
©  LAAS-CNRS — 2012� 1 

Hardware- and Software-Fault 
Tolerance  

Design and Assessment of Dependable Computer Systems 
 
 
 

Jean Arlat  
[jean.arlat@laas.fr]

[http://homepages.laas.fr/arlat]

Annecy, May 28th, 2012�

The 17th IEEE European Test Symposium
May 28th – June 1st, 2012 —  Annecy, France

Test Spring School  
May 26th-28th, 2012� 1/3�



©  LAAS-CNRS — 2012 2 

Agenda 

  Introduction: Motivation and Outline 

  Part 1: Basic Concepts and Terminology  

  Part 2: Fault-Tolerant Computer Architectures 

  Part 3: Experimental Assessment of Dependability 

  Part 4: Dependability Benchmarking 

  Conclusion: Wrap up, Emerging Challenges and Future Trends 

  To Probe Further… 



©  LAAS-CNRS — 2012 3 

Agenda 

  Introduction: Motivation and Outline 

  Part 1: Basic Concepts and Terminology  

  Part 2: Fault-Tolerant Computer Architectures 

  Part 3: Experimental Assessment of Dependability 

  Part 4: Dependability Benchmarking 

  Conclusion: Wrap up, Emerging Challenges and Future Trends 

  To Probe Further… 



©  LAAS-CNRS — 2012 4 

Trend in Hardware Technology 

“Less than Perfect” Circuits (Manufacturing Defects and Transient Faults)   

—> Resilience Achieved via Redundancy Techniques 

Moore's
Law


Source: Intel 

  Performance  
  Clock frequency 
  … 

But:  

 
 

  Power dissipation   
  Process variations   
  Manufacturing costs  

  Yield   
  Prob. Defects undetected  
  “Soft” Error Rate  

Transistor count x 2 every 18 months Transistor count x 2 every 18 months 



©  LAAS-CNRS — 2012 5 

ITRS* Crosscutting Challenge 5: Reliability  
 Relaxing the requirement of 100% correctness for devices and interconnects 
may dramatically reduce costs of manufacturing, verification, and test.  

 Such a paradigm shift is likely forced in any case by technology scaling, 
which leads to more transient and permanent failures of signals, logic 
values, devices, and interconnects.  

 Several example issues are as follows. 1) Below 65nm, single-event upsets (soft errors) 
impact field-level product reliability, not only for embedded memories, but for logic and 
latches as well. 2) Methods for accelerated lifetime testing (burn-in) become infeasible 
as supply voltages decrease (resulting in exponentially longer burn-in times); even power 
demands of burn-in ovens become overwhelming. 3) Atomic-scale effects can demand new 
“soft” defect criteria, such as for non-catastrophic gate oxide breakdown. In general, 
automatic insertion of robustness into the design will become a priority as systems 
become too large to be functionally tested at manufacturing exit.  

 Potential solutions include automatic introduction of redundant logic and on-
chip reconfigurability for fault tolerance, development of adaptive and self-
correcting or self-healing circuits, and software-based fault-tolerance.  

* “Design,” Int’l Technology Roadmap for Semiconductors, ITRS, 2009; www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009 _Design.pdf 



©  LAAS-CNRS — 2012� 6 

Increased Functionalities and Complexity 
of Transportation Systems  

  Automotive 
  Cost of “electronics” in a vehicule > 30% in 2010 
  SW code size: several 10’s of Mbytes by this decade 

Size of Software (Mbyte)� Computation Power (MIPS)� Several thousands  
MIPS�

Several hundreds  
Mbytes�

Aircraft �A320 �A380 �
�
# messages exchanged �2,000 �> 100,000�
   among embedded  
   systems�

  Current Civil Aircraft 



©  LAAS-CNRS — 2012 7 

Evolution of Information Infrastructures  

  Enhanced Functionalities and Complexity 
  Economic Pressure —> reuse (COTS components) 
  Intrusions, Attacks,… 

90% 

99% 

99.9% 

99.99% 

99.999% 

99.9999% 

1950 1960 1970 1980 1990 

Computer Systems 

Telephone Systems 

Cellphones 

Internet 

Av
ai

la
bi

lit
y 

From: J. Gray, Dependability in the Internet era, Stanford, 2006 

2000 2010 

6 x ‘9’�
5 x ‘9’�
4 x ‘9’�
3 x ‘9’�
2 x ‘9’�
1 x ‘9’�

3d 16h�
36d 12h�

Availability Unavailability 
per year



©  LAAS-CNRS — 2012 8 

Looking Ahead: An Ever Moving Target 

Cost &  
Time To Market 

User 
Training 

Intrinsic 
Complexity 

Threats 

See also:  
D. Siewiorek, R. Chillarege, Z. Kalbarczyk 

Reflections on Industry Trends and Experimental Research in Dependability 
IEEE TDSC, Vol. 1, No. 2, April-june 2004, pp. 109-127. 

2Oth  Time  21st 



©  LAAS-CNRS — 2012 9 

Internet Usage — Worldwide  

World Population: 6,930,055,154
# Users: 2,267,233,742
% Penetration: 32.7 % 
% Growth (wrt 2000): 528.1 %

December 31, 2011 

44.8%

22.1%

12.0%

6.2%

3.4%

1%

10.4%



©  LAAS-CNRS — 2012 10 

Reported Security Incidents in Companies (F)  

% 

Club de la Sécurité 
de l'Information Français 

0 

10 

20 

30 

40 

50 

60 

2000 2002 2006 2008 2010 

Within past year, to what types of security incidents was your company subjected to? 



©  LAAS-CNRS — 2012 11 

The Integration of Information Processing  
into Everyday Objects and Activities 

     Ubiquituous & Pervasive Computing 

     Ambiant Intelligence 

     Internet of Things 

  Everyware, Haptic Computing,  
Things that Think,  
Cyber-Physical Systems, … 

 Main challenge wrt classical transaction systems 
—> Managing dynamics, time, and concurrency  

    in networked computational + physical systems 

Calls for 
Resilient 

Computing  
& Proactive 
Assessment 

So … Let’s be:  
Flexible, Adaptive, 
Inclusive and …  
Tolerant about 
Terminology! ;-) 



©  LAAS-CNRS — 2012 12 

Agenda 

  Introduction: Motivation and Outline 

  Part 1: Basic Concepts and Terminology  

  Part 2: Fault-Tolerant Computer Architectures 

  Part 3: Experimental Assessment of Dependability 

  Part 4: Dependability Benchmarking 

  Conclusion: Wrap up, Emerging Challenges and Future Trends 

  To Probe Further… 



©  LAAS-CNRS — 2012 13 

The “Dependability Tree” * 

D
e
p
e
n
d
a
b
i
l 
i 
t
y

Reliability 
Safety 
Confidentiality 
Integrity 

Attributes 

Availability 

Maintainability 
Fault 
Prevention 
Fault  
Tolerance 
Fault  
Removal 
Fault  
Forecasting  

Procurement 

Means 

Assessment 

Faults 
Errors 
Failures 

Threats 
!

