∈W (9)

|U |−1∑

q=k

xi,q ≤
|U |∑

q=k+1

xj,q ∀(i, j) ∈ A, ∀k ∈ U \ {mbmax} (10)

xj,k ≤ ap ∀p ∈W, ∀k ∈ U(p), ∀j ∈ Ṽ (11)

ρ1 ≤ T · (2− ap)−
∑

k∈U(p)

τk +∆
(p)
min ∀p ∈W (12)

ρ1 ≥ 0

∆
(p)
min ≥ 0, ap ≥ 0 ∀p ∈W

xj,k ∈ {0, 1} ∀j ∈ V, ∀k ∈ U
τk ≥ 0, zk ∈ {0, 1}, yk ∈ {0, 1} ∀k ∈ U

Constraints (1) ensure that each task is allocated to exactly one block. Inequalities (2)
enforce that each block contains at most rmax tasks. Any block having at least one assigned
task is considered as non-empty, as enforced by (3) and (4). Constraints (5) ensures that
block k+1 has to be empty if block k is empty. The working time of the block is not less than
the processing time of any task allocated to it, as provided by (6). Constraints (7) express
the definition of ∆(p)

min. Inequalities (8) ensure that zk is set to one if block k processes an
uncertain task. Constraints (9) state that the load of any machine cannot exceed the cycle
time, and the precedence constraints are enforced by inequalities (10), where A is the set of
all the pairs of tasks involved in the precedence constraints. Constraints (11) – (12) implies
that ap is strictly positive if machine p has at least one uncertain task, and zero otherwise.

258

3

3 Reduction of the assignment interval of tasks

Initially, all the tasks have an assignment interval equal to [1,mbmax], but the precedence
constraints can help reducing them, which allows to set some xj,k decision variables to 0 in
the MILP formulation of P1. This is achieved by computing the earliest completion time
θ
(EC)
j and the latest starting time θ(LS)

j of task j ∈ V with the following induction formula
initialized with θ(EC)

0 = 0 and θ(LS)
n+1 = m · T (tasks 0 and n+ 1 are the dummy start and

end of the schedule):

θ
(EC)
j = tj + max

q∈P (j)
max

{
θ(EC)
q ,

(⌈
θ
(EC)
q + tj

T

⌉
− 1

)
· T
}
,

θ
(LS)
j = min

q∈S(j)
min

{
θ(LS)
q ,

(
1 +

⌊
θ
(LS)
q − tj
T

⌋)
· T
}
− tj .

Here, P (j) (resp. S(j)) is the set of direct predecessors (resp. successors) of j in the
precedence graph. From θ

(EC)
j and θ(LS)

j , the lower and upper bounds of the assignment
interval of task j, denoted by lj and uj , can be derived:

lj =

(⌈
θ
(EC)
j

T

⌉
− 1

)
· bmax + 1, uj =

(
1 +

⌊
θ
(LS)
j

T

⌋)
· bmax.

Since no task can be assigned to the same block as its predecessors or successors, the
first rule is to apply the following formula as long as it brings improvements over current
bound values:

lj = max

{
lj , max

q∈P (j)
lq + 1

}
, uj = min

{
uj , min

q∈S(j)
uq − 1

}
.

The second rule is to compute b(p)max ≤ bmax, an upper bound on the number of non-
empty blocks at machine p. Minimizing b(p)max permits to find empty blocks and allows to
set many decision variables to zero. Because of space limitation, this rule is not presented.

Finally, based on a set of tasks that have to be processed (resp. can be possibly pro-
cessed) by the machine p, noted as D(p) (resp. V (p)), the third rule is to assess the
maximum remaining working time of the machine p, for all p ∈W . If |D(p)| = rmax · b(p)max,
then no task in V (p)\D(p) can be assigned to the machine p. If |D(p)| < rmax · b(p)max, then
the remaining working time of the machine p is upper bounded by rmax · T −

∑
j∈D(p) tj .

Hence, any task in V (p)\D(p) whose duration is strictly larger than rmax · T −
∑

j∈D(p) tj
should be removed from V (p).

4 Improvement of the MILP formulation

From the previous section, variable xj,k is set to zero for all j ∈ V and for all k /∈ [lj , uj].
Similarly, if V (p) ⊂ Ṽ , then ap is set to 1.

The following valid inequalities are added to link the yk and zk variables (if a block
processes an uncertain task, it should be open):

zk ≤ yk, ∀k ∈ U(p), ∀p ∈W.
Constraints (7) can be reinforced by replacing T (2−yk−zk) with T (1−zk). In addition,

T can be replaced by the constant ∆(p)
max, which is an upper bound on the save time of any

block in the machine p:

259

4

∆
(p)
max =





0, if V (p) ∩ (V \Ṽ) = V (p) or V (p) ∩ Ṽ = V (p),

0, else if t(p)max ≤ t̃(p)min,

t
(p)
max − t̃(p)min, otherwise.

Here, t(p)max is the maximum processing time among certain tasks that can be processed by
machine p, whereas t̃(p)min is the minimum processing time among uncertain tasks that can
be processed by machine p: t(p)max = max

j∈V (p)∩(V \Ṽ)
tj and t̃(p)min = min

j∈V (p)∩Ṽ
tj .

Indeed, when machine p can only process certain tasks, there is no save time, so ∆(p)
max

has to be set to 0. When machine p can only process uncertain tasks (or when certain
tasks are shorter than any uncertain task), ∆(p)

min is zero, so ∆(p)
max can also be set to 0.

In all other cases, the save time is upper bounded by the difference between the longest
certain processing time, and the shortest uncertain processing time. Hence, constraints (7)
are replaced with:

∆
(p)
min ≤ ∆

(p)
max · (1− zk) + τk − tj · xj,k, ∀p ∈W, ∀k ∈ U(p), ∀j ∈ Ṽ .

Constraints (11) can be strengthened to:
∑

k∈U(p)

xj,k ≤ ap, ∀p ∈W, ∀j ∈ Ṽ .

The following constraints state that the processing time of an open block cannot be less
than the processing time of the shortest task that can be part of this block.

min
j∈V (p)

tj · yk ≤ τk, ∀p ∈W, ∀k ∈ U(p).

The following inequalities declare that if a machine processes an uncertain task, then at
least one its block has to accommodate an uncertain task:

ap ≤
∑

k∈U(p)

zk, ∀p ∈W.

And finally, all the ap variables should be declared as binary.

5 Conclusion

When applying the improvements proposed in this paper, 829 instances out of 900
from Pirogov (2019) have been solved to optimality within the time limit of 600 seconds
per instance. Originally, only 467 instances were solved to optimality with the initial model.
These ideas may be applied to address another problem version, where the stability radius
is based on a different metric.

Acknowledgements

This work was partially supported by the council of the French Région «Pays de la
Loire».

References

Pirogov A., 2019, «Robust balancing of production lines: MILP models and reduction rules». Ph.D.
Thesis, IMT Atlantique, Nantes, France.

260

1

An Inclusion-Exclusion based algorithm for the
permutation flowshop scheduling problem

Olivier Ploton1, Vincent T’kindt1

Université de Tours, Laboratoire d’Informatique Fondamentale et Appliquée
(LIFAT, EA 6300), ERL CNRS 7002 ROOT, Tours, France

{olivier.ploton,vincent.tkindt}@univ-tours.fr

Keywords: flowshop, exponential algorithms, Inclusion-Exclusion.

1 Introduction

In this paper we are interested in minimizing the makespan of a permutation flowshop
schedule. Following the notation of Graham et al. (1979), this problem is denoted by
F |prmu|Cmax. In this problem, there are n jobs to be scheduled on m machines. Each job
must be processed on machines 1 to m, in this order, and each machine can process only
one job at a time. All machines must process jobs in the same order, and a schedule is
essentially defined by this order. We note Oij , i ∈ {1 . . . n}, j ∈ {1 . . .m}, the operation
of job i on machine j, which has a non-negative integer processing time pij . For any given
schedule, we define Cij as the completion time of Oij in this schedule. The makespan is
the maximum completion time Cmax = max1≤i≤n Cim. The objective is to find an optimal
solution which minimizes the makespan.

We focus on the time and space worst-case complexities of algorithms to solve the
Fm|prmu|Cmax problem, i.e. when the number of machines is a parameter of the instance.
The size of an instance I is the number of jobs n. The measure of an instance is the sum
of its processing times, i.e. ||I|| =∑i,j pij .

Many algorithms use the branch-and-bound technique, along with specific optimiza-
tions. The bounding functions used in these branch-and-bound algorithms are more and
more precise as time goes, and some of these algorithms have the best known practical
performances (Ladhari and Haouari 2005, Ritt 2016, Gmys et al. 2020). While efficient in
practice, they often have a worst-case time complexity bound comparable to the O∗(n!)
complexity of the brute-force algorithm.

From a theoretical point of view, few algorithms have been proposed in order to provide
better worst-case complexity bounds. Jansen et al. (2013) describe a very general algorithm
class, based on a dynamic programming technique on (unordered) sets of jobs. They get
time and space worst-case complexities with respect to the number of operations m × n,
which translates into O∗(2O(n)||I||O(1)) for each fixed number of machines. Shang et al.
(2018) give a more precise result in the particular case of the F3|prmu|Cmax problem, by
a fine analysis of the number of critical paths in a schedule. They obtain time and space
complexities in O∗(2n||I||).

Our main contribution in this paper is an algorithm which, for any fixed number of
machines, runs with a moderate exponential worst-case time complexity and requires only
pseudopolynomial space. More precisely, the time complexity bound is in O∗(2n||I||m) and
the space complexity bound is in O∗(||I||m).

The algorithms we describe use the Inclusion-Exclusion technique. This rather old com-
binatorics formula received a pioneer application to computer science by Karp (1982) and
Bax (1993). More recently, Inclusion-Exclusion gained in popularity in operational re-
search (Björklund and Husfeldt 2006, Koivisto 2006). Nederlof (2013) showed the interest
of this technique to get polynomial or pseudopolynomial space and moderate exponential

261

2

time algorithms. Yet, the Inclusion-Exclusion technique is not widely used for schedul-
ing algorithms. To the best of our knowledge, the only scheduling problem solved by an
Inclusion-Exclusion based algorithm is the 1|ri, d̃i|-problem (Karp 1982, Nederlof 2008).
Some scheduling algorithms can be reduced to well-known classic problems solved by an
Inclusion-Exclusion algorithm, e.g. the P ||Cmax problem reduces to the bin-packing prob-
lem (Karp 1982) and the F |nowait|Cmax problem reduces to the Asymmetric Traveling
Salesman Problem (Bax 1993, Karp 1982).

2 The permutation flowshop decision problem

As the makespan is a regular objective, we can restrict to semi-active schedules, where
no operation could be scheduled earlier without changing the job order. So, a schedule S
is uniquely represented by the sequence of its jobs: S = (i1 . . . in).

Figure 1 presents an annotated Gantt chart showing a solution of the permutation
flowshop problem (one line per machine, one color per job).

j=1

j=2

j=3
time

i

B C = B ⊕ i

0 5 10 13

Fig. 1. A permutation schedule

Before executing job i, machines must be done with previous jobs. So, it is useful to
consider a more precise version of the problem: machines have release times (Bj)j=1...m

before which they are busy. Together, they form a time front B = (Bj). We denote by
C = B ⊕ i the completion times (Cj) of job i on machine j when executed with release
times (Bj). These are also the release times of the next job to be processed. With the
convention that C0 = 0, we have:

Cj = max(Cj−1, Bj) + pij , ∀ j = 1 . . .m. (1)

Let I be a set of jobs, B a release time front and ε a given threshold on the makespan
value. We now want to determine whether or not there exists a schedule using jobs of I,
whose makespan is at most ε when run with release times B. For that, we shall count the
number N(I,B, ε) of such schedules. We are about to do it using Inclusion-Exclusion.

3 The Inclusion-Exclusion principle

To apply the Inclusion-Exclusion principle, following Fomin and Kratsch (2010), con-
sider a problem of size n in which a solution is represented by a permutation. Relax this
problem by allowing any list of length n, with possible duplicates or missing elements. For
any J ⊂ I, count valid lists using only elements of J . By Inclusion-Exclusion, we deduce
the number of solutions of the initial problem.

We apply this principle to count schedules viewed as lists of jobs. We denote by Sn

the set of permutations schedules, where all jobs appear once, and In is the set of relaxed

262

3

schedules, where there may be duplicate or missing jobs. Define E ⊂ In as the set of
relaxed schedules whose makespan is at most ε when run with release times B. We derive:

cardE ∩Sn︸ ︷︷ ︸
N(I,B,ε)

=
∑

J⊂I
(−1)|I|−|J| cardE ∩ Jn

︸ ︷︷ ︸
NJ (B,ε)

(2)

We determine each term NJ(B, ε) by dynamic programming. We compute NJ,ε[`,B] as
the number of relaxed schedules of length `, using only jobs of J , whose makespans are at
most ε when run with release times B. We have:

NJ(B, ε) = NJ,ε[n,B] (3)

NJ,ε[`,B] =
∑

i∈J
NJ,ε[`−1,B⊕i] if Bm ≤ ε, 0 otherwise ∀ ` = 1 . . . n (4)

NJ,ε[0,B] = 1 if Bm ≤ ε, 0 otherwise. (5)

4 From a feasible makespan value to an explicit solution

The optimal makespan can be deduced from the decision problem. It is:

C opt
max = min{ε | N(I, (Bj=0), ε) > 0} (6)

It can be computed by using a dichotomic search.
Once the optimal makespan is known, we can determine an explicit solution step by step.

We write (Algorithm 1) the recursive function Solution(σ,B, I), where σ is the sequence
of already scheduled jobs, B = (Bj)j are the completion times of already scheduled jobs,
and I is the set of jobs to be scheduled after B. We use the decision algorithm as an oracle
to systematically choose a job outside σ leading to a feasible solution. We denote by () the
empty sequence and by · the concatenation of sequences. We obtain an optimal solution of
the Fm|prmu|Cmax problem by calling Solution(σ=(), (Bj=0), I={1 . . . n}).

Function Solution(σ, B, I):
if I 6= ∅ then

for i ∈ I do
if N(I \ {i}, B ⊕ i, C opt

max) > 0 then
return Solution(σ · i, B ⊕ i, I \ {i})

else
return σ

Algorithm 1: Computation of a feasible schedule

5 Worst-case complexities

We now evaluate the worst-case time and space complexities of our algorithms:

– Each component of the timefront B involved in the dynamic programming equations
(3), (4), (5) is bounded by the sum of the processing times, i.e. ||I||. So, the number
of involved states is in O∗(||I||m).

– The decision problem uses 2n independent dynamic programming computations and it
can be solved in O∗(2n||I||m) time O∗(||I||m) space.

– Dichotomic computation of C opt
max is in O∗(2n||I||m log ||I||) time and O∗(||I||m) space.

– When C opt
max is known, computation of an optimal solution of the Fm|prmu|Cmax prob-

lem is in O∗(2n||I||m) time and O∗(||I||m) space.
– The global algorithm is in O∗(2n||I||m log ||I||) time and O∗(||I||m) space.

263

4

6 Conclusions

In this paper, we study exact algorithms to minimize the makespan of permutation
flowshop schedules, and we focus on bounding worst-case time and space complexities.
These complexities are evaluated for a fixed number of machines m using job number n
as the instance size and the sum of the processing times as an instance measure ||I||. The
best general time and space complexity bounds proved so far is due to Jansen et al. (2013).
It is O∗(2O(n)||I||O(1)), for each fixed m. Shang et al. (2018) proved a more precise bound
of O∗(2n||I||), for the particular case of 3 machines.

We describe an Inclusion-Exclusion based algorithm for the Fm|prmu|Cmax problem,
using dynamic programming for enumerations. We prove that, for every fixed m, its worst-
case space complexity is pseudopolynomial, with bound O∗(||I||m), and its worst-case time
complexity is moderately exponential, with bound O∗(2n||I||m).

From this piece of research, several future research directions can be outlined: how to
optimize the computation of the sum involved in the Inclusion-Exclusion principle ? How to
get tighter bounds on the number of states used in the dynamic programming algorithm ?
These questions are of great importance to derive better worst-case complexity bounds.

References

Bax E.T., 1993, “Inclusion and exclusion algorithm for the Hamiltonian path problem”, Information
Processing Letters, Vol 17(4), pp 203–207.

Björklund A., T. Husfeldt, 2006, “Inclusion-exclusion algorithms for counting set partitions”, Pro-
ceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2006), pp 575–582.

Fomin F.V., D. Kratsch, 2010, “Exact exponential algorithms”,, Springer.
Gmys J., M. Mezmaz, N. Melab, D. Tuyttens, 2020, “A computationally efficient Branch-and-

Bound algorithm for the permutation flow-shop scheduling problem”, European Journal of
Operational Research, Vol 284(3), pp 814–833.

Graham R.L., E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, 1979, “Optimization and Approx-
imation in Deterministic Sequencing and Scheduling: a Survey”, Proceedings of the Advanced
Research Institute on Discrete Optimization and Systems Applications, Vol 5, pp 287–326.

Jansen K., F. Land, K. Land, 2013, “Bounding the Running Time of Algorithms for Scheduling
and Packing Problems”, Algorithms and Data Structures - 13th International Symposium, pp
439–450.

Karp R.M., 1982, “Dynamic Processing meets the principle of inclusion and exclusion”, Operational
Research Letters, Vol 1(2), pp 49–51.

Koivisto M., 2006, “An O(2n) algorithm for graph coloring and other partitioning problems via
inclusion-exclusion”, Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2006), pp 583–590.

Ladhari T., M. Haouari, 2005, “A computational study of the permutation flow shop problem
based on a tight lower bound”, Computers & Operations Research, Vol 32, pp 1831–1847.

Nederlof J., 2008, “Inclusion-exclusion for hard problems”, Master Thesis, Utrecht University.
Nederlof J., 2013, “Fast Polynomial-Space Algorithms Using Inclusion-Exclusion”, Algorithmica,

Vol 65, pp 868–884.
Ritt M., 2016, “A branch-and-bound algorithm with cyclic best-first search for the permutation

flow shop scheduling problem”, 2016 IEEE International Conference on Automation Science
and Engineering (CASE), pp 872–877.

Ryser H.J., 1963, “Combinatorial mathematics”, The Carus Mathematical Monographs, No 14,
The Mathematical Association of America.

Shang L., C. Lenté, M. Liedloff, V. T’kindt, 2018, “Exact exponential algorithms for 3-machine
flowshop scheduling problems”, Journal of Scheduling, Vol 21, pp 227–233.

264

1

Decision trees for robust scheduling

Tom Portoleau1,2, Christian Artigues1 and Romain Guillaume2

1 LAAS-CNRS, Universite de Toulouse, CNRS, Toulouse, France
tom.portoleau@laas.fr,artigues@laas.fr

2 IRIT, Toulouse, France
romain.guillaume@irit.fr

Keywords: proactive-reactive scheduling, robust optimization, decision tree

1 Introduction

In the scheduling literature, approaches that mix a proactive phase aiming at issuing a
robust baseline schedule and a reactive phase that adapts the baseline scheduling in case
of major disturbances have been widely studied under the proactive-reactive scheduling
terminology [3]. Recently Davari and Demeulemeester [2] remarked that in this series of
approaches, the proactive and the reactive phases were rather treated separately while they
should mutually influence each other. In particular the author propose to associate a reac-
tion cost to the reactive scheduling part. As a matter of fact, over-reacting to disturbance,
although generally beneficial for the objective function may lead to a destabilization of the
scheduling environment. In this paper, we aim also at addressing this issue together with
another one arising with the huge increasing amount of available data. We consider that
we have a scheduling problem where a part of parameters is known with precision while
another part is known under interval-based scenarios. A robust schedule, e.g. minimizing
the min max objective function over the scenario set, can be computed and then followed
in run time. During the schedule execution, information becomes regularly available that
allows to reduce the uncertainty set and possibly react to this change. However the question
arise whether the decision maker should use of not the information, or which part of the
information should be used and for which reaction. As already mentioned, over-reacting
can be costly but there may be also a cost of getting information, especially when the
amount of information that can be obtained is large. We proposed an approach for dealing
with the information selection and reaction decision issues, inspired by contingent planning
approaches that determines alternative schedules at some events where a high probability
of schedule break occur [1]. However we assume that contingent schedules can only be
computed at some predetermine decision points, corresponding to particular times such as
the end of a work day or a shift change. At each such time point, we select a subset of
the information that can be available to partition the set of scenarios. For each element of
the partition, we compute a new robust schedule compatible to the one followed up to the
decision point. This yields what we call a robust decision tree, that prescribes the path to
follow in response to a particular scenario. In the remaining of the paper we present the
different models and algorithms we propose as well as experimental results. To illustrate
our approach we focus on the simple robust 1||Lmax model with uncertainty on due dates
and knwon processing times.

2 Uncertainty, Information and Robust Decision Tree Models

2.1 Uncertainty model

In practice, it is often easier for a decision-maker to establish bounds over uncertain
parameters, like processing times or due dates, than to build an accurate probabilistic model

265

2

which often requires a large amount of data. In this paper, we consider interval uncertainty.
Given an uncertain parameter x we denote by X = [xmin, xmax] the interval in which it
takes its value. We make no assumption about which probabilistic law is followed by x
in this interval. Given a set of uncertain parameters (xi)i∈I we define the set of possible
assignments of parameters by Ω =

∏
i∈I Xi (i.e. it is assumed that there is no correlation

between them, all realisation xi are independent). We call a scenario an assignment of each
parameter xi,∀i ∈ I such that (xi)i∈I ∈ Ω.
From now on, when ω is a scenario, s a schedule and f the objective , we denote by f(ω, s)
the objective value of s in scenario ω (note that for our application case, f = Lmax).

Example 1 We consider a small instance of the problem 1||Lmax with three tasks : task
1 : p1 = 10, d1 ∈ D1 = [10, 11], task 2 : p2 = 6, d2 ∈ D2 = [11, 17], task 3 : p3 = 4,
d3 ∈ D3 = [13, 20]. The set of scenarios for this instance is Ω = D1 × D2 × D3 and
ω = (10, 12, 19) is a scenario. We will keep this instance all along this paper to exemplify
the notions and algorithms we introduce.

2.2 Information Model

As explained in Section ?? we suppose that at some time during the execution of the
schedule, some information become accessible. In our model, an information allows the
scheduler to tighten the interval of uncertainty of a future realisation.

Definition 1 For a given uncertain parameter x ∈ X and a moment of decision t during
the execution of the schedule, we call an information about x a value ktx and an operator
in {≤,≥}.

For instance, an information is x ≤ ktx. So the decision maker, from time t on, is able to
reduce the set of possible assignments by updating the interval X, x ∈ Xinf

ktx
= [xmin, k

t
x]

or x ∈ Xsup
ktx

=]ktx, xmax]. Note that the information depends on t, so the scheduler may
have to ask for an information about the same data several times during the execution of
the planning. Our model aims to make the best use of available information, and select the
more relevant ones.
For the problem considered in this paper we suppose that for a given moment of decision
t and a task i, we have an information ktd if min(t+ pi, 2t) ∈ Di. If so, ktd = min(t+ pi, 2t).
Otherwise we consider that we have no information about the task i . This hypothesis on
the availability of information is arbitrary, but in fact it expresses two natural questions a
scheduler may ask about uncertain due dates : "If task i is started now, can it be completed
without being late ? If so, is the due date di far from now ?" In any case, an answer to
these questions allows the scheduler to bound the uncertainty of a due date di.

Example 2 Let us look again at the instance from Example 1. We suppose that we are at
a moment of decision t = 10 and that task 1 has been scheduled first. Given the hypothesis
we made about information availibility, we have:

- task 1 is completed, so there is no relevant information about it.
- min(t+ p2, 2t) = 16 ∈ D2, so ktd2 = 16.
- min(t+ p3, 2t) = 14 ∈ D3, so ktd3 = 14.

Therefore, for any ω ∈ Ω, the scheduler is able to determine, from time t = 10, if ω2 ≤ 16
or if ω2 > 16, and if ω3 ≤ 14 or if ω3 > 14.

266

3

2.3 Robust Decision Tree

Definition 2 A robust decision tree T is a tree where the nodes are labeled with a subset
of Ω and a partition of this subset, and the arcs are labeled with a partial schedule. If n
is a node of T , Ωn and Pn denote respectively a subset of Ω and a partition of Ωn, both
associated to n. A robust decision tree satisfies the following properties:

(i) The node n has exactly |Pn| children.
(ii) Let us denote by (nj)j≤|Pn| the children of node n. Each nj is associated with
one element of Pn, i.e for all j ≤ |Pn|, Ωnj ∈ Pn and

⋃
j≤|Pn|Ω

nj = Ωn.
(iii) For any path (n0, ..., nm) where n0 is the root of T and nm is a leaf, the schedule
obtained by concatenating all the partial schedules on the arcs along the path is feasible.
(iv) Let n and n′ be two nodes of T . The partial schedule s′ on the arc (n, n′) is
robust:

s′ = argmin
s∈S

max
ω∈Ωn′

f(ω, s)

where S is the set of admissible partial solutions.

Example 3 Based on the instance from Example 1, Figure 1 is an illustration of a Robust
Decision Tree. In this case, at the first node after the root, Ω is splitted in Ω1 and Ω2.
Finally, the tree may lead to two distinct solutions according to the ongoing scenario ω :
the sequence of task [1, 2, 3] if ω ∈ Ω1, or [1, 3, 2] if ω ∈ Ω2.

Fig. 1. Illustration of small robust decision tree, for Example 3.

2.4 Partitioning the Scenarios

The core problem of our method is, for a given node n, computing a robust partition
Pn, but how do one compare the robustness of two different partitions ? We propose
the following criterion. We define the Robustness Score (RS) of a partition P as the sorted
vector of the worst case objective values of the optimal robust solution (considering absolute
robustness) on each element of P :

RSf (P) = (min
s∈S

max
ω∈p

f(ω, s))p∈P

where S is the set of feasible solutions.

As we supposed that we have no information about data distribution, it would be
inconsistent to look at the "size" of the element of P . Now, given two partitions P and

267

4

P ′, we say that P is a better partition than P ′ if RS(P) <lexi RS(P ′) where <lexi is the
lexicographical order. We call Robust Partition Problem (RPP) the problem of finding the
best partition with that criterion.

3 Algorithms

Using the previous definitions we now propose a method to build a robust decision tree
(see Definition 2). In this paper, we consider that the moments of decision (i.e. moments
when the scheduler is able to access new information and change the schedule), denoted by
(tj)j∈J are fixed in advance. This may correspond in practice to special times, such as the
end of a working day, or a shift change where the planning can be updated. Every decision
moment corresponds to a level in the decision tree, such that t1 corresponds to the first level,
t2 to the second one, etc... In that respect, the depth of the tree is controlled by the number
of decision moments. At each fork at a level j in the tree, a new partial solution, consistent
with the partial schedule that has been accomplished until tj , is proposed according to the
current set of scenarios. The root of the tree, that we consider being the level 0 corresponds
to the time t0 = 0, the beginning of the schedule. At this point no information is known,
so only one robust solution is proposed. Thus, a single node is created at level 1. At this
node, we retrieve all the information available at time t1. Using up to K information, we
split the set of scenarios into -at most 2k- subsets forming a partition P . and obtain a
robust partition P ′. For each subsets in P ′ a new solution is proposed and a new branch
is set up, leading to a new node at the next level. The set of scenarios considered in this
node is the one from which it originated in P ′. These steps are repeated until the last
decision moment is reached. to solve the the RPP we propose an exhaustive algorithm,
that enumerate each combination of information and, provided that the problem admits
a global worst case scenario, extracts a dominant partition from this combination. This
algorithm has an exponential complexity since that at each iteration of the for loop, we
compute a partition P such that |P | = 2|K|.

4 Results

The objective of the carried out experiments is to evaluate the robustness of our robust
decision tree model, the quality of the selected information used for its construction and
its stability in terms of number of reactions for a simulation over 500 scenarios. As our
approach uses the notion of information to reduce uncertainties to provide more robust
solution, we compare it to a more standard proactive-reactive algorithms. We observe
that the robust decision trees provide better solutions (for a given number of tasks) when
uncertainty intervals are larger. Intuitively, this can be explained by the fact that decision
trees are very constrained by the moments of decision while the reactive algorithms is not.
So, larger uncertainties allow robust decision trees to acquire more new information than it
does with robust reactive algorithms. Overall our approach obtains better solutions using
less information and reactions.

References

1. Davari, M., and Demeulemeester, E. 2017. The proactive and reactive resource-constrained
project scheduling problem. Journal of Scheduling 1–27.

2. Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D. E.; and Washington, R. 2003. Incre-
mental contingency planning. In ICAPS-03 Workshop on Planning under Uncertainty.

3. Van de Vonder, S.; Demeulemeester, E.; and Herroelen, W. 2007. A classification of predictive-
reactive project scheduling procedures. Journal of scheduling 10(3):195–207.

268

1

A Benders decomposition for the flexible cyclic jobshop
problem

Félix Quinton1, Idir Hamaz2 and Laurent Houssin3

1 ONERA – The French Aerospace Lab, F-31055, Toulouse, France
felix.quinton@onera.fr

2 LIRMM UMR 5506, Université de Montpellier, 34932 Montpelier Cedex 5, France
idir.hamaz@lirmm.fr

3 LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
houssin@laas.fr

Keywords: Cyclic scheduling, Decomposition method, Flexible scheduling.

1 Introduction

This paper tackles the Flexible Cyclic Jobshop Scheduling Problem (FCJSP). We pro-
pose a Mixed Integer Linear Programming (MILP) formulation for the FCJSP along with
a Benders decomposition algorithm adapted for the FCJSP. The Basic Cyclic Scheduling
Problem (BCSP) is a generalisation of the basic scheduling problem where a schedule of el-
ementary tasks i ∈ T = {1, ..., n} is infinitely repeated. This problem has been studied a lot
since it has applications in many fields such as parallel processing ([Hanen and Munier, 1995]),
staff scheduling ([Karp and Orlin, 1981]), or robotic scheduling ([Kats and Levner, 1996]).
[Hamaz et al., 2018a] studied the BCSP where the processing times are affected by an
uncertainty effect.

To specify a BCSP, we are given a set of elementary tasks i ∈ T and their respective
execution time pi. Also, we define ti(k) ≥ 0 the starting time of occurrence k of task i ∈ T .
The order in which the tasks are to be executed is fixed by precedence constraints. A prece-
dence constraint indicating that task i must be completed before starting the execution for
task j can be expressed as a quadruplet (i, j, pi, Hij), where Hij is called the height of the
precedence constraint and represents the occurrence shift between tasks i and j. In simple
terms, it states that the k+Hij-th occurrence of task j cannot start before the end of the
k-th occurrence of task i. Precisely, it states that : tj(k +Hij) ≥ pi + ti(k).

2 The cyclic jobshop scheduling problem

In the Cyclic Jobshop Scheduling Problem (CJSP), each elementary task i ∈ T =
{1, ..., n} is assigned to a machine ri ∈ R = {1, ..., R}, with R < n and elementary tasks
linked by precedence constraints constitute jobs. For instance, in a manufacturing context, a
job might represent the manufacturing process of a product as a whole, while an elementary
task represents only one step of the manufacturing process.

Due to its numerous applications in large-scale production scheduling, the CJSP has
received at lot of attention from the research community. [Hanen, 1994] proposed a MILP
for this problem and proved some of its properties. [Brucker et al., 2012] also proposed a
MILP for a CJSP with transportation by a single robotic cell. [Draper et al., 1999] proposed
an alternative formulation to solve CJSP problems as constraint satisfaction problems.
[Hamaz et al., 2018b] studied the CJSP with uncertain processing time. The inclusion of
machines in the CJSP leads to a lack of resources, since the tasks are competing for
the working time of the machines. This lack of resources is represented by disjunction
constraints, which state that for a pair of tasks (i, j) ∈ T 2, i 6= j, that must be executed on

269

2

the same machine, i.e. ri = rj , an occurrence of i and an occurrence of j, cannot be executed
at the same time. In the following of this paper, we will denote by D = {(i, j)|R(i) ∩
R(j) 6= ∅} the set of pairs of tasks linked by disjunction constraints. Mathematically,
the disjunction between two tasks (i, j) ∈ T 2, i 6= j is modeled with the two following
disjunction constraints (1):

tj(k +Kij) ≥ ti(k) + pi and ti(k +Kji) ≥ tj(k) + pj . (1)

where Kij (resp. Kji) is the height of the disjunction constraint, i.e. the occurrence
shift between tasks i and j (resp. j and i). It has been proven by [Hanen, 1994] that a
feasible schedule for a CJSP must satisfy Kij +Kji = 1.

Note that in this problem the variables are the cycle time α, the starting times of
each elementary tasks (t)i∈T , and the heights of the disjunctive constraints, (K)(i,j)∈D. A
feature of the CJSP is the Work In Process (WIP). It corresponds to the maximum number
of occurrences of a job processed simultaneously. Mathematically, the role of the WIP can
be modelled as the height of the precedence constraint from fictive task e to fictive task s,
and can be explained by the equation :

s(k) ≥ e(k −WIP).

In our study, we aim at minimizing the cycle time α, so the WIP and the Hij , (i, j) ∈ E are
given. Modelling of the CJSP for the minimisation of the cycle time α with known heights
as been proposed by [Hanen, 1994] and is used by [Brucker et al., 2012] to solve a CJSP
with transportation.

[Hanen, 1994] proposes to define the variable τ = 1
α and for all i ∈ T , the variable

ui =
ti
α . Then CJSP can then be considered as a MILP in the following form:

max τ

s.t.

τ ≤ 1

pi
, ∀i ∈ T (2a)

uj +Hi,j ≥ ui + τpi, ∀(i, j) ∈ E (2b)
uj +K(i, j) ≥ ui + τpi, ∀(i, j) ∈ D (2c)
K(i, j) +K(j, i) = 1, ∀(i, j) ∈ D (2d)

K(i, j) ∈ Z, ∀(i, j) ∈ D (2e)
ui ≥ 0, ∀i ∈ T . (2f)

The CJSP can then be solved by writing the problem as a MILP, which can be
solved using mathematical programming or using a dedicated Branch-and-Bound proce-
dure ([Fink et al., 2012], [Hanen, 1994]).

3 The flexible cyclic jobshop scheduling problem

The Flexible Cyclic Jobshop Scheduling Problem (FCJSP) is a CJSP where the ele-
mentary tasks are flexible. This means that the execution of a task i ∈ T , is assigned to
exactly one machine r in a set of machines that is a subset of the set of machines R specific
to task i. This subset is denoted R(i) ⊂ R. We model the assignment of a task i ∈ T to a
machine r ∈ R(i) as a decision variable mi,r defined as follows :

270

3

∀i ∈ T ,∀r ∈ R(i), mi,r =

{
1 if task i is assigned to machine r
0 otherwise.

Each assignment of a task i ∈ T to a machine r ∈ R(i) is associated with a given
execution time denoted pir. Also, because we do not know a priori on which machine each
task will be assigned, we do not know the set (i, j) ∈ T 2, i 6= j, R(i, j) 6= ∅ of pairs of tasks
which are connected by a disjunctive constraint.

Based on the model of Section 2 and variables mi,r, we have proposed a MILP for the
FCJSP. A first model was proposed in [Quinton et al., 2018] but substantial improvements
have been made since this first model.

4 A Benders decomposition for the FCJSP

The FCJSP formulated as a MILP can be very hard to solve. Using CPLEX, difficult
instances with a large number of tasks or with few robots might exceed any reasonable
time limit. To tackle this issue, we propose a Benders decomposition for the FCJSP. In the
usual Benders decomposition scheme, two problems coexist: the master problem and the
sub-problem. The Master Problem (MP) consists in an integer linear problem composed of
the constraints from the model described in Section 3 involving only the integer variables,
and the optimality cuts generated at each iteration of the Benders algorithm. The remaining
constraints, involving only continuous variables or a combination of continuous and integer
variables, compose the primal sub-problem. It can be written as a linear problem. The full
description of the algorithm is available in [Quinton et al., 2019].

5 Numerical results

The MILP solving is very efficient for the easiest instances (10 tasks and 5 machines).
For those easy instances, it is much more efficient than the Benders decomposition. For
instances of average difficulty with 10 tasks and 4 machines, the MILP is still more efficient
than the Benders decomposition, but we can remark that the execution time of the MILP
is increasing much faster than the execution time of the Benders decomposition. Finally,
for the hard instances with 10 tasks and 3 machines, our Benders decomposition is always
faster to find the optimal solution than the MILP. From these results, we learn that it is
better to use the MILP for easy problems with numerous machines such as our instances
with 10 tasks and 5 machines. However, for hard instances with a considerable number of
disjunctions, such as the instances with 10 tasks and 3 machines, the execution times of
the MILP rocket up and it is much better to use the Benders decomposition to obtain an
optimal solution or a heuristic procedure to obtain a feasible solution (not presented here).

6 Conclusion

We have proposed a MILP for the FCJSP where the objective is the minimisation of
the cycle time. The problem is highly combinatorial, so we also proposed a Benders decom-
position algorithm that is more efficient for difficult instances. The Benders decomposition
includes specific cuts to ensure the feasibility of the integer solution. Numerical instances
have shown that the MILP becomes inefficient for difficult instances with many disjunc-
tions. Also, if an optimal solution is required, our Benders decomposition is more efficient
than the MILP for this type of instances.

271

4

References

[Brucker et al., 2012] Brucker, P., Burke, E. K., and Groenemeyer, S. (2012). A mixed integer
programming model for the cyclic job-shop problem with transportation. Discrete Applied Math-
ematics, 160(13-14):1924–1935.

[Draper et al., 1999] Draper, D. L., Jonsson, A. K., Clements, D. P., and Joslin, D. E. (1999).
Cyclic scheduling. In IJCAI, pages 1016–1021. Citeseer.

[Fink et al., 2012] Fink, M., Rahhou, T. B., and Houssin, L. (2012). A new procedure for the
cyclic job shop problem. IFAC Proceedings Volumes, 45(6):69–74.

[Hamaz et al., 2018a] Hamaz, I., Houssin, L., and Cafieri, S. (2018a). A robust basic cyclic
scheduling problem. EURO Journal on Computational Optimization, 6(3):291–313.

[Hamaz et al., 2018b] Hamaz, I., Houssin, L., and Cafieri, S. (2018b). The Cyclic Job Shop Prob-
lem with uncertain processing times. In 16th International Conference on Project Management
and Scheduling (PMS 2018), Rome, Italy.

[Hanen, 1994] Hanen, C. (1994). Study of a np-hard cyclic scheduling problem: The recurrent
job-shop. European journal of operational research, 72(1):82–101.

[Hanen and Munier, 1995] Hanen, C. and Munier, A. (1995). A study of the cyclic scheduling
problem on parallel processors. Discrete Applied Mathematics, 57(2-3):167–192.

[Karp and Orlin, 1981] Karp, R. M. and Orlin, J. B. (1981). Parametric shortest path algorithms
with an application to cyclic staffing. Discrete Applied Mathematics, 3(1):37–45.

[Kats and Levner, 1996] Kats, V. and Levner, E. (1996). Polynomial algorithms for scheduling of
robots. Intelligent Scheduling of Robots and FMS, pages 77–100.

[Quinton et al., 2018] Quinton, F., Hamaz, I., and Houssin, L. (2018). Algorithms for the flexible
cyclic jobshop problem. In 14th IEEE International Conference on Automation Science and
Engineering, CASE 2018, Munich, Germany, August 20-24, 2018, pages 945–950.

[Quinton et al., 2019] Quinton, F., Hamaz, I., and Houssin, L. (2019). A mixed integer linear
programming modelling for the flexible cyclic jobshop problem. Annals of Operations Research.

272

1

Exact and heuristic methods for characterizing optimal

solutions for the 1||Lmax

Tifenn Rault, Ronan Bocquillon and Jean-Charles Billaut

Université de Tours, LIFAT EA 6300, CNRS, ROOT ERL CNRS 7002

64 Avenue Jean Portalis, 37200 Tours

tifenn.rault, ronan.bocquillon, jean-charles.billaut@univ-tours.fr

Keywords: scheduling, single machine, characterization of solutions, deadlines, lattice.

1 Introduction

The 1||Lmax problem can be solved in O(n log n) applying EDD rule (Jackson 1955).
Still, as many scheduling problems, 1||Lmax may have a huge number of optimal solutions.
Our objective is to characterize easily a set of optimal solutions, without enumerating
them. Such an approach is useful in a dynamic environment, to react in real time to
unexpected events, or to data uncertainty. Some preliminary studies in this direction have
been conducted using the lattice of permutations as support (Billaut and Lopez 2011,
Billaut et. al. 2012, Ta 2018). In such a framework, it is assumed that jobs are renumbered
in EDD order and due dates are transformed in deadlines so that sequence EDD is feasible
and is the root sequence of the lattice. A property is that all the predecessors of a feasible
sequence in the lattice are feasible as well, and therefore optimal sequences for the 1||Lmax.
These predecessors can be characterized very easily by a partial order between jobs. The
distance to the bottom sequence (reverse EDD sequence), also called �level�, is denoted
by
∑
Nj . It is expected that a sequence with minimum level will characterize a lot of

optimal solutions. In this paper, we study the problem 1|d̃j |
∑
Nj of �nding a sequence with

minimum level. We improve the existing branch and bound algorithm introduced in (Ta
2018) thanks to memorization, and we propose a new heuristic method. Our results show
that we improve state-of-the-art resolution methods, solving to optimality new instances.

2 Problem description

We consider a set of n jobs Jj , 1 ≤ j ≤ n. To each job is associated a processing time pj
and a due date dj . For any instance, we apply the following pre-treatment in polynomial
time: (1) we apply EDD rule and we obtain L∗max, the optimal maximum lateness value.

Then, (2) we modify the due dates in order to obtain deadlines: d̃j = min(dj+L
∗
max,

∑
pj),

for any j ∈ {1, 2, .., n}. Finally, (3) we renumber the jobs in EDD order, and in case of a
tie, in LPT order. At the end we know that sequence σ = (J1, J2, ..., Jn) is feasible and

i < j ⇐⇒ (d̃i < d̃j)||(d̃i = d̃j , pi ≥ pj).
The lattice of permutations is a digraph constructed as follows. The root node is the

EDD sequence, i.e (J1, J2, ..., Jn). The children of a sequence σ are created by inverting
two jobs Jk and Jl i� Jk is just before Jl in σ, and k < l. The process is repeated for newly
created sequences until the sink node (i.e reverse EDD sequence) is reached. Each sequence
in the lattice can be associated with a level which represents the number of inversions from
the reverse EDD sequence at level 0, i.e the number of times we have Ji before Jj and i < j
(see (Billaut et. al. 2012) for more details). The level of a sequence also gives the number
of precedence relations characterized by this sequence. One nice property of this lattice is
that all predecessors of a feasible sequence are also feasible (and therefore optimal for the
1||Lmax).