S
e
c
u
r
i
t
y

* A. Avižienis, J.-C. Laprie, B. Randell, C. Landwehr 
  Basic Concepts and Taxonomy of Dependable and Secure Computing  
  IEEE TDSC, 1 (1), pp. 11-33, Jan.-March 2004 

FAULTS 

μ

λc 

c λ



©  LAAS-CNRS — 2012 14 

Dependability: ability to deliver service that can justifiably be trusted 
Service delivered by a system: its behavior as it is perceived by its user(s) 

User: another system that interacts with the former 
Function of a system: what the system is intended to do? 
(Functional) Specification: description of the system function 
Correct service: when the delivered service implements the system function 
System failure: event that occurs when the delivered service deviates from 
correct service, either because the system does not comply with the 
specification, or because the specification did not adequately describe its 
function 
Failure modes: the ways in which a system can fail, ranked according to 
failure severities 

Dependability: ability to avoid failures that are more frequent or more     
                 severe than is acceptable to the user(s) 

When failures are more frequent or more severe than acceptable: 
dependability failure  

About Dependability  



©  LAAS-CNRS — 2012 15 

Absence 
of  catastrophic 
consequences on 
the user(s) and  
the environment  

Continuity 
of service  

Readiness 
for usage  

Absence of  
unauthorized  
disclosure of  
information 

Absence 
of improper 

system 
alterations  

Ability to 
undergo 

repairs and 
evolutions  

Safety Reliability Confidentiality Availability Integrity Maintainability 

Dependability 

Security 
Absence of unauthorized access to, or handling of, system state 

Authorized actions 



©  LAAS-CNRS — 2012 16 

The Dependability Measures 

  System service is classified 
as proper if it is delivered 
as specified;  
otherwise it is improper * 

improper 
service 

failure 

restoration 

proper 
service 

  System failure is a transition from proper to improper service. 

  System restoration is a transition from improper to proper 
service. 

   * The “properness” of service depends on the user’s viewpoint! 

  Dependability characterizes the ability of a system to deliver 
a specified service 



©  LAAS-CNRS — 2012 17 

Dependability Measures 
  Availability - quantifies the alternation between deliveries 
of proper and improper service 

  A(t) = 1 if service is proper at time t, 0 otherwise 

  Reliability - continuous delivery of proper service 
  R(t): probability that a system delivers proper service throughout [0,t] 

  Safety - time to catastrophic failure 
  S(t): probability that no catastrophic failures occur during [0,t] 
 [Analogous to reliability, but concerned with catastrophic failures] 

  Time to Failure - time to failure from last restoration  
[Expected value of this measure is referred to as MUT - Mean Up Time] 

  Maintainability - time to restoration from last experienced 
failure. [Expected value is referred to as MDT - Mean Down Time] 

  Coverage - probability that, given a fault, the system can 
tolerate the fault and continue to deliver proper service 

CIS

PS

BIS



©  LAAS-CNRS — 2012 18 

Dependability Specifications 
  K out of N components are functioning 
  Every working processor can communicate with every other 
working processor 

  Every message is delivered within t milliseconds from the 
time it is sent 

  All messages are delivered in the same order to all working 
processors 

  The system does not reach an unsafe state 
  90% of all remote procedure calls return within x seconds 
with a correct result 

  99.999% of all telephone calls are correctly routed 
⇒  Notion of “proper service” provides a specification  

 by which to evaluate a system’s dependability 



©  LAAS-CNRS — 2012 19 

The Dependabilty Impairments 

  Failure 
  deviation of the service from the accomplishment of the function  
of the system 

  function : what is the system meant for 

  Error 
  part of system state liable to lead to a failure 

  error affecting the service : evidence of failure occurrence 

  Fault 
  cause (attributed or supposed) of an error 

Faillure

Fault
Error

Failure
Fault



©  LAAS-CNRS — 2012 20 

The “fault-error-failure” sequence 

Fault Error Failure 

Deviation of the 
delivered service 

from correct service, 
i.e., implementing 
the system function 

Part of 
system state 

that may 
cause a 

subsequent 
failure 

Adjudged or 
hypothesized 

cause of an error 

Failure … Fault 

System  
does not comply  
with specification 

Specification  
does not adequately 
describe the function 

… 



©  LAAS-CNRS — 2012 21 

Software Fault Pathology 
Error of a programmer 

Fault 
Impaired instructions or data 

Activation 
Faulty component and inputs 

Error 

Propagation 
When delivered service deviates (value, timing) from 

implementing function 

Failure 



©  LAAS-CNRS — 2012 22 

Hardware Fault Pathology 
Short-circuit in integrated circuit 

Failure 

Fault 
Stuck-at connection, modification of circuit function 

Activation 
Faulty component and inputs 

Error 

Propagation 
When delivered service deviates (value, timing) from 

implemented function 

Failure 



©  LAAS-CNRS — 2012 23 

Environment Fault Vulnerability 
Electromagnetic perturbation 

Fault 

Error 

Activation 
Faulty component and inputs 

Fault 
Impaired memory data 

Propagation 
When delivered service deviates (value, timing) from 

implementing function 

Failure 



©  LAAS-CNRS — 2012 24 

Cosmic Rays 

J. F. Ziegler et al.  
IBM experiments in soft fails  

in computer electronics (1978-1994) 
IBM J. Res. & Dev., 40 (1), 1998 

Single Event Upset (bit-flip) = “Soft” error 
—> only error handling needed 



©  LAAS-CNRS — 2012 25 

SRAM-based FPGA Technology  
and Automotive Applications◊ 

  Basic Assumptions 
  Location: Denver, CO, USA ≈ 5,000 feet 
  Technology: 22µm SRAM-based FPGA 1M-gates 
  Prediction (SpaceRad 4.5): 1.05 x 10-4 upsets(**) / day 

  Let us consider a fleet of 500,000 vehicles,  
each featuring an airbag control system using this 
technology  
 

      —> Continuous operation ≈ 52.5 upsets / day 
       Thus, an upset every 27.4 minutes!   

      —> Assuming 1 h use per day ≈ 2 upsets / day  
 
  
(*) Martin Mason, Actel Corp. — Automotive DesignLine Newsletter, May 31, 2006 
(**)  These are firm errors that will persist until the SRAM FPGA is reloaded  

  (normally by power cycling or forcing reconfiguration) 



©  LAAS-CNRS — 2012 26 

The MAFTIA Attack/Vulnerability/Intrusion 
Pathology Model 

P. Veríssimo, N. Neves, C. Cachin, J. Poritz, Y. Deswarte, D. Powell, R. Stroud, I. Welch 
Intrusion-Tolerant Middleware: The Road to Automatic Security 
IEEE Security & Privacy, 4 (4), pp.54-62, July-August 2006 



©  LAAS-CNRS — 2012 27 

Classes of Faults 



©  LAAS-CNRS — 2012 28 

Diagnosis: identifies and records the error cause(s),  
according to localisation and category 
Isolation: performs physical or logical exclusion of the fauty 
component(s) from further contribution to service delivery,  
i.e., makes the fault(s) dormant 

Reconfiguration: either switches in spare components  
or reassigns tasks among non-failed components 
Reinitialization: checks, updates and records the new 
configuration, and updates system tables and records 

  

 Intermittent faults 
  Isolation and reconfiguration not necessary 

Error handling Non recurrence 
of error 

Fault diagnosis Absence 
of fault 

Intermittent 
fault 

  Identification   

  Fault Handling 



©  LAAS-CNRS — 2012� 29 

Fault Tolerance                  

FAILURE�

FAULT�

ERROR�

Detection�
replication, coding,  

etc.�� 
 

Recovery  
Error Handling 

 
 
 
 

backward� forward�

compensation�

! !�

Zz..�

« Dormancy »�

« Latency »�

! ⚡⌛ ☔
Fault 

Treatment /
Handling�
diagnosis�

passivation�
Reconfiguration  

�



©  LAAS-CNRS — 2012 30 

Dependability Assessment 

  Objectives 
  Evaluation of Dependability Measures (Reliability, Availability, etc.) 
  Verification of Properties  

  Nominal Service  
  Service in presence of Faults 

  Characterization of Behavior in Presence of Faults  
  Failure modes  
  Efficiency of fault tolerance 

  Methods and Techniques 
  Axiomatic  

  Model checking 
  Stochastic processes  

   Empirical 
   Field measurement  
   Robustness testing 
   Fault injection 

   Simulation  



©  LAAS-CNRS — 2012 31 

Agenda 

  Introduction: Motivation and Outline 

  Part 1: Basic Concepts and Terminology  

  Part 2: Fault-Tolerant Computer Architectures 

  Part 3: Experimental Assessment of Dependability 

  Part 4: Dependability Benchmarking 

  Conclusion: Wrap up, Emerging Challenges and Future Trends 

  To Probe Further… 



©  LAAS-CNRS — 2012 32 

Fault Tolerance Techniques  

F
a
u
l
t  
T
o
l
e
r
a
n
c
e

System Recovery

Error Detection



©  LAAS-CNRS — 2012 33 

Basic Strategies for Fault Tolerance 

Bacward Recovery

Full Forward Recovery

Forward Recovery

Partial Forward Recovery

Detection & Recovery Masking & Recovery



©  LAAS-CNRS — 2012 34 

Error Detection Techniques 

  Error detecting codes  

  Duplexing and comparison 

  Likelihood checks (timing, reasonableness, execution) 

  Wrapping 

  Self-checking components   



©  LAAS-CNRS — 2012� 35 

Error Detecting Codes 
  Example: Parity code 

   [x1 x2] Pb : 000, 010, 100, 111 
   Hamming Distance (HD) =  
 Min distance between  
 any two code words = 2 

U�

S� X�
1�

X�3�

X�
2� X�

4�

X�1�, �X�2�, �X�4� : � Code words (vectors)�

X�3� : � Non code word�

X�1�  �   �X�3�  Error Detectable �
X�2�  �   �X�4�  Error – Non detectable�

110�

100�

000� 001�

010�
011�

111�

101�

Detectable error�

Non detectable  
error�
�

Code word�

Non code word�

  Error weight — W(•)   
  Vectors Y [1010], Z [1111]  

W(Y) = 2; W(Z) = 4 
  Message sent X [1100]; 

received X’ [1000]  
Error vector E = X  +  X’ = [0100];  
W(E) = 1  

Code with HD ≥ e+1  
can detect any error E  
such that W(E) ≤ e 



©  LAAS-CNRS — 2012� 36 

Arithmetic Codes 

    Parity code not preserved by arithmetic operations!  

  Binary Codes: 
 

+�  : addition modulo-M, M: the largest integer value that can be represented on the machine �

!�

M�

f(X) = [X, C(X)]    C(X): check bits�

*�f(X +�M� Y) = [ X +�M�Y,  C(X) �  C(Y) ]�

C(X) = X  (mod A)�

*� �≡� +�A�  �

Residual codes (Sytematic code) 

COMP�

X +  Y�M�+  �M�

+  �A�

C(X) + C(Y)�A�

X�

Y�

C(X)�

C(Y)� ≠ : ERROR�

f(X) = A X = XC�

f(X +�M�Y) = X�c� o Y�c� �

o : simple binary operation �

�
�

“A X” codes (non Systematic code) 

A�

A�

A�



©  LAAS-CNRS — 2012 37 

Duplexing and Comparison 

  Code-based interpretation:  
  I and O ∈ {00,11} = code space 
  Non code space = {01,10}  

  Basic Assumptions about Independence of Replicas  
  The faults are created and activated independently in the duplexed units 
  If the same fault provokes an error in both units, these errors are distinct 

Unit 1

Unit 2

C

Input

Error signal

Ouput

i1

i2

o1

o2



©  LAAS-CNRS — 2012� 38 

Likelihood checks 
  Inputs 

  Validity domain of processed data 
  Arithmetic calculation (zero divide) 
  Instruction code (invalid OP code) 

  Outputs 
  Consistency checks (Inertia, continuity,…)  
  Accountability checks (Balance sheet : Assets vs. Liabilities) 

  Timing 

 

Nominal Execution Time� Margin�

Watchdog Timer (WT)�
Launch  

WT�
�

  Actual Execution�   New Execution�

  Actual Execution�

  WT�

  New Exec.�

WT�
Error�

  WT�   WT�



©  LAAS-CNRS — 2012� 39 

Wrapping: Basic Principles 
  Principles 

  Encapsulation of weak functional items 
  On-line verification of expected properties  

 

  Encapsulation mechanism  error confinement 
  Extended error detection and signallin 
  (Possibly) Triggering recovery action 
  Can be defined on a case by case basis: overhead/efficiency trade off 

  In practice 
  Runtime assertions that are logical formulas  

  They are triggered by events  
(external and or internal)  
and include input / internal / output  
SW component data  

      Output � Input� Software�
component�

Wrappers 

E.g., Synchronization:�
[S.val = init_value + #P(S) - #V(S)]  
Λ [#Suspended(S) = (max(0,-S.val)]�



©  LAAS-CNRS — 2012 40 

Target Software 
[COTS] Component  

Runtime checker 

Wrappers compilation ... 