273

2

Finding a sequence as deep as possible in this lattice, or �nding a sequence as far as
possible from EDD sequence, is the same, and is equivalent to minimising the objective
function

∑
Nj . The variable Nj , the contribution of job Jj to the objective function,

is equal to the number of jobs after Jj with and index greater than j. The complexity

of problem 1|d̃j |
∑
Nj remains open (Ta 2018). It has been shown in (Ta et. al. 2017,

Ta 2018) that the expression
∑
Nj is somewhat related to the positions Pj of the jobs,

and the problem 1|d̃j |
∑
wjPj is proved strongly NP-hard by reduction from Numerical

3-Dimensional Matching problem.

3 Exact method

The original B&B method for the 1|d̃j |
∑
Nj problem works as follows. Consider �rst

the initial set of unscheduled jobs in reverse numbering order S = {Jn, Jn−1, ..., J1}, and
σ = ∅ the sequence being build, starting by the end. At each level, add a new unscheduled
job Jj in �rst place of σ. While S 6= ∅, the job Jj is chosen in S from the smallest to the
biggest index so that: the deadlines are respected (put only in the �rst position of sequence
σ a non tardy job), and the dominance conditions too (keep only the sequences satisfying
dominance properties).

The initial upper bound is given by a polynomial time heuristic method. The lower
bound is computed in O(1). Indeed, when adding a job Jj in front of σ, the contribution of
Jj to the level of all unscheduled jobs is exactly its position in S minus 1. Several properties
of optimal (or feasible) sequences are presented in (Ta 2018) and exploited by the original
Branch-and-Bound. Two new dominance rules are presented hereafter.

Property 1 Two jobs Ji and Jj with identical deadlines and i < j must be sequenced

so that Ji is after Jj in the sequence.

Sketch of the proof Let us consider two jobs Ji and Jj such that d̃i = d̃j and i < j. Due to
our renumbering scheme (see Section 2), we know that pi ≥ pj . Suppose sequence is built
in a backward manner. If a choice has to be made between Ji or Jj , it is always preferable
to place Ji since it will possibly enable to place a job with a smaller index (i.e. a smaller
deadline) right after, and Ji has a smallest index than Jj , thus decreasing the objective
function.

Property 2 If two partial solutions contain exactly the same subset of jobs, then the

one with the lowest level dominates the other.

Sketch of the proof Suppose we have two partial solutions σu and σv such that σv
contains exactly the same subset of jobs as σu (but in di�erent order), and level(σu) =∑
i∈σu

Ni ≤
∑
j∈σv

Nj = level(σv). We have Su = Sv = S. Let S∗ be the optimal way of ar-
ranging the jobs in S, s∗u be the concatenation of S

∗ and σu, and sv∗ be the concatenation of
S∗ and σv. We have level(s∗u) = level(S∗)+level(σu) and level(s∗v) = level(S∗)+level(σv).
So, level(s∗u) ≤ level(s∗v): the partial solution σu dominates σv.

We denote by B&BP1 the B&B integrating property 1, and we call �Branch-and-Bound
with memorization� (denoted B&BM) the B&B integrating properties 1 and 2. To leverage
property 2, the set of jobs in σ of visited nodes must be stored, so that dominated nodes
can be pruned. In practice, it requires a balance between time gain and memory storage.
This method takes as a parameter the maximum cardinality of the recorded sets. Typically,
in the results table, B&BM x means that only sets whose cardinality is less than x percent
of n are registered. This strategy is motivated by the fact that the more a branch is high,
the more pruning it will have an impact.

274

3

4 Heuristic method

In addition to the exact method, we investigated a new heuristic strategy based on the
Limited Discrepancy Search (LDS). For large search tree, exhaustive search is not tractable.
The LDS technique was introduced by Harvey and Ginsberg (Harvey and Ginsberg 1995)
to cope with this limitation. A �discrepancy� is a right branch in a heuristically ordered
tree. Originally LDS is an iterative procedure. It �rst generates the leftmost path. Next,
it generates those paths with at most one right branch from the root to the leaf. The next
set of paths generated by LDS are those with at most two right branches, etc. The process
continues until every path has been generated, with the rightmost path being generated
last.

This technique seems well suited to our problem since we expect that in the search
tree, the feasible solutions with the lowest levels are located among the leaves as far as
possible on the left of the search tree. Indeed, the levels of the solutions at the leaves are
almost distributed from the smallest to the largest, from the left to the right. In LDS-k,
we therefore allow during the search the generation of paths with at most k right branches.
Note that we use it as a non-iterative heuristic. We can combine LDS-k with property 2 in
order to cut branches, and we denote this technique LDS-k M-x, where x means that only
sequences whose size is less than x percent of n are registered.

5 Computational results

We compare the original B&B with B&BP1 and with B&BM. We also compare the LDS
heuristic with the backward heuristic (denoted BW) introduced in (Ta 2018), which builds
the solution by the end, putting in last position the feasible job with the smallest index.
We used type I data sets used in (Ta 2018). For each value of n, with n ∈ {10, 20, ..., 100},
there are 30 instances. The experiments were run on Intel E5-2670V2 processors running
at 2.5GHz (one core per instance). The memorization database is capped at 107 entries
and the CPU time to solve each instance has been limited to 180 seconds.

Table 1. Performances of exact methods

(Ta 2018) B&BP1 B&BM 30 B&BM 70 B&BM 90

n opt cpu opt cpu opt cpu opt cpu opt cpu

10 30 0,00 30 0,00 30 0,00 30 0,00 30 0,00

20 30 0,00 30 0,00 30 0,00 30 0,00 30 0,00

30 30 0,00 30 0,00 30 0,00 30 0,00 30 0,00

40 30 0,00 30 0,00 30 0,00 30 0,00 30 0,00

50 30 0,00 30 0,00 30 0,01 30 0,01 30 0,01

60 30 0,17 30 0,14 30 0,12 30 0,12 30 0,12

70 30 1,88 30 1,52 30 0,61 30 0,61 30 0,62

80 28 36,17 30 29,38 30 6,95 30 6,81 30 6,98

90 12 133,31 12 128,49 17 100,26 17 98,13 18 99,17

100 1 175,59 1 175,27 2 170,15 2 170,21 2 170,21

Table 1 compares the performances of the exact methods. It can be seen that we solved
to optimality 9 new instances for n ≥ 80. More precisely, Property 1 allows us to solve two
new instances, while B&BM x solves more instances as parameter x increases.

275

4

Table 2. Performances of heuristic methods

BW LDS-1 LDS-1 M-30 LDS-2 LDS-2 M-30

n gap cpu gap cpu gap cpu gap cpu gap

10 2,0% 0,00 0,0% 0,00 0,0% 0,00 0,0% 0,00 0,0%

20 20,8% 0,00 1,7% 0,00 1,7% 0,00 0,0% 0,00 0,0%

30 27,3% 0,00 7,4% 0,00 7,4% 0,00 1,1% 0,00 1,1%

40 30,5% 0,00 8,8% 0,00 8,6% 0,00 2,0% 0,00 2,0%

50 42,6% 0,00 15,4% 0,00 14,8% 0,00 4,4% 0,00 4,3%

60 41,0% 0,00 15,3% 0,01 13,9% 0,00 6,6% 0,01 6,5%

70 41,6% 0,03 17,8% 0,10 16,0% 0,01 8,3% 0,07 7,8%

80 45,9% 0,06 23,3% 1,31 18,6% 0,03 12,0% 0,87 10,1%

90 42,0% 5,08 21,2% 28,73 15,5% 2,08 10,6% 23,70 7,4%

100 39,6% 47,18 15,3% 111,04 9,5% 34,93 8,2% 127,61 1,1%

Regarding the heuristic methods, Table 2 shows that the LDS-k approach exhibits
lowest gap than the backward heuristic. For n ≥ 70, this comes at an increased computation
time. Still we can point out that LDS-2 and LDS-2 M-30 o�er a good trade-o� between
computation time and solution quality for n ≥ 90. Indeed, it provides solutions with gaps
between 1.1%− 10.6% faster than the B&B approach.

6 Conclusion

In this paper, we addressed the problem 1|d̃j |
∑
Nj whose complexity remains open.

We introduced two new e�cient dominance rules that allowed us to solve new instances to
optimality. A new heuristic is presented. Its performances o�er a good trade-o� between
computation time and solution quality.

Future directions include generating larger and harder instances, and studying di�erent
policies for choosing which sets to remove from the memorization database when it is full.

References

Billaut J.-C, P. Lopez, 2011, �Characterization of all p-approximated sequences for some scheduling

problem�, IEEE International Conference on Emerging Technologies and Factory Automation,
ETFA.

Billaut J.-C., E. Hebrard and P. Lopez, 2012, �Complete Characterization of Near-Optimal Se-

quences for the Two-Machine Flow Shop Scheduling Problem�, Ninth International Conference
on Integration of Arti�cial Intelligence and Operations Research Techniques in Constraint
Programming (CPAIOR'2012), Nantes, France.

Harvey W. D., M. L. Ginsberg, 1995, �Limited Discrepancy Search�, Proceedings of the 14th In-
ternational Joint Conference on Arti�cial Intelligence, pp. 607-613.

Jackson J.R., 1955,�Scheduling a production line to minimize maximum tardiness�, Research report
43, Management Science Research Project, University of California, Los Angeles.

Ta T.T.T., R. Kivin and J.-C. Billaut, 2017, �New objective functions based on jobs positions for

single machine scheduling with deadlines�, 7th International Conference on Industrial Engi-
neering and Systems Management (IESM 2017), Saarbrucken, Germany.

Ta T.T.T., 2018, �New single machine scheduling problems with deadlines for the characterization

of optimal solutions�, Thèse, Université de Tours.

276

A Comparison of two MILP formulations for the
resource renting problem

Max Reinke and Jürgen Zimmermann

Clausthal University of Technology, Germany
max.reinke@tu-clausthal.de, juergen.zimmermann@tu-clausthal.de

Keywords: Project scheduling, resource renting, mixed-integer linear programming.

1 Introduction

Typically each activity in a project uses resources during its execution. In many cases
those resources have to be rented, for example heavy machinery on construction sites. The
renting of resources induces two types of costs namely time-independent procurement costs
and time-dependent renting costs. In this paper we present two MILP formulations for the
resource renting problem with general temporal constraints (RRP/max). The RRP/max
was introduced by Nübel (2001) and extends the well-known resource availability problem
by taking time-dependent renting costs into account. The problem aims at minimizing
the total resource costs to execute a project while taking general temporal constraints
into account. In Section 2 the RRP/max is described formally. Section 3 presents two
different time-indexed MILP formulations. Finally, in Section 4 the results of a preliminary
computational study are presented where we compare the performance of our two models.

2 Problem description

With given renting and procurement costs for each resource type the resource renting
problem (RRP/max) can be modeled as an activity-on-node network, where the nodes
represent activities V = {0, . . . , n + 1} with n real activities and the fictitious project start
0 and project end n + 1. Each activity i ∈ V is assigned a duration pi ∈ Z≥0 and has
to be performed without preemption. The arcs of the network given by set E ⊆ V × V
represent temporal constraints between activities. Arc weights δij ≥ 0 indicate a minimal
time lag for arc 〈i, j〉 ∈ E while δij < 0 gives a maximal time lag between the start times
of activities i and j. Here a project has a given deadline d̄ introduced by 〈n + 1, 0〉 with
δn+1,0 = −d̄. A sequence of start times Si for all activities i ∈ V is called a schedule
S = (S0, S1, . . . , Sn+1), which is termed time-feasible if Sj − Si ≥ δij for all 〈i, j〉 ∈ E.
Each activity i in a project has an earliest start time ESi and a latest start time LSi, so
that the possible start times can be limited to the set Wi = {ESi, ESi+1, ..., LSi}. For the
execution of activity i an amount rik ∈ Z≥0 of resource k ∈ R is needed. The RRP/max
considers renewable resources which have to be rented. The usage of one unit of resource k
for t periods incurs procurement costs cp

k and time-dependent renting costs of t·cr
k. To carry

out a project according to a given time-feasible schedule S, the number of available (rented)
resources has to be equal to or exceed the resource demand for all k ∈ R and t ∈ T . Thus,
a renting policy ϕk(S, t) is needed, which specifies when resources are procured or released,
so that ϕk(S, t) ≥ ∑

i∈V |Si≤t<Si+pi
rik for all k ∈ R and t ∈ T . For the case cp

k < cr
k an

optimal renting policy is to procure additional resources when the resource demand has a
positive step discontinuity at t and to release idle resources immediately, since procuring
new resources is less expensive than keeping unused resources. In general cp

k > cr
k holds,

here procurement costs of a resource k are higher than renting costs for one period. In this
case, we can define span = ⌊cp

k/cr
k⌋ as the maximum number of time periods for which it

277

is beneficial to hold unused resources if they are used later in the project. The objective
of the RRP/max is to find a schedule which minimizes the total costs incurred by renting
resources. The problem can be stated as follows.

Min F (S) =
∑

k∈R

[
cr

k

∫ d̄

0
ϕk(S, t)dt + cp

k

∑
t∈Jk

∆+ϕk(S, t)
]

s.t. Sj − Si ≥ δij (〈i, j〉 ∈ E)
ϕk(S, t) ≥

∑
i∈V |Si≤t<Si+pi

rik (t ∈ T, k ∈ R)

S0 = 0
Si ∈ Z≥0 (i ∈ V)

3 Mixed-integer linear programs

Both MILP formulations presented in this paper are based on well-known time-indexed
formulations for the RCPSP. The first formulation based on the formulation by Pritsker et
al. (1969) uses binary variables xit for all i ∈ V and t ∈ T where xit = 1 if activity i starts
at point in time t. To model the resource demand, we use the variable zkt representing the
amount of resource k ∈ R needed at t ∈ T . The renting policy ϕk(S, t) is modeled using
positive variables akt and wkt, which represent the number of units of resource k added or
withdrawn at t. With these variables the model (RRP-SP) can be formulated.

Min
∑

k∈R
cp

k

∑
t∈T

akt +
∑

k∈R
cr

k

∑
t∈T

t · (wkt − akt) (1.1)

s.t.
∑

t∈Wi

xit = 1 (i ∈ V) (1.2)
∑

t∈Wj

t · xjt −
∑

t∈Wi

t · xit ≥ δij (〈i, j〉 ∈ E) (1.3)
∑

i∈V
rik

∑min{t,LSi}

τ=max{ESi,t−pi+1}
xiτ ≤ zkt (k ∈ R, t ∈ T) (1.4)

∑t

τ=0
(akτ − wkτ) ≥ zkt (k ∈ R, t ∈ T) (1.5)

∑
t∈T

akt −
∑

t∈T
wkt = 0 (k ∈ R) (1.6)

akt, wkt, zkt ∈ Z≥0 (k ∈ R, t ∈ T) (1.7)
xit ∈ {0, 1} (i ∈ V, t ∈ Wi) (1.8)

Constraints (1.2) state that every activity has to be started exactly once. With Si =∑
t∈Wi

t · xit (1.3) ensure all temporal restrictions between activities are satisfied. Lower
bounds on the minimal value for every k and t are assigned to variables zkt by constraints
(1.4). The available (rented) resources at time t are given by

∑t
τ=0(akτ − wkτ), hence in-

equalities (1.5) ensure that a feasible renting policy ϕk(S, t) ≥ zkt for all k ∈ R and t ∈ T
is obtained. Also all added resources have to be withdrawn by the end of the project, see
(1.6). Alternative constraints to ensure temporal relations, are the disaggregated prece-
dence constraints proposed by Christofides et al. (1987). Here we use the formulation,

∑LSi

τ=t
xiτ +

∑min {LSj ,t+δij−1}

τ=ESj

xjτ ≤ 1 (〈i, j〉 ∈ E, t ∈ T) (1.9),

by Rieck et al. (2012) to take minimal and maximal time lags into consideration. The
second MILP formulation is based on binary on/off variables where µit = 1 if activity i is
in progress at t and otherwise µit = 0. Here we adapt the model from Artigues (2013) to
the RRP/max. By defining Kit = ⌊t/pi⌋ for all i ∈ V |pi > 0 and otherwise Kit = 0, as the
number of potential time windows of length pi in which an activity could be executed, our
second MILP model (RRP-OO) for the RRP/max can be stated as follows.

278

Min
∑

k∈R
cp

k

∑
t∈T

akt +
∑

k∈R
cr

k

∑
t∈T

t · (wkt − akt) (2.1)

s.t.
∑Kit

λ=0
µi,t−λ·pi

−
∑Ki,t−1

λ=0
µi,t−λ·pj−1 ≥ 0 (i ∈ V |pi > 0, t ∈ T \ {0}) (2.2)

∑Ki,LCi−φi

λ=0
µi,LCi−φi−λ·pi

= 1 (i ∈ V) (2.3)
∑Ki,t−δij

λ=0
µi,t−λ·pi−δij

−
∑Kjt

λ=0
µj,t−λ·pj

≥ 0 (〈i, j〉 ∈ E|δij ≥ 0, t ∈ T) (2.4)
∑Kδ

ijt

λ=0
µi,d̄−λ·pi−∆ijt

≤ 1 − µjt (〈i, j〉 ∈ E|δij < 0, t ∈ T) (2.5)
∑

i∈V
rik · µit ≤ zkt (k ∈ R, t ∈ T) (2.6)

∑t

τ=0
(akτ − wkτ) ≥ zkt (k ∈ R, t ∈ T) (2.7)

∑
t∈T

akt −
∑

t∈T
wkt = 0 (k ∈ R) (2.8)

µ00 = 1 (2.9)
µit = 0 (i ∈ V, t ∈ T \ W ′

i) (2.10)
akt, wkt, zkt ∈ Z≥0 (k ∈ R, t ∈ T) (2.11)
µit ∈ {0, 1} (i ∈ V, t ∈ Wi) (2.12)

Constraints (2.2) state that each activity has to be performed during pi consecutive
periods. For all potential time windows between the project start and the latest completion
LCi of activity i, an activity can only be in progress during one of them (2.3). Here φi = 1
if pi ≥ 1 else φi = 0. Constraints (2.4), are modifications of the disaggregated precedence
constraints used by Artigues (2013) and model all time lags where 〈i, j〉 ∈ E|δij ≥ 0, by
ensuring an activity j can only be processed if activity i has been in progress at least δij

periods before. To model time lags, where δij < 0, we define Kδ
ijt = ⌊(d̄ − t + pi + δij)/pi⌋

for all i ∈ V |pi > 0 and Kδ
ijt = 0 otherwise. Moreover ∆ijt = mod([d̄ − t + δij]/pi) for all

i ∈ V |pi > 0 and ∆ijt = 0 otherwise, is defined. Inequalities (2.5) ensure that for every time
lag 〈i, j〉 ∈ E|δij < 0, if activity i is executed during the time interval [t + pi + |δij |, ..., d̄]
activity j can not be in progress at t, since this would result in Sj −Si < δij and, therefore,
in an infeasible schedule. The calculation of the resource demand is straightforward for
this formulation, see (2.6). Constraints (2.7) and (2.8) ensure a feasible renting policy is
used. (2.9) state that the project starts at t = 0 and (2.10) set all infeasible µit to 0 where
W ′

i = {ESi, ESi+1..., LCi − 1}.

4 Lower Bounds for variables

To reduce the number of potential solutions and, therefore, limit the search space, when
solving the RRP/max, additional restrictions are devised. We establish a lower bound for
the minimal necessary number of resources to procure for the whole project, by defining∑

t∈T akt ≥ LBa
k for all k ∈ R (3.1) where LBa

k = max(LBa
1,k, LBa

2,k, LBa
3,k). LBa

1,k =
maxi∈V (rik) gives the maximum resource demand of k for any activity i. For LBa

2,k =⌈∑
i∈V rik · pi/d̄

⌉
the total workload for every resource k is distributed equally over the time

horizon of the project. The third lower bound is given by LBa
3,k = maxt∈T (

∑
i∈V nc

t
rik).

Here we use the resource demand of near-critical activities V nc
t = {i ∈ V |LSi ≤ t <

ESi + pi} to determine the minimal number of resources needed for the project at a given
point of time. For a second type of restriction, the near-critical resource demand is used to
define a bound zkt ≥ ∑

i∈V nc
t

rik for all (t ∈ T) (3.2), where the minimal number of units
needed of resource k for every t is determined. By substituting constraints (1.3) with (1.9)

279

and adding the restrictions (3.1) and (3.2), models (RRP-SPC-LB) and (RRP-OO-LB) are
obtained.

5 Performance analysis

To compare the performance of the devised formulations a computational study was
conducted. The four models were implemented in GAMS v.25.1 and solved, by using IBM
CPLEX v.12.8.0, on a computer with an Intel Core i7-7700 with 4.2 GHz and 64 GB RAM
under Windows 10. As problem instances we used adaptations of the well-known benchmark
test set UBO (Schwindt 1998) where we introduced a project deadline d̄ = α · ESn+1 with
α = {1, 1.25, 1.5} and procurement costs cr

k = CQ · cp
k with CQ = {0.5, 0.25, 0.1}. For

every combination of parameters α and CQ, 30 instances with n = {10, 20} and an order
strength of 0.5 were used. For the computational study a run time limit of 600 seconds
was employed. The results of our study are given in Tab. 1, where for all four models
the average gap [%] (relative deviation from the best lower bound), the average solution
time [s] and the number of instances solved to optimality (max. 30) are given. Instances
with a larger time horizon have more possibilities to schedule activities and therefore are
harder to solve. For most parameter combinations the presented additional restrictions
lead to smaller gaps and lower solution times for both formulations. Especially the larger
instances with n = 20 show improvements. Preliminary tests for instances with greater
numbers of activities n = {50, 100}, showed a decreasing performance of the OO-models
compared to the SP-models.
In conclusion, when comparing the two models with additional constraints (RRP-SPC-
LB) and (RRP-OO-LB) for all instances with n = 20, we found the solver is able to obtain
better solutions in a shorter amount of time with the OO-formulation. In future research,
the two formulations presented in this paper could be compared to other possible MILP
formulations for the (RRP/max).

Table 1. Results of the computational study

RRP-SP RRP-SPC-LB RRP-OO RRP-OO-LB
n α CQ gap time #opt gap time #opt gap time #opt gap time #opt
10 1 0,25 0,0 1,0 30 0,0 1,0 30 0,0 0,4 30 0,0 0,4 30
10 1,25 0,25 0,29 74,0 28 0,19 55,9 29 0,0 12,7 30 0,0 12,9 30
10 1,5 0,25 1,69 138,4 25 1,55 144,5 25 0,22 61,4 29 0,22 59,9 29
20 1 0,25 0,0 25,4 30 0,0 25,0 30 0,0 5,9 30 0,0 6,0 30
20 1,25 0,25 8,82 562,6 3 6,9 527,2 5 3,56 465,0 10 2,81 451,0 12
20 1,5 0,25 17,81 600,0 0 15,14 600,0 0 12,11 592,3 1 11,62 591,9 1

References

Artigues C., 2015, “A note on time-indexed formulations for the resource-constrained project
scheduling problem”, Technical Report 13206, LAAS, CNRS, Toulouse.

Christofides N., Álvarez-Valdés R., Tamarit J.M., 1987, “Project scheduling with resource con-
straints: A branch and bound approach”, European Journal of Operational Research, Vol. 29,
pp. 262-273.

Nübel H., 2001, “The resource renting problem subject to temporal constraints”, OR Spectrum,
Vol. 23, pp. 359-381.

Pritsker A., Watters L., Wolfe P., 1969, “Multiproject Scheduling with Limited Resources: A
Zero-One Programming Approach”, Management Science, Vol. 16, pp. 93-108.

Rieck J., Zimmermann J., Gather T., 2012, “Mixed-integer linear programming for resource lev-
eling problems”, European Journal of Operational Research, Vol. 221, pp. 27-37.

Schwindt C., 1998, “Generation of resource-constrained project scheduling problems subject to
temporal constraints”, Technical Report WIOR-543, University of Karlsruhe.

280

1

Minimizing the costs induced by perishable resource
waste in a chemotherapy production unit

Alexis ROBBES1, Yannick KERGOSIEN1, Virginie ANDRÉ2 and
Jean-Charles BILLAUT1

1 Université de Tours, LIFAT EA 6300, CNRS, ROOT ERL CNRS 7002, 64 avenue Jean
Portalis, 37200 Tours

{alexis.robbes, yannick.kergosien, jean-charles.billaut}@univ-tours.fr
2 CHRU de Tours, Hôpital Bretonneau, 2 boulevard Tonnellé, 37044 Tours Cedex 9

v.andre@chu-tours.fr

Keywords: Scheduling, Bin Packing, Healthcare, Stock management, Perishable resource.

1 Introduction

The UBCO (Bio pharmaceutical Unit of Oncology Clinic of the hospital of Tours)
produces around 150 chemotherapy drugs per day for three hospital units of Tours (France).
Perishable resources (molecules) are needed to prepare the drugs, precisely one molecule
type per Chemotherapy drug. Each molecule type has its own stability time (shelf life after
opening) and cost. The UBCO aims to respect a production lead-time so that the patient
waiting time is reduced and to minimize the production cost. Around 40 molecules types
are used for the production. The cost per vial of each molecule type varies between few
euros and more than 1200e. The production is a three-step process: sterilization of the
resources, preparation of the drug inside an isolator by an operator and quality control
of a sample by an automatic analyzer. In (Robbes et. al. 2019), a chemotherapy drug
production is modelized as a Hybrid Flow-shop scheduling problem and minimizing the
production and delivery delay is solved by a heuristic. However the heuristic presented does
not take account of the costs induced by the waste of perishable resources. In this paper
we propose a parallel machine modelization of the chemotherapy production scheduling
problem (simplified model) and a matheuristic algorithm. The goal is to find a schedule for
the chemotherapy production which minimizes the total cost of the perishable resources.

2 Problem definition

A chemotherapy drug production plant is composed of a set I of parallel identical
isolators, each one is composed by m work stations (machines). This production can be
modelized as a parallel machines scheduling problem where machines are gathered into
groups corresponding to the isolators. A job can be processed on any isolator and on any
machine of the isolator. The chemotherapy drugs are the jobs and the molecules used for the
preparation are perishable resources used by the jobs. The preparation of one chemotherapy
drug j uses only one type of molecule. The same vial can be used for several jobs. When
one vial is assigned to two jobs on two different isolators, the sterilization time σ has to be
taken into account. Each job j is also characterized by a preparation processing time pj
and a required resource quantity qj of molecule type µj . Each perishable resource r ∈ R is
stored in vials of volume Vr with a price of costr and has a stability time γr. We consider a
planning horizon of |D| consecutive days, knowing that no drug can be produced during the
week-end. The scheduling variables are the starting time sj (day and hour) and completion
time Cj of each job j. The vial index assigned to the job j is noted fj . We denote by zr the
cost induced by the perishable resource r and LBr is the lower bound of zr. The problem

281

2

is to assign the jobs to the machines, to set their starting times and to assign a vial of
perishable resource to each job, in order to minimize the total cost.

3 Matheuristic method

We propose a matheuristic method to solve this problem. We first generate an initial
solution where jobs are assigned to the machines. Then, the algorithm is based on a Gradi-
ent Descent algorithm with a Tabu list, which explores neighborhoods for the assignment
of jobs, and for the sequencing of jobs on the machines. The assignment of the vials to
the jobs is done, molecule type per molecule type, by solving a Bin Packing problem with
Conflicts. To compute the initial solution, we sort the molecule types by decreasing costr.
Then, for each molecule type in this order, we assign all the jobs using the molecule type
to the minimum possible number of machines. This behaviour tends to allow more possi-
bilities of vial assignment by reducing the number of jobs using the same molecule type
at the same time. Grouping the jobs using a same molecule type on few days reduces the
number of vial assignment incompatibilities due to the molecule stability time.

3.1 Assignment to vials: Bin Packing problem with Conflicts

The Bin Packing problem with Conflicts (BPC) is a variant of the Bin Packing problem,
where a conflict graph defines which pair of jobs cannot be packed together in the same
bin. The one-dimensional version was introduced in (Jansen and Öhring 1997).

A conflict graph is generated from conflict rules. An edge corresponds to an incompat-
ibility between two jobs to use the same vial. There are 3 conflicts cases for two jobs j and
j′ using the same type of perishable resource (µj = µj′):

1. Machine overlap conflict: the jobs are performed by different machines at the same
time, i.e. max(sj , sj′) < min(Cj , Cj′)

2. Isolator overlap conflict: the jobs are performed in different isolators and the time
gap is smaller than the sterilization time, i.e. max(sj , sj′) − σ < min(Cj , Cj′)

3. Stability conflict: the jobs are performed with a time gap greater than the stability
time of the molecule type, i.e. max(Cj , Cj′) − min(sj , sj′) > γµj

The BPC instance built from this conflict graph is solved using an Integer Linear
Programming (ILP) modelization based on the new formulation of the Bin Packing Problem
proposed in (Hadj Salem and Kieffer 2019).

3.2 Local permutation: Non Destructive Permutation

The Gradient Descent algorithm with a Tabu list executes as much as possible pair-
wise permutations on the schedule. Evaluating the schedule after each permutation is time
consuming. To avoid a costly neighbourhood exploration, we choose to focus the on per-
mutations which are consistent with the vials assignments (BPCs solutions) and do not
need to solve the BPCs again.

We define a Non Destructive Permutation (NDP) as a job pairwise permutation re-
specting some rules. Let consider two jobs j and j′ and a vial f containing the molecule
type µj that is assigned to other jobs. The goal to assign vial f (f 6= fj) to j in order to
reduce the number of vials of µj molecule type. The remaining volume of vial f should be
greater than qj .

The idea is to swap job j with j′ in the schedule, in order to modify the conflict graph
of the molecule type µj . A permutation between j and j′ is Non Destructive if the swap
between j and j′ does not modify the vial assigned to j′ (the assignment of f ′j to j′ remains
consistent). The following constraints have to be satisfied.

282

3

– zµj
6= LBµj

i.e. it is possible to reduce the number of vials.
– the vial fj used for j is not totally used.
– pj = pj′ i.e. the permutation does not impact the rest of the schedule.
– µj 6= µj′ i.e. the two jobs are not using the same molecule type.
– for all j” as fj” = fj′ , swapping j and j′ does not generate conflict between j′ and j”.

To avoid any cyclic behaviour, all jobs permuted are added in a Tabu list. Any new NDP
that implies a job in the Tabu list is forbiden.

Machine 1
1 32

p2

4 5 6

Machine 2
7 8 9 10 11 12

1

3

Vial 1

6

Vial 2

2 q2

Vial 3

Molecule type 1

7

5

8

Vial 4

10

12

11

Vial 5

4

9

Vial 6

Molecule type 2

Fig. 1. Illustration of a Non Destructive Permutation

Fig. 1 shows a possible NDP between the jobs 2 and 12 by changing the assigned Vial
f2 = 3 to f2 = 2. This NDP reduces the number of opened vial of Molecule type 1. Note
that even if the job 12 is swapped with 2, no conflict will be created between jobs assigned
to Vial 5.

4 Computational Experiments

Instances have been generated based on the real-life application at UBCO. The study
have been limited to 6 types of perishable resources. For each perishable resource r, the
vial volume is set to Vr = 10. For each job j, qj is a random value in {1, . . . , 10} and pj is a
random value between 5, 10 and 15 minutes. The sterilization time σ is set to 15 minutes.
A production day is 8 hours of work and a week has 5 production days. We consider a
time horizon |D| of 2 and 3 and 4 weeks. The number of isolators |I| belongs to 2,3 and
the number of machines per isolator is equal to m = 2.

Table 1. Perishable resources characteristics

r 1 2 3 4 5 6
Stability time γr 1 day 7 days 9 days 30 days 30 days 30 days
Cost per vial (e) 380 35 1195 25 405 740
% of the jobs requiring r 9 13 2 56 9 11

Table 1 presents the 3 characteristics of the 6 perishable resources: the stability times,
the cost per vial and the percentages of job using the resource. We fix the computation
times limit to solve an ILP to 120 seconds, with Gurobi Optimizer. The experimentation
was performed on 10 instances for each instance size. The size of an instance is defined by

283

4

the schedule horizon (number of days or weeks to schedule), the number of isolators |I|
and m the number of work stations per isolator. The number of jobs depends on the jobs
processing times, and we have

∑n
j=1 pj = 0.9× |D| × 8× 60× |I| ×m.

Table 2. Average Gap and average number of NDP depending of the initialization

Instance size Gap% Nb NDP
Horizon |D| |I| Grouping Random Grouping Random

before GD after GD before GD after GD
2 weeks 2 isolators 0.21 0.17 0.37 0.36 0.7 0.7
2 weeks 3 isolators 0.97 0.81 0.77 0.62 4.2 2.4
3 weeks 2 isolators 0.95 0.78 1.39 1.02 2.4 7.3
3 weeks 3 isolators 2.12 1.53 2.93 1.85 10.3 15.3
4 weeks 2 isolators 2.04 1.57 3.58 1.99 6.4 21.3
4 weeks 3 isolators 2.29 1.65 2.92 1.62 13.3 24.8

In Table 2, the gap is defined by 100 ∗
∑
zr−

∑
LBr∑

LBr
, two initialisation methods are com-

pared, the proposed Grouping scheduling and a Random one. The column "before GD"
represents the average gap of the initial solution and the column "after GD" represents the
average gap at the end of the Grandient Descent. "Nb NDP" is the average number of NDP
performed by the Gradient Descent algorithm. The average gap between our matheuristic
and the lower bound is very low. It seems that the initialisation method does not have
an important impact on the results after the GD but the number of NDP is greater for
a random initialisation than the Grouping heuristic. The gap of a random initialisation
is quite small even before the GD, which means that for our instances, the most impor-
tant part to reduce the total cost is not the scheduling but the vial assignments. Further
experimentations have to be done to confirm this claim.

5 Conclusion and perspectives

In this paper, we propose a matheuristic algorithm to minimize the costs induced by
perishable resources waste in a chemotherapy drugs production unit. We modelize the pro-
duction as a parallel machine scheduling problem and present a Gradient Descent algorithm
with a Tabu list where the perishable resources assignment is done by solving several Bin
Packing problem with conflicts. The computational results shows that with a short pro-
duction time horizon, we obtain solutions with a production cost near to its lower bound.
However, a large planning horizon needs multiple Gradient Descent steps before finding a
local minimum. The perspectives are to use the branch and price proposed in (Sadykov and
Vanderbeck 2012) to decrease the computation time to solve each Bin Packing problem.

References

Hadj Salem K., Y. Kieffer, 2019, “Nouvelle formulation en PLNE pour le problème classique du
Bin Packing", ROADEF 2019.

Jansen K., S. Öhring, 2012, “Approximation Algorithms for Time Constrained Scheduling", In-
formation and Computation, Vol. 132, pp. 85-108.

Robbes A., Y. Kergosien and J-C. Billaut, 2019, “Multi-level heuristic to optimize the chemother-
apy production and delivery", Health Care Systems Engineering: HCSE 2019.

Sadykov R., F. Vanderbeck, 2012, “Bin Packing with Conflicts: A Generic Branch-and-Price Al-
gorithm", INFORMS Journal on Computing, Vol. 25.

284

1

A comparison of proactive and reactive scheduling
approaches for the RCPSP with uncertain activity

durations

Pedram Saeedi, Erik Demeulemeester

KU Leuven, Faculty of Economics and Business, Department of Decision Sciences and
Information Management, Leuven (Belgium)

pedram.saeedi@kuleuven.be
erik.demeulemeester@kuleuven.be

Keywords: RCPSP, proactive and reactive scheduling, uncertain activity durations.

1 Abstract

In this paper, we study the performance of state-of-the-art robust solution approaches
towards solving the resource-constrained project scheduling problem (RCPSP) with uncer-
tain activity durations. This study addresses approaches in search of a stable project plan
that usually use a two-stage procedure, which first creates an (optimal) baseline schedule
and then provides changes in the schedule whenever the realized duration of an activ-
ity forces us to deviate from the baseline schedule. We discuss the fundamentals of these
approaches and possible directions for future research.

2 Introduction

Although the RCPSP has been studied for decades, most of the work done in this field
investigated the problem in a static and deterministic environment (Padalkar & Gopinath
2016). In reality, however, the activity durations in a project are subject to significant
uncertainty due to various internal or external factors (Zhu et al. 2005, Atkinson et al.
2006): variations in resource requirements, activities taking more or less time than their
initial estimation, changes in the budget, etc. This may result in a considerable project
overcost and/or overtime (Flyvbjerg 2013). The efforts to address uncertainty in the study
of the RCPSP are relatively small compared to those for the deterministic version. In
recent decades there have been several studies discussing project scheduling dealing with
uncertainties (one can refer to Herroelen & Leus (2005), Demeulemeester & Herroelen
(2011) and Hazir & Ulusoy (2019) for an overview of these studies).

Different approaches are proposed to address the uncertainty in project scheduling
(Herroelen & Leus 2005). From a general point of view, we can divide most of these
efforts into two categories: the stochastic RCPSP (SRCPSP, also referred to as dynamic
scheduling) and proactive and reactive project scheduling. The SRCPSP uses scheduling
policies or scheduling strategies to dynamically make certain decisions at certain moments.
This implies that no baseline schedule is created prior to the start of the project and the
schedule is generated gradually by using the aforementioned policies. This results in a lack
of robustness in the SRCPSP approach. In the proactive and reactive approaches, on the
other hand, a two-stage process is used. In the first stage, a robust baseline schedule is
produced, meaning that this approach tries to generate a baseline schedule that tolerates
a certain type of uncertainty as well as possible. In the second stage, reactive measures are
taken whenever a conflict occurs that cannot be absorbed by the baseline schedule. The
main drawback of this two-stage approach is that the final schedule (and its quality) is

285

2

heavily based on the initial baseline schedule. However, Davari & Demeulemeester (2019a)
have recently introduced an integrated proactive and reactive approach for the RCPSP to
address this drawback.

3 Methodology

The goal of the research in this paper is to study the performance of the proactive
and reactive scheduling approaches towards solving the RCPSP. There have been several
robustness measures introduced in the scheduling literature to evaluate the robustness of a
project schedule. Herroelen & Leus (2005) divide these measures into the two categories of
solution robustness and quality robustness. Solution robustness (also referred to as schedule
stability) is concerned with the difference between the baseline schedule and the realized
schedule. Quality robustness, on the other hand, is concerned with the insensitivity of the
objective value of the baseline schedule against distortions. For an overview and compari-
son of different robustness measures used in the literature we refer to (Herroelen 2007) and
(Khemakhem & Chtourou 2013).Many papers take advantage of proactive and reactive
scheduling to deal with uncertainty in the RCPSP. Leus & Herroelen (2004) developed a
linear programming model that allowed an increase in the duration of a single activity with
having only a single resource type in the problem. Al-Fawzan & Haouari (2005) studied
the optimization of the makespan and the solution robustness by introducing a bi-objective
model for the RCPSP. Deblaere et al. (2007) consider the RCPSP with uncertainty in activ-
ity durations and try to solve the problem by providing solutions on resource allocation that
would maximize schedule robustness. Van de Vonder et al. (2008) developed new heuristics
such as the starting time criticality heuristic to find solutions to the proactive RCPSP.
Lambrechts et al. (2008) focus on uncertainty in resource availability and propose eight
proactive and three reactive strategies to solve the problem. They apply two approaches
for generating a baseline schedule, including using the highest cumulative instability weight
(CIW) measure to determine an ordered list of activities for scheduling. Lamas & De-
meulemeester (2016) introduced a MIP formulation for the chance-constrained RCPSP
(C-C RCPSP). Bruni et al. (2017) take advantage of the adjustable robust optimization
approach. In the adjustable robust optimization, part of the variables in the problem are
determined before the realization of the uncertainty and the others can be adjusted based
on the realization of the uncertainty Davari & Demeulemeester (2019a) developed an in-
tegrated proactive and reactive approach towards the RCPSP and they continued their
study in Davari & Demeulemeester (2019b) by investigating different classes of reactions
and evaluating their contributions in optimal proactive and reactive policies (PR-policies).

This study is conducted in two phases. In the first phase, a thorough literature review
is done to address different proactive and reactive approaches and solutions. This phase
also covers different single or composite measures of robustness introduced in the literature
as well as different policies on activity starting times and schemes on resource allocation.
Considering the various combinations of these factors alongside different proactive and re-
active approaches in the RCPSP literature, there has not been a clear comparison of how
well different studies perform compared to each other. This is where the second phase of
this study comes to action. We will conduct a computational comparison of the proactive
and reactive RCPSP approaches to see how well they perform in the same environment and
with the same input parameters. This will give us the opportunity to see the current gaps
in the literature, for instance, to see on what type of project settings proactive and reac-
tive approaches cannot still achieve satisfactory results or cannot provide a good solution
in terms of robustness. Another contribution would be getting an overview of promising
proactive and reactive approaches and expansions to achieve further better results for dif-

286

3

ferent RCPSP problems, for instance, to identify promising (or optimal) scheduling policies
for particular versions of the RCPSP and to compare the quality of different scheduling
policies. This helps us to identify the potential directions towards future studies.

References

Al-Fawzan, M. A. & Haouari, M. (2005), ‘A bi-objective model for robust resource-constrained
project scheduling’, International Journal of production economics 96(2), 175–187.

Atkinson, R., Crawford, L. & Ward, S. (2006), ‘Fundamental uncertainties in projects and the
scope of project management’, International journal of project management 24(8), 687–698.

Bruni, M. E., Pugliese, L. D. P., Beraldi, P. & Guerriero, F. (2017), ‘An adjustable robust optimiza-
tion model for the resource-constrained project scheduling problem with uncertain activity
durations’, Omega 71, 66–84.

Davari, M. & Demeulemeester, E. (2019a), ‘The proactive and reactive resource-constrained
project scheduling problem’, Journal of Scheduling 22(2), 211–237.

Davari, M. & Demeulemeester, E. (2019b), ‘Important classes of reactions for the proactive and
reactive resource-constrained project scheduling problem’, Annals of Operations Research
274(1-2), 187–210.

Deblaere, F., Demeulemeester, E., Herroelen, W. & Van de Vonder, S. (2007), ‘Robust resource
allocation decisions in resource-constrained projects’, Decision Sciences 38(1), 5–37.

Demeulemeester, E. & Herroelen, W. (2011), ‘Robust project scheduling’, Foundations and
Trends R© in Technology, Information and Operations Management 3(3–4), 201–376.