Observation  

W2 Wn W1 
Formula F1 
Formula F2 

... 
Formula Fn 

Formal 
specifications 

Wrapping Framework for RT µkernels  

Interface 

 
SYNCHRONIZATION  

 
ETC. 

SCHEDULING 

 
TIMING 

Reflection

Temporal Logic

Chorus μkernel

µkernel functional components 



©  LAAS-CNRS — 2012 41 

Wrapping Framework: Overview 

 
 

Target  
Software  

Component 

WFA2 WFAn WFA1 
Formula+Actions FA1 
Formula+Actions FA2 

... 
Formula+Actions FAn 

(temporal logic) 

TRANSLATION 

Error signal 
... 

Observation 
(data, ticks, events) 

Specification 

TSC 

Control 
(actions)  

Runtime checker 

Wrappers 

The model is a set of 
formulas in temporal logic 

including actions 

Automatic generation of the 
wrappers code 

The wrappers are executed 
concurrently on a virtual machine 

The TSC must deliver data items, 
clock ticks and events to the 

wrappers 

Fault Tolerance 
 • Detection & Recovery

Characterization 
   • Synchronization

   • Injection
   • Observation 



©  LAAS-CNRS — 2012 42 

Fail-safe
all failures are minor

Self-Checking Components 

Fault-secure
∀ f ∈ F : correct output or 

error detected

Self-checking
∀ f ∈ F : ∃ input producing 

detected error

+ =

Totally self-checking

Fail-silent
all failures are stopping failures

Function

Checker
Error Signal

Inputs Outputs

+ safe shutdown + outputs inhibited



©  LAAS-CNRS — 2012� 43 

  Compare  a1 & b1, a2 & b2, …�
     �
    �
Compare   �

�
{ ai, bi) } : 1 / 2 code�

�

Self-checking Checker   

�
�

[≠?]�

•�
�•�
�•�

•�
�•�
�•�

•�
�•�
�•�

•�
�•�
�•�

a�1�
a�2�

a�n�

b�1�
b�2�

b�n�

f�
g�

a� –�� –��
1� & �b�1�, a�2� & �b�2�, … �

Side  
A�

Side  
B�

�
�

a�1� b�1� a�2� b�2� a�n� b�n�

Totally self-checking  
comparator�

f� g�

c�i�  =  �
–��
b�i�

. . . �



©  LAAS-CNRS — 2012 44 

Implementation 
(faults: single stuck-at- "0" or "1") 

  n = 2

 
f2 = a1 ∧ c2 ∨  a2 ∧ c1            

00 01 11 10

00

01

11

10

0 0 0 0

0

0

0

0

0

1 1

1

a�2� c�2�

1 1

1 1

a�1� c�1�

00 01 11 10

00

01

11

10

0 0 0 0

0

0

0

0

0

11

1 1 1

11

a�2� c�2�

a�1� c�1�

 g2 = a1 ∧ a2 ∨  c1 ∧ c2

c�1�

•

•
•

•

a�1� a�2� c�2�

f�2� g�2�

ai = ci => f2 = g2



©  LAAS-CNRS — 2012 45 

Verification  
of Fault-secure (Testability ) Property 

/ : stuck-at-"0" tested
\ : stuck-at-"1" tested

c 1a 1 a 2 c 2

0

0

1

1

1

1

0

0

0

1

0

1

1

0

1

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

0 0

1

0

1

1

0 1

0

1

0

0

1

0

1

1

0

1

1

0

1

1

1

0

0

1

1

1

0

0

1

0

1

1

0

c 1

•

•
•

•

a 1 a 2 c 2

f 2 g 2

1 2 3 4 5 6 7 8

0 1 10

0 0 0 1

9 10 11 12

13 14

10



©  LAAS-CNRS — 2012 46 

1 2 3

09/05/2012 © LAAS-CNRS 46

1 2 3

1 2 3

12 13

System Recovery 

11

1 2 3

3 4 5 6 7

1 2 3

4 5 6 7

4 5 6 7

Backward recovery

Forward recovery

Compensation-based recovery

4 5 6 7



©  LAAS-CNRS — 2012 47 

System Recovery 1/2 
  Rollback 

  Principle  
  restore a state that existed before 
error detection 

  Recovery point (or checkpoint ) 
  point in execution where state can be 
restored 

  Creation of recovery point 
  save all state information needed to 
restart execution 

  state includes, e.g., values of variables, 
register contents, program counter  
and other control information… 

  state must be saved on stable  storage 
  Restoration of recovery point 

  replace current state of computation  
by information in recovery point 

  Rollforward 
  Principle 

  create a new state from which system 
can acceptably continue operation, 
although possibly degraded 

  Specific to particular system 
  cannot be implemented as a general 
recovery mechanism 

  can be conveniently implemented using 
exception-handling 

  Examples 
  abandon tasks depending on state known 
to be erroneous 

  initiate a safe shutdown procedure 
  initiate a procedure to make erroneous 
state consistent 

  Borderline cases (∃ procedure to 
correct state): 
  reset and rebuild new  state from data 
re-acquired from environment  

 backward recovery 
  state contains sufficient redundancy for 
it to be corrected (e.g., via error-
correcting codes, robust data 
structures) 
  compensation-based recovery 



©  LAAS-CNRS — 2012 48 

System Recovery 2/2 
  Compensation-based Recovery 

  Principle 
  use redundant state information to provide correct service despite errors 

Two forms 
  compensation is systematic,  
whether or not there is any error 

 masking 
e.g., Triple Modular Redundancy 

  compensation consecutive to error 
detection  

 detection and compensation 
    [correction of state without backward  
    or forward recovery] 

  e.g., self-checking components  
       in active redundancy 

Computation Computation 

V 

Computation 

S = MAJ (S1,S2,S3) - S1,S2,S3 = Boolean variables 
• If S1=S2=S3=X, -> S=X 
• If S1=X, S2=S3=Y; Or S2=X, S1=S3=Y; Or S3=X, S1=S2=Y, -> S=Y 
• Otherwise (S1≠S2≠S3) -> Failure! 
 

S=(S1 S2) (S2 S3 (S1 S3) 

  Error detection still required to initiate 
fault treatment & actualize redundancy 

S 

S1 S2 S3 



©  LAAS-CNRS — 2012 49 

TMR + Error Diagnosis & Reconfiguration  

Computation 
1 

Computation 
3 

V 

Computation 
2 

Discrepancy  
Detector 

C1 C3 C2 

Ci : Si = S ? 
Ci = 0 -> Agreement 
Ci = 1 -> Discrepancy 

 C1 C2  C3  Diagnosis 
 0  0  0  No component failed 
 1  0  0  Comp. 1 failed 
 0  1  0  Comp. 2 failed 
 0  0  1  Comp. 3 failed 
 1  1  1  Voter failed 

  Reconfiguration after 1st failure? 
  Resume with 2 correct units? 
  Resume with only one unit, sparing one? 

  Diagnosis of failed unit 



©  LAAS-CNRS — 2012� 50 

Examples of FT Architectures 

Component Component Monitor 

Self-checking 
Component 

Self-checking 
Component 

Error 
Signaling 

Error 
Signaling 

Main 
Unit�

Back up  
Unit�

Self-checking 
Component 

Self-checking 
Component Monitor 

Self-checking 
Component 

Self-checking 
Component Monitor 

Active 
redundancy 

Passive 
(hot) 

Passive 
(cold) 



©  LAAS-CNRS — 2012 51 

Error Correcting Codes (principle) 

• • •a) SED

• • •c) SEC-DED

• • •b) SEC

Code-word symbol Non code-word symbol 



©  LAAS-CNRS — 2012 52 

<-Separate designs & implementations-> 

Specification 

Specification 
variant 1 

Specification 
variant 2 

Specification 
variant n 

Variant 1 Variant 2 Variant n 

Specification 
decision algorithm  
(comparison, vote; 

windows of  
synchronization) 

Voter/comparator(s) 

Development-faults —> Design Diversity 



©  LAAS-CNRS — 2012 53 

Design Diversity 
  Aim: fault independency (  risk of common mode failures)  
Issues: common specification, inter-variant synchronization & decision 

  Major techniques:  
  Recovery Blocks 
  N-Version Programming 
  N-Self-Checking Programming 

  Operational use  
  Civil aviation: generalized, at differing levels  
  Railway signaling: widely applied 
  Nuclear control: partially used 

  Dependability improvement  
  Real gain for SW faults,  
although less than wrt HW  

  Verification of specification 
  Impact on Standards          —>  
0178-B, IEC 880,  
CENELEC 50128, IEC 61508,  
ISO 26262,… 



©  LAAS-CNRS — 2012 54 

Fragmentation – Redundancy – Scattering 

  Achieve Fault Tolerance wrt Accidental and Malicious Faults 

J.-C. Fabre, Y.  Deswarte; B. Randell (U. Newcastle) 
Designing Secure and Reliable Applications using Fragmentation-Redundancy-Scattering: An Object-Oriented Approach 
1st European Dependable Computing Conf. on Dependable Computing (EDCC-1), Berlin, Germany, LNCS 852, 1994, pp. 21-38. 



©  LAAS-CNRS — 2012 55 

Examples of Fault-Tolerant  
Computer Systems 

  Airbus: A320 

  Boeing: 777 

  Ansaldo: Computer Based Interlocking 

  Safe and Secure Maintenance Laptop  



©  LAAS-CNRS — 2012 56 

Airbus — Fly-by-Wire Command 

Active Replication 
   Control laws implemented by Secondary 
 simpler than those realized by Primary 
   P1/Green  P2/Blue  S1/Green  S2/Blue 

COM 

MON P1 S1
C   M

P2 S2

C   M

C   M

C   M

AVAILABILITY SAFETY 

Duplex and Comparison 
  COM = Control 
  MON = Monitoring 

Traverse, P., Lacaze, I., Souyris, J.: Airbus fly-by-wire: a total approach to dependability. 18th IFIP World Computer Congress  
Topical session Fault tolerance for trustworthy and dependable information infrastructure  (Toulouse, France), Kluwer, 2004, pp.191-212. 

Memory 

Memory 

PWS 

PWS 

Processor 

Processor 

I/O 

I/O 

Control Lane 
Monitroring Lane 



©  LAAS-CNRS — 2012 57 

Coping with Design Faults  
  Design and validation rules  

  System : ARP 4754 
  Computers : DO254 (HW) and DO178B [->C] (SW) 

  Diverse tracks for software production  
  Distinct design teams (Paris/Toulouse) conception différentes (Paris / Toulouse) 
  Different Languages 
  Distinct programming tools 

  Rules to amplify the diversification 
  Programs feature different structures 
  Different memory allocations 
  Differing algorithms 
  Trigonometry (polar vs. Cartesian coordinates) 
  Numerical functions (tabulation vs. dynamic calculation) 
  Optimization criteria (execution time vs. program footprint) 
  Accuracy (12 bits vs. 8 bits) 

  Diversification of COM & MON computers 
  Computers from different manufacturers  
  processors of different types 



©  LAAS-CNRS — 2012� 58 

      Airbus A320 - Flight Surfaces 
Slats  
and  

Flaps�

Pitch�Pitch�

Yaw�

Roll�

Roll�



©  LAAS-CNRS — 2012 59 

lay

htning, EMI
d voltage
tection

Processor
RAM
ROM

I/O

Power 
supply

Watchdog
Control Lane

Processor
RAM
ROM

I/O

Power 
supply

Watchdog
Monitor Lane

28V DC

Critica
(e.g., 

Extent of  
the  protection 

Airbus A320 
(Traverse, Brière 1993) 