Flyvbjerg, B. (2013), ‘Over budget, over time, over and over again: Managing major projects’.
Hazir, O. & Ulusoy, G. (2019), ‘A classification and review of approaches and methods for modeling

uncertainty in projects’, International Journal of Production Economics p. 107522.
Herroelen, W. (2007), Generating robust project baseline schedules, in ‘OR Tools and Applications:

Glimpses of Future Technologies’, INFORMS, pp. 124–144.
Herroelen, W. & Leus, R. (2005), ‘Project scheduling under uncertainty: Survey and research

potentials’, European journal of operational research 165(2), 289–306.
Khemakhem, M. A. & Chtourou, H. (2013), ‘Efficient robustness measures for the resource-

constrained project scheduling problem’, International Journal of Industrial and Systems En-
gineering 14(2), 245–267.

Lamas, P. & Demeulemeester, E. (2016), ‘A purely proactive scheduling procedure for the resource-
constrained project scheduling problem with stochastic activity durations’, Journal of Schedul-
ing 19(4), 409–428.

Lambrechts, O., Demeulemeester, E. & Herroelen, W. (2008), ‘Proactive and reactive strategies
for resource-constrained project scheduling with uncertain resource availabilities’, Journal of
scheduling 11(2), 121–136.

Leus, R. & Herroelen, W. (2004), ‘Stability and resource allocation in project planning’, IIE
transactions 36(7), 667–682.

Padalkar, M. & Gopinath, S. (2016), ‘Six decades of project management research: Thematic trends
and future opportunities’, International Journal of Project Management 34(7), 1305–1321.

Van de Vonder, S., Demeulemeester, E. & Herroelen, W. (2008), ‘Proactive heuristic procedures
for robust project scheduling: An experimental analysis’, European Journal of Operational
Research 189(3), 723–733.

Zhu, G., Bard, J. F. & Yu, G. (2005), ‘Disruption management for resource-constrained project
scheduling’, Journal of the Operational Research Society 56(4), 365–381.

287

1

Towards the Optimisation of the Dynamic and

Stochastic Resource-Constrained Multi-Project

Scheduling Problem

Ugur Satic, Peter Jacko and Christopher Kirkbride

Lancaster University, United Kingdom
u.satic@lancaster.ac.uk

Keywords: Dynamic programming, resource constraint, project scheduling, approximate
dynamic programming

1 Introduction

Project scheduling is a rich and widely studied research area, most of the literature fo-
cuses on deterministic problems such as the resource-constrained project scheduling problem

(RCPSP) and the resource-constrained multi-project scheduling problem (RCMPSP). The
goals of RCPSP and RCMPSP typically minimise the total or average project completion
times, which can be overly simplistic as it ignores the fact that projects may have di�erent
importance or rewards and may have deadlines with associated tardiness penalties. Solu-
tions for such problems are deterministic schedules that show planned starting times of
tasks.

The project execution frequently gets a�ected by many uncertainties; and project com-
pletion times deviate from the planned schedule. One uncertain element of project schedul-
ing is task durations. Another uncertain element is stochastic resource availability. Resource
availability could be a�ected by maintenance, breakdowns, personnel days o�. In the liter-
ature, the stochastic equivalents of RCPSP and RMCPSP are called the stochastic RCPSP
and the stochastic RCMPSP respectively. Most of the research in this �eld concerns only
stochastic task durations e.g. Bruni, Pugliese, Beraldi & Guerriero. (2018). Only a few
researched stochastic resource availability e.g. Wang, Chen, Mao, Chen & Li (2015).

Companies usually work on multiple projects at the same time to use their resources
more e�ectively. On the arrival of a new project it should be added to execution as soon as
possible without waiting for the completion of the previous schedule. Thus the arrival of a
new project disrupts the previous schedules. The RCMPSP with random project arrivals
is called dynamic RCMPSP (DRCMPSP). In the literature, the DRCMPSP considers the
random arrival of new projects assuming all other project elements are deterministic.

Only a limited number of research considered the both dynamic project arrivals and
stochastic task durations together e.g. Satic, Jacko & Kirkbride (2020). This problem is
called the dynamic and stochastic RCMPSP. The dynamic and stochastic RCMPSP aims to
�nd optimal schedules or scheduling policies that maximise the expected total discounted
or time-average project reward minus the costs. In this paper we will focus on the former.
We consider the dynamic and stochastic RCMPSP with project arrivals and stochastic
task durations. We model the problem as an in�nite-horizon discrete-time Markov decision

process (MDP).

2 Modelling Framework

In this study, we assume the dynamic and stochastic RCMPSP contains J project types
where the project type, j, determines the characteristics such as a new project arrival

288

2

Table 1. Example decision state for a problem with two project types, each with three
tasks.

Tasks Remaining due date
Project type 1 : x1,1 x1,2 x1,3 d1
Project type 2 : x2,1 x2,2 x2,3 d2

probability (λj), number of tasks (Ij), project network, resource requirement per unit time
of a task i (bj,i), task completion probabilities (γj,i), minimal possible completion time
(tmin

j,i), maximal possible completion time (tmax
j,i), project due date (Fj), reward (rj) and

tardiness cost (wj). We model this problem as an in�nite horizon Discrete Time Markov

Decision Process (DT-MDP) which is de�ned by �ve elements: time horizon, decision state
space, action set, transition function and pro�t function.

In a DT-MDP, the decision maker takes an action a for a decision state s at a decision
epoch that occur at �xed intervals. The period between two consecutive decision epochs is
a single unit of time, called a period.

The system information at a decision epoch is called a decision state (s). An example
decision state for a two project-type problem is given in Table 1, where xj,i is the remaining
task processing time to the latest possible task completion time (tj , i

max) and dj is the
remaining time until the due date. For tasks awaiting processing we set xj,i to −1.

The action a represents the processing decision of pending tasks (xj,i = −1) of the
decision state (s). An action must satisfy two conditions: there must be enough resources

(B) available to begin processing these new tasks (
∑J

j=1

∑Ij
i=1 bj,i(I

{
aj,i = 1

}
+ I

{
xj,i >

0
}
) ≤ B) and all predecessor tasks (Mj,i) of task imust be completed (

∑
m∈Mj,i

xj,m = 0).
After the selected action a is applied in the decision state s, the system transforms

from one state to another (s′) at the next decision epoch according to a transition function
P (s′|s, a).

P (s′|s, a) =
J∏

j=1

Ij∏

i=1

P (x′j,i|xj,i + aj,i) (1)

P (x′j,i|xj,i + aj,i) =





λjγj,i(xj,i + aj,i), for 1 ≤ xj,i + aj,i ≤ 1 + tmax
j,i − tmin

j,i ,

x′j,i = −1, i = Ij

(1− λj)γj,i(xj,i + aj,i), for 1 ≤ xj,i + aj,i ≤ 1 + tmax
j,i − tmin

j,i ,

x′j,i = 0, i = Ij

γj,i(xj,i + aj,i), for 1 ≤ xj,i + aj,i ≤ 1 + tmax
j,i − tmin

j,i ,

x′j,i = 0, i < I

1− γj,i(xj,i + aj,i), for 1 ≤ xj,i + aj,i ≤ 1 + tmax
j,i − tmin

j,i ,

x′j,i = xj,i + aj,i − 1

λj , for xj,i + aj,i = 0, x′j,i = −1, i = Ij

1− λj , for xj,i + aj,i = 0, x′j,i = 0, i = Ij

1, for xj,i + aj,i = 0, x′j,i = 0, i < Ij

1, for xj,i + aj,i > 1 + tmax
j,i − tmin

j,i ,

x′j,i = xj,i + aj,i − 1

1, for xj,i + aj,i = −1, x′j,i = −1

(2)

289

3

The pro�t function (Rs,a) is the sum of rewards (rj) of completed projects in the current
period minus the tardiness cost of any late completions.

Rs,a =
J∑

j=1

rjE
[
I
{(
xj,I ≥ 1 ∨ (xj,I = −1 ∧ aj,I = 1)

)
∧ x′j,I ≤ 0

}]

−
J∑

j=1

wjE
[
I
{(
xj,I ≥ 1 ∨ (xj,I = −1 ∧ aj,I = 1)

)
∧ x′j,I ≤ 0 ∧ dj = 0

}]
.

(3)

3 Solution Methods

We compare six di�erent solution approaches which are: a dynamic programming algo-
rithm (DP), an approximate dynamic programming algorithm (ADP), an optimal reactive
baseline algorithm (ORBA), a genetic algorithm (GA), a rule-based algorithm (RBA) and
a worst decision algorithm (WDP).

The dynamic programming value iteration algorithm is used to determine an optimal
policy that maximises the discounted long-time pro�t. We tested computational limitations
of DP in the dynamic and stochastic RCMPSP.

ADP replaces the true value function of the Bellman's equation with an approximate
one to overcome the curse of dimensionality problem of DP. We built a linear approximate
value function with two state information as decision variables and weighted them using
coe�cients. The decision variables are the number of the period spent on processing each
type of projects and the number of allocated resources between project types.

We used three reactive scheduling heuristics which are ORBA, GA and RBA. GA and
RBA methods are popular for both dynamic and static RCMPSP problems thus we added
them our comparison to evaluate their performance. Reactive scheduling methods do not
consider the future uncertainties while generates schedules; then they �x these schedules
at each distribution (Rostami, Creemers & Leus 2018).

Reactive scheduling methods generate a new baseline schedule and convert it to an
action for each state. ORBA and GA seek to maximise the pro�t and uses the total com-
pletion time as tiebreakers between the schedules with equal reward. If several schedules
have equal rewards and equal completion times, the models prioritise smallest numbered
project type. We used a population of 100 with 100 generations in GA. RBA uses the
longest processing time �rst rule to schedule. If several tasks have equal duration, RBA
selects one at random.

WDP, using a dynamic programming value iteration algorithm, seeks a non-idling policy
to minimise the average pro�t per unit time. We used this method in our comparison to
show the pro�t of the worst non-idling policy.

4 Algorithm evaluation

All tests are performed on a desktop computer with Intel i5-6500T CPU with 2.50 GHz
clock speed and 32 GB of RAM. JuliaPro 1.3.1.2 is used for coding the model, solution
approaches and problems. Three dynamic and stochastic RCMPSPs are generated and
tested consecutively from 1% to 90% project arrival probabilities, incremented by 10%.

Table 2 shows the discounted long-term pro�ts of six algorithms with 95% discount
rate. The policies of reactive scheduling algorithms are closer to optimum with low project
arrival rates such as 1% where system is closer to static and they diverge from the optimum
as arrival probability increases. ADP su�ers at low arrival probabilities but produces equal
or better results to ORBA after %30 arrival probability.

290

4

Table 2. Discounted long-term pro�ts

Two projects and two tasks problem

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

DP 6.16 16.23 22.55 26.32 28.76 30.46 31.70 32.64 33.38 33.96
ADP 3.42 13.45 18.02 22.04 26.57 27.91 28.86 29.54 30.05 30.44
ORBA 5.99 15.64 21.31 24.54 26.55 27.89 28.83 29.51 30.02 30.41
GA 5.74 14.70 18.54 20.73 19.64 24.97 20.60 22.74 21.62 20.85
RBA 5.49 13.45 16.36 16.99 16.84 16.44 16.00 15.59 15.26 15.04
WDA 5.38 12.96 15.37 15.73 15.50 15.16 14.78 14.26 13.68 12.96

Two projects and three tasks problem

DP 10.17 18.79 23.08 25.43 26.91 27.92 28.65 29.20 29.63 29.98
ADP 6.85 18.51 22.70 25.12 26.53 27.47 28.14 28.64 29.03 28.89
ORBA 10.15 18.68 22.86 25.12 26.53 27.47 28.14 28.64 29.03 29.34
GA 10.15 18.68 22.86 25.12 26.53 27.47 28.14 28.64 29.03 29.34
RBA 10.11 18.42 22.37 24.44 25.69 26.50 27.05 27.45 27.75 27.99
WDA 9.79 17.13 20.07 21.44 22.20 22.66 22.95 23.15 23.29 23.40

Three projects and two tasks problem

DP 15.14 28.36 32.63 34.92 36.98 38.74 40.19 41.37 42.33 43.12
ADP 10.50 25.48 29.15 31.83 34.23 36.28 37.99 39.39 41.23 42.03
ORBA 14.88 27.48 30.73 31.75 32.31 32.73 33.10 33.43 33.74 34.03
GA 14.63 26.79 29.37 29.84 29.88 29.97 30.65 30.60 31.29 31.62
RBA 14.61 25.96 28.64 29.96 31.21 32.48 33.73 34.93 36.06 37.11
WDA 13.82 22.59 23.31 23.26 23.14 23.05 23.04 23.10 23.23 23.40

5 Conclusion

We consider the RCMPSP with uncertain project arrivals and stochastic task durations
as an in�nite-horizon DT-MDP. We used six approaches and compared their results. We
also tested the computational limits of the DP on the dynamic and stochastic RCMPSPs.
We observed that DP su�ers from the curse of dimensionality even for the small size
problems and results of reactive scheduling methods deteriorate compared to optimum
results as stochasticity increases. ADP performs similar or better than ORBA, which is
the second best method, after 30% arrival probability. More detailed description of the
model and more extensive results can be found at Satic et al. (2020).

References

Bruni, M. E., Pugliese, L. D. P., Beraldi, P. & Guerriero., F. (2018), A two-stage stochastic pro-
gramming model for the resource constrained project scheduling problem under uncertainty,
in `Proceedings of the 7th International Conference on Operations Research and Enterprise
Systems (ICORES)', Vol. 1, INSTICC, SciTePress, pp. 194�200.

Rostami, S., Creemers, S. & Leus, R. (2018), `New strategies for stochastic resource-constrained
project scheduling', Journal of Scheduling 21(3), 349�365.

Satic, U., Jacko, P. & Kirkbride, C. (2020), `Performance evaluation of scheduling poli-
cies for the dynamic and stochastic resource-constrained multi-project scheduling prob-
lem', International Journal of Production Research, Advanced online publication, doi =
10.1080/00207543.2020.1857450.

Wang, X., Chen, Q., Mao, N., Chen, X. & Li, Z. (2015), `Proactive approach for Stochastic
RCMPSP based on multi-priority rule combinations', International Journal of Production

Research 53(4), 1098�1110.

291

An FPTAS for Scheduling with Piecewise-Linear
Nonmonotonic Convex Time-Dependent Processing

Times and Job-Specific Agreeable Slopes

Helmut A. Sedding

Institute of Data Analysis and Process Design
ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland

Keywords: Time-dependent scheduling, Piecewise-linear convex nonmonotonic processing
times with agreeable ratios of basic processing time and slopes, FPTAS

1 Introduction

The time-dependent scheduling branch is concerned with processing times that are
a function of job start time (Gawiejnowicz 2020a, 2020b). These effectively superimpose
an additional layer of complexity compared to fixed processing times. For example, an
interchange of adjacent jobs typically yields a change in their processing time. Additionally,
this change affects all subsequent jobs’ processing time. Thus, applying an adjacent job
interchange argument is more involved. Hence, it can be challenging already to sequence
a set of jobs without idle time on a single machine with the objective of minimizing the
makespan Cmax. This problem is considered in this study for a processing time function that
can attain a nonmonotonic convex shape. This shape distinguishes it from most existing
literature, which considers monotonic convex shapes (Gawiejnowicz 2020a, 2020b).

Time-dependent effects of a job’s start time can be additive, multiplicative, or com-
bined (Strusevich and Rustogi 2017). The effect studied in this study is additive, extending
the earliest work in this field in Shafransky (1978). Here, each job j has a basic processing
time `j , and a penalty function fj of start time t. They are added to yield processing time

pj(t) = `j + fj(t). (1)

This study considers the nonmonotonic piecewise-linear job-specific penalty function

fj(t) = max{−aj (t− τ), bj (t− τ)} (2)

for a given common ideal start time τ and rational valued slopes 0 ≤ aj ≤ 1 and bj ≥ 0.
The jobs are required to have agreeable ratios of basic processing time and slopes, i.e., there
must exist a sequence all jobs that fulfills condition

`iaj ≥ `jai and `ibj ≥ `jbi for any job i sequenced before any job j. (3)

The main challenge of this problem is to decide which jobs shall start before τ , and
which jobs shall start at or after τ . This decision is NP-hard already for uniform slopes
a = aj , b = bj , as shown in Sedding (2020b, 2020c) by reduction from Even-Odd Partition.

In this study, a fully polynomial time approximation scheme (FPTAS) is given for this
problem, which enables to sequence the jobs both quickly and with an error bound.

In practice, this enables fast reaction times in computationally sequencing a worker’s
tasks at the moving conveyor line, e.g., in car assembly. Here, each operation involves leav-
ing the work point, walking along the line to a supply point, and return. The occurring
walking time is, according to Sedding (2020a), adequately depicted by the studied penalty
function (2). Individual slopes with agreeable ratios (3) reflect task-specific walking veloc-
ities that occur, e.g., when carrying additional weight.

292

2 Related problems

Existing time-dependent scheduling literature with an additive effect mostly considers
penalty functions that are monotonic, hence either nondecreasing (often called deteriora-
tion effect) or nonincreasing (sometimes called learning effect). The main advantage of
monotonic penalty functions is that their monotonic effect is recursive. Starting some job
earlier does not increase its own completion time, and neither those of successors.

An interesting discovery is that it is possible for any shape of uniform (f = fj) mono-
tonic penalty functions to find an optimal sequence in polynomial time: by sorting the jobs
with respect to their basic processing time (Melnikov and Shafransky 1979).

A well-known polynomial case with job-specific penalty functions has the non-increasing
proportional-linear fj(t) = −aj t with 0 ≤ aj ≤ 1 (hence, bj = 0 and τ = 0 in (2)). Here,
any sequence that fulfills condition (3) is optimal (Ho, Leung andWei 1993). The symmetric
case is the non-decreasing proportional-linear fj(t) = bj t with bj ≥ 0 (hence, aj = 0 and
τ = 0 in (2)). Here, an optimal sequence fulfills condition

`iaj ≤ `jai and `ibj ≤ `jbi for any job i sequenced before any job j (4)

(Shafransky 1978, Gupta and Gupta 1988, Browne and Yechiali 1990, Gawiejnowicz and
Pankowska 1995).

These results are the basis for the monotonic piecewise-linear case, expressed by penalty
functions as in (2) but restricting slopes either to a = aj = 0, or to b = bj = 0. Then, the
jobs need to be partitioned into two sides around τ , which is an NP-hard problem (Kononov
1997, Kubiak and van de Velde 1998, Cheng, Ding, Kovalyov, Bachman and Janiak 2003)
that permits FPTASs (Kovalyov and Kubiak 1998, Kovalyov and Kubiak 2012, Cai, Cai
and Zhu 1998, Woeginger 2000, Ji and Cheng 2007, Halman 2020).

The non-monotonic penalty function case in (2) with symmetric slopes aj = bj < 1 is
covered by the model in Kononov (1998) for all-zero basic processing times `j = 0, and
solved by ordering the jobs non-decreasingly with respect to aj . Nonnegative `j ≥ 0 are
first considered in Sedding and Jaehn (2014) for uniform symmetric slopes a = aj = bj < 1.
A similar model is studied in Jaehn and Sedding (2016), a much more general model in
Kawase, Makino and Seimi (2018). In Sedding (2020b, 2020c), the uniform slopes a = aj ,
b = bj case is shown to be NP-hard. This model is extended to agreeable slope ratios (3)
in this study, which is expanded in Sedding (2020b).

3 Sorting criteria

In the given problem, optimal sequences exhibit a certain sort order for the jobs that
complete before or at the ideal start time τ (they are denoted by partial sequence S1),
and another for the jobs starting at or after τ (denoted by S2). Then, the jobs in S1

and S2 effectively have proportional-linear penalty functions. Hence, the respective sum of
processing times in S1 and S2 is minimized if the sorting criteria as described in section 2
hold, i.e., if S1 fulfills condition (3) and S2 fulfills (4) (Sedding 2018a, 2018b).

The sorting criteria on both S1 and S2 have implications on the construction of the
FPTAS. In the monotonic case, an arbitrary sorting is possible for either S1 (if all aj = 0),
or S2 (if all bj = 0) because the processing times in one of them are not time-dependent.
Assuming these unchanging processing times are integer, one can also assume an integral,
pseudopolynomial sum of processing times. Note that the known FPTAS for these problems
utilize both properties, which leaves them unsuitable for the studied problem.

At least, the sort criteria in S1 and in S2 are related as follows. A sequence for con-
dition (3) exists, and it is found in polynomial time. With this, the jobs are agreeably

293

renumbered such that (3) holds for the job sequence 1, 2, . . . , n. Then, it follows that there
exists an optimal S1 where the jobs are increasingly numbered, and an optimal S2 where
they are decreasingly numbered. Hence, S1 and S2 can be symmetrically sorted.

Please note that an exception to these sorting criteria might exist with a straddler job
that starts before or at τ and completes at or after τ . In particular, such a job might not
be the last job according to these criteria, i.e., the job number with number n.

4 Dynamic programming algorithm

The following dynamic programming algorithm solves the given problem exactly if
a straddler job exists (if not, the instance corresponds to a proportional-linear penalty
function case) and is already given. To choose it, the algorithm is repeatedly started with
each of the jobs as a straddler job, then returning the best feasible schedule. In the following,
straddler job χ has been chosen, the others are agreeably renumbered to 1, 2, . . . , n.

Then, the dynamic program consists of stages 1 to n. Each stage j ∈ {1, . . . , n} generates
a set Vj of partial solutions. To generate this set, job j is inserted into all partial solutions
of the preceding stage Vj−1, beginning with an empty solution in the first stage. Each
partial solution represents two sequences S1, S2. Sequence S1 represents the jobs to be
completed before or at τ , and S2 the jobs to be started at or after τ . A partial solution in
Vj−1 includes the jobs 1, . . . , j − 1 and is encoded by a nonnegative real vector [x, y, z] of

– x, which specifies sequence S1’s completion time,
– y, which specifies the proportional increase (i.e., the value of the partial derivative) of

sequence S2’s completion time for increasing its start time, and
– z, which specifies sequence S2’s sum of processing times if it is started at τ .

The initial partial solution set is V0 = {[0, 1, 0]}. There are two ways to add job j to a
partial solution: either appending j to S1 (if possible), or prepending j at S2. In this way,
condition (3) is always upheld for S1, and (4) for S2. From any vector [x, y, z] ∈ Vj−1,
appending job j to S1 is possible if x + pj(x) ≤ τ , and it adds vector [x + pj(x), y, z] to
Vj . Prepending j to S2 adds another vector [x, y · (1 + bj), y · `j + z] to Vj .

After the final stage n, the straddler job χ is inserted between S1 and S2. Given a
vector [x, y, z] ∈ Vn of the final stage, let χ start at x. If the completion time Cχ = x+pχ(x)
of the straddler job is less than τ , the vector is discarded. Otherwise, the makespan Cmax =
τ+y ·(Cχ−τ)+z of the solution vector is obtained. The smallest Cmax of all [x, y, z] ∈ Vn is
the optimum makespan value C∗max (assuming χ is an optimal straddler job). The according
job sequence can be reconstructed by traveling back the corresponding partial solutions.

5 A fully polynomial time approximation scheme

The dynamic program is turned into an FPTAS by trimming the states using ex-
ponentially growing value bins as described in Woeginger (2000). For a given maximum
relative error ε ∈ (0, 1], define ∆ = 1 + ε

2n , and function h(x) = ∆dlog∆ xe for any positive
real x, which satisfies x/∆ < h(x) ≤ x · ∆. After each stage j, the set of partial solu-
tions Vj is trimmed: for any disjoint pair of vectors [x, y, z] ∈ Vj , [x′, y′, z′] ∈ Vj where
x ≤ x′, h(y) ≤ h(y′), and h(z) = h(z′), the vector [x′, y′, z′] is discarded. It can be shown
that the number of vectors in Vn remains polynomially bounded in input size and 1/ε
by O(n3 · log (1+ bmax) · (logmax{`max, 1/bmax}+ n log (1+ bmax))/ε

2) for `max = maxj `j ,
bmax = maxj bj ; and a bounded minimum makespan Capprox

max ≤ C∗max · (1 + ε) is achieved.

294

References

Browne, S. and Yechiali, U.: 1990, Scheduling deteriorating jobs on a single processor, Operations
Research 38(3), 495–498.

Cai, J.-Y., Cai, P. and Zhu, Y.: 1998, On a scheduling problem of time deteriorating jobs, Journal
of Complexity 14(2), 190–209.

Cheng, T. C. E., Ding, Q., Kovalyov, M. Y., Bachman, A. and Janiak, A.: 2003, Scheduling jobs
with piecewise linear decreasing processing times, Naval Research Logistics 50(6), 531–554.

Gawiejnowicz, S.: 2020a, Models and algorithms of time-dependent scheduling, Monographs in
Theoretical Computer Science, second edn, Springer, Berlin, Heidelberg.

Gawiejnowicz, S.: 2020b, A review of four decades of time-dependent scheduling: main results,
new topics, and open problems, Journal of Scheduling 23(1), 3–47.

Gawiejnowicz, S. and Pankowska, L.: 1995, Scheduling jobs with varying processing times, Infor-
mation Processing Letters 54(3), 175–178.

Gupta, J. N. D. and Gupta, S. K.: 1988, Single facility scheduling with nonlinear processing times,
Computers & Industrial Engineering 14(4), 387–393.

Halman, N.: 2020, A technical note: fully polynomial time approximation schemes for minimizing
the makespan of deteriorating jobs with nonlinear processing times, Journal of Scheduling
23(6), 643–648.

Ho, K. I.-J., Leung, J. Y.-T. and Wei, W.-D.: 1993, Complexity of scheduling tasks with time-
dependent execution times, Information Processing Letters 48(6), 315–320.

Jaehn, F. and Sedding, H. A.: 2016, Scheduling with time-dependent discrepancy times, Journal
of Scheduling 19(6), 737–757.

Ji, M. and Cheng, T. C. E.: 2007, An FPTAS for scheduling jobs with piecewise linear decreasing
processing times to minimize makespan, Information Processing Letters 102(2-3), 41–47.

Kawase, Y., Makino, K. and Seimi, K.: 2018, Optimal composition ordering problems for piecewise
linear functions, Algorithmica 80(7), 2134–2159.

Kononov, A. V.: 1997, On schedules of a single machine jobs with processing times nonlinear in
time, Discrete Analysis and Operational Research 391, 109–122.

Kononov, A. V.: 1998, Problems in scheduling theory on a single machine with job durations
proportional to an arbitrary function, Diskretny̆ı Analiz i Issledovanie Operatsĭı 5(3), 17–37.

Kovalyov, M. Y. and Kubiak, W.: 1998, A fully polynomial approximation scheme for minimizing
makespan of deteriorating jobs, Journal of Heuristics 3(4), 287–297.

Kovalyov, M. Y. and Kubiak, W.: 2012, A generic FPTAS for partition type optimisation problems,
International Journal of Planning and Scheduling 1(3), 209.

Kubiak, W. and van de Velde, S. L.: 1998, Scheduling deteriorating jobs to minimize makespan,
Naval Research Logistics 45(5), 511–523.

Melnikov, O. I. and Shafransky, Y. M.: 1979, Parametric problem in scheduling theory, Cybernetics
15(3), 352–357.

Sedding, H. A.: 2018a, On the complexity of scheduling start time dependent asymmetric convex
processing times, Proceedings of the 16th International Conference on Project Management
and Scheduling, Università di Roma “Tor Vergata”, Rome, Italy, pp. 209–212.

Sedding, H. A.: 2018b, Scheduling non-monotonous convex piecewise-linear time-dependent pro-
cessing times, 2nd International Workshop on Dynamic Scheduling Problems, Adam Mick-
iewicz University, Poznań, Poland, pp. 79–84.

Sedding, H. A.: 2020a, Line side placement for shorter assembly line worker paths, IISE Transac-
tions 52(2), 181–198.

Sedding, H. A.: 2020b, Scheduling jobs with a V-shaped time-dependent processing time, Journal
of Scheduling 23(6), 751–768.

Sedding, H. A.: 2020c, Time-dependent path scheduling: Algorithmic minimization of walking time
at the moving assembly line, Springer Vieweg, Wiesbaden.

Sedding, H. A. and Jaehn, F.: 2014, Single machine scheduling with nonmonotonic piecewise linear
time dependent processing times, Proceedings of the 14th International Conference on Project
Management and Scheduling, TUM School of Management, Munich, Germany, pp. 222–225.

Shafransky, Y. M.: 1978, On optimal ordering in deterministic systems with tree-like partial serving
order, Proceedings of the Academy of Sciences of Belarus, Physics&Mathematics 1978(2), 120.

Strusevich, V. A. and Rustogi, K.: 2017, Scheduling with time-changing effects and rate-modifying
activities, Springer, Cham.

Woeginger, G. J.: 2000, When does a dynamic programming formulation guarantee the existence of
a fully polynomial time approximation scheme (FPTAS)?, INFORMS Journal on Computing
12(1), 57–74.

295

1

An analysis of critical alternatives in the RCPSP-AS

Tom Servranckx1 and Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University, Belgium
tom.servranckx@ugent.be, mario.vanhoucke@ugent.be

2 Technology and Operations Management Area, Vlerick Business School, Belgium
3 UCL School of Management, University College London, UK

Keywords: Project scheduling, Alternative project structures, Network analysis.

1 Introduction

The most well-known problem in the field of project scheduling is the resource-constrained
project scheduling problem (RCPSP) (Brucker et al. 1999). In the RCPSP, activities are
scheduled as soon as possible given technological and renewable resource constraints with
the objective of a minimal project makespan. It is assumed that the project structure is
completely fixed and known prior to project scheduling, while the projects and the project
environment are becoming increasingly complex. This raises the question whether a fixed
project structure is realistic or preferred in a highly variable project environment. There-
fore, several researchers have investigated scheduling problems in which there exist alterna-
tive ways to execute subsets of activities in the project, so-called alternative project struc-
tures (Kellenbrink and Helber 2015, Tao and Dong 2017, Tao and Dong 2018, Servranckx
and Vanhoucke 2019a). Such problems typically consist of two subproblems: a selection and
a scheduling subproblem. In the selection subproblem, a choice should be made between the
different alternatives in the project structure. Subsequently, the activities corresponding to
the selected alternatives should be scheduled in the scheduling subproblem. In this abstract,
we will focus on the RCPSP with alternative project structures (RCPSP-AS) that extends
the RCPSP by defining alternative ways to execute work packages (WPs) in the project
(Servranckx and Vanhoucke 2019a).

The current studies in this research field present meta-heuristic solution approaches
to solve both subproblems in a sequential or integrated way in order to rapidly generate
high-quality schedules for case studies and/or analyse the impact of alternatives on the
project scheduling objective. In general, these studies show that the existence of alternative
execution modes for WPs improves the flexibility of project scheduling in highly complex
and variable project environments. However, the added value of the inclusion of alternatives
will be limited in case that the research efforts are limited to project scheduling alone.
This is because the project scheduling process will reveal the best set of alternatives in
the project structure, but will neglect the non-selected alternatives. In the complex and
dynamic project environment, however, all alternatives (both the selected and non-selected
alternatives in the best found solution) could be important during project rescheduling
since the alternatives in the project structure provide innovative ways to deal with project
disruptions. Servranckx and Vanhoucke (2019b) have proposed to construct a set of back-
up schedules, so-called alternative schedules, that can be mutually switched in case that
unexpected disruptions occur during project execution. As a result, the authors do not
only determine the best set of alternatives in the baseline schedule, but also dynamically
adjust this set of alternatives.

In this research, we will contribute to the field of research by proposing a technique
to reduce the complexity of the selection subproblem of the RCPSP-AS. More precisely,
we will analyse the frequency of selection of the alternatives during the project schedul-
ing process in order to determine whether we can fix certain alternatives in the project

296

2

structure with only a limited (negative) impact on the scheduling objective as a result. By
fixing alternatives in the project structure, we reduce the number of possible combinations
between alternatives and thus reduce the complexity in the selection subproblem. Our con-
tributions are threefold: (1) We present a technique to analyse the impact of alternatives
on the solution quality of project instances. (2) We analyse the impact of two criteria on
the reduction of the number of alternatives in the project structure. (3) We validate the
proposed technique on both artificial project instances and empirical case studies.

2 Problem description

In the RCPSP-AS, Servranckx and Vanhoucke (2019a) define alternative ways to exe-
cute a subset of interrelated activities in the project. Such a subset of activities is referred
to as a WP, called an alternative subgraph, and an alternative way to execute a WP is
called an alternative branch. For the sake of simplicity, we will refer to the former as work
packages and the latter as alternatives in the remainder of this abstract. The objective of
the RCPSP-AS is to select for each WP exactly one alternative such that the resulting
precedence, resource and logical feasible schedule has a minimal project makespan. In the
RCPSP-AS, two types of dependencies between alternatives are modelled. Linked alter-
native branches indicate that (part of) the activities in one alternative branch should be
selected when another alternative branch is selected. Nested alternative subgraphs imply
that the selection of one alternative branch from an alternative subgraph is triggered by
the selection of the enclosed alternative branch. Servranckx and Vanhoucke (2019a) de-
fine two parameters to model the dependencies between alternatives: the degree of linked
alternative branches (%linked) and the degree of nested alternative subgraphs (%nested).

1 2

3 4 5 6

7 8

Alternative branch

Alternative subgraph

Linked
alternative branch

Nested
alternative subgraph

Fig. 1. Illustrative example of the RCPSP-AS

In figure 1, we show a simple example to illustrate the different concepts. We observe
two alternative subgraphs with two alternative branches each, of which one alternative
subgraph is nested. For the sake of simplicity, each alternative branch only consists of two
activities in sequence. Each curved line ‘)’ in figure 1 marks a choice between alternative
branches in an alternative subgraph.

297

3

3 Solution approach

Due to the complexity of the RCPSP-AS, the search for a (near-)optimal solution is
hard. Furthermore, a single best-found solution corresponds with a single set of selected
alternatives, while significant information can be embedded in other alternative schedules.
In this study, we therefore consider a set of (high-quality) solutions to analyse the impact
of the selected certain alternatives on the solution quality. More precisely, we use the Tabu
Search (TS) developed by Servranckx and Vanhoucke (2019a) to generate the set of high-
quality solutions within a limited computational time.

In our research, we define two important criteria to analyse the set of generated solu-
tions:

1. SOLUTION QUALITY (Q): Since we should balance between a general approach
(i.e. focus on all schedules generated in the TS) or a restrictive approach (i.e. focus on
the best solutions generated in the TS), we will analyse a subset of schedules in the
population. More precisely, we will select the best solutions with respect to the project
makespan (i.e. scheduling objective) observed throughout the search process. A small
subset will result in a high solution quality, while a larger subset will increasingly
consist of schedules with a lower solution quality.

2. CRITICALITY (C): In order to determine when an alternative can be fixed in the
project structure, we measure for each schedule in our selected set of schedules, how
many times each alternative is selected. The higher the frequency of occurrence, the
more likely it is that this alternative must be chosen, and that it can therefore be fixed.
When the frequency of an alternative exceeds a specified threshold, we fix it and do
not consider the other alternatives. A higher (lower) threshold makes it harder (easier)
to fix alternatives and thus corresponds with a higher (lower) criticality.

In our research, we will consider three thresholds (LOW , MED and HIGH) for both
criteria. Using these two criteria, we can compare the frequency of selection of an alternative
in the subset (Q) with the required frequency (C). This results in two possible outcomes.
On the one hand, the frequency of one alternative for a WP in the subset Q is higher than
the threshold C and thus this alternative can be fixed in the project structure. On the
other hand, the frequency of all alternatives for a WP in the subset Q is lower than the
threshold C. In this case, the selection of an alternative for this WP remains part of the
selection subproblem. We prefer a higher number of fixed alternatives as this implies that
a larger part of the selection subproblem can be considered solved. Therefore, the number
of fixed alternatives is an important metric throughout the analysis of the artificial data
instances and empirical case studies in the next section.

4 Computational results

In order to analyse the impact of the proposed technique on the complexity of the
selection subproblem (i.e. the degree of alternatives that can be fixed in the project struc-
ture for different settings of Q and C), we will analyse a set of 3,600 artificial project
instances presented in Servranckx and Vanhoucke (2019a). Furthermore, we will also vali-
date these results based on three case studies. In general, we can conclude that the number
of fixed alternatives indeed increases as the solution quality increases and the criticality
decreases. As expected, this behaviour is observed in both the artificial dataset and the
three case studies. However, we observe that the relative number of fixed alternatives is
lower in the artificial projects compared to the case studies since the artificial dataset con-
sists of projects with more or less similar alternatives. Furthermore, the experiments on
the artificial dataset show us that the number of fixed alternatives increases in case that

298

4

more dependencies exist between the alternatives in the project structure (i.e. %linked and
%nested increase). Some preliminary results are summarised in table 1. In figure 2, the im-

%nested %linked
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Solution LOW 0.38 0.39 0.39 0.41 0.42 0.34 0.36 0.37 0.39 .42
quality MED 0.40 0.40 0.42 0.43 0.44 0.35 0.38 0.40 0.43 0.46

HIGH 0.41 0.41 0.45 0.46 0.48 0.38 0.41 0.44 0.47 0.51
LOW 0.43 0.43 0.45 0.48 0.51 0.41 0.42 0.44 0.46 0.53

Criticality MED 0.29 0.31 0.32 0.34 0.35 0.28 0.29 0.33 0.33 0.36
HIGH 0.21 0.21 0.23 0.24 0.26 0.19 0.20 0.22 0.24 0.27

Table 1. Relative number of fixed alternatives for different settings of %nested and %linked

pact of both criteria on the number of fixed alternatives is illustrated for one of the three
case studies. A darker color in the 3D-graph corresponds with a larger relative number of
fixed alternatives. Similar results are obtained for the other case studies as well.

Low

Medium

High

8

10

12

14

16

18

20

Low
Medium

High

So
lu

tio
n

qu
al

ity

R
el

at
iv

e

of
 c

lo
se

d
ch

oi
ce

s

Criticality

Low

Medium

High

6

8

10

12

Low
Medium

High

So
lu

tio
n

qu
al

ity

R
el

at
iv

e

of
 c

lo
se

d
ch

oi
ce

s

Criticality

R
el

at
iv

e

of
 fi

xe
d

al
te

rn
at

iv
es

1
0.9
0.8 
0.7
0.6
0.5
0.4

Low

High

Fig. 2. Number of fixed alternatives for different settings of Q and C - Empirical data

In conclusion, we show that the elimination of certain alternatives allows us to identify
key alternatives in the project structure. As a result, it can help project managers to focus
their efforts during project rescheduling on important alternatives, while neglecting certain
fixed alternatives.

References

Brucker, P., A. Drexl, R. Mohring, K. Neumann, E. Pesch, 1999, "Resource-constrained project
scheduling: notation, classification, models, and methods.", European Journal of Operational
Research, Vol. 122, pp.3-41

Kellenbrink C., S. Helber, 2015, "Scheduling resource-constrained projects with a flexible project
structure", European Journal of Operational Research, Vol. 246 (2), pp. 379-391.

Servranckx, T., Vanhoucke, M., 2019a, "A tabu search procedure for the resource-constrained
project scheduling problem with alternative subgraphs". European Journal of Operational
Research, Vol. 273 (3), pp. 841-860.

Servranckx, T., Vanhoucke, M., 2019b, "Strategies for project scheduling with alternative sub-
graphs under uncertainty: similar and dissimilar sets of schedules". European Journal of Op-
erational Research, Vol. 279 (1), pp. 38-53.

299

5

Tao, S., Dong, Z. S., 2017. "Scheduling resource-constrained project problem with alternative
activity chains". Computers & Industrial Engineering, Vol. 114, pp. 288-296.

Tao, S., Dong, Z. S., 2018. "Multi-mode resource-constrained project scheduling problem with
alternative project structures". Computers & Industrial Engineering, Vol. 125, pp. 333-347.

300

1

Reference Class Forecasting to improve time and cost
forecasts: Empirical and statistical analysis

Tom Servranckx1 and Mario Vanhoucke1,2,3 and Tarik Aouam1,4

1 Faculty of Economics and Business Administration, Ghent University, Belgium
tom.servranckx@ugent.be, mario.vanhoucke@ugent.be, tarik.aouam@ugent.be
2 Technology and Operations Management Area, Vlerick Business School, Belgium

3 UCL School of Management, University College London, UK
4 International University of Rabat, BearLab, Rabat Business School, Morocco

Keywords: Time and cost forecasting; Reference class forecasting; Empirical study.

1 Introduction

In highly complex and uncertain projects, project control techniques are used to monitor
the progress and take corrective actions if necessary. However, these techniques require an
ambitious, yet realistic, baseline schedule as a point-of-reference during project control. In
practice, the construction of such a realistic baseline schedule in terms of realistic time and
cost estimates is difficult since project risks are systematically underestimated, which might
result in large time delays and cost overruns. As a result, the initial underestimation of risk,
and the corresponding underestimation of time and budget, is problematic as it hinders
effective and efficient project control actions. The possible explanations or root causes of the
risk underestimation are twofold: deliberate and unintentional underestimation (Cantarelli
et al. 1999, Flyvbjerg et al. 2002). In the former case, project managers are part of the
problem, not the solution, and the installation of improved governance is advised (Flyvbjerg
et al. 2004). In the latter case, it is recommended to use more advanced project management
techniques. These techniques need to consider an outside view, rather than an inside view,
to project risk estimation in order to overrule the project manager’s perspective on the
project risk. Using an inside view, the project manager will provide time and cost estimates
based on past experience and gut-feeling, potentially overestimating the project team’s
capabilities and/or underestimating the project’s risk. Using an outside view, the project
estimations are (partially) based on historical information and objective metrics in order
to cancel out systematic biases.

In this research, we investigate the ability of the reference class forecasting (RCF)
method to improve the project forecasts for both the time and cost dimension. This method
does not rely on specific estimates of the project manager, but instead compares the project
to a statistical distribution of similar historical projects (Flyvbjerg 2006). Two important
aspects of RCF are (1) the size of the reference classes and (2) the properties used to
construct the reference classes (e.g. industry, project size, nationality). First, the reference
classes cannot be too large as this might have a negative impact on the similarity between
the projects in a reference class, but they cannot be too small either because the results
might become statistically insignificant. Secondly, the selection of the correct properties of
similarity is important to ensure that projects are compared with other, similar projects.
Although these aspects of RCF are crucial to ensure a good outcome of the approach,
they are often neglected in RCF studies in the existing literature. More precisely, the
properties that are used to construct the reference classes are pre-defined and derived from
other studies without critical assessment. Also, the choice of properties is often left to
the project manager, which might again result in a subjective inside view, rather than an
objective outside view. Therefore, we present a research study that aims to empirically

301

2

investigate the important properties for RCF in a wide variety of industries as well as
statistically analyse the ability of RCF to improve the project forecasts. A summary of the
RCF method is shown in Figure 1. It is clearly indicated that RCF requires both a high
similarity between the projects in a single reference class and a high dissimilarity between
the different reference classes.