A320 — Architectural Principles for 
Operational Diversity 



©  LAAS-CNRS — 2012 60 

Examples of Fault-Tolerant  
Computer Systems 

  Airbus: A320 

  Boeing: 777 

  Ansaldo: Computer Based Interlocking 

  Safe and Secure Maintenance Laptop  



©  LAAS-CNRS — 2012� 61 

Boeing 777: Overall Architecture 

Pilotes

PFC
Gauche

ACE

 PFC
Centre

PFC
Droit

ACE

ACE

ACE

Actionneurs

Autres
équipements

Autres
équipements

Bus ARINC 629

Actuator 
Control 
Electronics�

Pilots�

ARINC 629 Buses�

Other�
Equipments�

Other�
Equipments�

PFC�
Left�

PFC 
Center�

PFC 
Right�

Primary  
Flight  

Computers�



©  LAAS-CNRS — 2012 62 

Boeing B777 

PFC (L) PFC (C) PFC (R)

Data Buses ARINC 629

Primary Flight Computer

L
C
R



©  LAAS-CNRS — 2012 63 

Examples of Fault-Tolerant  
Computer Systems 

  Airbus: A320 

  Boeing: 777 

  Ansaldo: Computer Based Interlocking 

  Safe and Secure Maintenance Laptop  



©  LAAS-CNRS — 2012 64 

CBI: Computer-Based Interlocking 
Ansaldo Segnalamento Ferroviario 

Safety Nucleus 

Control center 

Maintenance 

Monitoring 
and  

Diagnosis 

Track-side Unit Track-side Unit Track-side Unit 
 



©  LAAS-CNRS — 2012 65 

CBI: The Safety Nucleus 

Exclusion 
Logic 



©  LAAS-CNRS — 2012 66 

CBI: Principle of the Exclusion Logic 



©  LAAS-CNRS — 2012 67 

Examples of Fault-Tolerant  
Computer Systems 

  Airbus: A320 

  Boeing: 777 

  Ansaldo: Computer Based Interlocking 

  Safe and Secure Maintenance Laptop  



©  LAAS-CNRS — 2012 68 

Aircraft Maintenance: Current Scenario 



©  LAAS-CNRS — 2012 69 

Aircraft Maintenance: Laptop Scenario 



©  LAAS-CNRS — 2012� 70 

Connecting a Laptop? 
Execution 
confidence�

�
++�
�
�

++�
�
�
�
+�
�
�
-�



©  LAAS-CNRS — 2012 71 

Platform Virtualization 

= Trusted Computer Base 



©  LAAS-CNRS — 2012 72 

Virtualization for Dependability 

Trusted Computer Base 

Partitioning and Segregation 

Appl. Task 

Diversified Duplex 



©  LAAS-CNRS — 2012 73 

Implementation of the Architecture 



©  LAAS-CNRS — 2012� 1 

Hardware- and Software-Fault 
Tolerance  

Design and Assessment of Dependable Computer Systems 
 
 
 

Jean Arlat  
[jean.arlat@laas.fr]

[http://homepages.laas.fr/arlat]

Annecy, May 28th, 2012�

The 17th IEEE European Test Symposium
May 28th – June 1st, 2012 —  Annecy, France

Test Spring School  
May 26th-28th, 2012� 2/3�



©  LAAS-CNRS — 2012 2 

Agenda 

  Introduction: Motivation and Outline 

  Part 1: Basic Concepts and Terminology 

  Part 2: Fault-Tolerant Computer Architectures 

  Part 3: Experimental Assessment of Dependability 

  Part 4: Dependability Benchmarking 

  Conclusion: Wrap up, Emerging Challenges and Future Trends 

  To Probe Further… 



©  LAAS-CNRS — 2012 3 

Experimental Assessment of Dependability 

  Dependability Evaluation 

  Fault Injection Techniques 

  Examples of Experimental Results 



©  LAAS-CNRS — 2012 4 

Despendability Assesments Methods 



©  LAAS-CNRS — 2012� 5 

Impact of Fault Tolerance 

Dependability ≈ 1 - Pr{fault} × Pr{error/fault} × Pr{failure/error} 

 System   Impairments  Fault Error/Fault Failure/Error 

Non Fault-Tolerant (NFT) PrNFT{fault} PrNFT{error/fault} PrNFT{failure/error} 

Fault-Tolerant (FT) PrNT{fault} PrFT{error/fault} PrFT{failure/error} 

>� ≥�

>>�



©  LAAS-CNRS — 2012 6 

About Probabilities and Statistics 

Designation Symbol Definition Statistiocal 
Estimator Properties 

Distribution 
Function F(t) Pr{τ ≤ t} N(0)-N(t) 

N(0) 
 Inc. Monotonous 
F(0)=0; F(∞)=1 

Complementary 
Distribution 
Function  
(Survival function) 

F(t) Pr{τ > t} 
N(t) 
N(0) 

 

Dec. Monotonous 
F(0)=1; F(∞)=0 

Probability 
Density Function f(t) f(t) ∂t = Pr{τ ≤ t+∂t} - Pr{τ ≤ t}  

 
N(t)-N(t+∂t) 

N(0) ∂t 

Hazard rate z(t) z(t) ∂t ≈ Pr{τ ≤ t+∂t / τ ≥ t}  N(t)-N(t+∂t) 
N(t) ∂t 

τ : time of occurrence of event (random variable) X
N(0) : size of sample

N(t) :# of systems for which event X did not occur

f (t)
0

∞

∫  dt=1

Mean time to occurrence of X: Ε(τ) �= t  f (t)
0

∞

∫  dt = F(t)
0

∞

∫  dt F(t) = exp −  z(θ )
0

t

∫  dθ
⎡

⎣
⎢

⎤

⎦
⎥



©  LAAS-CNRS — 2012� 7 

Fault Tolerance                  

FAILURE�

FAULT�

ERROR�

Detection�
replication, coding,  

etc.�� 
 

Recovery  
Error Handling 

 
 
 
 

backward� forward�

compensation�

Probabilité 
de succès ?�

Prob. success  
| ∃ fault/error ? 