The contributions of our research study are threefold. First, project managers from
Belgium and Italy were questioned about the ranking of different project properties for their
ability to identify similar projects. In contrast to existing research studies, project managers
were involved in the RCF method to give their opinion about properties of similarity,
rather than that the properties of similarity were pre-defined or selected by the researchers
themselves. Secondly, we investigate the individual and combined impact of the six best
project properties on the forecasting accuracy of the RCF method using a real-life dataset of
52 projects collected from the interviewed project managers. In the literature, there already
exists a lot of research on the improvement of project forecasts (for time and cost) using
the earned value management method (Vandevoorde and Vanhoucke 2006, Vanhoucke and
Vandevoorde 2007, Vanhoucke and Vandevoorde 2008), however, we extend these research
efforts to the RCF methodology. Finally, we provide insights on the optimal number of
project properties that should be used to create reference classes.

Fig. 1. General overview of RCF method

2 Methodology

The RCF method consists of four steps in order to obtain an accurate estimate of the
duration and cost of the project prior to its start. First, a reference class of projects that
is similar to the new project should be identified. In this study, we use a dataset of 52
real-life projects and we interview 76 project managers about good properties to measure
the similarity between projects. Based on these interviews and data collection, we are able
to construct different reference classes of historical projects. The interviews were conducted
and the data was collected by Vandoorne et al. (2018). As shown in Figure 2 (Step 1), a
new project will be identified based on the selected similarity properties and assigned to a

302

3

specific reference class. Since the discrepancy between the initial estimated and final actual
cost (i.e. the forecast error) is known for the historical projects in the dataset, a probability
distribution of the forecast errors of the historic projects in this reference class is subse-
quently determined (Batselier and Vanhoucke 2016). We might observe that the forecasts
for the new project are too optimistic (or pessimistic) based on the historical information
captured in the reference class (see Figure 2 (Step 2)). Furthermore, this distribution of
the reference class is transformed into a cumulative probability distribution (see Figure 2
(Step 3)). Finally, the original forecast for the new project (e.g. using a traditional inside
view) should be changed (increased or decreased) based on the recommended uplift. In
Figure 2 (Step 4), we show the inverse cumulative distribution to compare the willingness
to accept risk for the new project and the required uplift of the estimated project duration
and/or cost.

Property 1

Low

Medium

High

Low

High

Medium

Reference  
class

New project
(Property 1: High and
property 2: Low)

Property 2

Step 1

Frequency

Forecast

Cumulative
frequency

Forecast  
error

Required
uplift

Acceptable 
chance of  

cost overrun

Step 2

Step 3Step 4

Fig. 2. Step-wise approach of RCF method

3 Computational results

In the computational experiments, we investigate the following features of RCF:

1. The individual and combined impact of the similarity properties on the forecasting
accuracy of the reference classes.

2. The difference between time and cost forecasting.
3. The impact of computing the expected uplift with and without variance.
4. The impact of the number of similarity properties on the forecasting accuracy.

The preliminary results indicate that the RCF method results in more accurate forecasts
for both the time and cost dimension. Table 1 shows that considering the variance in
the probability distribution of the forecast errors in the reference class does not result in
an improved performance of the RCF method. This might be due to the fact that the
inclusion of variance in the computation of the uplift results in an overcorrection of the
initial forecasts and, hence, too pessimistic (rather than optimistic) project duration and
cost estimates, resulting again in forecasting inaccuracy. However, more extensive research

303

4

is needed to investigate this specific observation. Finally, we notice that there exists an
optimal number of properties to consider in the RCF method.

Time Cost
No Var Var No Var Var

1 2.24 -9.15 1.13 -7.37
2 2.45 -7.75 1.20 -5.78
3 3.56 -7.46 2.65 -4.67
4 4.12 -5.97 3.52 -2.63
5 6.89 -4.21 3.82 -2.02
6 6.56 -3.60 3.15 -1.86
AVG 4.30 -6.36 2.58 -4.06

Table 1. Average percentage points improvement with/without variance for different numbers of
properties and time/cost analysis

4 Conclusion

Based on a statistical analysis, we conclude that the RCF method results in robust
improvements of the forecasting accuracy. While some combinations of properties result
in a better performance of RCF than other combinations, a general observation is that
a larger number of properties improves the RCF performance. In this case, the increased
similarity between the projects outweighs the lower number of projects in each reference
class. Finally, the results for the cost analysis (most common in the existing RCF literature)
are validated for the time analysis.

References

Batselier, J., M. Vanhoucke, 2016, "Practical Application and Empirical Evaluation of Reference
Class Forecasting for Project Management.", Project Management Journal, Vol. 47 (5), pp.36-
51.

Cantarelli, C., B. Flyvbjerg, B. Wee, E. Molin, 2010, "Lock-in and its influence on the project
performance of large-scale transportation infrastructure projects: Investigating the way in
which lock-in can emerge and affect cost overruns.", Environment and Planning B: Planning
and Design, Vol. 37, pp.792-807.

Flyvbjerg, B., M. Skamris, S. Buhl, 2002, "Underestimating costs in public works: Error or lie?",
Journal of the American Planning Association, Vol. 68 (3), pp.279-295.

Flyvbjerg, B., C. Glenting, A. RÃ¸nnest, 2004a. "Procedures for Dealing with Optimism Bias in
Transport Planning", London: The British Department for Transport, Guidance Document.

Flyvbjerg, B., 2006, "From Nobel Prize to project management: Getting risks rights.", Project
Management Journal, Vol. 37, pp.5-15.

Vandevoorde, S., M., Vanhoucke, 2006, "A comparison of different project duration forecasting
methods using earned value metrics.", International Journal of Project Management, Vol. 24,
pp. 289-302.

Vandoorne, W., M. De Smyter, T. Servranckx, M. Vanhoucke. "Practical Application of Reference
Class Forecasting: Identifying the Drivers of Similarity Between Projects". Master thesis.

Vanhoucke, M., S., Vandevoorde, 2007, "A simulation and evaluation of earned value metrics
to forecast the project duration.", Journal of the Operational Research Society, Vol. 58, pp.
1361-1374.

Vanhoucke, M., S., Vandevoorde, 2008, "Earned value forecast accuracy and activity criticality.",
The Measurable News, Summer, pp. 13-16.

304

Buffer Sizing in Critical Chain Project Management
with Network Decomposition

Bingling She1, Bo Chen1 and Nicholas G. Hall2

1 Warwick Business School, The University of Warwick
b.she@warwick.ac.uk, b.chen@warwick.ac.uk

2 Fisher College of Business, The Ohio State University
hall.33@osu.edu

Keywords: critical chain project management, buffer sizing, network decomposition

1 Introduction

Approximately 30% of global economic activity is organized using project management,
which implies an annual value of about $27 trillion (Hu et al., 2015; Zhao et al., 2020).
An important methodological development in project management is critical chain project
management (Goldratt, 1997), or CCPM for short. The critical chain he defines general-
izes the critical path (Kelley and Walker, 1959) used in traditional project planning, by
incorporating the issue of resource availability. The critical chain is protected by three
types of buffer: a project buffer, one or more feeding buffers, and one or more resource
buffers. However, buffers that are too small result in replanning and expensive emergency
procedures to avoid late delivery of the project. Whereas, buffers that are too large result
in uncompetitive bidding for projects and loss of potentially valuable contracts. Hence,
accurate buffer sizing is essential to the economic success of project companies.

Previous buffer sizing research, focused predominantly on the critical chain, typically
results in excessive buffer sizing, and critical chains being challenged by feeding buffers
during planning, as well as inconsistent performance in, e.g., makespan estimation.

We propose a new procedure for buffer sizing through analytical decomposition of the
project network, which offers logical advantages over previous ones. The buffers are de-
termined based on uncertainties of all associated chains and comparisons between parallel
critical and noncritical parts. Our work also addresses the concerns in the literature that
there is no systematic analysis of the project network structure and its relationship with
buffers. In addition, we resolve the problem of a challenged critical chain, while simulta-
neously addressing issues with multiple critical chains. Computational testing on a case
study of a real project and extensive simulated data shows that our procedure delivers
much greater accuracy in estimating project makespan, and smaller feeding buffers, while
the resulting critical chain is never challenged. Additional benefits include delayed expen-
diture, and reductions in work-in-process, rework, and multitasking.

2 Problem Description and Buffer Sizing Procedure

We consider a project consisting of a task set V = {1, 2, . . . , n}, a set E ⊆ V × V of
precedence relationships between tasks, and a renewable resource set R = {1, 2, . . . ,m}.
Tasks 1 and n are dummy, with no duration or resource requirement, representing the
start and end points of the project. The constant availability of resource k is rk, k ∈ R,
throughout the project horizon. We assume every non-dummy task i has a non-preemptive
stochastic lognormal duration Di with mean di, and a constant resource demand rik ≤ rk
of resource k ∈ R in execution. In CCPM, we assume that task i consumes exactly one
type of resource ki (Leach, 2014, p.170), i.e., rik = riki if k = ki, rik = 0 if k 6= ki. For

1

305

each task i, let Γ−1
i ⊆ V \ {i} denote the set of its immediate predecessors. The set E of

precedence relationships is given as: E = {(i, j) : i ∈ Γ−1
j , j ∈ V }. For every pair (i, j) ∈ E,

task i must be finished before the start of j. All the tasks and precedence relationships
form an acyclic task-on-node network PN(V,E). In the network, precedence relationships
(i, j) are denoted by i→ j when referring to chains, and tasks are topologically numbered,
meaning that if (i, j) ∈ E, then i < j. A resource contention is a situation where the total
resource demand exceeds the resource availability during some time period of the project.

Figure 1 illustrates the main steps of our buffer sizing procedure.

Figure 1. The Proposed Buffer Sizing Procedure

The preparation step in buffer sizing is critical chain identification, i.e, the identifica-
tion of a baseline schedule without resource contentions, given mean task durations di.
This problem is a special case of the classical resource constrained project scheduling prob-
lem (RCPSP, Demeulemeester and Herroelen (2002, p. 203)), where every task requires
only one resource in R. This special case is strongly NP-hard, even when m = 2, di = 1
and riki

= rki
= 1 (Bernstein et al., 1989). The literature describes several heuristics to

solve the classical RCPSP, with the objective of minimizing the makespan. However, we
propose a new heuristic for this special case of the RCPSP, which is designed to produce
few additional precedence relationships from breaking resource contentions, and also short
project makespans. The output is an extended precedence relationship set that defines
the extended project network for our buffer sizing procedure. From the extended network,
denoted by PN(V, Ẽ), we identify the critical chain and other noncritical chains via the
critical path method. Tasks on the critical chain are critical tasks and others are noncritical
tasks.

Next, a project buffer and feeding buffers need to be located, respectively, at the end
of the critical chain and wherever a feeding chain joins the critical chain, with well-defined
size. Our buffer sizing procedure consists of three main steps.

(1) Decomposition of the network PN(V, Ẽ) based on the identified critical chain.
(2) Feeding buffer sizing to account for nonciritical chain uncertanties and avoid the critical

chain being exceeded by noncritical chains with the insertion of feeding buffers, using
graph theory and linear programming techniques.

(3) Project buffer sizing to absorb uncertainties on the entire network with feeding buffers
inserted, by aggregating safety margins of individual components derived from the first
step.

For a single project with 150 tasks, the running time of our procedure with Matlab
R2018a is less than 10 seconds on a personal computer with processor Intel(R) Core(TM)
i5-7400 CPU @3.00GHZ and installed RAM of 8.00GB. Since the procedure is used at the
planning stage of projects, this computation time is small enough for practical use.

3 Computational Analysis

We compare our buffer sizing procedure, PP, with five methods in the literature on four
performance indicators via simulation. These five benchmarks are: Cut and Paste Method
(C&PM, Goldratt (1997)), Root Square Error Method (RSEM, Newbold (1998)), Adaptive
Procedure with Density (APD, Tukel et al. (2006)), Monte Carlo simulation method (SMC,

2

306

Tenera (2008)), and the Method of Yu et al. (2013). The four performance indicators are:
the accuracy of project makespan estimation - P1, the reliability of the estimated project
makespan - P2, the average feeding buffer size - P3, and the indicator of whether or not
the identified critical chain is challenged by the insertion of feeding buffers - P4.

In addtition to the data of a real project provided on the website of the Operations
Research & Scheduling Research Group (OR&S, 2019b; Batselier and Vanhoucke, 2015;
Vanhoucke et al., 2016), we use the data of 90 projects with 150 tasks each, randomly
generated with RanGen2 software (OR&S, 2019a; Demeulemeester et al., 2003; Vanhoucke
et al., 2008, 2016).

The numerical results on the four performance indicators show that our procedure
provides more suitable buffer sizing and more accurate project makespan estimation, as
well as much smaller feeding buffers while the critical chains are not challenged. Table 1
presents an exemplar set of our consistent results.

Table 1. Comparative Performance of Six Methods

4 Concluding Remarks

Because of the large economic value at stake, the sizing of buffers is centrally impor-
tant to CCPM. Despite extensive research, previous approaches suffer from two significant
deficiencies, which occur at the planning stage of projects: erroneous buffer sizing leads to
inaccurate estimation of project makespan, and the insertion of feeding buffers overrides
the critical chain. To resolve these issues, we have developed a buffer sizing procedure,
which analyzes the entire project network by decomposing it, to obtain more accurate
information about the relative lengths of critical and noncritical chains, and about inter-
actions between buffers, over complex network structures. Hence, the size of a buffer is
determined using global information about the project network instead of local informa-
tion about the longest chain. Based on extensive computational testing for both real and
simulated data, our procedure provides much more suitable buffer sizing and more accurate
project makespan estimation, as well as much smaller feeding buffers, than five widely used
benchmark methods. Additional benefits of our procedure include delayed expenditure, and
reduced work-in-process, rework, and multitasking.

Our work should be of direct value to project management companies, for several rea-
sons. First, all the information required for the network decomposition is immediately
available in every well documented project. Second, the algorithmic steps required can
easily be implemented as an add-on to commercial project planning software, such as Mi-
crosoft Project. Third, the elimination of the issue of challenging the critical chain simplifies
project planning and reduces replanning. Fourth, the flexibility in using safety margins en-
ables a project company to adjust its service level, in order to take into account strategic
issues that frequently influence project choice and prioritization. Fifth, our buffer sizing
procedure enables significantly more accurate and robust estimation of project makespan
than earlier methods, thereby helping project companies to avoid the problems of under-
estimation and overestimation, and their significant costs or opportunity costs. Sixth, by
enhancing CCPM, the choice that project companies face between using traditional and

3

307

CCPM planning may be clarified. Overall, we hope that the following comment will be
helpful to project companies: our work enables significant reduction in buffers relative to
other methods, but because the buffers we design are more accurately sized and located,
the result is an improvement in project estimation.

References

Batselier, J. and Vanhoucke, M. (2015). Construction and evaluation framework for a
real-life project database. International Journal of Project Management, 33(3):697–710.

Bernstein, D., Rodeh, M., and Gertner, I. (1989). On the complexity of scheduling problems
for parallel/pipelined machines. IEEE Transaction on Computers, 38(9):1308–1313.

Demeulemeester, E. and Herroelen, W. (2002). Project scheduling: a research handbook.
Kluwer Academic Publishers.

Demeulemeester, E., Vanhoucke, M., and Herroelen, W. (2003). RanGen: A random net-
work generator for activity-on-the-node networks. Journal of Scheduling, 6:17–38.

Goldratt, E. M. (1997). Critical Chain. USA: The North River Press.
Hu, X., Cui, N., and Demeulemeester, E. (2015). Effective expediting to improve project

due date and cost performance through buffer management. International Journal of
Production Research, 53(5):1460–1471.

Kelley, J. E. and Walker, M. R. (1959). Critical-path planning and scheduling. In Proceed-
ings of the Eastern Joint Computer Conference, pages 160–173. ACM.

Leach, L. P. (2014). Critical Chain Project Management. USA: The Artech House Pub-
lishers, 3rd edition.

Newbold, R. C. (1998). Project Management in the Fast Lane – Applying the Theory of
Constraints. USA: CRC Press.

OR&S (2019a). Operations Research and Scheduling Research Group - RanGen. http:
//www.projectmanagement.ugent.be/research/data/RanGen. Last accessed on Feb
18, 2020.

OR&S (2019b). Operations Research and Scheduling Research Group - Real data. http:
//www.projectmanagement.ugent.be/research/data/realdata. Last accessed on Feb
18, 2020.

Tenera, A. B. (2008). Critical chain buffer sizing: A comparative study. In 2008 PMI
research conference: Defining the future of project management, pages 1–14, Warsaw,
Poland. PMI.

Tukel, O. I., Rom, W. O., and Eksioglu, S. D. (2006). An investigation of buffer siz-
ing techniques in critical chain scheduling. European Journal of Operational Research,
172:401–416.

Vanhoucke, M., Coelho, J., and Batselier, J. (2016). An overview of project data for
integrated project managment and control. The Journal of Modern Project Management,
3(3):6–21.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., and Tavares, L. (2008). An evaluation
of the adequacy of project network generators with systematically sampled networks.
European Journal of Operational Research, 187(2):511–524.

Yu, J., Xu, Z., and Hu, C. (2013). Buffer sizing approach in critical chain project manage-
ment under multiresource constraints. In Proceedings of 2013 6th International Confer-
ence on Information Management, Innovation Management and Industrial Engineering
(ICIII), volume 3, pages 71–75. IEEE.

Zhao, W., Hall, N. G., and Liu, Z. (2020). Project evaluation and selection with task fail-
ures. Production and Operations Management, 29(2):428–446. doi: 10.1111/poms.13107.

4

308

1

A new solution procedure for multi-skilled resources in
resource-constrained project scheduling

Jakob Snauwaert1, Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University, Belgium
jakob.snauwaert@ugent.be mario.vanhoucke@ugent.be

2 Operations and Technology Management Centre, Vlerick Business School, Belgium
3 UCL School of Management, University College London, United Kingdom

Keywords: Project Management, Resource-Constrained Project Scheduling, Multi-skilled
Resource Assignment, Metaheuristic.

1 Introduction

Creating a versatile and flexible workforce has become a paramount goal in the long
term strategies of today’s corporations. Investing in the development of a set of proficient
human resources is a key concept in the success of companies that deal with projects
(Riley, et. al. 2017). Moreover, the developing need for a team of complementary skillful
resources is motivated by the current customer-specific wishes that have become regular
for companies. This move from large production firms to job-shop companies with shorter
product cycles creates a demand for workers who frequently learn to master new skills
and adapt to new product requirements and specifications (Nembhard and Uzumeri 2000).
Since a lot of projects are executed by workforces that consist of multi-skilled resources
(Haas, et. al. 2001), this paper will study their impact on the project’s characteristics and
objectives.

This abstract addresses the multi-skilled resource-constrained project scheduling prob-
lem, further abbreviated as MSRCPSP. The MSRCPSP is an extension to resource-constrained
project scheduling problem (RCPSP), which is NP-hard (Blazewicz, et. al. 1983). When
dealing with multi-skilled resources in projects, two key decisions need to be taken. The
first decision considers the workforce composition. Different from the RCPSP, the workers
are not assumed to be uniform or to master the complete skillset, rather the multi-skilled
resources are individually different and master a subset of the complete skillset. During
the workforce composition stage, the goal is to create a workforce with the right size and
available skills that match the skill requirements of the project at hand. The second deci-
sion to be taken involves simultaneously determining the activity schedule and the resource
assignment. Using the assembled workforce, the aim is to construct resource-feasible so-
lutions for the MSRCPSP that minimise two objectives. Additionally, we investigate the
impact of skills on the final project schedule and resource assignment.

In our view of the problem, the multi-skilled resources are characterised by two key
concepts known as breadth and depth. In this problem, the breadth of resources indicates
the number of skills that a resource masters. Depth is linked to a skill that a resource
masters, and signifies the efficiency at which the resource can perform the skill. The more
proficient a resource is at a skill, the higher its depth is for that skill. In this study, the depth
of a skill will impact the duration of the activities in the project. More specifically, the
value of the depth can positively or negatively affect the variable duration of the activities
dependent on the efficiency of the skills of the resources that are assigned to the activity.

In the literature, the MSRCPSP has been researched in several studies. Néron (2002)
was the first to extend the RCPSP with resource skillsets, in this study two lower bounds

309

2

were proposed. Furthermore, Bellenguez and Néron (2004) extended this research with hi-
erarchical skill levels. This concept is similar to the depth of the resources, but is handled
differently. In their research, the hierarchical skill levels are incorporated to specify a differ-
ent required efficiency level for each skill requirement, which means that it only impacts the
resource assignment and not the duration of the activities. Furthermore, various heuristics
and other solutions were proposed for this problem (Bellenguez and Néron (2007), Li and
Womer (2009), Correia, et. al. (2012)).

2 Problem Definition

In the MSRCPSP, a project can be represented by an acyclic activity-on-the-node
network G = (N, A), in which the minimum precedence relationships with a time-lag of
zero are characterised by the arc set A and the activities by the node set N . The project
consists of |N | real activities and two additional dummy activities 0 and |N | + 1, which
have no resource usage and a duration of zero. The activities are topologically ordered,
that is, an activity always has a higher label than all of its predecessors. The project is
said to be scheduled without pre-emption within the precedence relations and with a set
of renewable multi-skilled resources R, with R = 1, ..., |R|, resulting in a baseline schedule
with an activity starting time si and finishing time fi for each activity i that minimises
the makespan and resource idle time.

Each activity has a certain predefined duration and a demand for renewable resources,
that are defined differently than for the RCPSP due to the presence of skills in the problem
formulation. While the resource constraints for the RCPSP are defined as a set of renewable
resource types (with index k = 1, ..., |K|), and each activity i is linked to a resource by its
resource demand rik for each resource type k, the resource requirements are adjusted for
skills in the MSRCPSP. Each activity i ∈ N requires rij resources that master skill j of the
set of available skills J for project G. More specifically, an activity i has a certain resource
demand that is defined as a skill requirement for the skill j of a resource k. Note that
a resource k can only be assigned to no more than one activity every time unit t. Every
resource k from the set R masters at least one skill of the set of skills J , with J = 1, ..., |J |,
defined by the breadth of the resource bk. The depth djk of a skill j is the efficiency level
of the resource k, and is defined as a rational number with a default standard value equal
to 1. A resource k with a higher (lower) efficiency level is represented by a depth higher
(lower) than 1.

An individual activity i ∈ N has a predefined non-preemptive processing time of pi,
which is defined as the time required to execute the activity by workers k ∈ R with skills
of the default depth level, djk = 1. Higher depth values will reduce the processing time
of an activity, while lower levels of depth will increase the processing time. To the best of
the author’s knowledge, there is no standardised equation in the literature that calculates
the adjusted processing time of an activity i taking into account the depth djk of the skills
(j ∈ J) of the assigned workers (k ∈ R). As proposed in Heimerl and Kolisch (2010) and
Kolisch and Heimerl (2012), the reciprocal of the average depth will be used to calculate the
impact of different efficiency levels on the activity duration. Moreover, we will investigate
the impact of this variable activity duration on the activity scheduling and the resource
assignment.

3 General Methodology

The MSRCPSP under study is an NP-hard problem (Bellenguez and Néron 2004), and
is, therefore, solved using a genetic algorithm (GA). A schedule in the GA of this paper

310

3

is represented by two lists which give a solution to the activity scheduling problem and
the resource assignment problem (Figure 1). An activity list (AL) represents the activity
schedule. In such an activity list of length |N |, activities with a higher priority to be
scheduled in the schedule generation scheme are earlier in the list than activities with
a lower priority. A new priority rule list (PL) is proposed that represents the resource
assignment problem of the MSRCPSP. In this list of length |N |, every activity is assigned
a priority list value PLi that corresponds to a resource priority rule, which consists of |R|
values. A priority rule can be appointed to multiple activities and the value PLi determines
the priority rule of activity i. A set of resource priority rules is carefully assembled to
support the assignment of resources to the activities.

Fig. 1. Solution representation

To initialise the genetic algorithm several different initial solutions are created based
on the skill requirements, the skill availabilities and a random approach. Afterwards, two
parent solutions are selected from this initial population. These two parents will undergo
a crossover to generate a new child solution. In this algorithm, two different crossovers are
presented. The random two-point crossover randomly selects two points in the activity list
or the priority rule list and creates a new child solution by copying the values outside the
two points from the first parent, and inserting the values between the two points using the
order of the second parent. The split low demand ranges crossover is specifically designed
for the MSRCPSP and utilises ranges, or sections, of activities in the activity list that
have a lower resource requirement than the average resource requirement. The middle
points of the two longest ranges are then applied as in a two-point crossover to split the
sections of activities with low resource requirements. Furthermore, two basic mutators are
incorporated in this algorithm, which are the swap- and modify-mutator.

The generated solutions are further improved through several local searches. A lo-
cal search is created that improves the schedule based on the forward-backward iterative
scheduling technique of Li and Willis (1992). To improve the resource assignments of the
generated schedules, two local searches are proposed that, respectively, focus on the avail-
ability of the skills in the workforce and the depth of the resources.

4 Computational experiments

The experimental results will consists of 3 different insightful analyses.

– A comparison of the solution quality of the algorithm against a benchmark to investi-
gate the competitiveness of our algorithm.

– Investigating the quality of the set of resource priority rules used for the resource
assignment problem.

– Managerial insights on the ideal workforce size and the availability of the skills. Prelim-
inary results have shown that, in most cases, both the ideal workforce and the skill-pool
size depend on the objective and the seriality of the project network (Table 1).

311

4

Table 1. Preliminary managerial insights

Objective SP Skill-pool size Workforce size
Makespan Low Mid Mid-High
Makespan Mid Low-Mid No preference
Makespan High Low-Mid No preference
Idle Time Low Mid Low
Idle Time Mid Low Low
Idle Time High Low Low

Acknowledgements

The computational resources (Stevin Supercomputer Infrastructure) and services used
in this work were provided by the VSC (Flemish Supercomputer Center), funded by Ghent
University, FWO and the Flemish Government - department EWI.

References

Bellenguez, O., Néron, E., 2004. “Lower bounds for the multi-skill project scheduling problem
with hierarchical levels of skills", International Conference on the Practice and Theory of
Automated Timetabling, Springer, pp. 229-243.

Bellenguez-Morineau, O., Néron, E., 2007. “A branch-and-bound method for solving multi-skill
project scheduling problem", RAIRO-Operations Research, 41 (2), pp. 155-170.

Blazewicz, J., Lenstra, J. K. and Kan, A. R., 1983. “Scheduling subject to resource constraints:
classification and complexity", Discrete applied mathematics, 5 (1), pp. 11-24.

Correia, I., Lampreia-Lourenc Ì§o, L., Saldanha-da Gama, F., 2012. “Project scheduling with
flexible resources: formulation and inequalities", OR spectrum, 34 (3), pp. 635-663.

Gutjahr W.J., Katzensteiner, S., Reiter, P., Stummer, C., and Denk, M., 2010, “Multi-objective
decision analysis for competence-oriented project portfolio selection", European Journal of
Operational Research, 205 (3), pp. 670-679.

Haas, C. T., Rodriguez, A. M., Glover, R. and Goodrum, P. M., 2001. “Implementing a multiskilled
workforce", Construction Management & Economics, 19 (6), pp. 633-641.

Heimerl, C., Kolisch, R., 2010. “Scheduling and staffing multiple projects with a multi-skilled
workforce.", OR spectrum, 32 (2), pp. 343-368.

Kolisch, R., Heimerl, C., 2012. “An efficient metaheuristic for integrated scheduling and staffing
it projects based on a generalized minimum cost flow network.", Naval Research Logistics, 59
(2), pp. 111-127.

Li, K. Y., Willis, R. J., 1992. “An iterative scheduling technique for resource-constrained project
scheduling", European journal of operational research, 56 (3), pp. 370-379.

Li, H., Womer, K., 2009. “Scheduling projects with multi-skilled personnel by a hybrid MILP/CP
benders decomposition algorithm", Journal of Scheduling, 12 (3), pp. 281.

Nembhard, D. A., and Uzumeri, M. V., 2000. “Experiential learning and forgetting for manual and
cognitive tasks", International journal of industrial ergonomics, 25 (4), pp. 315-326.

Néron, E., 2002. “Lower bounds for the multi-skill project scheduling problem", Proceeding of the
Eighth International Workshop on Project Management and Scheduling, pp. 274-277.

Riley, S. M., Michael, S. C. and Mahoney, J. T., 2017. “Human capital matters: Market valuation
of firm investments in training and the role of complementary assets", Strategic Management
Journal, 38 (9), pp. 1895-1914.

312

1

The impact of limited budget on the corrective action
taking process

Jie Song1, Annelies Martens1 and Mario Vanhoucke1,2,3

1 Faculty of Economics and Business Administration, Ghent University, Belgium
jieson.song@ugent.be, annelies.martens@ugent.be, mario.vanhoucke@ugent.be

2 Technology and Operations Management, Vlerick Business School, Belgium
3 UCL School of Management, University College London, United Kingdom

Keywords: Project Management, Project Control, Simulation, Earned Value Manage-
ment.

1 Introduction

The main goal of project control is to identify the deviations between the baseline
schedule and the actual progress of the project by measuring the project performance in
progress, and using the project control methodologies to generate warning signals that
act as triggers for corrective actions to bring the project back on track. To that purpose,
tolerance limits are set on the required project performance, such that if the warning signals
exceed these limits, they should result in appropriate corrective actions. However, the
corrective actions always directly result in additional costs (reassignment of highly-skilled
personnel, extra equipment, improvement of manpower, etc.) during project progress. The
budget used for taking corrective actions is always limited in practice. In order to make
the best use of the limited budget, they should be allocated in an efficient and effective
way to repair the project delays. In this paper, four different approaches are proposed
to allocate the limited budget to take corrective actions with the aim of improving the
expected project outcome.

2 Problem formulation

The research on controlling projects with Earned Value Management (EVM) has grown
in the last decades, and the topic has been investigated from different angles. The basic and
more detailed aspects about EVM can be found in several studies (Anbari 2003, Fleming
and Koppelman 2010). Although these performance measures in the EVM methodology de-
tect deviations from the project plan, they do not notify the project manager whether these
deviations are acceptable or not. Therefore, tolerance limits should be set up in conjunc-
tion with the EVM metrics in order to support the project manager to carry out corrective
actions when necessary. Tolerance limits prescribe whether the measured project perfor-
mance is acceptable or not, such that the project manager can decide whether corrective
action is necessary. These tolerance limits can be classified into three types in literature
according to their complexity (by the type and amount of data required together with the
statistical tool used to analyze these data) and their abilities in predicting the need for
actions, namely the static tolerance limits, statistical tolerance limits and analytical toler-
ance limits. For a detailed comparison and evaluation for these three types of tolerance
limits for project control, the reader is referred to Vanhoucke (2019). When the tolerance
limits are exceeded, the project manager should decide whether to take corrective actions
or not. Vanhoucke (2010) presents a simulation study with corrective actions on the se-
lected highly sensitive activities by reducing the activities’ delay to half of their baseline
duration. However, reducing an activity’s duration normally leads to increased cost and

313

2

this is known as activity crashing. The computational results have shown that corrective
actions taken on highly sensitive activities are more reliable for parallel projects, but lead
to poor contribution for serial projects. In order to provide a better alternative to the poor
behavior of these corrective actions for more serial projects, Vanhoucke (2011) extends this
research by introducing the concept of control efficiency for corrective actions and compares
two alternative methods in a simulation study. The author still relies on activity crash-
ing as the only way of taking corrective actions. Moreover, the author shows that EVM
is more reliable for serial projects than for parallel projects. Hu et. al. (2016) implement
corrective actions on selected sensitive activities by reducing the baseline activity duration
proportional to activity sensitivity information to revise the project delay.

Despite the growing amount of literature on project control with corrective actions, to
the best of our knowledge, none of these studies discussed previously have explicitly taken
the limited availability of budget for taking corrective actions into account. Due to the
presence of a budget constraint, not all the corrective actions are able to be taken timely
when the current project performance is not acceptable, and this might have a negative
impact on the project outcome. Consequently, the central question of this paper is how the
limited budget can be best allocated, such that it can support the project manager to take
efficient corrective actions to improve the expected project outcome.

This paper presents four different approaches to allocate the limited budget accord-
ing to different project characteristics. More precisely, the Earned Value (EV) approach
makes use of the earned value methodology to allocate the limited budget according to the
cost information of each project phase. The Earned Schedule (ES) approach allocates the
limited budget using the earned schedule methodology which measures the time and cost
information of the project. The Earned Duration (ED) approach uses the earned duration
methodology to allocate the limited budget based on the time information of the project.
The Activity Risk approach (AR) uses the risk information of each individual activity to
allocate the limited budget.

3 Methodology

3.1 Data generation

In order to test the impact of limited budget on the corrective action taking process, a
set of 900 fictitious project networks with topological structure are generated by a project
network generator RanGen (Demeulemeester et. al. 2003, Vanhoucke et. al. 2008). The
dataset is extensively applied in previous project control simulation studies (Ballesteros-
Pérez et. al. 2019, Elshaer 2013). The topological structure of these fictitious project net-
works are presented by the serial/parallel (SP) indicator, which is used to measure the
closeness of a project network, and contains 100 projects for SP = 0.1, 0.2,...,0.9. More
specifically, project networks with low (high) SP values are close to parallel (serial) projects.
Each project network consists of 30 activities. For each activity, the fixed cost is uniformly
sampled between e 10 and e 90, a variable cost is uniformly sampled between e 100 and
e 900.

3.2 Setting tolerance limits

The tolerance limits are constructed by assuming that the project buffer of a certain
percentage of the planned duration is consumed proportionally to the PV accrue of each
project phase. More specifically, when the project is completed at x% of the BAC, x% of
the project buffer is allowed to be consumed for that phase. This approach is developed
by Martens and Vanhoucke (2017). In this study, the tolerance limits are set for project

314

3

buffer sizes of 15%, 25% and 35% of the PD to simulate the frequency of warning signals
in the project.

3.3 Simulated project execution

With the aim of generating a large set of fictitious project executions, Monte Carlo
simulations are employed to generate project information with the presence of uncertainty.
We will use the lognormal distribution which is skewed to the right to model the real
activity duration (Hu et. al. 2016, Bie et. al. 2012, Kotiah and Wallace 1973), with µ = 1.1
and δ = 0.3.

3.4 Corrective actions

When a warning signal is generated during project execution, an action will be taken
at that control phase. In this case, the estimated remaining duration of the eligible activity
will be reduced under strict predefined limits. In the simulation experiments, three reduced
levels of duration are considered and compared (i.e. 30%, 50% and 70% of the estimated
activity duration) in order to simulate different degrees of corrective actions.

4 Results

In the experiment, the time efficiency is used to assess the ability of each approach to
reduce the real project duration within the same control effort, which has been introduced
in Vanhoucke (2010). The time efficiency is measured as a ratio between the total reduction
in the project real duration after taking corrective actions (RDno − RDyes) and the sum
of reduction in the activities due to crashing (RDno

i −RDyes
i), as described in Eq. (1).

time efficiency =

{
0, if denominator = 0

1
nrsw

∑nrsw
k=1 (RDno−RDyes

∑nract
i=1 (RDno

i −RDyes
i)

), otherwise (1)

With nrsw the total number of projects with warning signals. As can be seen from this
formula, the time efficiency equals to 1 when the reduction in real project duration is equal
to the total change in all evaluated activities, which is a desirable state. Moreover, the time
efficiency can be also equal to 0, when the total change in all the activities has no effect on
the real project duration (numerator = 0) or when no corrective actions are taken when
warning signals generated, due to a lack of available control budget (denominator = 0).

First, the computational results show that the ED approach (39.12%, Avg.) outperforms
on average the other three approaches (EV: 29.13%, ES: 37.36%, AR: 38.11%). This ED ap-
proach allocates the limited budget according the to earned duration metric, and generates
warning signals using tolerance limits set of the duration performance index DPI. It has al-
ready been shown in Batselier and Vanhoucke (2015) that this ED-DPI approach performs
well for predicting the total project duration, but now it shows that it also performs well
when taking corrective actions under a limited budget. Hence, our study confirms previous
results, and shows that using earned duration management performs well both for project
duration forecasting and for taking corrective action to bring projects back on track.

Second, the results show that the time efficiency decreases when the buffer size grows.
When a relatively small buffer size is added at the end of the project, the project per-
formance in progress will be frequently exceeded by the dynamic tolerance limits, and
even the presence of small delays in the projects will result in more corrective actions in
dynamic project progress. However, in case of a relatively large buffer size, the project
performance measures seldom drop below the tolerance limits to generate warning signals

315

4

to take corrective actions. In these cases, a false signal (i.e. project delay due to serious
delay in non-critical activities which has little impact on the project duration) will have a
larger influence (negative) on the time efficiency.

References

Anbari F., 2003, “Earned value project management method and extensions", Project Management
Journal, Vol. 34, pp. 12-23.

Ballesteros-Pérez P., A. Cerezo-Narvaéz, M. Pastor-Fernández, and M. Vanhoucke, 2019, “Perfor-
mance comparison of activity sensitivity metrics in schedule risk analysis", Automation in
Construction, Vol. 106, 102906.

Batselier J., M. Vanhoucke, 2015, “Evaluation of deterministic state-of-the-art forecasting ap-
proaches for project duration based on earned value management", International Journal of
Project Management, Vol. 33(7), pp. 1558-1596.

Bie L., N. Cui and X. Zhang, 2012, “Buffer sizing approach with dependence assumption between
activities in critical chain scheduling", International Journal of Production Research, Vol. 50,
pp. 7343-7356.

Demeulemeester E., M. Vanhoucke and W. Herroelen, 2003, “Rangen: A random network generator
for activity-on-the-node networks", Journal of Scheduling, Vol. 6, pp. 17-38.

Elshaer R., 2013, “Impact of sensitivity information on the prediction of project’s duration using
earned schedule method", International Journal of Project Management, Vol. 31, pp. 579-588.

Fleming Q., J. Koppelman, 2010, “Earned value project management", Project Management In-
stitute, Newton Square, Pennsylvania, 3rd edition.

Hu X., N. Cui, E. Demeulemeester, and L. Bie, 2016, “Incorporation of activity sensitivity measures
into buffer management to manage project schedule risk", European Journal of Operational
Research, Vol. 249, pp. 717-727.

Kotiah T., N. D. Wallace, 1973, “Another look at the pert assumptions", Management Science,
Vol. 20(1), pp. 44-49.

Martens A., M. Vanhoucke, 2017, “A buffer control method for top-down project control", European
Journal Of Operational Research, Vol. 262, pp. 274-286.

Vanhoucke M., J. Coelho, D. Debels, B. Maenhout and L. Tavares, 2008, “An evaluation of the
adequacy of project network generators with systematically sampled networks", European
Journal of Operational Research, Vol. 187, pp. 511-524.

Vanhoucke M., 2010, “Using activity sensitivity and network topology information to monitor
project time performance", Omega The International Journal of Management Science, Vol.
01, pp. 1-5.

Vanhoucke M., 2011, “On the dynamic use of project performance and schedule risk information
during project tracking", Omega The International Journal of Management Science, Vol. 39,
pp. 416-426.

Vanhoucke M., 2019, “Tolerance limits for project control: An overview of different approaches",
Computers & Industrial Engineering, Vol. 127, pp. 467-479.

316

1

A New Lower Bound Approach for the Multi-mode

Resource Constrained Project Scheduling Problem

Christian Stürck1

Helmut Schmidt University Hamburg, Germany
christian.stuerck@hsu-hh.de

Keywords: MRCPSP, project scheduling, lower bounds.

1 Introduction and problem description

The multi-mode resource constrained project scheduling problem (MRCPSP) is an
extension of the resource-constrained project scheduling problem (RCPSP). Besides the
decision of starting time, a mode has to be chosen for each activity.

The objective of the MRCPSP is to �nd the minimum feasible makespan of the project.
The project consists of a set of activities A = {0, ..., n+1}. Each activity i can be executed
in di�erent modes. Therefore, for each activity i a set of modes Mi is given. Mode m has
a duration di,m ∈ Z+ as well as a resource consumption ri,m,k ∈ Z+ for each resource
k ∈ R∪Rn. The duration and the resource consumption of an activity varies with respect
to the chosen mode. On the one hand, a set of renewable resources R is given which are
available per time unit. On the other hand, a set of non-renewable resources Rn exists
which are available through out the whole project. Activities have precedence constraints
between each other. Set E = {(i, j) : i, j ∈ A} indicates the precedence relations. Every
activity has to be set to a mode and a starting time, while respecting all precedence and
resource constraints. A mathematical model for the MRCPSP was �rst described by Talbot
(1982):

min

LSn+1∑

ESn+1

xn+1,1,t · t (1)

s.t.
∑

m∈Mi

LSi∑

t=ESi

xi,m,t = 1 ∀i ∈ A

(2)

∑

m∈Mi

LSi∑

t=ESi

xi,m,t · (t+ di,m) ≤
∑

m∈Mj

LSj∑

t=ESj

xj,m,t · t ∀(i, j) ∈ E

(3)

∑

i∈A

∑

m∈Mi

LSi∑

t=ESi

xi,m,t · ri,m,k ≤ Rk ∀k ∈ Rn

(4)

∑

i∈A

∑

m∈Mi

min(t,LSi)∑

q=max(ESi,t−di,m+1)

xi,m,q · ri,m,k ≤ Rk ∀k ∈ R,∀t ∈ T

(5)

xi,m,t ∈ {0, 1} ∀i ∈ A,∀m ∈Mi, t = ESi, . . . , LSi

(6)

317

2

The binary decision variables xi,m,t are set to one if and only if the activity i is executed
in mode m and if it starts at time period t. We consider the non-preemptive case of the
MRCPSP, which means that an activity cannot be interrupted or change its mode, once it
is started. Note that in the model above the index t denotes the starting period and not
the completion period as introduced by Talbot.

The objective function (1) minimizes the starting time of the dummy activity n+1. As
this denotes the end of the project, the makespan of the project is minimized. Term (2)
ensures that each activity is assigned to exactly one mode and to one starting time. Con-
straints (3) guarantee the precedence relations, i.e., an activity i must be �nished before
activity j can start if (i, j) ∈ E. Inequalities (4) and (5) restrict the resource consumptions
for the non-renewable and renewable resources, respectively. The binary decision variables
are de�ned in (6).

The MRCPSP is a NP-hard problem, even �nding a feasible mode assignment is NP-
complete if the instance has more than one non-renewable resource (Kolisch and Drexl
(1997)). Lower bounds can be used either to evaluate the quality of a solution or as bounds
in an exact approach to reduce the solution space. Therefore this work presents new lower
bound approaches for the MRCPSP.

2 A new lower bound approach

Several lower bound procedures for the MRCPSP already exist in the literature. The
most common one is the Critical Path Lower Bound (CP-LB) which only considers the
precedence constraints and relaxes all resource constraints (Kelley (1963)). Since every
activity has more than one mode the mode with the shortest duration is always chosen for
the CP-LB.

More complex lower bounds were presented as well. Maniezzo and Mingozzi (1999)
presents several LP relaxations. Pesch (1999) uses an adaptation of the Talbot (1982)
algorithm for generating lower bounds. The approaches of Zhu et al. (1997) and Stürck
and Gerhards (2018) are based on calculating new earliest starting times for the activities
which lead to new lower bounds. But there are a lot more lower bound procedures for the
RCPSP. For an example the work of Klein and Scholl (1999) alone presents 17 di�erent
approaches for lower bounds for the RCPSP.

This work will present a new lower bound approach for the MRCPS. It is based on
the Capacity Bound for the RCPSP in Klein and Scholl (1999). Klein and Scholl (1999)
described the Capacity Bound as follows: for each activity the duration is multiplied with
the renewable resource consumption of the activity. These products are summed up and
divided by the available resource per time period:

Capacity Bound = max{d
∑

i∈A
rri,k · di/Rke : k ∈ Rr} . (7)

This operation is done for every renewable resource. The maximal rounded up quotient
determines the lower bound for the RCPSP.

To use this approach for the MRCPSP it has to be adapted. We combine the Capacity
Bound with a feasible mode assignment. Therefore we call this bound the Feasible Mode

Capacity Bound. The used feasible mode assignment is inspired by the MIP approach of
To�olo et al. (2016). The problem of the mode selection is rede�ned to a multidimensional
knapsack problem:

318

3

min
∑

i∈A

∑

m∈Mi

yi,m · di,m (8)

s.t.
∑

m∈Mi

yi,m = 1 ∀i ∈ A (9)

∑

i∈A

∑

m∈Mi

yi,m · rni,m,k ≤ Rn
k ∀k ∈ Rn (10)

yi,m ∈ {0, 1} ∀i ∈ A,∀m ∈Mi (11)

The binary decision variables yi,m are set to one if and only if the activity i is executed
in mode m. The constraint (9) assigns exactly one mode to each activity. Term (10) en-
sures that the non-renewable resources are not exceeded. The objective function (8) is just
subsidiary for �nding a feasible mode assignment.

These two approaches can be combined a new lower bound procedure: the Feasible

Mode Capacity Bound :

minBl =
∑

i∈A

∑

m∈Mi

yi,m · di,m · rri,m,k (12)

s.t.
∑

m∈Mi

yi,m = 1 ∀i ∈ A (13)

∑

i∈A

∑

m∈Mi

yi,m · rni,m,k ≤ Rn
k ∀k ∈ Rn (14)

yi,m ∈ {0, 1} ∀i ∈ A,∀m ∈Mi (15)

The aim is to �nd a feasible mode assignment with the minimal renewable resource
usage Bl for each renewable resource l ∈ Rr. The binary decision variables (15) are set
to one if and only if the activity i is executed in mode m. The objective function (12) is
similar to Term (7) with the addition of yi,m which ensures that only the chosen modes
are considered. With (13) each activity is assigned to exactly one mode. Constraint (14)
considers all non-renewable resources k ∈ Rn.

This mathematical model ((12) � (15)) is solved for each renewable resource l ∈ Rr. In
the next step the Feasible Mode Capacity Bound can be solved:

Feasible Mode Capacity Bound = max{dBl/Rle : l ∈ Rr} . (16)

Each quotient is rounded up since only integer periods are considered. The maximal
quotient determines the Feasible Mode Capacity Bound. The next section will display the
computational experiments.

3 Computational experiments

The experiments were done on the MMLIB instances presented by Van Peteghem and
Vanhoucke (2014) and carried out on a PC with an Intel Xeon X5650 CPU at 2.66 GHz.
The algorithm is implemented in C# and CPLEX 12.6.3 was used as solver.

Although �nding a feasible mode assignment is already NP-complete if the instance
has more than one non-renewable resource (Kolisch and Drexl (1997)) the procedure is
quite fast. The computation of the lower bounds took 24.03 seconds on average, with

319

4

a minimum of 0.01 seconds for 204 instances and a maximum of 109.91 seconds for an
MMLIB+ instance with 100 activities and 9 modes. Table 1 shows the results for the
computational experiments.

Table 1. Computational experiments for the Feasible Mode Capacity Bound on the MMLIB

MMLIB50 MMLIB100 MMLIB+ Sum

total number of instances 540 540 3 240 4 320

Best known solution = CP-LB 229 264 473 966

Feasible Mode Capacity Bound > CP-LB 107 120 1 878 2 105

For 966 instances the best known solution is already equal to the Critical Path Bound

and therefore optimal. The presented procedure was able to �nd a better Feasible Mode Ca-

pacity Bound compared to Critical Path Bound for 2 105 of the remaining 3 354 instances.

4 Conclusion

This work presented a new approach for computing lower bounds for the MRCPSP.
The computational experiments showed that the procedure is able to improve the lower
bound for 67.76% of the MMLIB instances without a known optimum. Furthermore, the
experiments showed that the computation time of the approach is reasonably low with a
few seconds for most of the MMLIB instances.

References

Kelley, J. E. 1963, �The critical-path method: Resources planning and scheduling", Industrial
Scheduling, Vol. 13, no. 1, pp. 347-365.

Klein, R. and Scholl, A. 1999, �Computing lower bounds by destructive improvement: An applica-
tion to resource-constrained project scheduling", European Journal of Operational Research,
Vol. 112, no. 2, pp. 322-346.

Kolisch, R. and Drexl, A. 1997, �Local search for nonpreemptive multi-mode resource-constrained
project scheduling", IIE Transactions, Vol. 29, no. 11, pp. 987-999.

Maniezzo, V. and Mingozzi, A. 1999, �A Heuristic Procedure For the Multi-mode Project Schedul-
ing Problem Based on Benders Decomposition", In: Project Scheduling: Recent Models, Algo-

rithms and Applications eds: W¦glarzz, J., pp. 179-196, Kluwer(Boston).
Pesch, E. 1999, �Lower bounds in di�erent problem classes of project schedules with resource con-

straints", In: Project Scheduling: Recent Models, Algorithms and Applications eds: W¦glarzz,
J., pp. 179-196, Kluwer(Boston).

Stürck, C. and Gerhards, P. 2018, �Providing Lower Bounds for the Multi-Mode Resource-
Constrained Project Scheduling Problem", In: Operations Research Proceedings 2016 eds:
Fink, A., Fügenschuh, A. and Geiger, M. J., pp. 551-557, Springer (Cham).

Talbot, F. B. 1982, �Resource-constrained project scheduling with time-resource tradeo�s: The
nonpreemptive case", Management Science, Vol. 28, no. 10, pp. 1197-1210.

To�olo, T., Santos, H. G., Carvalho, M., and Soares, J. A., �An integer programming approach to
the multimode resource-constrained multiproject scheduling problem", Journal of Scheduling,
Vol. 19, no. 3, pp. 295-307.

Van Peteghem, V. and Vanhoucke, M. 2014, �An experimental investigation of metaheuristics for
the multi-mode resource-constrained project scheduling problem on new dataset instances",
European Journal of Operational Research, Vol. 235, no. 1, pp. 62-72.

Zhu, G., Bard, J. F. and Yu, G. 2006, �A branch-and-cut procedure for the multimode resource-
constrained project-scheduling problem", INFORMS Journal on Computing, Vol. 18, no. 3,
pp. 377-390.

320

How to find Critical Mass of Task Threatening the Projects

Šubrt Tomáš1, Brožová Helena2

Czech University of Life Sciences Prague, Fac. of Economics and Management,
Dept. of Systems Engineering, Kamýcká 129, 165 21 Praha 6 – Suchdol, CZ

1subrt@pef.czu.cz, 2brozova@pef.czu.cz

Keywords: Project management, Critical Mass, task neglectedness, routine task

1 Introduction

Modern project management uses a variety of methods that identify tasks and tasks resources
potentially threatening the successful completion of the project. From the 1950s to the 1980s, almost
exclusively the critical path methods, such as CPM, MPM, PERT (Nicolas, Stein, 2012), and GERT
(Pritsker, 1966), were used to identify tasks that delay a project's completion date due to delay of
tasks. Based on the results that these methods provide the project managers can draw their attention
to critical tasks that need to be monitored in terms of conditions for their implementation, resource
allocation and sufficient budgeting. They can also define the potential threats, but the tasks highly
uncritical with large slacks are omitted. Newer methods from the last quarter of the 20th century are
more focused on the human factor in project tasks completing. Multi-resource tasks, or sequences
of tasks with a single assigned resource, are seen as threatening tasks (InterPlan System, 2002). For
instance, the Critical Chain method and its derivatives seek to implement project management prac-
tices that eliminate human factor influence and, with the use of post-limitation postulates (Goldratt,
1997) warn the project manager of potential project threats or failures. Other methods assessing the
importance and criticality of tasks are based on heuristic or the criticalness potential of tasks
(Brožová et al., 2016, 2019) measuring task characteristics in terms of cost, resources, duration,
connectivity, distance from origin. The higher value of task criticalness potential the higher needed
focus on the task.

The first thoughts that small and insignificant tasks that do not lie even not on the critical path,
but are present in larger quantities, may also endanger the project due date or successful completion
arose at the beginning of 21st century, when the Turnaround “project” Management theory emerges
in the context of hurricane Katrina in 2005. The term Critical Mass is used to denote such tasks. In
Turnaround context, these tasks concentrated into the critical mass can endanger the project but such
tasks are not typical only for turnaround but also for general projects. The critical mass tasks typi-
cally do not exceed ten percent of the estimated man-hours, are small, short, inexpensive, low pri-
ority, practically without relationships to other tasks, with only few resource assignments. Even
though the critical path tasks are on schedule, critical mass tasks generally have plenty of float (slack
time) and can be executed just about any time in any order. Nevertheless, insufficient resources often
force these tasks to be scheduled late (InterPlan Systems, 2002). The omission or neglect of one of
these tasks may not jeopardize the whole project, but grouping them in the critical mass will endan-
ger the project in its very essence.

Typical examples of such tasks are various control or verification tasks, but also performed rou-
tinely tasks, many times per project, which are normally performed only a few times instead of the
scheduled number of repetitions. Therefore, we try to derive indicators that can reveal these tasks
using the indicators values or similarities of these values.

2 Critical Mass Potential and Routine Tasks

The Critical Mass Member Candidate (CMMC) tasks may endanger the project itself or its cru-
cial parts. As mentioned above, tasks of this type are often short and inexpensive, isolated, can take
place at any time, and have no or few successors. The starting points of suggested method of iden-
tification of the critical mass task are the criteria and indicators following the specific features of
critical mass tasks and the reversed concept of criticality. Next the task neglectedness potential of
the project tasks is estimated using the multiple attributes decision-making method similarly the
tasks criticalness potential (Brožová et al., 2016, 2019, Šubrt et al., 2019).

321

The first criterion for this assessment is the continuity criterion based on the degree of isolation
of the task. The number of successors of the project task is crucial for its determination. The prede-
cessors do not play an important role; there is no control mechanism for initiating the next task for
predecessors. Suppose the project is formalized by an Activity On Node network graph. Then the
continuity criterion can be derived from the output degree of the task node. Although it is significant
for all relationship types, the major impact is in the case of FS relationship. If the output degree is
greater than 2, sufficient successors can be assumed to control task completion, in the opposite site,
there is lack of control of task completion. The 1 is added as each task has at least one successor –
the dummy tasks “end of the project”. The continuity criterion was set as

 ��� = ����	
� + 12 (1)

where ��� is criterion of task continuity, ����	
� is output degree of the node �. This criterion for the
CMMC tasks is relevant if and only less or equal to 1.

The second criterion showing another view on potential task neglectedness combines the criteria
of resource diversity and resource intensity. Again, it is considered that CMMC tasks are not re-
source intensive or resource variable. The analysis shows neglect threating, if no more than two
resource types and/or no more than two assigned units appears. Criterion of resource variability is ���� = ��2 (2)

where ���� is criterion of resource variability, �� is number of resource types assigned to task �.
Value of this criterion is CMMC relevant if and only if less or equal to 1.

Criterion of resource intensity evaluates the amount of resources units as ���� = ∑ �������2 (3)

where ���� is criterion of resource intensity, ��� is number of resource units assigned to task �, � is
number of resource types assigned to task �, � is number of resource types assigned to task �. This
criterion is relevant if and only if less or equal to 1.

These two criteria can be combined to the resource neglectedness criterion using their product ��� = ���� . ���� (4)
This criterion is again CMMC relevant if and only if less or equal to 1.

Next criteria for evaluation of CMMC are directly derived from the factors based on the project
schedule, and are compared with the aggregate indicators of the entire project (total duration, budget,
total work effort) for normalization of its values. The reason for this is to eliminate the influence of
dominant task and identify the tasks with minimal demands. Therefore, we can define four additional
criteria:

The CMMC are tasks that are generally very short. Therefore, the duration neglectedness crite-
rion of the Critical Mass task has to reach very low value ��� = ��� (5)

where ��� is task duration neglect criterion, �� is duration of task �, � is total duration of the project.
Task cost neglectedness criterion also has to have very low value if the Critical Mass tasks are

really inexpensive ��� = ��� (6)

where ��� is task cost neglect criterion, �� is cost of task �, � is project budget at completion.
Task work neglectedness criterion describes the needed effort which is very low for the Critical

Mass tasks ��� = ��∑ ������ (7)

where ��� is task work neglectedness criterion, �� is amount of work of the task �, � is the number
of tasks in the project

The task neglectedness criterion of the slack has a special position among the neglectedness
criteria. It is based on the idea that CMMC are tasks that can be performed practically any time
during project timespan, thus having a large total slack with respect to the duration of the project so
the value

�� is high. Therefore, the slack neglectedness criterion is ��� = 1 − ��� (8)

322

where ��� is task slack neglectedness criterion, �� is total slack of task �, � is total duration of the
project. This criterion is CMMC relevant if and only if less than 1.

The procedure of the analysis of the Critical Mass of the project has three steps:
In the first step the possible CMMC tasks are selected using the aspiration level method from

all project tasks. These are all tasks with all values of continuity, resource variability, resource in-
tensity and resource neglectedness criteria smaller than 1.

In the second step the CMMC potential is calculated using Simple weighted additive method so
that the highest value means higher potential �"� = 1 − #$���� + $%��� + $&��� + $'���(� = 1,2, . . , � (9)

where �"� is global evaluation of the CMMC task potential, $�, $%, $&, $' are the weights of
partial criteria. The tasks with the higher Critical Mass potential are identified as possible Critical
Mass tasks which would be the tasks whose duration, cost, work and slack neglectedness criteria
have a lowest value (Šubrt et al., 2019).

The setting of individual criteria weights for this concept is not clear and easy. According to
practice, the slack and duration neglectedness criteria are probably the most important, but this can-
not be generalized.

In the third step the similarity of the tasks with higher Critical Mass potential is checked. The
routine of tasks is situation when the tasks are repeated several times during a project progress in
the same or analogous form. The routine is considered an essential feature for determining the Crit-
ical Mass and is quite difficult to capture, because in practice, these tasks does not have to be named
identically (Substation Test 1, Substation Test 2, …), or assigned the same resources (revision tech-
nicians, …).

Each task is represented by vector of its evaluation according to the neglectedness criteria, so
the task routine matrix is obtained, each task is in one row.

�*" = + ��� ���� ���� ��� ��� ��� �����% ���% ���% ��% ��% ��% ��%… … … … … … …��- ���- ���- ��- ��- ��- ��-
. (10)

where TRM is task routine matrix, m is a number of possible CMMC tasks.
We suggest to use the Saaty’s compatibility index (Saaty, Peniwati, 2007) to investigate the

similarity of potentially CM task. For two tasks �� and �� the compatibility index is calculated as /�0 = # 11%(� 2� ⊗ 20 � 4 1.1 (11)

where the elements of matrix 2� is calculated as pairwise comparisons matrix which consists of all
ratios of every two elements from task � evaluation vector and ⊗ is the Hadamard product of matri-
ces. If /�0 4 1.1 the tasks can be assumed as recurring (routine) tasks with neglectedness potential.
The more lines in the TRM are compatible, the more routine tasks can be supposed in the project.

3 Example

The Critical Mass approach provides relevant results for larger and large projects, because the
possibility of neglecting the timely execution of any task is small for small projects. However, let's
assume the following small-scale project whose indicators, as well as the time schedule (Gantt
Chart), are created using MS Project (Figure 1).

Figure 1 Example: Critical Mass Project Gantt Chart

All the tasks have assigned resources and work and all the resources are rated. Summary dura-
tions, costs and work parameters together with neglectedness criteria are presented in the following
table (Table 1). For summary tasks the neglectedness criteria have no meaning.

Step 1: If continuity and resource criteria are bigger than one, the corresponding tasks are not
supposed to be the critical mass tasks.

323

Step 2: Evaluation of the last column in Table 1 – Critical mass Potential – shows, that the
highest risk of neglecting has “KT 1 progress control”, followed by “KT 3 progress control” and
“KT 2 evaluation”. In case of bigger project, such type of tasks can potentially form a Critical Mass
threating the project as a whole. The lower neglectedness potential has the task KT 11.

Table 1 Example: Task parameters and indicators

Step 3: Now the similarity among the selected tasks is checked using Saaty’s compatibility in-
dex. Only two task seems to be routine tasks - “KT 3 progress control” and “KT 2 evaluation”. Its
compatibility index is 1.086.

4 Conclusion

Sometimes it happens that there are tasks in project management practice which seem to be not
important. However, projects are sequences of tasks having an irreplaceable role and their failing or
neglect may have fatal consequences, could endanger the whole project or significantly reduce its
quality. The procedure proposed in this article allows to identify and analyse such tasks on the basis
of the neglectedness criteria and neglectedness potential. The procedure allows to identify the criti-
cal mass task is also designed. Our approach should help project managers to have a wider and more
diverse set of tools that make project management increasingly complex without distinguishing be-
tween complex and complicated.

5 Acknowledgements

The research is supported by the Operational Programme Prague – Growth Pole of the Czech
Republic - Implementation proof-of-concept activities CULS to promote technology transfer and
knowledge into practice, No: CZ.07.1.02/0.0/0.0/17_049/0000815 - KZ10.

References

Brožová, H., Bartoška, J., Šubrt, T. and Rydval, J., 2016, “Task Criticalness Potential: A Multiple
Criteria Approach to Project Management”, Kybernetika, Vol. 52, pp. 558-574.

Brožová, H., Šubrt, T. Rydval, J. and Pavlíčková, P., 2019, “Fuzzy Threatness Matrices in Project
Management”, In Proceedings of the 15th International Symposium on Operational Research in
Slovenia, pp. 581-586. Bled, Slovenia.

Goldratt, E. M., 1997, “Critical Chain”, The North River Press, MA.
Nickolas, J. M. and Steyn, H., 2016, “Project Management for Business, Engineering and

Technology”, Taylor and Francis.
InterPlan Systems, 2002, “Justification for Managing Turnarounds”, Available on:

https://www.interplansystems.com/turnaround-project-management-primer/, [cit. 13.05.2019].
Saaty, T. L. and Peniwati, K., 2007, “Group decision-making: Drawing out and reconciling

differences”, RWS Publications, Pittsburgh, PA.
Šubrt, T., Bartoška, J. and Kučera, P., 2019, “Critical Mass Task Identification in Projects”, In:

Proceedings of the 37th International Conference on Mathematical Methods in Economics,
České Budějovice, Czech Republic.

Pritsker, A. A.B., 1966, “GERT: Graphical Evaluation and Review Technique“, Memorandum RM-
4973-NASA.

324

Solving the stochastic multimode resource-constrained project

scheduling problem

Claudio Szwarcfiter1, Avraham Shtub2, and Yale T. Herer3

Faculty of Industrial Engineering and Management

Technion—Israel Institute of Technology, Haifa, Israel
1e-mail: claudioszw@campus.technion.ac.il

2e-mail: shtub@technion.ac.il

3e-mail: yale@technion.ac.il

Keywords: Stochastic resource-constrained project scheduling, multimode project management,

stability and robustness in project management, reinforcement learning.

1. Introduction

The resource-constrained project scheduling problem (RCPSP) is a classic problem in project

management, and its extensions, the multimode and the stochastic RCPSP (MRCPSP and

SRCPSP), have received considerable attention. A standard procedure for solving these problems

is the employment of heuristic methods, since the RCPSP is known to be NP-hard. However, less

attention has been paid to the advances in artificial intelligence, particularly reinforcement learning

(RL), and the opportunities they present for improving the search.

In this paper, we provide a novel RL-based approach for solving a version of the stochastic

multimode RCPSP (SMRCPSP). This approach provides effective exploration of the search space,

scanning a wide range of combinations of activity modes and start times, while simultaneously

exploiting the learned knowledge. Our experiments currently being conducted suggest that the RL

algorithm combines speed with performance close to the optimum.

2. Problem and solution approach

We model our SMRCPSP based on the flow-based formulation described in Artigues et al. (2015),

expanding it for a multimode setting. Furthermore, we consider stochastic activity durations;

therefore, the duration constraints cannot, in general, be guaranteed with certainty and thus we will

model them as chance constraints. One way of solving the resulting stochastic program is by

scenario optimization (SO), introduced in Calafiore and Campi (2005). The idea is to take S

samples, or scenarios, of the realization of the random variables in the constraints—in our case, the

activity durations—and substitute the deterministic scenario constraints for the stochastic chance

constraints. The result is a mixed-integer linear program (MILP).

We consider a project with J activities. Each activity j can be executed in one of jM modes

and is preceded by a set of immediate predecessors  jP . Each activity j executed in mode m in

scenario s has a duration jmsd . There are K different renewable resources. Activity j executed in

mode m needs
k

jmr units of resource k, which has a total availability of .kR jsES and jsLS are the

earliest and latest start for activity j in scenario s, respectively. Decision variable D is the project

delivery date. We set parameter  as the desired probability of the project finishing within the

delivery date, and  as an upper bound for delivery date overrun. Binary decision variable jm

indicates if activity j is carried out in mode m and decision variable jst denotes, for scenario s, the

starting time of activity , 0,..., 1j j J  , where 0j  and 1J J  are dummy activities with a

single mode, no duration and resources, and represent the start and end of the project, respectively.

Binary decision variable ijz indicates (value 1) if activity j starts after activity i finishes. The

amount of resource k transferred from activity i to activity j is modeled by the flow variable
k

ij .

325

s is a binary decision variable indicating whether, in scenario s, the project finishes within the

delivery date. The model is as follows.

Min ,D (1)

Subject to:

 1, 1 , 1,..., ,J s st D s S       (2)

1

,
S

s

s

S 


 (3)

1, 0,..., , 1,..., 1, ,ij jiz z i J j J i j         (4)

1, , , 0,..., 1, ,ij jh ihz z z i j h J i j h         (5)

 1, , 1,..., 1,ijz i j j J     P (6)

1

, , 0,..., 1, , 1,... ,
iM

js is ij im ims

m

t t Mz d M i j J i j s S


           (7)

, 0,..., 1, 1,..., ,js js jsES t LS j J s S       (8)

           max, max,

max,

1,..., 1,...,

min , 1 min , 1 min , 0,

 if 0 1
where max max , max and

 if 0 or i j

k k k k k k k k k

ij im jm ij im ij im jm jm ij im jm

k

k k k k jm

ij im jm j m km M m M

r r z r r r r r r

r j n
r r r r

R j j

     

 
 

       

   
  

  

% % % % % % % %

% % %
1,

0,..., , 1,..., 1, , 1,..., , 1,..., , 1,..., ,i j

n

i J j J i j k K m M m M




 

            

 (9)

1

1, 0,..., 1,
jM

jm

m

j J


    (10)

   1,..., 1 \ 1

, 0,..., , 1,..., ,
iM

k k

ij im im

j J i m

r i J k K 
  

     % (11)

   0,..., \ 1

, 1,..., 1, 1,..., ,
jM

k k

ij jm jm

i J j m

r j J k K 
 

      % (12)

1,..., 1,...,
0 min max , max , 0,..., , 1,..., 1, ,

1,..., .

i j

k k k

ij im jm
m M m M

r r i J j J i j

k K


 

 
         

 

 

% %
 (13)

The objective function (1) aims to minimize the project delivery time. Constraints (2) indicate

whether a scenario finishes on time. Constraint (3) counts the fraction of scenarios that finish on

time and forces it to remain above the predetermined threshold. Constraints (4) and (5) avoid

cycles of 2 and 3 or greater, respectively. Constraints (6) enforce the precedence constraints.

Constraints (7) link the continuous activity start time variables with the binary sequencing

variables. Constraints (8) give upper and lower bounds for the activity start times. Constraints (9),

from Balouka and Cohen (2019), connect the continuous resource flow variables with the binary

sequencing variables and the binary mode variables. Constraints (10) force the selection of only

one mode per activity. Outflow constraints (11) ensure that all activities, except for 1,J  send

their resources to other activities. Inflow constraints (12) ensure that all activities, except for

activity 0, receive their resources from other activities. Constraints (13) bound the flow variables

with the maximum resource consumption modes.

2.1. Reinforcement learning solution approach

Reinforcement Learning (RL) has been shown to be successful in diverse applications with

uncertain environments. This success is the factor motivating the application of RL to our

stochastic environment. To the best of our knowledge, multimode problems involving stochastic

activity duration have not yet been tackled with RL.

Our RL model starts with an agent at project activity j. The agent undertakes an action by

choosing a mode ˆ
jm and start time ˆ

jt for activity j and then moves on to the next activity. After

selecting modes and start times for all activities 1,..., ,j J she receives a reward  , , .j m tR The

326

agent follows a policy  , ,j m t that tells her at each activity which action she should take. We

further define an action-value function  , ,q j m t as the estimated reward for taking an action at

activity j and thereafter following policy  , , .j m t The RL problem’s objective is to learn a

policy that maximizes the agent’s reward. We use Monte Carlo Control (MCC), based on Sutton

and Barto (1998). Figure 1 presents our main MCC pseudocode.

Initialize action-values

while not stopping criterion:

 calculate policy

 choose mode and start time

 calculate reward

 update action-values RL1

 or update action-values RL2
Figure 1. MCC pseudocode.

Our algorithm starts with the initialization of the action-values table with artificially high

values. The action-values table is then used to calculate the policy. To balance exploration and

exploitation we adopt an ε-greedy policy, meaning that in the policy table we ascribe a probability

ε of taking a random action and a probability  1  of taking a greedy action, i.e. the action with

the highest action-value. Next, we take an action based on the policy, choosing for each activity

the mode and start time according to the probabilities in the policy table. Then, we calculate the

reward for the actions taken as  1/ ,D where D is the delivery date for on-time probability .

The last step in the algorithm is to update the action-value table using the reward. We can choose

from two update methods, RL1 and RL2: RL1 learns an action-value by averaging all the rewards

this action has received each time it was taken. RL2 updates the action-values giving an

exponentially large weight to the last action.

3. Experimental setting and partial results

To validate the RL procedure we propose a factorial experiment, summarized in Table 1, as

follows. We will compare three project sizes, each with three modes per activity. For the 10-

activity projects we will use the PSPLIB datasets (Kolisch and Sprecher, 1997), and for the 50 and

100-activity projects, the MMLIB datasets (Van Peteghem and Vanhoucke, 2014), generating

additional data for the stochastic activity durations. We will run our RL algorithm using both

methods for updating the action-values: RL1 and RL2, as described in Section 2.1. The delivery

dates obtained with both variants will be compared to those from two benchmarks: the best

combination of mode and activity priority rules (Peng, Huang and Yongping, 2015) and a solution

for our MILP, using the Gurobi 8.1 solver. We will compare two types of constraints: solving the

deterministic problem and then simulating realized durations to generate the delivery date, and

solving directly the chance-constrained problem; in both cases, we will set the desired probability

of the project finishing within the delivery date 0.95. 

Table 1. Partial factorial design.

Project size Algorithm Constraints

10 RL1 Chance constraints

50 RL2 Deterministic

100 Solver

 PR

The algorithm is currently being executed and evaluated and we will be reporting the results in

the conference. We present here partial results for 10-activity projects. Chance-constrained RL1

(CRL1) outperformed the other algorithms. Figure 2 provides a comparative view of project

delivery for 10-activity projects; for clarity, we show only three curves: CRL1, chance-constrained

solver (CS) and deterministic-constrained priority rules (DPR). CRL1, represented by the solid

line, is consistently below the other curves. In fact, Wilcoxon signed rank tests for pairwise

comparisons between CRL1 and all the other methods, showed that CRL1 generated shorter

deliveries with p-value 0.0001.

327

Figure 2. 10-activity projects: Overlay plot comparing CRL1 with DPR and CS; for clarity, we show here a
random subsample of 100 projects from the 535-project sample

4. Conclusions

In this paper, we presented a flow-based formulation of a variant of the SMRCPSP. The objective

is to minimize the project delivery date and we introduce a constraint imposing a lower bound on

the probability of finishing within this date. We described a novel RL-based approach for solving

the problem and proposed a partial factorial design for the evaluation of our method. We have

completed experiments for 10-activity projects and have concluded, with statistical significance,

that for this project size, our RL approach renders shorter schedules than both the best priority

rules, and the MILP solutions obtained with the solver using SO. We will be reporting the main

results for the full experiment at the conference.

Acknowledgements

This study has received funding from EIT Food, the innovation community on Food of the

European Institute of Innovation and Technology (EIT), a body of the EU under the Horizon 2020,

the EU Framework Programme for Research and Innovation, project number 19147, and from the

Bernard M. Gordon Center for Systems Engineering at the Technion.

References

Artigues, C. et al. (2015), ‘Mixed-integer linear programming formulations’, in Handbook on

Project Management and Scheduling Vol.1. Cham: Springer International Publishing, pp. 17–

41.

Balouka, N. and Cohen, I. (2019), ‘A robust optimization approach for the multi-mode

resource-constrained project scheduling problem’, to be published in European Journal of

Operational Research [Preprint].

Calafiore, G. and Campi, M. C. (2005), ‘Uncertain convex programs: Randomized solutions

and confidence levels’, Mathematical Programming, 102(1), pp. 25–46.

Kolisch, R. and Sprecher, A. (1997), ‘PSPLIB – A project scheduling problem library’,

European Journal of Operational Research, 96(1), pp. 205–216.

Peng, W., Huang, M. C. and Yongping, H. (2015), ‘A multi-mode critical chain scheduling

method based on priority rules’, Production Planning and Control, 26(12), pp. 1011–1024.

Van Peteghem, V. and Vanhoucke, M. (2014), ‘An experimental investigation of

metaheuristics for the multi-mode resource-constrained project scheduling problem on new

dataset instances’, European Journal of Operational Research. North-Holland, 235(1), pp.

62–72.

Sutton, R. S. and Barto, A. G. (1998), Reinforcement learning: An introduction. MIT Press.

328

Maximizing value—Modeling and solving lean project management

Claudio Szwarcfiter1, Avraham Shtub2, and Yale T. Herer3

Faculty of Industrial Engineering and Management

Technion—Israel Institute of Technology, Haifa, Israel
1
e-mail: claudioszw@campus.technion.ac.il

2
e-mail: shtub@technion.ac.il

3
e-mail: yale@technion.ac.il

Keywords: Lean project management, project scheduling, multimode project management,

stability and robustness in project management.

1. Introduction

Lean Project Management (LPM) is a comprehensive framework with the goal of creating value

and minimizing waste, in a minimum of time (Oehmen (Ed.), 2012). A key feature of LPM is the

integration of two disciplines, which until now have been kept separate: program management and

systems engineering. The former relates to project scope and the latter, to product scope.

The main contribution of our research is to provide a decision support tool for project

managers by modeling and solving a novel LPM application. The model’s objective is to

maximize project value subject to due date and budget constraints. Moreover, our model tackles

project risk, which often plays out in projects by causing unforeseen delays in activity durations,

ultimately leading to due date and budget overruns. Therefore, our model considers stochastic

activity durations, and the way we proactively manage risk is by generating a stable project plan in

which the due-date and budget violation probabilities are kept within a desired threshold.

Project scope and product scope integration—which is key to LPM—is achieved in our model

using a multimode approach, in which each project activity can be executed in one or more modes

or alternatives. The integrative feature is that each activity mode, apart from containing

information on the project scope, such as stochastic duration parameters, fixed and resource costs,

also embodies data on the product scope, i.e., value parameters. Thus, when a mode is chosen, not

only does the choice impact the project duration, cost, and associated risks, but also the project

value. For example, for the activity “antenna design” in a radar project, there could be two modes:

“re-engineer” and “new design”; associated with each mode we could have a radar range

parameter, so that the mode choice would affect the overall radar range.

To the best of our knowledge, this is the first attempt to assist lean project managers and their

teams with a decision support tool that models and solves the project planning problem focusing

not only on the project scope (the work to be done) but also on the product scope (the features and

functions of the product).

2. Problem and solution approach

We consider a project with J activities. Each activity j can be executed in one of jM modes. The

parameter jmvV designates the value of attribute v for activity j executed in mode m. Decision

variable j vV  corresponds to the value of attribute v for activity j executed in its chosen mode. We

define a function  1 ,...,v v J vF V V  that determines the project value for each attribute v given the

individual attributes ,jvV  and a function  1,..., VV F F that calculates the project value given the

values for each attribute. Binary decision variable jm indicates if activity j is carried out in mode

m. The objective of our model is to maximize the project value, which is a project-specific

function of the chosen modes and can be a non-linear function:

     1 11 1 1Maximize ,..., ,..., ,..., ,J V V JVV F V V F V V   

329

where

1

, 1,..., , 1,..., .
jM

jv jm jmv

m

V V v V j J


     

We formulate the deterministic version of our problem as a mixed integer program subject to

duration and cost constraints. If we now consider stochastic activity durations, the duration

constraints cannot, in general, be guaranteed with certainty and thus we model them as chance

constraints. One way of solving the resulting stochastic program is by Scenario Optimization (SO),

introduced in Calafiore and Campi (2005) and applied in recent project scheduling papers. The

idea is to take S samples, or scenarios, of the realization of the random variables in the

constraints—in our case, the activity durations—and substitute the deterministic scenario

constraints for the stochastic chance constraints. Thus, if our objective function is linear, the new

SO program is a mixed integer linear program (MILP), and can be solved with a commercial

solver. We use this method as a benchmark in the computational experiments.

2.1. Reinforcement learning solution approach

Reinforcement Learning (RL) has been shown to be successful in diverse applications with

uncertain environments. This success is the factor motivating our application of RL to learning the

activity modes that maximize value in a stochastic environment. RL-based heuristics have also

been applied to project scheduling, but to the best of our knowledge, problems involving stochastic

activity duration or project value have not yet been tackled with RL. Hence, another contribution

of our research is applying RL to this problem.

The RL model starts with an agent in a state . The agent undertakes action  and moves to

state ,S receiving a reward .R She then executes action ,A moving to state S and receiving

a reward ,R and so on. We can thus represent the agent’s life trajectory as

, , , , , , , , , , ,        S A R S A R S A R S A etc. The agent follows a policy  , S A that tells her at

each state which action she should take. The RL problem’s objective is to learn a policy that

maximizes the agent’s reward. We further define an action-value function  ,q S A as the

estimated reward for taking action  on state  and thereafter following policy  , . S A

Applying the RL model to our problem, we define a state as project activity j. The agent

undertakes an action by choosing a mode ˆ
jm for activity j and then moves on to the next activity.

After selecting modes for all activities  ˆ , 1,..., ,jm j J  she receives a reward, which we define

as the project value V  if, after a number of simulation runs with the chosen modes, the

proportion of projects on time and on budget is more than or equal to the pre-defined on-time and

on-budget probabilities; otherwise, the reward is zero. To balance exploration and exploitation, we

employ ε-greedy policies, in which we set a probability ε of choosing a random mode for an

activity; otherwise, a mode is chosen greedily, i.e., the one that has the highest action-value. We

employ two alternative methods for updating the action-values. The first is Average Rewards

(RL1), in which the action-values are calculated by averaging the rewards accrued every time a

certain mode is chosen for a certain activity. The second method is Constant Step (RL2), which

tries to leverage the learning by giving an exponentially larger weight to the last actions. We use a

RL procedure known as Monte Carlo Control (MCC; based on Sutton and Barto, 1998), in which

first we initialize the action-values; then, we calculate the policy, choose the activity modes based

on the policy, calculate the reward accrued from this choice, and update the action-values using

RL1 or RL2; we then once again calculate the policy using the updated action-values, and so on

until the stopping criterion is met.

3. Experimental setting and main results

To validate the RL procedure we designed and conducted a factorial experiment, summarized in

Table 1, as follows. We ran the algorithms with deterministic (zero risk) and stochastic activity

durations and compared three project sizes, each with three modes per activity. For the 10-activity

projects we used the PSPLIB datasets (Kolisch and Sprecher, 1997), and for the 50 and 100-

activity projects, the MMLIB datasets (Van Peteghem and Vanhoucke, 2014). Both datasets are

the standard in the multimode project management literature. We ran our RL algorithm using both

330

methods for updating the action-values: RL1 and RL2, as described in Section 2.1. The project

values obtained with both variants were compared to those from two benchmarks, a genetic

algorithm (GA; Balouka, Cohen and Shtub, 2016) that seeks to maximize the project value for

deterministic problems, with populations of 500, 1000 and 10,000, and a solution for our mixed

integer program, in the case of linear objective functions (MILP), using the Gurobi 8.1 solver. For

our stochastic settings, we developed a new fitness function for the GA:

 
   

       

, if 0

_ feasible solutions _ all solutions , otherwise,

V I E I
f I

V I E I Min V Max V

 
 

    

where    ˆmax 0, proportion of on-budget runsE I   for a solution I, i.e., the selected mode

for each activity, and ̂ is the desired probability of the project finishing within the budget.

Table 1. Partial factorial design: All the combinations were tested, except GA10,000 for the stochastic trials and

Solver for nonlinear objective functions.

Project risk Project size Algorithm Objective function Stopping criterion

Deterministic 10 GA500 Linear GAS

Stochastic 50 GA1000 Nonlinear 5 min

 100 GA10,000 Max/near max

 RL1

 RL2

 Solver

For each project, we generated two objective functions: a linear one,

1 21 1
0.6 0.4

J J

j jj j
V V

 
   and a nonlinear one,

1 21 1
0.6 0.4 .

J J

j jj j
V V

 
   For the linear

objectives, we drew uniformly random value parameters jmvV from the sets  0,1,2,...,10 ,

 0,0.2,0.4,...,2 , and  0,0.1,0.2,...,1 for projects with J  10, 50 and 100 activities,

respectively. For the nonlinear objectives, we generated uniformly random parameters from the

sets   1

1 100 1 5 0,1,...,5Ja a   for experiments with J  10, 50 and 100 activities. Finally,

we compared three stopping criteria: stopping RL1 and RL2 at the same execution time it took for

the GA to converge (according to its published stopping criterion, two generations with the same

best value; GAS in Table 1);1 five minutes, which is a reasonable running time for applications in

industry; and the time it takes for the algorithms to give their best performance and produce a near-

optimal solution (“max/near max” in Table 1) – by simulation, we estimated this time to be 20

seconds for the 10-activity projects and 2 hours for 50 and 100 activities.

Table 2 shows the results for the deterministic experiments with nonlinear objectives and GAS

stopping criterion (we show here only GA population 1000), and Table 3 shows the same results

for the stochastic experiments. The columns show the number of projects tested, number of

activities, GA population, average running time for the GA, and the average percent differences of

the objective values; the alternative hypotheses H1 are tested using one-tailed sign tests to evaluate

whether one algorithm produces better solutions than the other and the p-values are presented. If

no significant difference is found, a two-tailed sign test is conducted and the alternative hypothesis

a b and p-value are recorded.
Table 2. Sign tests comparing RL to GA: Deterministic, nonlinear objective, stopping criterion GAs.

Proj Act PopGA TGA(s) RL1−GA H1 PV RL2−GA H1 PV RL1−RL2 H1 PV

535 10 1000 0.65 7.52 RL1>GA 0.000 8.91 RL2>GA 0.000 -1.23 RL2>RL1 0.000

540 50 1000 3.26 25.93 RL1>GA 0.000 5.63 RL2>GA 0.000 -0.94 RL2>RL1 0.003

540 100 1000 7.05 30.21 RL1>GA 0.000 27.97 RL2>GA 0.000 3.34 RL1>RL2 0.000

1 This stopping criterion generated near-optimal solutions for 10- and 20-activity projects using

populations of 500 and 1000 in Balouka, Cohen and Shtub, (2016).

331

Table 3. Sign tests comparing RL to GA: Stochastic, nonlinear objective, GAS stopping criterion.

Proj Act PopGA TGA(s) RL1−GA H1 PV RL2−GA H1 PV RL1−RL2 H1 PV

535 10 1000 119.18 7.70 RL1>GA 0.000 7.44 RL2>GA 0.000 1.80 RL1≠ RL2 0.166

120 50 1000 479.15 0.64 RL1≠GA 0.519 13.06 RL2>GA 0.000 -9.99 RL2>RL1 0.000

71 100 1000 798.01 -3.43 RL1≠GA 1.0 4.50 RL2≠GA 1.0 -4.13 RL1≠ RL2 0.453

Considering a significance level of 0.05, we can conclude that for the GAS stopping criterion

in the deterministic experiments, RL1 and RL2 render better solutions than GA across the board,

and the results are strongly significant. For the stochastic experiments, where the null hypothesis

was rejected, similar results were obtained.

4. Conclusions

In this paper, we presented a new model for LPM, maximizing value and providing stability by

complying with minimum on-time and on-budget probabilities set by the decision makers. We

developed a stochastic programming model with a SO formulation. We introduced a new RL

method to solve the problem, with two variants for action-value updates. We conducted a partial

factorial experiment, both with small 10-activity and with larger 50- and 100-activity projects,

comparing both RL variants with two benchmarks, a GA and, for linear objectives, a solution

using a commercial solver, reaching the following conclusions, with statistical significance:

1. The RL methods are the best option when we want to find good solutions in less time, as

they are much faster than the GA.

2. When given enough time to perform its best, the GA can outperform both RL variants,

and for a fixed running time, the GA achieves better results with smaller populations (e.g., 500).

3. RL2 generally reaches good results faster than RL1, but when both variants are given

enough time to perform their best, RL1 tends to give better results.

4. Although SO provides higher objective values for linear problems, it generates a higher

proportion of infeasible solutions when these are simulated with test sets, apart from also resulting

in long running times, typical of large MILP problems.

Our LPM modelling using RL opens avenues for new research. One research track could be

the enhancement of the problem setting, introducing, for example, resource constraints and

redefining the agent’s actions accordingly. Another track is the application of different RL

methods, such as Q-Learning and function approximation.