 

… and Coverage 

! !�

Zz..�

« Dormancy »�

« Latency »�

! ⚡⌛ ☔

Fault 
Handling�
diagnosis�

passivation�
Reconfiguration  

�

Fault injection: A Pragmatic 

Approach to Test FT Mechanisms 

wrt Inputs they are meant to 

cope with: the Faults  



©  LAAS-CNRS — 2012� 8 

Impact of Coverage on Dependability 

SCU 1�

SCU 2�

I� O�

Duplex System�

2

10-4 10-3 10-2

c = .95�

c = .9�

c = .99�

c = .995�

c = .999� c = 1�

101

10

10

104

1

3

MTTR�

MTTF�
Comp.�

Comp.�

 λ�
 μ�

MTTF�  Syst.�

MTTF�  Unit.�

2 active  
units�

System  
failure�

1 active  
unit�

1st failure  
(not covered)�
[2  (1-c )λ]

1st failure (covered) [2 c λ]�

Repair [μ]�
  2nd     failure [λ]�
�

J. Arlat, A. Costes, Y. Crouzet,  J.-C. Laprie,  
D. Powell 
Fault Injection and Dependability Evaluation   
of Fault-Tolerant Systems 
IEEE ToC, 42 ,  (8), pp. 913 – 923, August 1993  



©  LAAS-CNRS — 2012 9 

Fault Tolerance Validation 

Validation of fault tolerance 
wrt specific inputs it is designed to deal with: the faults 

    

  FT mechanisms = human 
artefacts (not perfect) 

  Calibration of models 

  Formal approaches limits 

  Impairment = rare event 

    

  Impact on dependability 
measures  

  Estimation of FT efficiency 

  Experimental approaches 

  Controlled experiments 

Fault Injection 

Fault Tolerance (FT) Dependability 



©  LAAS-CNRS — 2012� 10 

Reliability = 1 - Prob.{Failure} = 1 - (Prob.{Failure ∩ Error ∩ Fault})

 1 - (Prob.{Failure | Error} Prob.{Error | Fault} Prob.{Fault})

NFTS

FTS

Coverage Failure ≈ P{Failure�|�Fault }�

• Coverage wrt Fault Hypotheses
• Coverage of Hypotheses

•  Increase of Prob.(Fault) 
•  Potential increase of P(Error | Fault} 
•  Significant reduction of P{Failure | Error}  

Fault� Failure�

t�f� t�F�

Fault� Error� Failure�

Dormancy� Latency�

Proper Error Processing/Fault Treatment�

t�f� t�E�

Coverage of Fault Tolerance 

Error�

t�E�

t�F�



©  LAAS-CNRS — 2012� 11 

Role of Fault Injection 

Fault forecasting�
(Dependability measures) �

Removal of fault tolerance  
deficiency faults�

Test  of adequacy ... �
�
�
�
�
 �

... wrt fault hypotheses�

Estimation of efficiency ...
�
�
�
�
 �

coverage factor, latency, ...�

EVALUATION�VERIFICATION�

... of design and implementation  �
of fault tolerance mechanisms (FTMs) ... �



©  LAAS-CNRS — 2012� 12 

Fault Injection-based Assessment 

  Testing and evaluation (measurement) of a fault-tolerant 
system and of its FT algorithms & mechanisms 

  Characterization (measurement) of faulty behaviors  
and failure modes of several systems/components  

    —> Benchmarking 

Target  
System�

Activity�

Faults�

Input 
Error  

Signaling�

Valid�

Invalid�

Output 

—> Partial dependability assessment:  
                   controlled application of fault/error conditions  



© J. Arlat — LAAS-CNRS — 2008� 13 

State

∫�∫�

The Fault Injection Attributes 

Target System�

Inputs

F
E

Errors�

A Error�
Syndrome�

Propagated�
Errors�

S

M

R

Outputs
F�
T�
M 
s�

Fault
Tolerance
Deficiencies�FT�

J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, D. Powell, 
Fault Injection for Dependability Validation — A Methodology and Some Applications 
IEEE TSE, 16 (2), pp.166-182, February 1990 



©  LAAS-CNRS — 2012 14 

Fault Injection Experiment 

Input Domain Outpout Domain 

 
 
 
 
 
 
 
 
•  f  ∈ F (Fault set): Faults to be injected 
• a  ∈ A  (Activity set): Data patterns  

 to exercize the target system 

• r  ∈ R (Readout set): Observations 
characterizing FTMs and 
target system behavior 

Elaboration of a set of experimental measures: the M set 

  Test sequence = Set of elementary experiments 

t
Max
0
 t D t R

Fault Error Failure

t
Ft f t E Detection Recovery

Duration of an experiment�



©  LAAS-CNRS — 2012 15 

Characterization of the FARM Attributes 

  Readouts  R
-  Binary variables (predicates) 
-  Timing measurements 
-  Comprehensive logs �

        Activity  A
 - Activation of injected faults  

and propagation to the FTMs 
 

 -  Input data simulating the 
operational profile   

                  Measures  M 
-  Statistics on states: 

   • predicate combinations 
   • time between states 

Input Domain 

Output Domain 

  Faults  F     
-  Determined among:  

• existing fault models 
• injectable faults 

-  According to: 
• FTMs fault hypotheses 
• forecasted faults�

   



©  LAAS-CNRS — 2012 16 

  Observation of FT TS reaction/behavior r ∈ R  
when subjected to fault f ∈ F in presence of activity a ∈ A 

A Typical Fault Injection Experiment 

T0 P

t f t p tmax
t Experiment ≈  

Bernouilli trial 

T

1

c(t)

c(∞)

c(T)

  Exemples of properties/predicates  
  D (detection) —> conservative estimate? 
  T (recovery) —> optimistic estimate? 

   Series of experiments —> descriptive statistics & measures  
   —> Inferential stats on coverage: c(t) / {F, A} ? 



©  LAAS-CNRS — 2012 17 

Characterization of FTMs Behavior 

  Predicates Characterizing FTMs 

  Ex. of Experimental Graph: 

   

(Invariance)

F�

(Liveness)

Fault

t f

p1  asserted  

t P

p1  = false p1  = true

Observation domain: T

    { fault masked }  �

{ error_signaled }�

{ fault_activated }�

t M

t M

t M

t
f

t f

{ fault_non_activated  }�

    { error signalled }

       { fault_activated  ∩ �error_non_signaled }

(1)

(3)

(2)

∅�

∅�

∅�

∅�

∅�

∅�

p2 := fault =>      service

p1 := fault =>      detection

F E D T

p3 a := fault =>      error

p3 b := error =>      detect.



©  LAAS-CNRS — 2012 18 

About Coverage 
W. G. Bouricius, W. C. Carter and P. R. Schneider 
Reliability Modeling Techniques for Self Repairing Computer Systems  
Proc. 24th. National Conference, pp.295-309, 1969. 