Acknowledgements

This study has received funding from EIT Food, the innovation community on Food of the

European Institute of Innovation and Technology (EIT), a body of the EU under the Horizon 2020,

the EU Framework Programme for Research and Innovation, project number 19147, and from the

Bernard M. Gordon Center for Systems Engineering at the Technion.

References

Balouka, N., Cohen, I. and Shtub, A. (2016) ‘Extending the multimode resource-constrained

project scheduling problem by including value considerations’, IEEE Transactions on Engineering

Management, 63(1), pp. 4–15.

Calafiore, G. and Campi, M. C. (2005) ‘Uncertain convex programs: Randomized solutions and

confidence levels’, Mathematical Programming, 102(1), pp. 25–46.

Kolisch, R. and Sprecher, A. (1997) ‘PSPLIB – A project scheduling problem library’, European

Journal of Operational Research, 96(1), pp. 205–216.

Oehmen (Ed.), J. (2012) The guide to lean enablers for managing engineering programs. Joint

MIT-PMI-INCOSE Community of Practice on Lean in Program Management.

Van Peteghem, V. and Vanhoucke, M. (2014) ‘An experimental investigation of metaheuristics for

the multi-mode resource-constrained project scheduling problem on new dataset instances’,

European Journal of Operational Research. North-Holland, 235(1), pp. 62–72.

Sutton, R. S. and Barto, A. G. (1998) Reinforcement learning: An introduction. MIT Press.

332

1

Generating instances for the two-stage multi-machine

assembly scheduling problem

Carla Talens1, Victor Fernandez-Viagas1 and Paz Perez-Gonzalez1

Industrial Management, School of Engineering, University of Seville
cartafa@us.es, vfernandezviagas@us.es, pazperez@us.es

Keywords: Benchmark, Assembly, Total Completion Time.

1 Introduction and description of the problem

The two-stage assembly scheduling problem consists of sequencing n jobs in a layout
composed of two stages. Each job has m1 + 1 operations. In the �rst stage, there are m1

dedicated parallel machines, in which the �rst m1 operations are conducted, while in the
assembly stage there are m2 identical parallel machines, being m2 ≥ 1. Only after all m1

operations are completed, the assembly operation may start in an assembly machine. A
job j has a processing time pij on machine i in the �rst stage and an assembly processing
time atj . The problem under study consists of scheduling the jobs in each machine so the
total completion time is minimized.

In this contribution, we focus on the development of two new benchmarks for the
two-stage assembly scheduling problem because two di�erent variants of the problem are
studied. The �rst one consists of several dedicated parallel machines in the �rst stage and
one assembly machine in the second stage, and, following the notation by Framinan et al.
(2019), it is denoted as DPm1

→ 1||∑Cj . In the second one, there arem2 identical parallel
machines in the last stage with m2 ≥ 1. It is denoted as DPm1

→ Pm2
||∑Cj .

2 New benchmark: parameters and generation procedure

In this section, we detail the characteristics, the parameters, and the generation pro-
cedure of the two new benchmarks. According to the works by Hall and Posner (2001)
and Vallada et al. (2015), the next characteristics should be taken into account in the new
proposed benchmarks: adequacy, hardness, exhaustiveness and amenability for statistical

analysis.

2.1 Parameters

The �rst testbed, denoted as B1, is a set of 240 instances with the following combi-
nations of number of jobs (n), number of machines in the �rst stage (m1) and number
of machines in the second stage (m2): n ∈ {50, 100, 150, 200, 250, 300}, m1 ∈ {2, 4, 6, 8}
and m2 = 1. The second testbed, denoted as B2, is a set of 960 instances where n ∈
{50, 100, 150, 200, 250, 300}, m1 ∈ {2, 4, 6, 8} and m2 ∈ {2, 4, 6, 8}. The values have been
taken based on Al-Anzi and Allahverdi (2006) and Allahverdi and Al-Anzi (2012). Both
testbeds have 10 associated instances for each combination. Note that, we have selected
both a wide range of levels and equidistant values for the number of jobs and machines to
ful�l the exhaustiveness and amenability requirements.

2.2 Adequacy

With respect to the adequacy characteristic, we should generate instances which exactly
suit the problem under study and not related problems. In our case, the instances should

333

2

be representative of the two-stage multi-machine assembly scheduling problem. Therefore,
the relationship between this problem and the related scheduling problems, such as the
Customer Order (CO) scheduling problem and the Parallel Machines (PM) scheduling
problem has to be analysed. To perform this analysis, we carry out a preliminary experiment
which lead us to generate the processing times in the �rst stage from a uniform distribution
U [1, 100] and in the second stage from a uniform distribution U [1, α100]. Parameter α is
designed to balance the connection between both stages. The next values of α are tested:
α = {0.5, 1, 2, 3}.

We generate two preliminary small testbeds. The �rst one, testbed A, consists of 540
instances with n ∈ {8, 10, 12}, m1 ∈ {2, 4} and m2 = 1, and, the testbed B consists of
1,080 instances with n ∈ {8, 10, 12}, m1 ∈ {2, 4} and m2 = {2, 3}. Then, we solve them
applying exact methods in order to identify representative instances of the problem under
study and the related problems. To do so, �rstly, we have adapted to our problem the
mathematical model found in the paper by Navaei et al. (2013). Then, we have modi�ed
it to solve the CO scheduling problem. And, �nally, we take the SPT rule plus the First
Available Machine rule to solve the PM scheduling problem. Therefore, we hold three exact
methods to solve the three di�erent scheduling problems.

Solving each instance by the three methods we obtain the optimal sequences for each
case denoted as MMA∗, CO∗ and PM∗. The evaluation of the objective function of
these schedules for the problem MMA are denoted as MMA(MMA∗), MMACO∗ and
MMA(PM∗). These values allow us to analyse the relationship between the problem un-
der study and the related problems (CO and PM).

To determine how is the relationship between the three problems we calculate the
Relative Percentage Deviation (RPD) of the MMACO∗ and MMA(PM∗), as follows:

RPDhs =
Chs − C∗s

C∗s
· 100 (1)

with Chs the total completion time obtained by h ∈ (MMA(CO∗),MMA(PM∗)) in
instance s (s = 1, . . . , S) and C∗s the minimum completion time known for instance s.
Then, the ARPD is computed as the average of all the instances.

Low values of ARPD mean that the problems are highly connected, i.e. the fact that
ARPDMMA(CO∗) is low means that the instances can be solved by methods of the CO
scheduling problem. Contrarily, high values of ARPD denote that the problem under study
is not related to the other problem.

Fig. 1: ARPD of exact methods when m2 =
1 and α = 2

Fig. 2: ARPD of exact methods when m2 ≥
2 and α = 2

For the DPm1
→ 1||∑Cj problem, Figures 1 and 2 show the relationship with CO

and PM when α = 2, since the ARPD in both cases are high (greater than 10), so the

334

3

instances are representative of our problem. When α = 0.5, the instances seem to be more
representative of the CO scheduling problem and, when α = 3, more representative of
the PM scheduling problem. The same results are obtained for the DPm1

→ Pm2
||∑Cj

problem as it can be seen in Figure 2.
Next, we should verify that the behaviour of these instances are also ful�lled when

the number of jobs and machines increases. As we can not solve bigger instances applying
exact methods, we solve the preliminary small testbeds by an approximate method, and
then, we compare these results with those obtained solving bigger instances with the same
approximate method. In this case, we apply the heuristic by Framinan and Perez-Gonzalez
(2017), adapted to DPm1 → Pm2 ||

∑
Cj in the case with more than one machine in the

second stage.. As it can be seen in Figures 3 and 4, when the number of jobs, n, increases,
the instances have the same behaviour as when n is low.

Fig. 3: ARPD of the heuristic when m2 = 1
and α = 2

Fig. 4: ARPD of the heuristic when m2 ≥ 2
and α = 2

2.3 Empirical hardness

In order to determine the empirical hardness, we use the following approach which
is based on the di�erence between a well-performing metaheuristic and a bound of the
problem (see Taillard, 1990 and Vallada et al., 2015). For each combination of n, m1

and m2, we generate 1,000 instances. So, in total 120,000 instances are generated: 24,000
for the combinations when m2 = 1 and 96,000 for the combinations when m2 ≥ 2. 10
instances are selected according to the following procedure: To test the di�culty of each
instance by, �rstly, computing a lower bound and, secondly, solving it by the Iterated
Greedy, IG, algorithm developed by Ruiz and Stützle (2007). We have adapted the lower
bound developed by Blocher and Chhajed (2008), which is computed by Equation 2, to the
problem under study, where wj =

∑
∀i

pij

m1
. The IG works as follows: The NEH heuristic

(Nawaz et al., 1983) gives the initial solution of the IG. The central procedures are the
destruction and the construction phases. Then, a local search procedure is carried out by
improving each solution generated in the construction phase. Finally, the new sequence is
accepted or not as the incumbent solution for the next iteration by a Simulated Annealing.

LB =
∑

j


max{

∑

∀k≤j
dwje,max∀i

∑

∀k≤j
pij}


+

∑

∀j
pjA (2)

We set a stopping criterion depending on the size of the instance and the complexity
of computing the objective function (the total completion time) of this problem: n ·m/2 ·
90/1000 milliseconds, where m is equal to m1 + 1. Then, we obtain, for each instance, the

335

ARPD of the IG with respect to the lower bound. Following the idea by Vallada et al.
(2015), the higher the ARPDIG, the harder the instance is, i.e. if the solution founded by
the IG is further from the theoretical lower bound, the instance is hard to solve.

So, the procedure to obtain the hardest instances per combination is as follows: the
ARPDIG for the 1,000 instances are sorted in descending order. Then, the 10 �rst instances
per combination are selected to be part of the new benchmark. As a result, a new benchmark
with 240 instances (DPm1

→ 1||∑Cj) and another one with 960 instances (DPm1
→

Pm2
||∑Cj) are generated.
Regarding the exhaustiveness, the benchmark consists of a large number of instances,

240 and 960 respectively, and di�erent size of the parameters and di�erent combinations
have been considered. Finally, the benchmark is amenable for statistical analysis since the
levels of the parameters are equidistant and all the levels have been combined to generate
the instances.

Acknowledgements

This research has been funded by the Spanish Ministry of Science and Innovation, under
the project �PROMISE� with reference DPI2016-80750-P.

Bibliography

Al-Anzi, F. S. and Allahverdi, A. (2006). A Hybrid Tabu Search Heuristic for the Two-Stage
Assembly Scheduling Problem. International Journal of Operations Research, 3(2):109�119.

Allahverdi, A. and Al-Anzi, F. (2012). A new heuristic for the queries scheduling problem on
distributed database systems to minimize mean completion time. In Proceedings of the 21st

International Conference on Software Engineering and Data Engineering, SEDE 2012.
Blocher, J. D. and Chhajed, D. (2008). Minimizing customer order lead-time in a two-stage
assembly supply chain. Annals of Operations Research, 161(1):25�52.

Framinan, J. M. and Perez-Gonzalez, P. (2017). The 2-stage assembly �owshop scheduling problem
with total completion time: E�cient constructive heuristic and metaheuristic. Computers and

Operations Research, 88:237�246.
Framinan, J. M., Perez-Gonzalez, P., and Fernandez-Viagas, V. (2019). Deterministic assem-
bly scheduling problems: A review and classi�cation of concurrent-type scheduling models and
solution procedures. European Journal of Operational Research, 273:401�417.

Hall, N. and Posner, M. (2001). Generating experimental data for computational testing with
machine scheduling applications. Operations Research, 49(6):854�865.

Navaei, J., Fatemi Ghomi, S. M. T., Jolai, F., Shiraqai, M. E., and Hidaji, H. (2013). Two-stage
�ow-shop scheduling problem with non-identical second stage assembly machines. International
Journal of Advanced Manufacturing Technology, 69(9-12):2215�2226.

Nawaz, M., Enscore Jr., E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job
�ow-shop sequencing problem. Omega, 11(1):91�95.

Ruiz, R. and Stützle, T. (2007). A simple and e�ective iterated greedy algorithm for the permuta-
tion �owshop scheduling problem. European Journal of Operational Research, 177(3):2033�2049.

Taillard, E. (1990). Some e�cient heuristic methods for the �ow shop sequencing problem. Euro-
pean Journal of Operational Research, 47(1):65�74.

Vallada, E., Ruiz, R., and Framinan, J. (2015). New hard benchmark for �owshop scheduling
problems minimising makespan. European Journal of Operational Research, 240(3):666�677.

336

1

Metric Estimations for a Resource Leveling Problem
With Variable Job Duration

Ilia Tarasov1,3, Alain Haït1, Olga Battaïa2, and Alexander Lazarev3

1 ISAE-SUPAERO, University of Toulouse, France
Ilia.TARASOV@isae-supaero.fr

2 Kedge Business School (Talence), Talence Cedex, France
3 V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Russia

Keywords: project scheduling, resource leveling.

1 Introduction

We consider a Resource Leveling Problem (RLP), which remains an object of intensive
research in project scheduling. It is possible to apply this formulation for many real-life
cases, such as transportation, production, education, and management. It is known to
be NP-hard in the strong sense, see Neumann et al. (2002). A set of project jobs must
be scheduled in a planning horizon without preemption, jobs require a different amount
of resources, and resource capacity is given during the planning horizon. There are also
precedence relations between jobs. For the RLP, three basic types of the objective function
are known in the literature: the total squared resource utilization cost, total overload cost,
and the total adjustment cost (see Rieck & Zimmermann (2015)).

Usually, these basic formulations are enriched with new features and constraints to
make the model closer to a particular practical case. Hans (2001) presented a branch-and-
price approach for a Resource Leveling Problem which allows jobs to be implemented non-
uniformly, i.e. jobs have different intensities in different moments (discrete-time periods).
Kis (2005) constructed the branch and cut algorithm for this model which outperformed
branch and price approach. We focus on the total overload cost objective, a weighted
sum of resource amount which is used in addition to given available resource amount to
fit in the project deadline constraint. This case was studied by Bianco et al. (2016) and
Baydoun et al. (2016). Bianco et al. (2016) presented a solution approach for the model
with generalized precedence relations with time lags (GPR). Baydoun et al. (2016) review
the case when the partial intersection of predecessor and successor job is allowed. To the
best of our knowledge, these formulations are the closest to our model. In this paper we
study a generalized version of the RLP. It was introduced earlier (see Tarasov et al. (2019))
with a comparison of solution quality to the concepts applied by Bianco et al. (2016) and
Baydoun et al. (2016).

2 Problem formulation

Our problem planning horizon is divided into T = {1, ...,m} periods of given length d.
All jobs have their minimal duration superior to d. There is a fixed deadline for all jobs
which is the end of the planning horizon. Available workload for each resource type r ∈ R
in each period t ∈ T is limited by the free work volume Lrt. Additional workload for this
resource type r ∈ R costs er. The duration of the job is not given and can also vary in
some limits, depending on the total workload required to implement this job by different
resources. For each job j ∈ J required workload Wjr for each resource r ∈ R is given, with
upper and lower bounds on assigned workload per period defined by multipliers, pmin,jr and
pmax,jr, r ∈ R. If some job j ∈ J is implemented during time djt in period t ∈ T , assigned

337

2

workload has lower and upper bounds pmin,jrdjt and pmax,jrdjt, respectively. Precedence
relations are represented in a directed graph which should be acyclic. We present all problem
instance parameters and decision variables in Table 1, and the MILP model from Tarasov
et al. (2019) below.

Table 1. Problem instance parameters and decision variables

Parameters
T planning horizon, T = {1, ...,m}
d period length
R resources set
Lrt available workload of resource r ∈ R in period t ∈ T
er extra resource cost
J jobs set
Wjr job j ∈ J workload on the resource r ∈ R
pmin,jr job j ∈ J minimum assigned workload of resource r ∈ R
pmax,jr job j ∈ J maximum assigned workload of resource r ∈ R
P the set of arcs in precedence graph

Decision variables
Sjt binary step : equals 1 if job j ∈ J starts in ∀t1 ∈ T , t1 ≤ t, 0 otherwise
Ejt binary step : equals 1 if job j ∈ J ends in ∀t1 ∈ T , t1 < t, 0 otherwise
djt duration of job j ∈ J in period t ∈ T
cjrt work volume of the job j ∈ J on the resource r ∈ R in period t ∈ T
ort extra cost of the resource r ∈ R in period t ∈ T

Sjt ≥ Ejt, Sjt ≤ Sj,t+1, Ejt ≤ Ej,t+1, ∀j ∈ J, ∀t ∈ T ; (1)

djt ≤ d (Sjt − Ejt), ∀j ∈ J, ∀t ∈ T. (2)

djt ≥ d (Sjt + Sj,t−1 − 1− Ejt − Ej,t+1), ∀j ∈ J, ∀t ∈ T. (3)

Sj2t ≤ Ej1,t+1, dj1t + dj2t ≤ d, ∀t ∈ T, ∀(j1, j2) ∈ P ; (4)

dj1t + dj2t ≤ d, ∀t ∈ T, ∀(j1, j2) ∈ P. (5)

pmin,jrdjt ≤ cjrt ≤ pmax,jrdjt, ∀j ∈ J, ∀r ∈ R, ∀t ∈ T ; (6)
∑

t∈T
cjrt =Wjr, ∀j ∈ J, ∀r ∈ R; (7)

ort ≥ er(
∑

j∈J
cjrt − Lrt), ∀t ∈ T, ∀r ∈ R; (8)

The objective function of our problem is represented in the following form:
∑
r∈R

∑
t∈T

ort.

3 Metric approach in scheduling

In this paper, we study the scheduling problem solution approach, which was presented
by Lazarev (2009). The latter approach has been shown to be effective in dealing with
some NP -hard scheduling problems, including the total tardiness minimization problem
Lazarev et al. (2017) and the single-machine scheduling problem Lazarev & Kvaratskheliya
(2010).

338

3

The idea of this approach is to use polynomially solvable subcases of the problem,
which is NP -hard in general. It allows producing the solution for an arbitrary instance
with a guaranteed accuracy (objective function value difference) in polynomial time. Any
scheduling problem input data instance represents the point in f(n)-dimensional space
Ω, where n is the number of jobs in the instance. Firstly, if the same schedule π (the
permutation of jobs) is used as the solution for two different arbitrary instances A and B,
it is possible to make the estimation of the difference between objective function values
VA(π) and VB(π) for these instances. This estimation is formed as the metric ρ(A,B)
defined on Ω ×Ω, such that

|VA(π)− VB(π)| ≤ ρ(A,B).

Secondly, suppose there are two schedules πA and πB that are the optimal solutions for
instances A and B, respectively. It also possible to construct the estimation for the expres-
sion

VA(π
B)− VA(πA) ≤ ∆(ρ(A,B))

and prove that it depends on ρ(A,B). Then ∆(ρ(A,B)) is the absolute accuracy for the
case when πB is used as the solution for instance A instead of the real optimal solution.
The original idea is to use the schedule πB that is optimal for some polynomially solvable
instance B as the solution for the original problem instance A, such that the difference
between the objective function values is minimum, i.e., the value of ρ(A,B) is minimum.

4 Application to a Resource Leveling Problem

Although in the case of a Resource Leveling Problem it is difficult to specify the solvable
subclasses, it is possible to get the estimations. Our problem provides more possible options
to construct the proper estimations ρ(A,B). Therefore, it allows to make the following
steps:

1. the construction of a metric function ρ(A,B) for arbitrary instances A and B in case
of particular model
– present model implies some feasibility criteria on the solution π to be used for

particular instance A;
– we provide the objective function value difference estimations for instances A and
B if the difference is only in some particular parameter (e.g. Lrt, Wjr etc.);
Lemma 1. An example for Lrt. Consider the instances A and B, which are dif-
ferent only in the parameters Lrt. If we apply the same solution σ to the both
instances, the upper bound for objective function values difference is

|V A(σ)− V B(σ)| ≤ ρL(A,B) =
∑

r∈R
er
∑

t∈T
|LA

rt − LB
rt|. (9)

Proof.
|V A(σ)− V B(σ)| = |

∑

r∈R

∑

t∈T
oArt −

∑

r∈R

∑

t∈T
oBrt|, (10)

here ort = max{0, er(
∑
j∈J

cjrt −Lrt)}, and taking into account that costs are equal

eAr = eBr = er and |max{a, b} −max{c, d}| ≤ max{|a− c|, |b− d|},

|V A(σ)− V B(σ)| ≤
∑

r∈R

∑

t∈T
|eAr (

∑

j∈J
cjrt − LA

rt)− eBr (
∑

j∈J
cjrt − LB

rt)| ≤

≤ ∑
r∈R

er
∑
t∈T
|LA

rt − LB
rt|. �

339

4

– we consider the objective function value difference estimations when several pa-
rameter types vary from instance A to B;

– it is important to prove that general case estimations can be combined from the
particular parameter changes and the impact is not multiplied;

2. the formulation of estimations VA(πB)−VA(πA) ≤ ∆(ρ(A,B)) of the difference between
objective function values of optimal solutions for arbitrary instances A and B.

5 Conclusion

To sum up, we propose to apply the metrization approach to a Resource Leveling
Problem. This approach allows studying the error upper bound when the given optimal
solution of the instance is used as a suboptimal solution for another instance (which may
differ in some parameters). The general idea is to provide theoretical estimations of the
guaranteed absolute accuracy in this case and use these properties to deal with some real-
life issues, for example, data uncertainty.

Future work includes the detailed study of possible improvements of these estimations
and the allocation of useful subclasses of instances that are solved in a reasonable time. The
second goal is to study useful applications to uncertainty cases and numerical experiments,
for example:

– describe the conditions when there are some changes in the instance data, but the same
solution (or the scheduling part, in particular) still remains optimal;

– provide the proven accuracy solutions for the cases with uncertain data in some pa-
rameters (e.g. presented by ranges).

References

Baydoun, G., Haït, A., Pellerin, R., Cément, B. & Bouvignies, G. (2016), ‘A rough-cut
capacity planning model with overlapping’, OR Spectrum 38(2), 335–364.

Bianco, L., Caramia, M. & Giordani, S. (2016), ‘Resource levelling in project scheduling
with generalized precedence relationships and variable execution intensities’, OR Spec-
trum 38(2), 405–425.

Hans, E. (2001), Resource Loading by Branch-and-Price Techniques, PhD thesis, Twente
University Press (TUP), Netherlands.

Kis, T. (2005), ‘A branch-and-cut algorithm for scheduling of projects with variable-
intensity activities’, Mathematical Programming 103(3), 515–539.

Lazarev, A. A. (2009), ‘Estimates of the absolute error and a scheme for an approximate
solution to scheduling problems’, Computational Mathematics and Mathematical Physics
49(2), 373–386.

Lazarev, A. A., Korenev, P. S. & Sologub, A. A. (2017), ‘A metric for total tardiness
minimization’, Automation and Remote Control 78(4), 732–740.

Lazarev, A. A. & Kvaratskheliya, A. G. (2010), ‘Metrics in scheduling problems’, Doklady
Mathematics 81(3), 497–499.

Neumann, K., Schwindt, C. & Zimmermann, J. (2002), Resource-Constrained Project
Scheduling — Minimization of General Objective Functions, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 175–299.

Rieck, J. & Zimmermann, J. (2015), Exact Methods for Resource Leveling Problems,
Springer International Publishing, Cham, pp. 361–387.

Tarasov, I., Haït, A. & Battaïa, O. (2019), ‘A generalized milp formulation for the period-
aggregated resource leveling problem with variable job duration’, Algorithms 13(1).
URL: https://www.mdpi.com/1999-4893/13/1/6

340

1

Open shop problem with agreement graph: new results

Nour ElHouda TELLACHE1, Mourad BOUDHAR2 and Farouk YALAOUI3

1 CERMICS Laboratory, ENPC, 6-8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex 2,
France

nour.tellache@gmail.com
2 RECITS Laboratory, USTHB university, BP 32 El-Alia,Bab-Ezzouar, Algiers, Algeria

mboudhar@yahoo.fr
3 LOSI Laboratory, UTT university, 12 rue Marie Curie BP 2060, 10010, Troyes Cedex, France

farouk.yalaoui@utt.fr

Abstract. This paper deals with the problem of scheduling on a two-machine open
shop subject to constraints given by an agreement graph G, such that jobs can be
processed simultaneously on different machines if and only if they are represented
by adjacent vertices in G. The problem of minimizing the maximum completion
time (makespan) is known to be NP-hard. In this work, we study the complexity
of the problem when restricted to trees. Then, we present six Mixed Integer Lin-
ear Programming (MILP) models along with an experimental study to test their
performance.

Keywords: open shop scheduling, agreement graph, complexity, MILP, makespan.

1 Introduction

The Open Shop problem with Agreement graph (OSA) which is discussed in this paper
can be described as follows. The inputs consist of a finite set {Jj , j = 1, . . . , n} of n
jobs that has to be processed on a set {Mi, i = 1, . . . ,m} of m machines and a simple
graph G = (V,E) over the jobs, called the agreement graph. Each job Jj consists of m
operations Jij (i = 1, . . . ,m), where Jij has to be processed on machine Mi for pij ≥ 0
time units. The order in which the jobs are processed on the machines is not fixed. On
the other hand, each vertex in G represents a job and two jobs can be processed at the
same time on different machines (are not in conflict) if and only if they are adjacent in G.
The objective is to find a feasible schedule that minimizes the maximum completion time
(makespan). According to the three field classification α/β/γ of Graham et al. [4], we denote
our scheduling problem by O2|AgreeG = (V,E)|Cmax, where AgreeG = (V,E) indicates
the presence of an agreement graph G = (V,E) over the jobs. The proportionate processing
times assumption implies that each job Jj has the same processing requirement pj on each
machine (pij = pj for all jobs Jj and all machinesMi); in that case, the resulting problem is
called the proportionate OSA problem and it is denoted Om|AgreeG = (V,E), prpt|Cmax.

In some practical applications, the jobs may require, besides the machines, some addi-
tional non-sharable resources with limited capacities for their processing [1]. In this case,
two jobs can be processed simultaneously on different machines if the total requirement of
at least one resource does not exceed its capacity. Therefore, this problem can be modeled
as an OSA problem. For more details about the correspondence between the OSA problem
and the open shop under resource constraints, the interested reader is referred to [6].

341

2

2 Literature review

Scheduling with agreement graph G = (V,E) is equivalent to scheduling with conflict
graph G = (V,E) (complement of the agreement graph). Tellache and Boudhar [6] studied
the Open Shop problem with Conflict graph (OSC). They showed that the two-machine
OSC problem with pij ∈ {1, 2, 3} is NP-hard in the strong sense even when restricted
to complements of bipartite graphs. The same result holds for the three-machine OSC
problem with pij = 1 and an arbitrary conflict graph. After that, efficient algorithms were
proposed for the two-machine OSC problem with pij ∈ {0, 1, 2}, and for the three-machine
OSC problem with pij = 1 and G being a complement of triangle-free graph. They also
proved that by allowing preemption, the two-machine OSC problem becomes easy to solve
for arbitrary conflict graphs. On the other hand, they found that the OSC problem is
polynomially equivalent to a special case of the open shop under resource constraints, from
which new complexity results of the latter problem were established. They also presented a
two-phase heuristic approach and lower bounds for the general m-machine OSC problem.
In [5], the authors considered the same problem. They first proved the NP-hardness of the
case of two values of processing times and more general agreement graphs which closes
definitely the complexity status of the problem. Then, they presented some restricted cases
that can be solved in polynomial time. They also derived new complexity results of the
open shop under resource constraints and of the partition into triangles problem.

3 NP-hardness results

In this Section, we show that the OSA problem is NP-hard even when restricted to
trees. The problem used in the reduction process is the 2-partition problem [3].

Theorem 1. The problem O2|AgreeG = (V,E)|Cmax is NP-hard in the ordinary sense
for G being a tree.

In the following theorem, we consider the proportionate open shop problem.

Theorem 2. The problem O2|AgreeG = (V,E), prpt|Cmax is NP-hard in the ordinary
sense for G being a tree.

4 Mathematical models

The following models are proposed for the problem O|AgreeG = (V,E)|Cmax. The
parameters used are:

– ajk: 1 if Jj and Jk are in conflict, 0 otherwise.
– M : big constant.

The decision variables of the first model are:

– Cmax: the maximum completion time determined by the completion time of the last
operation.

– Cij : completion time of job Jj on machine Mi.
– xijk: 1 if job Jj is scheduled any time before Jk on machine Mi, 0 otherwise.
– yii′j : 1 if job Jj is scheduled on Mi then on Mi′ , 0 otherwise.
– rjkii′ : when ajk = 1, this variable is equal to 1 if the operation Jij is scheduled any time

before Ji′k, 0 otherwise..

The MILP model is summarized in (P1).

342

3

min Cmax

S.C Cmax ≥ Cij ; i = 1, . . . ,m; j = 1, . . . , n, (1)
Cij −M(1− xikj) ≤ Cik − pik; i = 1, . . . ,m, 1 ≤ j < k ≤ n, (2)
Cij − Cik − pij ≥ −Mxikj ; i = 1, . . . ,m, 1 ≤ j < k ≤ n, (3)

(P1) Cij −M(1− yii′j) ≤ Ci′j − pi′j ; 1 ≤ i′ < i ≤ m, j = 1, . . . , n, (4)
Cij − Ci′j − pij ≥ −Myii′j ; 1 ≤ i′ < i ≤ m, j = 1, . . . , n, (5)
Cij −M(1− riji′k) ≤ Ci′k − pi′k; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m,, j = 1, . . . , n, (6)
Cij − Ci′k − pij ≥ −Mriji′k; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m,, j = 1, . . . , n, (7)
xijk, yii′j ∈ {0, 1}; 1 ≤ i′ < i ≤ m, 1 ≤ j < k ≤ n, (8)
riji′k ∈ {0, 1}; (i 6= i′), i, i′ = 1, . . . ,m, 1 ≤ j < k ≤ n, (9)
Cij ≥ pij ; i = 1, . . . ,m, j = 1, . . . , n. (10)

(1) equates the makespan to the maximum of the completion times of all operations.
(2) and (3) ensure that job Jk either precedes job Jj or follows it on Mi, but not both.
(4) and (5) ensure that the operations of the same job cannot be processed at the same

time on different machines.
(6) and (7) ensure that two conflicting jobs cannot be processed simultaneously on dif-

ferent machines.

The conflict constraints between the jobs and the conflicts between the operations of the
same job can be modelled without introducing the variables yii′j and riji′k as follows.

min Cmax

S.C Cmax ≥ Cij ; i = 1, . . . ,m; j = 1, . . . , n, (1)
Cij −M(1− xikj) ≤ Cik − pik; i = 1, . . . ,m, 1 ≤ j < k ≤ n, (2)
Cij − Cik − pij ≥ −Mxikj ; i = 1, . . . ,m, 1 ≤ j < k ≤ n, (3)

(P2)
max{cij−ci′j ;0}

pij
+

max{ci′j−cij ;0}
pi′j

≥ 1; 1 ≤ i′ < i ≤ m, j = 1, . . . , n, (11)
max{cij−ci′k;0}

pij
+

max{ci′k−cij ;0}
pi′k

≥ 1; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m, 1 ≤ j < k ≤ n, (12)
xijk ∈ {0, 1}; i = 1, . . . ,m 1 ≤ j < k ≤ n, (13)
Cij ≥ pij ; i = 1, . . . ,m, j = 1, . . . , n. (10)

We replaced constraints (4) and (5) of (P1) by constraint (11) of (P2) and (6) and (7)
of (P1) by the constraint (12) of (P2).

The disjoint constraints of (P1) and (P2) can be written in two different ways:

– Combine each pair of inequality dichotomous constraints into a single equality con-
straint that we set equal to a surplus variable as follows:

(2) + (3)⇒




Cij − Cik +Mxikj − pij = Xijk; i = 1, . . . ,m, 1 ≤ j < k ≤ n
M − pik − pij ≥ Xijk; i = 1, . . . ,m, 1 ≤ j < k ≤ n
Xijk ≥ 0; i = 1, . . . ,m, 1 ≤ j < k ≤ n

(4) + (5)⇒




Cij − Ci′j +Myii′j − pij = Yii′k; 1 ≤ i′ < i ≤ m, j = 1, . . . , n
M − pi′j − pij ≥ Yii′k; 1 ≤ i′ < i ≤ m, j = 1, . . . , n
Yii′k ≥ 0; 1 ≤ i′ < i ≤ m, j = 1, . . . , n

(6)+(7)⇒
{

Cij − Ci′k +Mriji′k − pij = Riji′k; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m, 1 ≤ j < k ≤ n
M − pi′k − pij ≥ Riji′k; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m, 1 ≤ j < k ≤ n
Riji′k ≥ 0; if ajk = 1, (i 6= i′), i, i′ = 1, . . . ,m, 1 ≤ j < k ≤ n

By replacing these constraints in (P1) and (P2), we obtain the models (P3) and (P4)
respectively.

343

4

– Keep the first inequality and add the fact that the sum of the two variables equals 1.

(2) + (3)⇒
{
Cij −M(1− xikj) ≤ Cik − pik; i = 1, . . . ,m, 1 ≤ j 6= k ≤ n
xijk + xikj = 1; i = 1, . . . ,m, 1 ≤ j 6= k ≤ n

(4) + (5)⇒
{
Cij −M(1− yii′j) ≤ Ci′j − pi′j ; 1 ≤ i′ 6= i ≤ m, j = 1, . . . , n
yii′j + yi′ij = 1; 1 ≤ i′ 6= i ≤ m, j = 1, . . . , n

(6) + (7)⇒
{
Cij −M(1− riji′k) ≤ Ci′k − pi′k; 1 ≤ i′ 6= i ≤ m, 1 ≤ j 6= k ≤ n
riji′k + ri′kij = 1; 1 ≤ i′ 6= i ≤ m, 1 ≤ j 6= k ≤ n

(8) + (9)⇒
{
xijk, yii′j , riji′k ∈ {0, 1}; 1 ≤ i′ 6= i ≤ m, 1 ≤ j 6= k ≤ n

(13)⇒
{
xijk ∈ {0, 1}; 1 ≤ i′ 6= i ≤ m, 1 ≤ j 6= k ≤ n

By replacing these constraints in (P1) and (P2), we obtain the models (P5) and (P6)
respectively.

5 Computational experiments

The runs of the above mathematical models were made with Microsoft Visual Studio
2017 (using C++ language) and the models were solved using Cplex 12.8 solver. All experi-
ments were carried out on randomly generated instances. The conflict graph of each instance
is generated using the G(n, p) Erdős Rényi method [2], where p is the probability that an
edge exists between two vertices. The number of jobs we considered is from 3 to 11 and the
number of machines m ∈ {2, 3, 5}. We also considered three values of p, p ∈ {0.2, 0.5, 0.8}.
The processing times of the jobs were randomly generated from a uniform distribution in
the interval [0, 100]. Note that M in the experiments is set M =

∑m
i=1

∑n
j=i pij .

We observed from the implementation that the MILP models based on (P1) ((P1),
(P3) and (P5)) require less CPU time than the models based on (P2) ((P2), (P4) and
(P6)). Regarding the modeling of the disjoint constraints, we observed that the first and
third types of constraints perform better than combining the inequalities into an equality
constraint that we set equal to a surplus variable.

6 Perspectives

For future perspectives, more research is needed concerning the complexity of the OSA
problem when restricted to other particular graphs. Also, more research and numerical
simulations are needed to enhance the mathematical models, e.g. by adding valid cuts and
by introducing procedures to improve the value of big M .

Bibliography

[1] J. Blazewicz, W. Cellary, R. Slowinski, and J. Weglarz. Scheduling under resource
constraints-deterministic models. Annals of Operations Research, 7, 1986.

[2] P. Erdős and A. Rényi. On random graphs ı. Publicationes Mathematicae, 6:290–297,
1959.

[3] M. R. Garey and D. S. Johnson. Computers and intractability: A Guide to the Theory
of NP-Completeness. New York: Freeman, 1979.

[4] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of
discrete mathematics, 5:287–326, 1979.

[5] N. Tellache, M. Boudhar, and F. Yalaoui. Two-machine open shop problem with agree-
ment graph. Theoretical Computer Science, 796:154–168, 2019.

[6] N. E. H. Tellache and M. Boudhar. Open shop scheduling problems with conflict graphs.
Discrete Applied Mathematics, 227:103 – 120, 2017.

344

1

Scheduling loads injection during �ows merging in a

collector

B. Vacher1,2, A. Jouglet1, D. Nace1, S. Pietrowicz2 and M. Bouznif2

1 Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Heudiasyc UMR 7253,
CS 60319, Compiègne cedex 60203, France

blandine.vacher,antoine.jouglet,dritan.nace@hds.utc.fr
2 SAVOYE, Dijon 21000, France

blandine.vacher,stephane.pietrowicz@savoye.com; marwane.bouznif@a-sis.com

Keywords: scheduling, job shop, logistics.

1 Industrial context

These last years, the world of supply chain has been signi�cantly impacted by the
consumer society and by the extensive use of new technologies. The constant increase of
orders to deal with is forcing logistics actors to be more reactive and competitive. SAVOYE
is a company specialized in the automation of logistics warehouses, and is a manufacturer
of equipments for order preparation. In this context, the company focus on optimizing its
solutions. To complete an order, many operations are required (such as erecting a box,
moving stored items on bins, weighting a box). Optimizing loads (boxes, bins, containers,
etc.) travel time could signi�cantly improve the warehouse performance.

In this paper, we consider the optimization of the injection of loads coming from di�erent
sources onto a single collector in aim to maximize the throughput and ensure the highest
production rate possible. We de�ne a �ow as an ordered list of loads following the same
path. We are interested in merging several �ows into a single one. The system is made of
several aisles materialized by conveyors arranged side by side which join the same collector.
Each �ow is carried by a conveyor and its loads are waiting in line to be injected onto the
collector (see Figure 1).

The goal is to maximize the throughput of the �nal �ow carried by the collector,
conveying loads of the di�erent �ows coming from di�erent aisles. To do that, we should
be able to choose, for each aisle, the date when each load has to be injected onto the
collector. In practice, a load can be injected at a given date t from a given conveyor i if
there is no load in the junction between the conveyor i and the collector (see Figure 1) at
time t. While the conveyor from the �rt aisle can freely inject a load (since there is always
no load in front of its exit), it is not the case at any time t for the conveyors downstream
for which loads injected from conveyors upstream may occupy the place and do not allow
these conveyors to inject loads at this precise time t.

Maximizing the throughput of the collector is equivalent to reducing the number of
empty space on the collector while it runs at its highest mechanical speed capacity. Thus,
we propose an approach computing the optimal dates of loads injection, based on which is
built a �nal �ow with as less as possible empty spaces. These injection dates are de�ned
with respect to a given feasible �nal sequence in which the loads are waiting at the exit of
the collector.

2 Problem de�nition

Let L be the set of the n loads to be injected onto the collector, each of them being
identi�ed by a unique identi�er which corresponds to its position in the wished exit sequence

345

2

Fig. 1. Exemple of the studied systeme : instance A

σ. Let A = {a1, . . . , ak} be the set of the k aisles numbered from the most upstream to
the most downstream. We assume that the system has full knowledge of the loads present
in each aisles. Then, we denote by hi the number of loads waiting in the aisle ai. Next, for
the purposes of notation, we de�ne function ai : N→ N such that ai(j) = l ∈ L where l is
the identi�er of jth load waiting in aisle ai, i.e. its position in sequence σ. One can remark
that we have L = {ai(j),∀i = 1 . . . k, ∀j = 1 . . . hi}.

An instance is shown in Figure 1 with k = 4, n = 9, A = {a1, a2, a3, a4}, L =
{1, 2, . . . , 9}, σ = (1, 2, 3, ..., 9). On this instance we notice that h1 = 2 and a2(1) = 1.

Finally, the collector can be divided into slots corresponding to the space occupied by
a load (often larger than the physical space used, in order to take into account a safety
space). To simplify, we will consider in this paper that aisles are equally distributed on
consecutive slots along the collector, as shown in Figure 1. Moreover, the duration needed
to run through the distance of one slot is taken as unit of time.

3 Optimally injecting loads onto the collector

We are looking to inject loads by respecting the given σ sequence so that the collector
has the maximal throughput, �uid and continuous, compared to its mechanical capabilities.
We recall that the maximal throughput is reached if loads can be injected onto the collector
with no empty space between loads and without slowing down its speed. We will show below
that this problem can be modeled as a job shop scheduling problem and can be solved using
the algorithm describd below.

3.1 A job shop scheduling problem

De�nition 1. The sequence σ is said to be feasible if it veri�es the precedence constraints

induced by the mechanic con�guration of the aisles: ∀ai ∈ A, ∀j, p ∈ {1, . . . , hi}, j < p we

have ai(j) < ai(p).

For each feasible sequence σ, we are able to compute the optimal injection date for each
load in such a way that there is no empty space between loads on the collector running at
its maximal speed. For that, we model the problem as a job shop scheduling problem as
follows.

There are n jobs {Ju, u ∈ L} being associated with each load {u ∈ L}. Each job has
an ordered list of operations to follow. An operation is a task to be processed on a special
machine. There are k machines {M1, ...,Mk}, each one being associated with an aisle. Re-
minder that aisles are numbered from upstream to downstream and are equally distributed
on consecutive slots. Then it takes one unit of time for a load on the collector to pass from
one aisle to the following one. Thus, a load injected onto the collector from aisle ai will
pass in front of each aisle ap with p ∈ {i, i + 1, . . . , k}. This mechanism is represented by

346

3

the fact that each job Ju associated with a load u from aisle ai consists of k − i + 1 uni-
tary operations {ou,i, ou,i+1, . . . , ou,k}. Operations on this ordered list have to be processed
consecutively, without waiting, respectively by machines {Mi,Mi+1, . . . ,Mk}.

By construction, the injection date onto the collector of the load u from aisle ai corre-
sponds to the start-time of the �rst operation ou,i of the job Ju, while the start-times of
the following operations (i.e. {ou,i+1, . . . , ou,k}) represent the dates at which the same load
is in front of each following aisles.

Note that each job is made of at least one operation on the last machine Mk (since
each load passes in front of at least the last aisle ak). The sequence of scheduled operations
on machine Mk corresponds exactly to the order in which the associated loads will pass in
front of the last aisle and their starting time to the time at which the loads pass in front
of the last aisle. Therefore, if load u is before load v in the given �nal sequence, operation
ou,k has to be scheduled before operation ov,k. Moreover, enforcing the constraints that
machine Mk has to process operations without idle time guarantees the fact that there is
no empty space between loads on the collector, maximizing its throughput.

To conclude, maximizing the throughput of the collector is equivalent to schedule all
operations on Mk without idle time in the order given by the associated loads on the �nal
sequence.

3.2 A scheduling algorithm

Several methods to solve the Job Shop problem already exist, as in the review proposed
by Jacek Blazevitcz et. al. (1995) and new approaches shown by J. F. Gonçalves et. al.

(2005) or by P. Pongchairerks (2016). However, this scheduling problem can be solved by
the following algorithm thanks to the speci�cities of our model.

To begin with, supposing the �rst load of the sequence comes from aisle ai, the operations
{o1,i, o1,i+1, . . . , o1,k} associated with the job J1 start at date t′, t′ + 1, . . . , t′ + k − i.

Then, we schedule the operations of the job Ju corresponding to the next load u in
the �nal sequence. This job will be scheduled �rst by dealing with the operation ou,k to
be processed on machine Mk, just after (without idle time) the previous operation ou−1,k
scheduled on it. Supposing that the operation ou,k starts at date t, the operation ou,k−1 (if
it exists) is scheduled on machineMk−1 at date t−1, and so on, until having all operations
scheduled. This procedure is iteratively applied on the n− 1 jobs.

Real injecting dates on the collector are deduced directly from the start time of the
�rst operation of each associated job according to the real duration of a time slot (which
depends on the speed of the collector).

Table 1. Scheduling of the instance A

Time 0 1 2 3 4 5 6 7 8 9 10

M1 2 4

M2 1 2 4 6 7

M3 1 2 4 5 6 7 9

M4 1 2 3 4 5 6 7 8 9

The Table 1 shows the application of this algorithm on the instance given in Figure
1. The load identi�er written in a box means that this load is passing in front of the
aisle pointed out by the line index, on the time de�ned by the column index. The wished

347

4

�nal sequence is actually scheduled without empty space on the �nal machine M4 and the
injecting dates are deduced from their �rst occurrence (bolded in the table).

3.3 A formula for the injecting dates

Let i1 be the aisle index containing the load 1, �rst load of σ. Moreover, we suppose
that we can inject loads from date 0.

Proposition 1. The �rst operation on Mk will start at the earliest date

t0 = maxai(1),i=1...i1 {k − i− ai(1) + 1}. Then, the injecting date of load u ∈ L is given

by T (u) such that: ∀i = 1...k, ∀j = 1...hi, T (ai(j)) = t0 + ai(j)− 1− (k − i).

Proof. Thanks to the previous job shop scheduling problem, we can calculate t0 the earliest
date we can schedule the �rst operation on machine Mk (proof not given in this paper).
given the identi�er (so the wished place on σ) of the jth load waiting on the aisle ai

Reminder that ai(j) gives the position of jth load on aisle ai on the �nal sequence
σ. We deduce that the last operation of the job associated with the load ai(j) starts at
t0 + ai(j)− 1. Thus, we deduce that this load injecting date is (k − i) slots of time before
according to the aisles layout hypothesis.

4 Results and perspectives

We succeed in maximizing the collector throughput while running at its maximal me-
chanical speed capacity, totally occuping and sorting loads according to a wished �nal
sequence. To do that, we found an algorithm which always give an uninterrupted �ow
whatever feasible sequence for one instant of the system. Thanks to this method, we were
able to extract a formula to directly calculate the loads injection dates. Iterating the pro-
cess at strategic dates, linked correctly, allows for an uninterrupted dynamic �ow on the
collector.

This method has been adapted for aisles dispatched randomly across the collector and
we also have thought about the construction of a good �nal sequence (if not given). Those
solutions led to a patent deposit.

References

J. Blazevitcz, W. Domschke, E. Pesch, 1995, �The job shop scheduling problem: Conventional and
new solution techniques", European Journal of Operational Research 93 (1996) 1-33

J. F. Gonçalves, J. J. Mendes, and M. G. C. Resende, 2005, �A hybrid genetic algorithm for the
job shop scheduling problem", European Journal of Operational Research, vol. 167, no. 1, pp.
77�95.

P. Pongchairerks, 2016, �E�cient local search algorithms for job-shop scheduling problems", In-
ternational Journal of Mathematics in Operational Research, vol. 9, no. 2, pp. 258�277.

348

349

350

351

352

353

1

Minimizing Delays in Aircraft-Landing Scheduling

Marie-Sklaerder Vié1 Nicolas Zu�erey1 Roel Leus2

1 GSEM - University of Geneva, Switzerland
marie-sklaerder.vie@unige.ch, n.zufferey@unige.ch

2 Faculty of Economics and Business, KU Leuven, Belgium, roel.leus@kuleuven.be

Keywords: aircraft scheduling, heuristic, delay minimization.

1 Introduction

In collaboration with EUROCONTROL (European Organization for the Safety of Air

Navigation), the considered Aircraft Landing Planning (ALP) problem aims at minimizing
delays (with respect to the published airline schedules) while satisfying the separation

constraint (which imposes minimum threshold times between planes, ranging from 90 to
240 seconds). In this study, the landing sequence of the planes has to be determined �rst,
and subsequently their associated landing times and Holding-Stack Patterns (HSPs) needed
to meet such landing times. HSPs consist of making a plane wait for its planned landing
time by making circular patterns close to the airport. The uncertainty due to winds is
taken into account in the simulation procedure (it has an impact on the arrival times).

Di�erent pointers on ALP can be found in the literature (Avella et al. 2017, Bennell et
al. 2017, Furini et al. 2015, Vié et al. 2018). The proposed solution method is a descent local
search with restarts. It is quick enough with respect to implementation in real situations as
it can be applied within seconds. Furthermore, the obtained results show that the delays
can be reduced by approximately 50% on average when compared to a common practice
rule. The paper is organized as follows. The problem is formally introduced in Section
2. Next, the proposed optimization method is designed in Section 3. Results are given in
Section 4, followed by conclusions in Section 5.

2 Problem Formulation

Each instance covers a 3-hour planning horizon, which allows capturing the peak period
of most airports. A rolling planning window Ht = [t, t + w[(with w = 45 minutes) is
associated with the current time t, with time steps of ∆t = 30 seconds. At each time t,
we only consider the �ights that are in cruise and have their landing planned in Ht. The
�ights that have their landing in Ht but are not yet in cruise are only considered when
they take-o�. They are called the pop-up �ights.

Each �ight has di�erent stages: (1) take-o�, (2) cruise, (3) approach, (4) landing (the
last L = 15 minutes, during which no modi�cation is performed). In this paper, we only
consider stages (2) and (3). From a practical standpoint, an initial schedule is �rst built
when each �ight enters the planning window (i.e., when it has taken o� in the case of a
pop-up �ight, or when its expected landing time is within the next 45 minutes). Next, we
can reschedule it (within the landing sequence) or make it wait to meet its planned arrival
time (through HSPs). The popular First-Come-First-Served (FCFS) rule is employed to
build the initial schedule. FCFS ranks the �ights according to their entry times in Ht (i.e.,
with respect to increasing published arrival times). FCFS used to be the most employed
current-practice approach (Erzberger 1995), and it is an optimal rule for the single-machine
job-scheduling problems when the maximum tardiness has to be minimized (Pinedo 2016)
(in our case we have to minimize the average tardiness).

354

2

We propose the following mathematical model (P t) for each time t. Among the �ights
that have already taken o�, we only consider the �ights with planned landing times up to
time t+w. Let J t be the set of (say n) �ights considered in Ht. For each �ight j ∈ J t, the
following data is given:

� rj : release date (i.e., take-o� time).
� dj : due date (i.e., published landing time).
� ptj : processing time (i.e., remaining time � in seconds � during the cruise phase).
� sj,j′ : set up time between �ights j and j′. More precisely, for each pair (j, j′) of �ights
such that j has to land before j′, their landing times must be separated by sj,j′ ∈
{90, 120, 150, 180, 210, 240} seconds, depending on the involved plane types.

We have two types of decision variables: (1) determine the vector Πt of the positions
of the �ights involved at time t (i.e., improve the current landing sequence by performing
an optimization method); (2) for each �ight j, determine a feasible landing time Ct

j (with
respect to the separation constraint) and assign a HSP of durationW t

j in order to meet C
t
j .

The objective function f to minimize is the sum of all positive delays (i.e., the total tardi-
ness): f =

∑
j∈Jt max{Ct

j−dj , 0}. Constraints (1) impose that two �ights are not scheduled
in the same position. Constraints (2) capture the separation constraints. Constraints (3)
determine the expected landing times. Constraints (4) are the domain constraints.

Πt
j 6= Πt

j′ ∀j, j′ ∈ J t (1)

Ct
j′ ≥ Ct

j + sj,j′ ∀j, j′ ∈ J t such that Πt
j + 1 = Πt

j′ (2)

Ct
j = t+ ptj +W t

j + L ∀j ∈ J t (3)

Πt
j ∈ {1, . . . , n}, Ct

j ≥ 0,W t
j ≥ 0 ∀j ∈ J t (4)

This problem can be seen as a variant of a single-machine total-tardiness problem with
setup times, which is NP-hard even without setup times (Du and Leung 1990).

3 Optimization Method

Algorithm 1 presents how to roll the planning window Ht over the full 3-hour planning
horizon. In Step 2, the landing positions Πt of the new �ights are computed with the
following insertion rules used in practice: (1) each pop-up �ight j that just entered Ht

(i.e., t ≥ rj but t − ∆t < rj , and t ≥ dj − w) is added to the landing sequence at a
position Πt such that its due date is respected (i.e., j is placed before all �ights j′ such
that Ct

j′ ≥ dj but after all the other �ights); (2) each �ight j that took o� a while ago

but just entered Ht (i.e., t ≥ rj and t ≥ dj − w, but t − ∆t < dj − w) is put at the
end of the landing sequence (FCFS rule). In Step 3, each remaining processing times ptj is
updated while considering an uncertainty parameter ut randomly generated following the
EUROCONTROL speci�cations. ut generates a deviation (e.g., due to wind) of the cruise
speed of around 7% (with an average of 0%, as positive deviations are compensated by
negative ones). In Step 4, and after each modi�cation of Πt, Ct and W t) are updated with
the following current-practice rules. First, we re-number all �ights of J t as j1, j2, . . . , jn
such that Πt

j1
< Πt

j2
< . . . < Πt

jn
. Next, for k = 1 to n, we perform steps (S1) and (S2).

(S1) Ct
jk

= max{Ct
jk−1

+sjk−1,jk , t+p
t
jk
+L} (i.e., the arrival time of jk is as close as possible

to the arrival time of the previous �ight jk−1, or as soon as jk can land).
(S2) W t

jk
= Ct

jk
− (t+ ptjk + L) (i.e., the �ight turns over the airport if it is too early with

respect to the planned landing time).

355

3

Algorithm 1 Optimization for each time step t

Initialization: set t = 0, Jt = Jt−∆t = ∅ and Πt = Πt−∆t = ().

While (not all �ights have landed), do:

1. Update Jt: remove the �ights that have started landing (i.e., each �ight j for which t ≥ Ctj−l),
and add the �ights that have just entered the updated planning window Ht (i.e., each �ight
j for which t ≥ rj and t ≥ dj − w).

2. Compute the positions of the new �ights (i.e., the �ights that are in Jt but not in Jt−∆t) to
obtain the vector Πt, based on Πt−∆t and the insertion rules.

3. Update the remaining cruise time for each �ight j: set ptj = pt−∆tj −∆t · (1 + utj).

4. Update Ct and W t according to the new �ight positions Πt and the processing times pt.
5. Improve solution (Πt, Ct,W t) with a solution method.
6. Move to the next time step: set t = t+∆t and Ht = [t, t+ w[.

As (1) the considered problem is NP-hard, (2) up to 24 �ights are involved in Ht, and
(3) the allowed computing-time limit T is very short (T = ∆t = 30 seconds), quite a
number of potential solution methods are not suitable for Step 5. Indeed, exact methods,
cumbersome population-based metaheuristics (e.g., genetic algorithms, ant algorithms) or
metaheuristics using a somewhat long learning process (e.g., simulated annealing) are too
slow. In contrast, a descent local search (DLS) appears as a promising candidate.

DLS takes as input the solution from Step 4. At each iteration, a neighbor solution S′

is generated from the current solution S = (Πt, Ct,W t) by performing the best Reinsert
move on S. A move Reinsert consists of changing the position Πt

j of a �ight j ∈ J t within
the landing sequence. After each modi�cation of Πt, the associated variables (Ct,W t) must
be updated to have a feasible solution S′ (separation constraint) and to know f(S′). The
search process stops when no improvement of S is achieved during an iteration. In order
to use the full time budget T , DLS is restarted when it encounters a local minimum (it
occurs almost every second). The best visited solution is returned at the end.

At each iteration, two mechanisms are used for reducing the computational e�ort.
First, the new position for the investigated �ight j must be in [Πt

j − 5;Πt
j + 5]. This kind

of Constrained Position Shifting is standard (Balakrishnan and Chandran 2010). Indeed,
from a practical standpoint, it seems straightforward to reschedule a �ight not too far away
from its initial position. Second, only a random proportion ρ (tuned to 50%) of the possible
neighbor solutions is generated. These mechanisms allows to perform more iterations during
T seconds, which increases the exploration capability of DLS.

4 Results

The algorithms were coded in C++ (under Linux, 3.4 GHz Intel Quad-core i7 processor,
8 GB of DDR3 RAM). Table 1 compares the proposed DLS approach with FCFS (i.e., a
common practice rule, see Algorithm 1 without Step 5). For each instance (provided by
EUROCONTROL), the following information is provided: the number N of �ights, the
largest number nmax of �ights encountered in a planning window, the average delay and
the maximum delay (for both DLS and FCFS). The two latter quantities are computed
with respect to all �ights (in seconds), and averaged over 5 runs (with di�erent uncertainty
scenarios). The percentage gains of DLS (compared to FCFS) are given in the two last
columns (a negative value indicates a better performance for FCFS). We can see that DLS
can signi�cantly reduce the average delays (almost 50%). Interestingly, the improvement
is somewhat increasing with the di�culty of the instance (i.e., with N and nmax), but

356

4

further investigations are required to understand the bene�t of DLS with respect to the
instance characteristics. FCFS is often better regarding the maximum delay. It makes sense
as FCFS guarantees optimality for minimizing the maximum delay (but not the average
delay) for single-machine job-scheduling contexts. However, DLS can sometimes do better
even for the maximum delay, as it reacts to uncertainties whereas FCFS does not.

Table 1. Comparison of FCFS with DLS for 15 instances provided by EUROCONTROL.

FCFS DLS % Gain
Instance N nmax avg. delay max delay avg. delay max delay avg. delay max delay

1 59 16 91.36 305.00 59.96 450.20 34% -48%

2 35 10 156.08 528.20 96.98 490.40 38% 7%

3 64 20 154.41 447.60 93.05 456.00 40% -2%

4 79 24 388.30 782.60 228.31 1672.60 41% -114%

5 53 14 189.53 545.00 110.36 538.40 42% 1%

6 79 21 328.86 709.20 181.40 1629.20 45% -130%

7 75 18 208.88 558.80 111.38 475.40 47% 15%

8 75 24 288.57 651.40 143.88 1480.60 50% -127%

9 62 16 240.26 539.20 118.33 505.20 51% 6%

10 70 22 207.41 503.20 99.57 563.40 52% -12%

11 72 22 280.79 631.20 131.57 800.20 53% -27%

12 71 18 170.19 514.80 77.72 475.20 54% 8%

13 97 23 386.69 903.00 174.56 1247.60 55% -38%

14 61 15 195.54 644.60 86.58 612.80 56% 5%

15 97 20 234.52 569.00 97.04 662.20 59% -16%

Average results 234.76 588.85 120.71 803.96 48% -31%

5 Conclusion

The Aircraft Landing Planning is a challenging problem as the runway capacity is the
bottleneck of many airports. In collaboration with EUROCONTROL, this study proposes a
quick and e�cient descent-based solution method for minimizing delays. Indeed, solutions
can be obtained within seconds (which is appropriate for real-world implementation) and
the average delay is reduced by almost 50%. Possible future works include the development
of re�ned algorithms and other techniques (e.g., speed adjustments, detours) to make the
�ights meet their landing times, in order to reduce the over-the-airport tra�c.

Acknowledgements. Study partially �nanced by EUROCONTROL (SESAR2020 program).

Many thanks to Mr. Raphaël Christien for his availability/advices.

References

Avella P., Boccia M., Mannino C., Vasilyev I., 2017, "Time-Indexed Formulations for the Runway
Scheduling Problem", Transportation Science, Vol. 51 (4), pp. 1031-1386.

Balakrishnan H., Chandran B.G., 2010, "Algorithms for scheduling runway operations under con-
strained position shifting", Operations Research, Vol. 58 (6), pp. 1650-1665.

Bennell J.A., Mesgarpour M., Potts C.N., 2017, "Dynamic scheduling of aircraft landings", Euro-
pean Journal of Operational Research, Vol. 258 (1), pp. 315-327.

Du J., Leung J.Y.T., 1990, "Minimizing total tardiness on one machine is NP-hard", Mathematics

of Operations Research, Vol. 15 (3), pp. 483-495.
Erzberger H., 1995, "Design Principles and Algorithms for Automated Air Tra�c Management",

AGARD Lecture Series No. 200: Knowledge-Based Functions in Aerospace Systems, Madrid,

Paris, and San Francisco, Vol. 7 (2).
Furini F., Kidd M.P., Persiani C.A., Toth P., 2015, "Improved rolling horizon approaches to the

aircraft sequencing problem", Journal of Scheduling, Vol. 18, pp. 435-447.
Pinedo M., 2016, "Scheduling: Theory, Algorithms, and Systems", Springer.
Vié M.-S., Zu�erey N., Leus R., 2018, "Aircraft landing planning: past, present and future",

Proceedings of the 19th ROADEF Conference, Lorient, France.

357

Evaluation of Scheduling Policies for the SRCPSP in a

Dynamic Multi-Project Environment

Hendrik Weber and Rainer Kolisch

Technical University of Munich, Germany
hendrik.weber, rainer.kolisch@tum.de

Keywords: Stochastic scheduling, dynamic multi-project scheduling, genetic algorithm,
generalized preprocessor policies.

1 Introduction

We study the dynamic stochastic resource-constrained multi-project scheduling problem
where projects arrive stochastically over time. Each project has a deterministic network
and deterministic resource demand of activities, however, activity durations are stochastic.
Resource availabilities provided for processing all projects are deterministic. The objective
is to minimize average weighted �ow times. We propose a new solution approach which,
for each interarrival time of projects, calculates a scheduling policy and executes the latter
until a new project arrives. The generation of scheduling policies is based on the stochastic
resource-constrained (single) project scheduling problem (SRCPSP). In a computational
study we assess several policy approaches which have been proposed for SRCPSP. The
remainder of the paper is organized as follows: In Section 2 we review the relevant literature.
In Section 3 we detail our solution approach and in Section 4 we provide information about
our computational study.

2 Literature Review

The relevant literature for our study stems from two main streams of research, namely
the stochastic resource-constrained project scheduling problem and the dynamic stochastic
multi-project scheduling problem.

A number of contributions have been presented for the stochastic resource-constrained
project scheduling problem (SRCPSP). Stork (2001) develops exact solution procedures
to solve the SRCPSP by employing preselective, linear preselective, activity-based and
earliest start policies in a branch-and-bound framework. Another exact model is presented
by Creemers (2015): Under the assumption of PH-distributed activity durations, Creemers
develops a model that employs a backward stochastic dynamic-programming recursion
solution procedure.

Golenko-Ginzburg and Gonik (1997) present a heuristic solution approach that solves
a 0-1 integer programming model at each decision point in order to determine which ac-
tivity to process next. Tsai and Gemmill (1998) employ Tabu Search as well as Simulated
Annealing to schedule activities in an SRCPSP-setting. Ballestín (2007) employs activity-
based priority policies in combination with sampling procedures and a genetic algorithm
to generate precedence-feasible activity lists. A similar approach based on activity-based
priority policies is adapted by Ballestín and Leus (2009) who present a greedy randomized
adaptive search procedure (GRASP). A novel solution procedure is presented by Ashtiani
et al. (2011) who propose a new class of preprocessor policies encompassing resource-based
and earliest start policies by heuristically inserting new precedence constraints of the type
�nish-to-start into the project network. This concept of preprocessor policies is further

358

developed by Rostami et al. (2018). By introducing additional start-to-start constraints,
the authors propose a new class of so-called generalized preprocessor policies.

Only limited work is available for the dynamic stochastic multi-project scheduling prob-
lem. Adler et al. (1995) were the �rst to extend the single stochastic project scheduling
problems to a dynamic multi-project setting. Employing the real-life example of a prod-
uct development organization, they develop an empirically-based framework for analysing
development time in such a context. Choi et al. (2007) model this dynamic stochastic multi-
project scheduling problem as a Markov decision process and employ a Q-learning based
approach to heuristically determine policies for starting activities. Melchiors and Kolisch
(2009) proceed likewise, however solve the Markov decision process by value iteration. Ex-
tensive computational studies are provided by Melchiors (2015), in which the author evalu-
ates di�erent priority rules in the dynamic multi-project setting. Fliedner (2015) evaluates
sampling procedures as well as the genetic algorithm proposed by Hartmann (1998) in an
experimental setup.

Our work extends the current body of literature by examining the applicability of the
most recently proposed solution procedures to the SRCPSP in the context of stochastic
and dynamic multi-project scheduling.

3 Proposed Solution Procedure

In comparison to proactive and reactive scheduling, which both rely on the determi-
nation of a baseline schedule to address uncertainty, we focus our research on stochastic
scheduling where no initial schedule is determined. Following this approach, scheduling de-
cisions are made "online" and solutions take on the form of policies that only utilize a-priori
knowledge of activity duration distributions as well as the information that is available at
the corresponding decision point in time when an activity is completed. Regarding this
non-anticipativity constraint, these scheduling policies gradually build a schedule during
the project's execution as actual realizations of uncertain activity durations unfold. This
is achieved via the combination of a heuristically predetermined ordered activity list and a
schedule generation scheme that is applied in the dynamic multi-project stochastic setting.

The proposed solution procedure employs an activity-on-node representation of the
project network: Whenever a new project enters the system, the network of the arriving
project as well as the networks of the projects still in the system are combined to a super-
network which consists of all project activities, which still have to be processed or are being
processed. For activities currently being in process, distributions of activity durations will
be updated based on the so far observed duration. Until the arrival of the next project, the
super-network can be viewed as multi-project SRCPSP instances to which we can apply
SRCPSP solution methods. However, as even the SRCPSP is known to be NP-hard, we
focus our e�orts solely on heuristic procedures and resort to a discrete-event simulation
approach. With the objective of minimizing average weighted �ow times of projects, we
evaluate the policies against the lower bound derived by the critical path length of the
deterministic equivalent of the project.

3.1 Experimental Study

We evaluate four of the SRCPSP-solution procedures outlined above, namely the regret-
based biased random sampling method and the genetic algorithm of Fliedner (2015) as well
as preprocessor policies proposed by Ashtiani et al. (2011) and generalized preprocessor
policies suggested by Rostami et al. (2018). From a theoretic standpoint, preprocessor poli-
cies should, as a superset of the earliest start and resource-based policy classes, strictly

359

dominate the class of resource-based policies. Analogously, the class of generalized prepro-
cessor policies should strictly dominate all other policy classes as it entails all resource-
based, earliest start and activity-based policies. In order to account for this, we restrict the
allotted computation time for each policy generation by limiting the number of generated
schedules. Also, in contrast to the proposed class of (generalized) preprocessor policies,
we do not evaluate every possible additional predecessor constraint. To limit the compu-
tational e�ort, we only consider additional predecessor constraints that concern activities
whose expected start or �nish times lie within a small time window starting from the cur-
rent decision point: As new projects arrive and the solution procedure is repeated, more
informed decisions regarding the inclusion of additional predecessor constraints can then
be made at a later point in the simulation.

The setup for the proposed experimental study is based on Fliedner (2015). The selec-
tion of two uniform distribution (U1, U2), two beta distributions (B1, B2) and an expo-
nential distribution (EXP) for activity durations is in line with Ballestín and Leus (2009).
We further assume known true means of the activity duration distributions.

Using the ProGen/max generator by Schwindt (1995) we generate 120 di�erent RCPSP
problem instances where each project consists of |N|= 15 non-dummy activities and |K|=
4 di�erent renewable resources. The average number of required resources is controlled by
the resource factor and set to either 0.25, 0.5, 0.75 or 1. The arrival of new projects follows
a Poisson process with arrival rate λ. In order to evaluate several levels of resource scarcity,
we adjust λ which then results in di�erent average utilization levels u ∈ 0.5, 0.7, 0.9. Newly
arriving projects are all of the same type.

After a steady number of projects in the system is reached, the �ow times of 200
successive projects are averaged and compared to the critical path of the deterministic
equivalent. We conduct a full-factorial experimental study with the parameters summarised
in Table 1. Simulation results will be presented.

Table 1. Level of problem parameters

Paramter Value

|K| 4
RF 0.25, 0.5, 0.75, 1
u 0.5, 0.7, 0.9
Distribution U1, U2, B1, B2, EXP

References

Adler P., Mandelbaum A., Nguyen V. and Schwerer E., 1995, �From project to process manage-
ment: An empirically-based framework for analyzing product development time",Management
Science, Vol. 41, pp. 458-484.

Ashtiani B., Leus R. and Aryanezhad M., 2011, �New competitive results for the stochastic
resource-constrained project scheduling problem: exploring the bene�ts of pre-processing",
Journal of Scheduling, Vol. 14, pp. 157-171.

Ballestín F., 2007, �When it is worthwhile to work with the stochastic RCPSP?", Journal of
Scheduling, Vol. 10, pp. 153-166.

Ballestín F., Leus R., 2009, �Resource�constrained project scheduling for timely project completion
with stochastic activity durations", Production and Operations Management, Vol. 18, pp. 459-
474.

360

Choi J., Real� M. and Lee J., 2007, �A Q�Learning�based method applied to stochastic resource
constrained project scheduling with new project arrivals", International Journal of Robust
and Nonlinear Control: IFAC�A�liated Journal, Vol. 17, pp. 1214-1231.

Creemers S., 2015, �Minimizing the expected makespan of a project with stochastic activity du-
rations under resource constraints", Journal of Scheduling, Vol. 18, pp. 263-273.

Fliedner T., 2015, �Considering Uncertainty in Project Management and Scheduling", PhD-Thesis.
Munich.

Golenko-Ginzburg D., Gonik A., 1997, �Stochastic network project scheduling with non-
consumable limited resources", International Journal of Production Economics, Vol. 48, pp.
29-37.

Hartmann S., 1998, �A competitive genetic algorithm for resource�constrained project scheduling",
Naval Research Logistics (NRL), Vol. 45, pp. 733-750.

Melchiors P., Kolisch R., 2009, �Scheduling of Multiple R&D Projects in a Dynamic and Stochastic
Environment", Operations Research Proceedings 2008 Springer. Heidelberg.

Melchiors P., 2015, �Dynamic and stochastic multi-project planning", PhD-Thesis. Springer. Hei-
delberg.

Möhring R., Stork F., 2000, �Linear preselective policies for stochastic project scheduling", Math-
ematical Methods of Operations Research, Vol. 52, pp. 501-515.

Rostami S., Creemers S. and Leus R., 2018, �New strategies for stochastic resource-constrained
project scheduling", Journal of Scheduling, Vol. 21, pp. 394-365.

Schwindt C., 1995, �ProGen/max: A new problem generator for di�erent resource-constrained
project scheduling problems with minimal and maximal time lags", Technical report. Institut
für Wirtschaftstheorie und Operations Research, Universität Karlsruhe., Vol. 449, pp. 1-57.

Stork F., 2001, �Stochastic resource-constrained project scheduling", PhD-Thesis. Berlin.
Tsai Y., Gemmill D., 1998, �Using tabu search to schedule activities of stochastic resource-

constrained projects", European Journal of Operational Research, Vol. 111, pp. 129-141.

361

1

Modular equipment optimization in the design of
multi-product reconfigurable manufacturing systems

Abdelkrim R. Yelles-Chaouche1,2, Evgeny Gurevsky3,
Nadjib Brahimi4 and Alexandre Dolgui2

1 IRT Jules Verne, Bouguenais, France
2 LS2N, IMT Atlantique, Nantes, France

3 LS2N, Université de Nantes, France
4 Rennes School of Business, France

Keywords: Reconfigurable manufacturing systems, modularity, ILP, multi-product.

1 Introduction

This paper deals with reconfigurable manufacturing systems (RMS), which are designed
for handling multiple products. These latter are manufactured by a fixed number of ma-
chines, each has a limited number of emplacements, where modules can be plugged. A
module is a physical unit able to perform sequentially a set of tasks. One of the main
characteristics of RMS is achieved through the use of modules, thanks to their ability to
be easily moved and removed from one machine to another (see Koren et al. (1999)). The
modules are activated one by one within a machine. As a consequence, the load of a ma-
chine (which can not exceed a predefined cycle time) is calculated as the sum of all the
processing times of the tasks assigned to its modules.

As concerns the products, they share the same set of tasks to be executed. This is due to
the fact that they belong to the same family. Each product is associated to its precedence
constraints. However, the latter and the processing time of the tasks may be different from
one product to another.

In this study, an admissible configuration refers to the set of tasks of a particular prod-
uct assigned to a number of modules, which are allocated to machine emplacements while
meeting all the aforementioned constraints. In the case where several products are to be
manufactured, admissible configurations need to be designed for each of them. Since the
studied line is reconfigurable, it is therefore possible to switch from one product configu-
ration to another one by adding, moving or removing the modules.

This context arises an important optimization problem, which consists in designing
an admissible configuration for each product, such as the total number of different mod-
ules between all these configurations is minimized. To tackle this new problem, an integer
linear programming (ILP) model is developed, which is presented in Section 2. The pre-
liminary results are shown and analyzed in Section 3. Finally, conclusion and perspectives
are addressed in Section 4.

2 Problem formulation

In this section, the ILP formulation of the studied optimization problem is given. The
used notations and variables are introduced below.
Notations:

– V is the set of all tasks;
– W is the set of available machines;
– mmax is the maximum number of modules per machine;

362

2

– rmax is the maximum number of tasks per module;
– M is the set of all the modules that could be generated;
– E = {1, . . . , |W | ·mmax} is the set of all module emplacements within a configuration;
– E(k) = {(k−1)mmax+1, . . . , kmmax} is the set of module emplacements corresponding

to the machine k ∈W
– P is the set of products;
– C is the cycle time;
– t

(p)
i is a processing time of the task i ∈ V for the product p ∈ P ;

– G(p) = (V,A(p)) is a directed acyclic graph representing the precedence constraints of
the product p ∈ P . Here, A(p) is the set of arcs for G(p), where an arc (i, j) ∈ A(p)

means that the task j has to be assigned either to the same module as the task i, or
to succeeding ones.

Variables:

– xim is equal to 1 if the task i ∈ V is assigned to the module m ∈M , 0 otherwise.
– y

(p)
me is equal to 1 if the module m ∈ M is allocated in the emplacement e ∈ E of the
configuration corresponding to the product p ∈ P , 0 otherwise.

– z
(p)
ime is equal to 1 if the task i ∈ V is assigned to the module m ∈M , which is allocated
in the emplacement e ∈ E of the configuration corresponding to the product p ∈ P , 0
otherwise.

– sm is equal to 1 if the module m ∈M is not empty, 0 otherwise.

min
∑

m∈M
sm (1)

1 ≤
∑

m∈M
xim ≤ |P |, ∀i ∈ V (2)

∑

e∈E
y(p)me ≤ 1, ∀m ∈M, ∀p ∈ P (3)

∑

m∈M
y(p)me ≤ 1, ∀e ∈ E, ∀p ∈ P (4)

∑

m∈M

∑

e∈E
z
(p)
ime = 1, ∀i ∈ V, ∀p ∈ P (5)

xim ≤ sm, ∀i ∈ V, ∀m ∈M (6)

xim + y(p)me ≤ z(p)ime + 1, ∀i ∈ V, ∀m ∈M, ∀e ∈ E, ∀p ∈ P (7)

z
(p)
ime ≤ xim, ∀i ∈ V, ∀m ∈M, ∀e ∈ E, ∀p ∈ P (8)

z
(p)
ime ≤ y(p)me, ∀i ∈ V, ∀m ∈M, ∀e ∈ E, ∀p ∈ P (9)

∑

m∈M

∑

e∈E
e · z(p)ime ≤

∑

m∈M

∑

e∈E
e · z(p)jme, ∀(i, j) ∈ A(p), ∀p ∈ P (10)

∑

e∈E(k)

∑

m∈M

∑

i∈V
t
(p)
i · z

(p)
ime ≤ C, ∀k ∈W, ∀p ∈ P (11)

∑

i∈V
xim ≤ rmax, ∀m ∈M (12)

∑

i∈V
t
(p)
i · xim ≤ C, ∀m ∈M, ∀p ∈ P (13)

363

3

z
(p)
ime = 0, ∀i ∈ V, ∀m ∈M, ∀e /∈

⋃

k∈Q(p)
i

E(k), ∀p ∈ P (14)

⌈ |V |
rmax

⌉
≤
∑

m∈M
sm ≤ |V | (15)

sm+1 ≤ sm, ∀m ∈M \ {|M |} (16)

xim ∈ {0, 1}, ∀i ∈ V, ∀e ∈ E
y(p)me ∈ {0, 1}, ∀m ∈M, ∀e ∈ E, ∀p ∈ P

z
(p)
ime ∈ {0, 1}, ∀i ∈ V, ∀m ∈M, ∀e ∈ E, ∀p ∈ P

sm ∈ {0, 1}, ∀m ∈M
Objective function (1) minimizes the total number of non-empty modules. Constraints
(2) state that any task should be assigned to at least one, but at most |P | modules.
Constraints (3) express that any module can be assigned to at most one emplacement
within a configuration. Whereas (4) state that one emplacement could be occupied by no
many than one module. Constraints (5) is used so that all the required tasks are performed
in each configuration. Constraints (6) state that a module is not empty if at least one task
is assigned to it. Constraints (7), (8) and (9) ensure that the assignment of the task i to
the module m forces the allocation of this latter to an emplacement within at least one
configuration. This helps the model to consider and allocate only the modules that are
not empty. The precedence constraints in each configuration are expressed by inequalities
(10). Constraints (11) provide that the cycle time for each machine in any configuration is
not exceeded. Similarly, constraints (13) ensure that the sum of the processing time of the
tasks assigned to the module do not exceed the cycle time. The maximum number of tasks
per module is checked by constraints (12). Constraints (14) induce that the task i can only
be allocated to a restricted set of workstations, denoted by the interval Q(p)

i , where

Q
(p)
i =







t
(p)
i +

∑

j∈P(p)
i

t
(p)
j

C



, |W |+ 1−




t
(p)
i +

∑

j∈S(p)
i

t
(p)
j

C





 .

Here, P(p)
i (resp. S(p)i) represents the set of all predecessors (resp. all successors) of the

task i with respect to the precedence graph G(p) corresponding to the product p. Since the
objective function consists at minimizing the number of modules, one can notice that the
latter can not be greater than the number of tasks (in the case where each module has
only one task assigned to it). This is used to improve the upper bound on the number of
modules. The lower bound could also be calculated as the ratio of the number of tasks and
the maximum number of tasks per module. Thus, upper and lower bounds are expressed
in constraints (15). Finally, constraints (16) is used to avoid symmetric solutions, meaning
that the module m+ 1 can be filled, only if the module m is already not empty.

3 Computational results

The ILP model is tested on the basis of 224 instances of |V | = 20 provided by Otto et al.
(2013). Two products (|P | = 2) are considered with rmax = 2 and rmax = 3. Additionally,
for each instance, the resolution CPU time is limited to 600 seconds, C = 1000,

|W | = max
p∈P

{⌈
1.4 ·

∑
i∈V t

(p)
i

C

⌉}
,

364

4

and

mmax = max
p∈P

max

{
k
∣∣

k∑

i=1

t(p)πi
≤ C

}
,

where (π1, π2, . . . , π|V |) is a permutation of V with respect to the non-decreasing order of
their processing times corresponding to the product p ∈ P .

The ILP model is solved using CPLEX 12.9, installed on an 1.90GHz Intel(R) Core(TM)
i7-8650U computer with 32 GB RAM. The results are expressed in Table 1, where the first
column represents the number of products. The second column displays the value of rmax.
The third column presents the total number of instances. The number of instances solved
to optimality as well as their average CPU time are shown in the fourth and last columns,
respectively. While the instances for which no optimal solution was found are expressed by
their average GAP in the fifth column.

Table 1. Summary of computational results for |P | = 2.

|P | rmax #INST #OPT Avg. GAP, (%) Avg. CPU, (s.)

2 2 224 135 17.76 226.29
3 224 129 21.88 236.80

We can clearly analyze from Table 1 that, for |P | = 2, 60% of the instances were
optimally solved regarding rmax = 2 , versus 58% concerning the case where rmax = 3.
The instances, which were not optimally solved (89 and 95 instances for rmax = 2 and
rmax = 3, respectively) within the maximum CPU time, provide a relatively low average
GAP. This is due to constraints (15), which significantly reduce the searching space. More
detailed results for |V | = 50 as well as |P | = 3 will be provided and analyzed during the
presentation on the conference.

4 Conclusion

The proposed ILP model is a first attempt to address the studied problem. The obtained
results are promising, but not satisfactory. Hence, for our future research, we are looking
forward to develop specific reduction rules, valid inequalities and decomposition techniques
for improving the computational results.

Acknowledgements

This work was financially supported by the IRT PERFORM program, managed by IRT
Jules Verne (French Institute in Research and Technology in Advanced Manufacturing).

References

Koren, Y. and Heisel, U. and Jovane, F. and Moriwaki, T. and Pritschow, G. and Ulsoy, G. and
Van Brussel, H., 2013, «Reconfigurable manufacturing systems». In: Dashchenko A.I. (Ed.)
Manufacturing Technologies for Machines of the Future. Springer, Berlin, Heidelberg, pp.
627-665.

Otto, A. and Otto, C. and Scholl, A., 2013, «Systematic data generation and test design for
solution algorithms on the example of SALBPGen for assembly line balancing». European
Journal of Operational Research, 228(1): 33-45.

365

1

Decomposition approach for fixed jobs multi-agent
scheduling problem on parallel machines with renewable

resources

B. Zahout, A. Soukhal and P. Martineau

Université de Tours, France
LIFAT EA 6300, CNRS, ROOT ERL CNRS 7002

boukhalfa.zahout,ameur.soukhal,patrick.martineau@univ-tours.fr

Keywords: Competing multi-agent scheduling, fixed job scheduling, resource allocation,
parallel machine, MILP, decomposition approach, ε-constraint.

1 Introduction

A scheduling problem involving several actors, where each has its own decision-making
autonomy, in charge of executing its subset of jobs on the same resources (the jobs are
competing for the use of the same machines), can be assimilated to a multi-agent scheduling
problem, where a new type of compromise must be achieved. We define the term "agent"
as an entity associated with a subset of jobs. Each agent aims at minimizing his own
criterion that depends only on his own jobs. These agents are in competition since they
share the same resources (Agnetis, Billaut, Gawiejnowicz, Pacciarelli and Soukhal 2014)
We are therefore looking for the best compromised solutions. These problems are close to
the multi-objective optimization problems and cooperative game theory (Agnetis, Pascale
and Pranzo 2009).

To illustrate our approaches, we focus on the case of two agents A and B. In this
paper, all the developed results can be generalized to L agents. Agent A (resp. B) is
associated with the set of nA (resp. nB) jobs, denoted by NA = {J1, J2, ..., JnA

} (resp.
NB = {JnA+1, JnA+2, ..., Jn}), where n = nA + nB .

The n independent jobs should be scheduled without preemption on m identical parallel
machines. Additional renewable resources are however necessary to process each job. Several
types of such resources, denoted Rk, k = 1 . . .K, are needed. Hence, at execution time of
job j, rjk units of resource Rk are required. For each job j, the start date sj and its finished
date fj (j = 1, . . . , n) are fixed where its processing time pj = fj − sj . wj is the weight of
job j. Dealing with each type of resources k, the machine can process more than one job at
a time provided the resource consumption does not exceed a given value Rk (k = 1 . . .K).
We assume that the machines are continuously available during the time interval [0,∞).
All data are assumed positive integers. Without lost of generality, we assume that: sj < fj
and rjk ≤ Rk for all j = 1, . . . , n and k = 1, . . . ,K. The objective of each agent is to
find a feasible solution with maximum total weighted number of scheduled jobs. Let xij be
the binary decision variable where xij = 1 if machine i processes job Jj ; 0 otherwise. We
denote the maximum total weighted number of scheduled jobs of Agent A and of agent B

by: ZA =
m∑
i=1

nA∑
j=1

wj xij and ZB =
m∑
i=1

n∑
j=nA+1

wj xij , respectively.

In this study, ε-constraint approach is used to determine one Pareto optimal solution
(one objective function is minimized and the other one is bounded by Q). By modifying the
value Q iteratively, it is possible to obtain the whole set of strict Pareto optimal solutions.

According to the three-field notation of multiagent scheduling problems introduced in
(Agnetis, Billaut, Gawiejnowicz, Pacciarelli and Soukhal 2014), the addressed problems

366

2

are denoted by Pm|CO, sj , fj , rjk, QB |ε(ZA/ZB) (computation of one Pareto optimal so-
lution) and Pm|CO, sj , fj , rjk|P(ZA, ZB) (computation of the optimal Pareto front).

This problem is NP-hard even if only one agent is considered (mono-criterion case)
(Zahout, Soukhal and Martineau 2017).

The studied problem can be met in a Data center for example, where the goal is to
optimize the objective function of each user (agent). Jobs (applications) submitted by the
users should be executed on the cluster defined by m identical parallel machines. Each
application is executed in one container virtualized by Docker software, for example. The
machines own certain limited types of renewable resources CPU, MEMORY and STOR-
AGE, with capacities Qu1 of CPU, a certain quantity of memory Qu2 and a certain storage
capacity Qu3. In this case, to execute Applicationj , a number of virtual CPUs rj1, virtual
memory rj2 and hard drives rj3 are needed.

The mono-criterion case has been addressed in (Angelelli, Bianchessi and Filippi 2014)
where the authors consider only one additional resource (memory) and develop exact and
heuristics methods to determine one feasible solution. In the context of grid computing,
(Cordeiro, Dutot, Mounié and Trystram 2011) consider the multi-agent scheduling problem
with global objective function. Each agent (including the global agent who is dealing with
whole set of jobs) aims to minimize his makespan. They study the organizations that share
clusters to distribute peak workloads among all the participants. The authors propose a
2-approximation algorithm for finding collaborative solutions.

2 Exact methods

To compute an optimal Pareto solution, we propose an integer programming formula-
tion. Unfortunately, the linear relaxation of such a model is rather poor. For this reason, we
develop a Dantzig-Wolfe decomposition scheme leading to a Branch and Price based on
column generation scheme. Firstly, let us introduce the definition of the Maximal Subsets.
Maximal Subsets: Let L be the subset of overlapping jobs where L̄ = {j :

⋂
j∈L[sj , fj)

6= ∅}. L is maximal if it is not included in any other subset of overlapping jobs. Let L be
the set of all maximal subsets, L = {L1, . . . , Lh, . . . , LH}. Dealing with Lh we can choose
arbitrarily a sample time th that belongs to the processing interval of every job in Lh,
i.e th ∈

⋂
j∈Lh

[sj , fj). There is a total ordering of the maximal subsets with respect to
sample times. According to this ordering, when we pass from a maximal subset to the next
one, at least one job finishes its processing and at least one new job starts its processing.
As a consequence, there are at most (n = nA + nB) maximal subsets. Hence, we have:
1 ≤ H ≤ n and the maximal subsets can be efficiently detected in O(n2) by using interval
graph recognition algorithm introduced in (Habib, McConnell, Paul and Viennot 2000).

2.1 Integer programming formulation

Based on maximal job subsets, we propose the following integer linear programming
(MILP) where xij is a binary variable equal to 1 if machine i processes job Jj ; 0 otherwise.

Constraints (2) allow job j to be assigned to at most one machine. Constraints (3)
allow the assignment of at most Rk resources from machine i to the jobs. The constraint
(4) express the ε-approach bounds.

MILP has mn binary variables and n + mKH + 1 constraints, with 1 ≤ H ≤ n.
Remarks: If H = n then every maximal job subset contains only one job, and the problem
is trivial to solve; And if H = 1 then all jobs overlap and the problem reduces to a
multidimensional knapsack problem MKP (Martello 1990).

367

3

Maximise :
m∑

i=1

nA∑

j=1

wj xij (1)

subject to:
m∑

i=1

xij ≤ 1 j = 1, . . . , n (2)

∑

j∈Lh

rjkxij ≤ Rk i = 1, . . . ,m; k = 1, . . . ,K; h = 1, . . . , H (3)

m∑

i=1

nB∑

j=1

wj xij ≥ QB (4)

xij ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , n (5)

Given QB , to compute a strict Pareto solution, we first solve Pm|CO, sj , fj , rjk, Z
B ≥

QB |ZA. Let (ẐA, ẐB) be the obtained optimal solution. We then solve the inverse problem
Pm|CO, sj , fj , rjk, Z

A ≥ ẐA|ZB . The computed solution is then optimal Pareto solution,
denoted by (ẐA, ˆZB ′).

Decomposition approach: We cannot expect the linear relaxation of MILP is good,
since it neglects the fact that the resource units are divided among the different machines.
We then apply a Dantzig-Wolfe decomposition scheme to model MILP, following the
Caprara et al.’s approach used to solve Resource Allocation Problem RAP (Caprara, Furini
and Malaguti 2013). The master problem of the resulting column generation approach may
have a huge number of columns, so a branch-and-price approach for its solution seems
reasonable. These algorithms are essentially branch-and-bound algorithms where, at each
node of the search tree, variables (columns) of the problem are generated by applying the
column generation technique to address the linear relaxation of the problem, eventually
augmented by branching constraints (see (Desaulniers, Desrosiers and Solomon 2006) for
a complete survey of column generation methods).

3 Pareto set enumeration

ε-constraint approach with different values of QB ∈ {0, . . . , QB} is used to generate the
set of strict Pareto solutions. With each value of QB we compute (ẐA, ˆZB ′), and we add
this solution to the set of strict solutions S. We then set QB = ˆZB ′ + 1 and iterate. If no
feasible solution is obtained then stop and S is the exact Pareto front.

Proposition 1. The number of strict Pareto optimal solutions is bounded by O(W)
where W = max(

∑
j∈NA wj ;

∑
j∈NB wj).

4 Computational experiments

We implement our algorithms in C + + language and experiments have been driven on
a workstation with a 2.2 Ghz Intel Core i7 processor and 16 GB of memory and a time
limit of 3600 seconds (1 hour). We use IBM ILOG CPLEX Optimization Studio version
12.8 to solve the MILP, Master and Pricing Model.

Algorithms under study have been carried out with 60 instances (adapted benchmark
proposed of Angelelli et al. (Angelelli, Bianchessi and Filippi 2014)). Number of jobs n ∈
{100, 120, 150, 180, 200}, number of parallel machines m ∈ {4, 7, 10, 15}, without lost of
generality, we normalize the capacity of each renewable resource to R1 = R2 = R3 =
{2, 4, 6}, for a total of 5×4×3 = 60 instances. 50% of n are jobs of agent A. By choosing 50%
of jobs for each agent, we are therefore interesting in solving the most difficult problems.

368

4

Fig. 1 gives the computational time in seconds: a simple call to CPlex using the MILP
and the Branch&Price to compute one strict Pareto optimal solution. We can conclude
that Branch&Price is very efficient. For example, with 200 jobs, 15 machines and 3 types
of resources, Branch&Price needs 2 sec where MILP model needs 768 sec.

Fig. 1. Computational time in seconds

The proposed methods can be easily generated to the case of more than two agents.
This work is in progress and it will be interesting to develop lower bound to speed up the

convergence of the Branch&Price. Other methods such as Meta-heuristics and heuristics
providing high-quality solutions with a low computational running time to solve large size
instances will be developed.

References

Martello, S., 1990, “Knapsack problems: algorithms and computer implementations", Wiley-
Interscience series in discrete mathematics and optimization.

Habib, M., R. McConnell, C. Paul, L. Viennot, 2000, “Lex-BFS and partition refinement, with
applications to transitive orientation, interval graph recognition and consecutive ones testing",
Theoretical Computer Science, Vol. 234, pp. 59-84.

Desaulniers, G., J. Desrosiers, M.M. Solomon, 2006, “Column generation", Springer Science &
Business Medi, Vol. 5.

Agnetis, A., G. de Pascale, M.Pranzo, 2009, “Computing the Nash solution for Scheduling Bar-
gaining Problems", International Journal of Operational Research, Vol. 1, pp. 54-69.

Caprara, A., F. Furini, E.Malaguti, 2013, “Uncommon Dantzig-Wolfe reformulation for the tem-
poral knapsack problem", INFORMS Journal on Computing, Vol. 25, pp. 560-571.

Agnetis A., J.-C. Billaut, S. Gawiejnowicz, D. Pacciarelli, A. Soukhal, 2014, “Multiagent Schedul-
ing, Models and Algorithms", Springer-Verlag, Berlin Heildelberg New York.

Angelelli E., N. Bianchessi, C. Filippi, 2014, “Optimal interval scheduling with a resource con-
straint”, Computers & Operations Research, Vol. 51, pp. 268-281.

Cordeiro D., P.-F. Dutot, G. Mounié, D. Trystram, 2011, “Tight Analysis of Relaxed Multi-
Organization Scheduling Algorithms", In Proceedings of the 25th IEEE International Par-
allel & Distributed Processing Symposium (IPDPS), IEEE Computer Society, Anchorage, AL,
USA, pp. 1177-1186.

Zahout B., A. Soukhal, P. Martineau, 2017, “Fixed jobs scheduling on a single machine with
renewable resources", MISTA’2017, Kuala Lumpur, Malaysia, pp. 1-9.

369

List of participants

• Abu-Marrul, Victor (victor.cunha@tecgraf.puc-rio.br)

• Agnetis, Alessandro (agnetis@diism.unisi.it)

• Akker, Marjan van den (J.M.vandenAkker@uu.nl)

• Andres, Carlos (candres@omp.upv.es)

• Antuori, Valentin (vantuori@laas.fr)

• Araujo, Thiago (thiago.giachetto@gmail.com)

• Arben ,Ahmeti (e1228512@student.tuwien.ac.at)

• Arkhipov, Dmitry (miptrafter@gmail.com)

• Artigues, Christian (artigues@laas.fr)

• Azami, Zenouzagh Hamed (aezamihamed@gmail.com)

• Berthier, Jeremy(j.berthier@emse.fr)

• Battaia, Olga (Olga.battaia@kedgebs.com)

• Baur, Niels-Fabian (baur@bwl.uni-hildesheim.de)

• Bendotti, Pascale (pascale.bendotti@lip6.fr)

• Benoist, Thierry (tbenoist@localsolver.com)

• Berg, Fleur van den (fleurvdberg@hotmail.com)

• Berghman, Lotte (l.berghman@tbs-education.fr)

• Berlinska, Joanna (joanna.berlinska@amu.edu.pl)

• Bianco, Lucio (bianco@dii.uniroma2.it)

• Bigler, Tamara (tamara.bigler@pqm.unibe.ch)

• Billaut, Jean-Charles (jean-charles.billaut@univ-tours.fr)

• Blaise, Léa (lblaise@localsolver.com)

• Bocquillon, Ronan (ronan.bocquillon@univ-tours.fr)

• Bold, Matthew (m.bold1@lancaster.ac.uk)

370

• Brahimi, Nadjib (nadjib.brahimi@mines-nantes.fr)

• Braun, Oliver (obraun@gmail.com)

• Brauner, Nadia (nadia.brauner@grenoble-inp.fr)

• Bredael, Dries (dries.bredael@ugent.be)

• Brendan, Hill (brendan.hill@gmail.com)

• Briand, Cyril (briand@laas.fr)

• Briskorn, Dirk (briskorn@uni-wuppertal.de)

• Brisoux, Devendeville Laure (laure.devendeville@u-picardie.fr)

• Brouwer, Roel (R.J.J.Brouwer@uu.nl)

• Brozova, Helena (brozova@pef.czu.cz)

• Caillard, Simon (simon.caillard@u-picardie.fr)

• Caramia, Massimiliano (caramia@dii.uniroma2.it)

• Carlier, Jacques (carlier@utc.fr)

• Charles, Mehdi (mehdi.charles@decisionbrain.com)

• Chen, Bo (b.chen@warwick.ac.uk)

• Chernykh, Ilya (idchern@math.nsc.ru)

• Chevroton, Hugo (hugo.chevroton@univ-tours.fr)

• Chrétienne, Philippe (chretiennep@gmail.com)

• Coelho, José (jcoelho@uab.pt)

• Cohen, Izack (izack.cohen@biu.ac.il)

• Creemers, Stefan (s.creemers@ieseg.fr)

• Dall’olio, Giacomo (giacomo.dallolio@tum.de)

• Dauzère-Pérès, Stéphane (dauzere-peres@emse.fr)

• Davari, Morteza (morteza.davari@skema.edu)

• Delavernhe, Florian (florian.delavernhe@u-bourgogne.fr)

• Della Croce, Federico (federico.dellacroce@polito.it)

• Demeulemeester, Erik (Erik.Demeulemeester@econ.kuleuven.be)

• Deppert, Max (made@informatik.uni-kiel.de)

• Detienne, Boris (boris.detienne@u-bordeaux.fr) Detienne Boris

• Durand, Martin (martin.durand@lip6.fr)

371

• Eynde, Rob van (rob.vaneynde@ugent.be)

• Fabry, Quentin (qfabry@laas.fr)

• Falq, Anne-Elisabeth (anne-elisabeth.falq@lip6.fr)

• Fejfar, Jǐŕı (fejfar@pef.czu.cz)

• Fernandez-Viagas, Victor (vfernandezviagas@us.es)

• Fink, Andreas (andreas.fink@hsu-hamburg.de)

• Flores, Gomez Mario (mario.flores@emse.fr)

• Flynn, Mike (m.k.flynn@soton.ac.uk)

• Fondrevelle, Julien (julien.fondrevelle@insa-lyon.fr)

• Fouilhoux, Pierre (pierre.fouilhoux@lipn.fr)

• Garrigues, Mathilde (mathilde.garrigues@ariane.group)

• Gerard, Olivier (olivier.gerard@u-picardie.fr)

• Gerhards, Patrick (patrick.gerhards@hsu-hh.de)

• Ghafiki, Kaoutar (ghafiki.kaoutar@gmail.com)

• Gilenson, Miri (miray.g@gmail.com)

• Giordani, Stefano (stefano.giordani@uniroma2.it)

• Gnägi, Mario (mario.gnaegi@pqm.unibe.ch)

• Godet, Arthur (arth.godet@gmail.com)

• Goncalves, Gilles (gilles.goncalves@univ-artois.fr)

• González-Neira, Eliana Maŕıa (eliana.gonzalez@javeriana.edu.co)

• Grebennik, Igor (igorgrebennik@gmail.com)

• Grigoriu, Liliana (liliana.grigoriu@upb.ro)

• Griset, Rodolphe (rodolphe.griset@edf.fr)

• Gu, Hanyu (hanyu.gu@uts.edu.au)

• Guan, Xin (xin.guan@ugent.be)

• Gul, Serhat (serhat.gul@tedu.edu.tr)

• Gurevsky, Evgeny (evgeny.gurevsky@univ-nantes.fr)

• Hadj Salem, Khadija (hadj.salem@inesctec.pt)

• Häıt, Alain (alain.hait@isae.fr)

• Hanen, Claire (claire.hanen@parisnanterre.fr)

372

• Haroune, Meya (meya.haroune@etu.univ-tours.fr)

• Hazir, Oncu (oncu.hazir@rennes-sb.com)

• Hebrard, Emmanuel (hebrard@laas.fr)

• Herer, Yale (yale@technion.ac.il)

• Hermans, Ben (ben.hermans@kuleuven.be)

• Herroelen, Willy (willy.herroelen@kuleuven.be)

• Hill, Alessandro (ahill29@calpoly.edu)

• Hoogeveen, Evita (evitahoogeveen@gmail.com)

• Houssin, Laurent (houssin@laas.fr)

• Hryhoryeva, Maryia (Maryia.hryhoryeva@gmail.com)

• Huguet, Marie-Jose (huguet@laas.fr)

• Ikli, Sana (sana.ikli@recherche.enac.fr)

• Jami, Neil (neil.jami@itwm.fraunhofer.de)

• Jansen, Klaus (klausjansen2@gmail.com)

• Jouglet, Antoine (antoine.jouglet@hds.utc.fr)

• Jourdan, Valentine (v.jourdan@outlook.fr)

• Józefowska, Joanna (jjozefowska@cs.put.poznan.pl)

• Justkowiak, Jan-Erik (jan-erik.justkowiak@uni-siegen.de)

• Juvin Carla, (cjuvin@laas.fr)

• Kahler, Kai (Kai.Kahler@web.de)

• Kalkan, Nazlı (nazli.kalkan@tedu.edu.tr)

• Karnebogen, Mareike (mareike.karnebogen@tu-clausthal.de)

• Kedad-Sidhoum, Safia (safia.kedad sidhoum@cnam.fr)

• Kergosien, Yannick (yannick.kergosien@univ-tours.fr)

• Khramova, Antonina (antonina.khramova@gmail.com)

• Klein, Nicklas (nicklas.klein@unibe.ch)

• Knust, Sigrid (sigrid@informatik.uni-osnabrueck.de)

• Kolisch, Rainer (Rainer.Kolisch@tum.de)

• Krivonogova, Olga (krivonogova.olga@gmail.com)

• Kubiak, Wieslaw (wkubiak@mun.ca)

373

• Kutlag, Berfin (berfin.kutlag@tedu.edu.tr)

• Laborie, Philippe (laborie@fr.ibm.com)

• Lahrichi, Youssef (youssef.lahrichi.contact@gmail.com)

• Lamy, Damien (damien.lamy@emse.fr)

• Lange, Julia (julia.lange@wiwi.uni-kl.de)

• Lemański, Tomasz (tomasz.p.lemanski@doctorate.put.poznan.pl)

• Leus, Roel (Roel.Leus@kuleuven.be)

• Li, Feifei (gltfeifei@buu.edu.cn)

• Lopez, Pierre (pierre.lopez@laas.fr)

• Lorenzo, Lowell (Lowell.Lorenzo@up.edu.ph)

• Lucet, Corinne (corinne.lucet@u-picardie.fr)

• Malapert, Arnaud (arnaud.malapert@unice.fr)

• Martens, Annelies (annelies.martens@ugent.be)

• Matuschke, Jannik (jannik.matuschke@kuleuven.be)

• Melchiors, Philipp (philippmelchiors@hotmail.com)

• Meloni, Carlo (carlo.meloni@poliba.it)

• Messabis, Mohamed El Habib (mohamed-el-habib.messabis@dauphine.eu)

• Meunier, Hugo (meunierhugo@hotmail.fr)

• Mischek, Florian (fmischek@dbai.tuwien.ac.at)

• Mokhtari, Nada (nmokhtar@insa-rennes.fr)

• Moos, Michael (michael.moos@itwm.fraunhofer.de)

• Müller, David (david.mueller@uni-siegen.de)

• Munier, Kordon Alix (Alix.Munier@lip6.fr)

• Musliu, Nysret (musliu@dbai.tuwien.ac.at)

• Naber, Anulark (anulark@gmail.com)

• Nattaf, Margaux (margaux.nattaf@grenoble-inp.fr)

• Nekoueian, Rojin (Rojin.nekoueian@ugent.be)

• Ozturk, Onur (oozturk@uottawa.ca)

• Page, Daniel (drpage@pagewizardgames.com)

374

• Paolo, Detti (paolo.detti@unisi.it)

• Pass-Lanneau, Adèle (adele.pass-lanneau@polytechnique.org)

• Penz, Louise (louise.penz@emse.fr)

• Perrachon, Quentin (quentin.perrachon@univ-ubs.fr)

• Perraudat, Antoine (antoine.perraudat@emse.fr)

• Pesch, Erwin (erwin.pesch@uni-siegen.de)

• Petra, Pavlickova (pavlickovap@pef.czu.cz)

• Ploton, Olivier (olivier.ploton@univ-tours.fr)

• Portoleau, Tom (tom.portoleau@gmail.com)

• Postek, Krzysztof (k.s.postek@tudelft.nl)

• Posthoorn, Jan (j.i.posthoorn@uu.nl)

• Potts, Chris (C.N.Potts@soton.ac.uk)

• Pranzo, Marco (marco.pranzo@unisi.it)

• Prunet, Thibault (thibault.prunet@emse.fr)

• Rault, Tifenn (tifenn.rault@bocqfamily.fr)

• Reinke, Max (max.reinke@tu-clausthal.de)

• Riviere, Louis (louis.riviere@laas.fr)

• Robbes, Alexis (alexis.robbes@univ-tours.fr)

• Rodoplu, Melek (melek.rodoplu@emse.fr)

• Rozycki, Rafal (rafal.rozycki@cs.put.poznan.pl)

• Sa, Shibasaki Rui (ruishibasaki@gmail.com)

• Saeedi, Pedram (pedram.saeedi@kuleuven.be)

• Salvatore, Alessio (a.salvatore@iac.cnr.it)

• Satic, Ugur (ugursatic@gmail.com)

• Schmidt, Günter (gj.schmidt@yahoo.de)

• Sedding, Helmut A. (helmut@sedding.net)

• Servranckx, Tom (tom.servranckx@ugent.be)

• Shabtay, Dvir (dvirs@bgu.ac.il)

• She, Bingling (phd16bs@mail.wbs.ac.uk)

• Shen, Liji (liji@liji.de)

375

• Shtub, Avraham (shtub@ie.technion.ac.il)

• Simonin, Gilles (gilles.simonin@imt-atlantique.fr)

• Snauwaert, Jakob (jakob.snauwaert@ugent.be)

• Song, Jie (jieson.Song@ugent.be)

• Soukhal, Ameur (ameur.soukhal@univ-tours.fr)

• Stürck, Christian (christian.stuerck@hsu-hh.de)

• Su, Bentao (subentao@nuaa.edu.cn)

• Subrt, Tomas (subrt@pef.czu.cz)

• Szwarcfiter, Claudio (claudioszw@gmail.com)

• T’kindt, Vincent (tkindt@univ-tours.fr)

• Talens, Carla (cartafa@us.es)

• Tamssaouet, Karim (karim.tamssaouet@bi.no)

• Tang Ning, (ning.tang@lip6.fr)

• Tarasov Ilia, (Ilia.TARASOV@isae-supaero.fr)

• Tellache Nour, Elhouda (nour.tellache@gmail.com)

• Thevenin, Simon (simon.thevenin@imt-atlantique.fr)

• Torba, Rahman (rahman.torba@etu.emse.fr)

• Trautmann, Norbert (norbert.trautmann@pqm.unibe.ch)

• Tremblet, David (trembletd@gmail.com)

• Ulusoy, Gündüz (gunduz@sabanciuniv.edu)

• Urgo, Marcello (marcello.urgo@polimi.it)

• Uzunoglu, Aykut (aykut.uzunoglu@wiwi.uni-augsburg.de)

• Vacher, Blandine (blvacher@gmail.com)

• Vanhoucke, Mario (mario.vanhoucke@vlerick.com)

• Vaseghi, Forough (forough.vaseghi@ugent.be)

• Velte,n Sebastian (sebastian.velten@itwm.fraunhofer.de)

• Wan, Dan (jiushiwo233@gmail.com)

• Watermeyer, Kai (kai.watermeyer@tu-clausthal.de)

• Weber, Hendrik (hendrik.weber@tum.de)

376

• Weber, Jens (jens.weber@ilmg.com)

• W ↪eglarz, Jan (jan.weglarz@cs.put.poznan.pl)

• Weiß, Christian (christian.weiss@itwm.fraunhofer.de)

• Winter, Felix (winter@dbai.tuwien.ac.at)

• Wu, Qiao (qiao.wu@student.kuleuven.be)

• Wu, Fei (fwu0966@gmail.com)

• Yelles, Chaouche Abdelkrim Ramzi (karim.yelles@hotmail.com)

• You, Weibao (youweibao0528@163.com)

• Younes, Nawel (nawelyounes@gmail.com)

• Yu, Yining (yining.yu@student.kuleuven.be)

• Yugma, Claude (yugma@emse.fr)

• Zahout, Boukhalfa (boukhalfa.zahout@univ-tours.fr)

• Zimmermann, Juergen (juergen.zimmermann@tu-clausthal.de)

• Zufferey, Nicolas (n.zufferey@unige.ch)

377

List of sponsors

EURO WG-PMS
The EURO Working Group on Project Management and Scheduling

EURO
The Association of European Operational Research Societies

INSA
Institut national des sciences appliquées de Toulouse

LAAS-CNRS
Laboratoire d’analyse et d’architecture des systèmes

378

Springer
Scientific publisher

TBS
Toulouse Business School

379

Author Index

Abu-Marrul, Victor, 17–20
Agnetis, Alessandro, 21–24, 129–132

Akker, Marjan van den, 13
Amaro, Ricardo, 89–92

Andre, Virginie, 276–279
Angius, Alessio, 25–28

Annelies, Martens, 308–311
Antuori, Valentin, 29–32
Aouam, Tarik, 296–299

Arkhipov, Dmitry, 33–36
Artigues, Christian, 37–44, 61–64, 260–263

Battäıa, Olga, 33–36, 332–335
Baur, Niels-Fabian, 45–48
Bendotti, Pascale, 248–251

Benini, Mario, 21–24
Benoist, Thierry, 61–64

Berghman, Lotte, 129–132
Berlińska, Joanna, 49–52

Bianco, Lucio, 53–56
Bigler, Tamara, 57–60

Billaut, Jean-Charles, 268–271, 276–279
Blaise, Léa, 61–64

Bocquillon, Ronan, 268–271
Bold, Matthew, 65–68

Boudhar, Mourad, 336–339
Bouznif, Marwane, 340–343

Boyaci, Burak, 65–68
Brahimi, Nadjib, 357–360
Brauner, Nadia, 141–145
Briand, Cyril, 129–132

Brisoux Devendeville, Laure, 146–149
Brisoux, Devendeville Laure, 73–76

Brown, Lachlan, 178–181
Brozova, Helena, 69–72, 316–319

Caballero-Villalobos, Juan Pablo, 162–165
Caillard, Simon, 73–76

Caramia, Massimiliano, 53–56
Carlier, Jacques, 77–80

Chen, Bo, 300–303
Chernykh, Ilya, 81–88, 194–197
Chrétienne, Philippe, 248–251
Clautiaux, François, 211–214

Coelho, José, 89–92
Cohen, Izack, 93–95

Creemers, Stefan, 96–101

Dall’olio, Giacomo, 102–105
Dauzère-Pérès, Stéphane, 16
Delavernhe, Florian, 106–109

Della Croce, Federico, 110–117
Delorme, Xavier, 118–121

Demeulemeester, Erik, 280–282
Deppert, Max, 122–124

Deroussi, Laurent, 202–205
Detienne, Boris, 211–214

Detti, Paolo, 21–24
Dhib, Cheikh, 174–177

Dolgui, Alexandre, 252–255, 357–360
Dupas, Rémy, 186–189

Durand, Martin, 125–128

Essodaigui, Siham, 29–32
Eynde, Rob van, 344–348

Fabry, Quentin, 129–132
Falq, Anne-Elisabeth, 133–136

Fernandez-Viagas, Victor, 137–140, 328–331
Fleury, Gérard, 118–121
Fontan, Florian, 141–145

Fouilhoux, Pierre, 133–136, 248–251
Framinan, Jose M., 137–140

Gerard, Olivier, 146–149
Gerhards, Patrick, 150–153

Gilenson, Miri, 154–157
Giordani, Stefano, 53–56

Gnägi, Mario, 57–60, 158–161
Goerigk, Marc, 65–68

González-Neira, Eliana Maŕıa, 162–165
Grangeon, Nathalie, 202–205

Grattz Rodŕıguez, Ibeth, 162–165
Grebennik, Igor, 186–189
Gribkovskaia, Irina, 17–20

Guan, Xin, 166–169
Guillaume, Romain, 260–263

Gul, Serhat, 198–201
Gurevsky, Evgeny, 252–255, 357–360

380

Hadj Salem, Khadija, 170–173
Hall, Nicholas, 300–303
Hamacher, Silvio, 17–20

Hamaz, Idir, 264–267
Haroune, Meya, 174–177

Hazir, Oncu, 198–201
Häıt, Alain, 332–335

Hebrard, Emmanuel, 29–32
Herer, Yale T., 320–327
Hermans, Ben, 21–24

Hill, Brendan, 178–181
Houssin, Laurent, 264–267
Huguet, Marie-José, 29–32

Ikli, Sana, 182–185

Jacko, Peter, 283–286
Jansen, Klaus, 122–124

Jimenez, Jose-Fernando, 162–165
Jouglet, Antoine, 77–80, 340–343

Kalaida, Nadiia, 186–189
Kalkan, Nazli, 198–201

Kanet John Jack, 236–239
Karnebogen, Mareike, 190–193
Kedad-Sidhoum, Safia, 133–136

Kergosien, Yannick, 276–279
Khramova, Antonina, 194–197

Kirkbride, Chris, 65–68
Kirkbride, Christopher, 283–286

Kolisch, Rainer, 102–105, 236–239, 353–356
Krivonogova, Olga, 85–88
Kutlag, Berfin, 198–201

Laborie, Philippe, 14
Lacomme, Philippe, 118–121
Lahrichi, Youssef, 202–205

Lamy, Damien, 118–121, 206–210
Lazarev, Alexander, 332–335

Lefebvre, Henri, 211–214
Lemaire, Pierre, 141–145

Lemanski, Tomasz, 215–218
Leus, Roel, 349–352
Lopez, Pierre, 41–44

Lorenzo, Lowell, 219–227
Lucet, Corinne, 73–76, 146–149

Malapert, Arnaud, 228–231
Mancel, Catherine, 182–185
Manzini, Massimo, 25–28

Martens, Annelies, 232–235
Martineau, Patrick, 361–364

Martinelli Rafael, 17–20

Mecler, Davi, 17–20
Melchiors, Philipp, 236–239

Meloni, Carlo, 240–243
Mohamed Babou, Hafedh, 174–177
Molina-Pariente, Jose M., 137–140

Mongeau, Marcel, 182–185

Nace, Dritan, 340–343
Nanne, Mohamedade, 174–177

Nattaf, Margaux, 228–231
Neron, Emmanuel, 174–177

Nguyen, Alain, 29–32
Norre, Sylvie, 202–205
Novak, Ana, 178–181

Olive, Xavier, 182–185
Ozturk, Onur, 244–247

Paredes Astudillo, Yenny Alexandra, 162–165
Pascual, Fanny, 125–128

Pass-Lanneau, Adèle, 248–251
Pavlickova, Petra, 69–72

Perez-Gonzalez, Paz, 328–331
Pietrowicz, Stéphane, 340–343
Pirogov, Aleksandr, 252–255

Ploton, Olivier, 256–259
Polo Mej́ıa, Oliver, 41–44
Portoleau, Tom, 260–263
Postek, Krzysztof, 93–95

Pranzo, Marco, 21–24, 240–243
Puerto Ordóñez, Nicolás Eduardo, 162–165

Quilliot, Alain, 37–40
Quinton, Félix, 264–267

Racheslon, Emmanuel, 182–185
Rault, Tifenn, 170–173, 268–271

Reinke, Max, 272–275
Rieck, Julia, 45–48

Robbes, Alexis, 170–173, 276–279
Rossi, André, 106–109, 252–255

Rozycki, Rafal, 215–218
Rydval, Jan, 69–72

Saeedi, Pedram, 280–282
Sahli, Abderrahim, 77–80
Salassa, Fabio, 110–113

Samà, Marcella, 240–243
Satic, Ugur, 283–286

Scholz, Adam, 178–181
Sedding, Helmut A., 287–290

Servranckx, Tom, 291–299
Sevaux, Marc, 106–109

381

Shabtay, Dvir, 154–157
She, Bingling, 300–303
Shtern, Shimrit, 93–95

Shtub, Avraham, 320–327
Snauwaert, Jakob, 304–307

Song, Jie, 308–311
Soukhal, Ameur, 174–177, 361–364

Stuckey, Peter, 37–40
Stürck, Christian, 312–315

Subrt, Tomas, 69–72, 316–319
Szwarcfiter, Claudio, 320–327

T’kindt, Vincent, 110–117, 256–259
Talens, Carla, 137–140, 328–331

Tarasov, Ilia, 332–335
Tellache, Nour Elhouda, 336–339

Thevenin, Simon, 206–210
Toussaint, Hélène, 37–40

Trautmann, Norbert, 57–60, 158–161

Urgo, Marcello, 25–28

Vacher Blandine, 340–343
Vanhoucke, Mario, 15, 89–92, 166–169,

232–235, 291–299, 304–311, 344–348
Vié, Marie-Sklaerder, 349–352

W ↪eglarz, Jan, 215–218
Waligora, Grzegorz, 215–218

Weber, Hendrik, 353–356

Yalaoui, Farouk, 336–339
Yelles-Chaouche, Abdelkrim R., 357–360

Zahout, Boukhalfa, 361–364
Zimmermann, Jürgen, 190–193, 272–275

Zufferey, Nicolas, 349–352

382

	Foreword
	Committees
	Best student paper award
	Conference Program
	Plenary Talks
	Robustness in Scheduling Marjan van den Akker
	Industrial project and machine scheduling with Constraint Programming Philippe Laborie
	Data driven Project Management Mario Vanhoucke
	Modeling and solving complex job-shop scheduling problems Stéphane Dauzère-Pérès

	Extended Abstracts
	Heuristics for Scheduling Pipe-laying Support Vessels: An Identical Parallel Machine Scheduling Approach Victor Abu-Marrul, Davi Mecler, Rafael Martinelli, Silvio Hamacher, Irina Gribkovskaia
	Replication and sequencing of unreliable jobs Alessandro Agnetis, Paolo Detti, Ben Hermans, Marco Pranzo
	A Discrete Time Markov Decision Process to support the scheduling of re-manufacturing activities Alessio Angius, Massimo Manzini, Marcello Urgo
	A constraint programming approach for planning items transportation in a workshop context Valentin Antuori, Emmanuel Hebrard, Marie-José Huguet, Siham Essodaigui, Alain Nguyen
	Index merge in application to multi-skill project scheduling Dmitry Arkhipov, Olga Battaia
	Adapting the RCPSP framework to Evacuation Problems Christian Artigues, Emmanuel Hébrard, Alain Quilliot, Peter Stuckey, Hélène Toussaint
	Structural and Experimental Comparisons of Formulations for a Multi-Skill Project Scheduling Problem with Partial Preemption Christian Artigues, Pierre Lopez, Oliver Polo Mejía
	A Serial Schedule Generation Scheme for Project Scheduling in Disaster Management Niels-Fabian Baur, Julia Rieck
	Scheduling to minimize maximum lateness in tree data gathering networks Joanna Berlińska
	On the Activity Criticality in Project Scheduling with Generalized Precedence Relationships Lucio Bianco, Massimiliano Caramia, Stefano Giordani
	A Novel Matheuristic for the Multi-Site Resource-Constrained Project Scheduling Problem Tamara Bigler, Mario Gnägi, Norbert Trautmann
	Solution Repair by Inequality Network Propagation in LocalSolverLéa Blaise, Christian Artigues, Thierry Benoist
	The generalised resource-constrained project scheduling problem with flexible resource profilesMatthew Bold, Burak Boyaci, Marc Goerigk, Chris Kirkbride
	Why and how to evaluate the task threatness Helena Brozova, Tomas Subrt, Jan Rydval, Petra Pavlickova
	Local Search Algorithm to Solve a Scheduling Problem in Healthcare Training Center Simon Caillard, Laure Brisoux Devendeville, Corinne Lucet
	Computing lower bounds for the cumulative scheduling problem Jacques Carlier, Antoine Jouglet, Abderrahim Sahli
	Ultimate Instance Reduction for the Routing Open ShopIlya Chernykh
	Optima Localization for the Routing Open Shop: Computer-aided Proof Ilya Chernykh, Olga Krivonogova
	A new tool for analysing and reporting solutions for the RCPSP and MMRCPSP José Coelho, Mario Vanhoucke, Ricardo Amaro
	Adaptive Robust Parallel Machine Scheduling Izack Cohen, Krzysztof Postek, Shimrit Shtern
	The Resource-Constrained Project Scheduling Problem: New Benchmark Results Stefan Creemers
	Scheduling and Routing Workers Teams for Ground Handling at Airports with Column Generation Giacomo Dall'Olio, Rainer Kolisch
	Robust scheduling for target tracking with wireless sensor network considering spatial uncertainty Florian Delavernhe, André Rossi, Marc Sevaux
	Exact solution of the two-machine flow shop problem with 3 operations Federico Della Croce, Fabio Salassa, Vincent T'kindt
	Adversarial bilevel scheduling on a single machine Federico Della Croce, Vincent T'kindt
	A Conjunctive-disjunctive Graph Modeling Approach for Job-Shop Scheduling Problem with Changing Modes Xavier Delorme, Gérard Fleury, Philippe Lacomme, Damien Lamy
	Near-Linear Approximation Algorithms for Scheduling Problems with Setup Times Max Deppert, Klaus Jansen
	Efficiency and Equity in the Multiple Organization Scheduling Problem Martin Durand, Fanny Pascual
	On the complexity of the crossdock truck-scheduling problem Quentin Fabry, Alessandro Agnetis, Lotte Berghman, Cyril Briand
	Linear inequalities for neighborhood based dominance properties for the common due-date scheduling problem Anne-Elisabeth Falq, Pierre Fouilhoux, Safia Kedad-Sidhoum
	An acceleration procedure for several objective functions in the permutation flow shop scheduling problem Victor Fernandez-Viagas, José M. Molina-Pariente, Carla Talens, José M. Framiñan
	Scheduling problems with processing time dependent profit: applications and a nice polynomial case Florian Fontan, Nadia Brauner, Pierre Lemaire
	Planning problem in Healthcare domain Olivier Gérard, Laure Brisoux Devendeville, Corinne Lucet
	Solving the Multi-mode Resource Investment Problem with Constraint Programming Patrick Gerhards
	Multi-Scenario Scheduling with Rejection Option to Minimize the Makespan Criterion Miri Gilenson, Dvir Shabtay
	A Continuous-Time Model for the Multi-Site Resource-Constrained Project Scheduling Problem Mario Gnägi, Norbert Trautmann
	Non-dominated sorting genetic algorithm for a bi-objective flexible flow shop problem. A Case Study Ibeth Grattz Rodríguez, Jose-Fernando Jimenez, Eliana María González-Neira, Nicolás Eduardo Puerto Ordóñez, Yenny Alexandra Paredes Astudillo, Juan Pablo Caballero-Villalobos
	An analytical model for budget allocation in risk prevention and risk protection Xin Guan, Mario Vanhoucke
	Embedded vision systems buffer minimization with energy consumption constraint Khadija Hadj salem, Tifenn Rault, Alexis Robbes
	Multi-project scheduling problems with shared multi-skill resource constraints Meya Haroune, Cheikh Dhib, Emmanuel Néron, Ameur Soukhal, Hafedh Mohamed Babou, Mohamedade Nanne
	Solving large, long-horizon resource constrained multi project scheduling problems with genetic algorithms Brendan Hill, Adam Scholz, Lachlan Brown, Ana Novak
	A mixed integer programming approach for scheduling aircraft arrivals at terminal airspace fixes and runway threshold Sana Ikli, Catherine Mancel, Marcel Mongeau, Xavier Olive, Emmanuel Racheslon
	Optimization of order for containers placement schedule in rail terminal operations Nadiia Kalaida, Rémy Dupas, Igor Grebennik
	A Generation Scheme for the Resource-Constrained Project Scheduling Problem with Partially Renewable Resources and Time Windows Mareike Karnebogen, Jürgen Zimmermann
	On a Polynomial Solvability of the Routing Open Shop with a Variable Depot Antonina Khramova, Ilya Chernykh
	A Stochastic Programming Model to Schedule Projects under Cash Flow Uncertainty Berfin Kutlag, Nazli Kalkan, Serhat Gul, Oncu Hazir
	Multi-Objective Robotic Assembly Line Balancing Problem: A NSGA-II Approach Using Multi-Objective Shortest Path Decoders Youssef Lahrichi, Laurent Deroussi, Nathalie Grangeon, Sylvie Norre
	The Group Shop Scheduling Problem with power requirements Damien Lamy, Simon Thevenin
	A two-stage robust approach for minimizing the weighted number of tardy jobs with profit uncertainty Henri Lefebvre, François Clautiaux, Boris Detienne
	Scheduling of battery charging tasks with limited common power source Tomasz Lemanski, Rafal Rozycki, Grzegorz Waligora, Jan Węglarz
	Computational Experiments for the Heuristic Solutions of the Two-Stage Chain Reentrant Hybrid Flow Shop and Model Extensions Lowell Lorenzo
	Minimizing Flow Time on a Single Machine with Job Families and Setup Times Arnaud Malapert, Margaux Nattaf
	Using exponential smoothing to integrate the impact of corrective actions on project time forecasting Annelies Martens, Mario Vanhoucke
	An Experimental Investigation on the Performance of Priority Rules for the Dynamic Stochastic Resource Constrained Multi-Project Scheduling Problem Philipp Melchiors, Rainer Kolisch, John Jack Kanet
	Conditional Value-at-Risk of the Completion Time in Fuzzy Activity Networks Carlo Meloni, Marco Pranzo, Marcella Samà
	A column generation algorithm for the single machine parallel batch scheduling problem Onur Ozturk
	Mixed-Integer Programming Formulations for the Anchor-Robust Project Scheduling Problem Adèle Pass-Lanneau, Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux
	Search space reduction in MILP approaches for the robust balancing of transfer lines Aleksandr Pirogov, André Rossi, Evgeny Gurevsky, Alexandre Dolgui
	An Inclusion-Exclusion based algorithm for the permutation flowshop scheduling problem Olivier Ploton, Vincent T’kindt
	Decision trees for robust scheduling Tom Portoleau, Christian Artigues, Romain Guillaume
	A Benders decomposition for the flexible cyclic jobshop problem Félix Quinton, Idir Hamaz, Laurent Houssin
	Exact and heuristic methods for characterizing optimal solutions for the 1||Lmax Tifenn Rault, Ronan Bocquillon, Jean-Charles Billaut
	A Comparison of two MILP formulations for the resource renting problem Max Reinke, Jürgen Zimmermann
	Minimizing the costs induced by perishable resource waste in a chemotherapy production unit Alexis Robbes, Yannick Kergosien, Virginie André, Jean-Charles Billaut
	A comparison of proactive and reactive scheduling approaches for the RCPSP with uncertain activity durations Pedram Saeedi, Erik Demeulemeester
	Towards the Optimisation of the Dynamic and Stochastic Resource-Constrained Multi-Project Scheduling Problem Ugur Satic, Peter Jacko, Christopher Kirkbride
	An FPTAS for Scheduling with Piecewise-Linear Nonmonotonic Convex Time-Dependent Processing Times and Job-Specific Agreeable Slopes Helmut A. Sedding
	An analysis of critical alternatives in the RCPSP-AS Tom Servranckx, Mario Vanhoucke
	Reference Class Forecasting to improve time and cost forecasts: Empirical and statistical analysis Tom Servranckx, Mario Vanhoucke, Tarik Aouam
	Buffer Sizing in Critical Chain Project Management by Network Decomposition Bingling She, Bo Chen, Nicholas Hall
	A new solution procedure for multi-skilled resources in resource-constrained project scheduling Jakob Snauwaert, Mario Vanhoucke
	The impact of limited budget on the corrective action taking process Jie Song, Annelies Martens, Mario Vanhoucke
	A New Lower Bound Approach for the Multi-mode Resource Constrained Project Scheduling Problem Christian Stürck
	How to find Critical Mass of Task Threatening the Projects Tomas Subrt, Helena Brozova
	Solving the stochastic multimode resource-constrained project scheduling problem Claudio Szwarcfiter, Avraham Shtub, Yale T. Herer
	Maximizing value-Modeling and solving lean project management Claudio Szwarcfiter, Avraham Shtub, Yale T. Herer
	Generating instances for the two-stage multi-machine assembly scheduling problem Carla Talens, Victor Fernandez-Viagas, Paz Perez-Gonzalez
	Metric Estimations for a Resource Leveling Problem With Variable Job Duration Ilia Tarasov, Alain Haït, Olga Battaïa, Alexander Lazarev
	Open shop problem with agreement graph: new results Nour Elhouda Tellache, Mourad Boudhar, Farouk Yalaoui
	Scheduling loads injection during flows merging in a collector Blandine Vacher, Antoine Jouglet, Dritan Nace, Stéphane Pietrowicz, Marwane Bouznif
	New benchmark datasets for the RCMPSP Rob Van Eynde, Mario Vanhoucke
	Minimizing Delays in Aircraft-Landing Scheduling Marie-Sklaerder Vié, Nicolas Zufferey, Roel Leus
	Evaluation of Scheduling Policies for the SRCPSP in a Dynamic Multi-Project Environment Hendrik Weber, Rainer Kolisch
	Modular equipment optimization in the design of multi-product reconfigurable manufacturing systems Abdelkrim Yelles-Chaouche, Evgeny Gurevsky, Nadjib Brahimi, Alexandre Dolgui
	Decomposition approach for fixed jobs multi-agent scheduling problem on parallel machines with renewable resources Boukhalfa Zahout, Ameur Soukhal, Patrick Martineau

	List of participants
	List of sponsors
	Author Index