…

…



©  LAAS-CNRS — 2012 19 

About Fault Tolerance Coverage Estimation 

  Fault tolerance coverage is defined as:  
    where:  

 G = F x A is the fault-activity set  
 H, a Boolean variable, defines the correct fault/error handling 

  Fault tolerance coverage ≡ coverage factor: 

  In practice, the coverage can only be estimated by sampling in set G 

Fault-activity set G = F x A 

value of H for fault-activity g 
 

probability of occurrence of fault-activity g 
h(g) 
p(g)

[ ]GHPc 1==



©  LAAS-CNRS — 2012 20 

Simple Sampling —> Stratified Sampling 

  The fault-activity set is partitioned into classes 

  Several opportunities 
  Transient, intermittent, permanent faults 
  Activity/Workload profiles  
  System components 
  … 

Fault-activity set 
G = F x A 

G1 

G2 
G3 

GM 

D. Powell, E. Martins, J. Arlat, Y. Crouzet 
Estimators for Fault Tolerance Coverage Evaluation 

IEEE TC (Special Issue on Fault-Tolerant Computing), 44, (2), pp.261 - 274, Feb. 1995 



©  LAAS-CNRS — 2012 21 

Interest of Stratified Sampling 

  Stratified sampling leads to a reduction of the variance  
wrt to simple sampling (using point estimators and applying central limit 
theorem)  

  For Fault Injection-based Assessment 
AFTER FI campaign : change in fault/activity occurrence prob. distribution 
  Stratified sampling allows for the results of the previous FI campaign  
to be used to calculate the overall coverage using changing only the value 
 of the fault/activity occurrence probabilities. 

  Simple sampling requires another fault injection campaign  
 

DURING FI campaign : interesting phenomenon discovered in one class  
   —> more faults to be injected in that class to study the phenomenon 
  Stratified sampling allows for the new readouts to be used for estimating  
the overall coverage 

  Simple sampling requires that new set of readouts be discarded  



©  LAAS-CNRS — 2012� 22 

Coverage Estimation 

FTMs�
Random Var. TP :  
time of assertion  
of predicate P�

n 

Exp.�

T�0� P�

t�f� t�p� t�max�

G�

n       d�

n2

•  
•� 
•�

n1

nM

d1

d2

di

dM

•  •� •�
Gini

F�

A�

X�

(tP  ≤ T)�

y (�tP , G) �=�
1�

0� �⎧ �
⎨ �
⎩ �

d
Significant  

events�

GM

G2

G1

t�

ˆ C 1(t,G) =
1
n

y(t, gi)
i=1

n

∑ =
N(t)

n

  Coverage Distribution: 

  Asympt. Value (Coverage Factor):�

C(∞,G) = C(G) ≈ ˆ C 1(T,G) =
N(T )

n
d

n
=�

Experiment ≈  
Bernouilli trial 

S
tr

at
ifi

ed
 S

am
p

lin
g�



©  LAAS-CNRS — 2012� 23 

  Choice of an estimator: 
  Stratified sampling, representative sample per strata and weighted estimator 
-> unbiased estimation of coverage for classical systems 

 
 
 
 

 

Estimation of Asymptotic Coverage 

  �

  �

100 exp. �

100 exp. �

90 det. (90%)�

99 det. (99%)�
?�

Overall  
coverage�

faults� detections�

All classes in G   
not equally likely�

pf1 = 9/10�

pf2 = 1/10�

  Highly dependable systems  
  (high coverage requirement)  

  Stratification not always optimal 
  Development of statistical methods (exact & approximate) 
  “Confidence Region” theory 
  Frequentist vs. Bayesian statistics�

ˆ C 2(G) = p(Gi G)
i =1

M

∑ • ˆ C 1(G) = p(Gi G) •
Ni

nii=1

M

∑ =
1
n

p(Gi G)
t(Gi G)i=1

M

∑ • y(gj)
j =1

ni

∑(Gi) 

sampling dist.�“real” distr.�

M. Cukier, D. Powell, J. Arlat 
Coverage Estimation Methods for Stratified Fault-Injection 

IEEE TC, 48, (7), pp.707-723, July, 1997



©  LAAS-CNRS — 2012 24 

Experimental Assessment of Dependability 

  Dependability Evaluation 

  Fault Injection Techniques 

  Examples of Experimental Results 



©  LAAS-CNRS — 2012 25 

Fault & Errors, System Layers  
and Impact on Fault Injection 

Faults

< - - - - - - Errors - - - - - - > 

<- - - Errors - - ->

Errors
<- Errors ->

Hardware

Executive

Application

Fault

Hardware

Executive

Application

Fault

Hardware

Executive

Application

Fault

Hardware

  
FTMsExecutive

Application



©  LAAS-CNRS — 2012 26 

M
i
d
d
l
e
w
a
r
e
 
 

K
e
r
n
e
l 
 

Φ
 
- 
d
e
v
i
c
e
 
 

L
o
g
i
c
 
 

R
T
L
 
 

A
l
g
o
r
i 
t
h
m
i
c
 
 

A
p
p
l 
i
c
a
t 
i
o
n
 
 

O
p
e
r
a
t 
i
o
n
 
 

X 

X 

X 

O 

O 

O 

O 

O 
O O 

Target System Levels & Fault Pathology 



©  LAAS-CNRS — 2012 27 

M
i
d
d
l
e
w
a
r
e
 
 

K
e
r
n
e
l 
 

Φ
 
- 
d
e
v
i
c
e
 
 

L
o
g
i
c
 
 

R
T
L
 
 

A
l
g
o
r
i 
t
h
m
i
c
 
 

A
p
p
l 
i
c
a
t 
i
o
n
 
 

O
p
e
r
a
t 
i
o
n
 
 

X 

X 

X 
O 

O 

O 

O 
O O 

O X 

O 

O 

O O 
O 

Target System Levels & Fault Pathology 



©  LAAS-CNRS — 2012 28 

Target System Levels — Ref. & Obs. dist.  

dr1 

dr2 do1 

do2 
Dist. to fault ref. Dist. to observation 

M
i
d
d
l
e
w
a
r
e
 
 

K
e
r
n
e
l 
 
 

Φ
 
- 
d
e
v
i
c
e
 
 

L
o
g
i
c
 
 

R
T
L
 
 

A
l
g
o
r
i 
t
h
m
i
c
 
 

A
p
p
l 
i
c
a
t 
i
o
n
 
 

O
p
e
r
a
t 
i
o
n
 
 

X 

X 

X 

O 
O O 



©  LAAS-CNRS — 2012 29 

Target System Levels & FT Mechanisms  

M
i
d
d
l
e
w
a
r
e
 
 

K
e
r
n
e
l 
 
 

Φ
 
- 
d
e
v
i
c
e
 
 

L
o
g
i
c
 
 

R
T
L
 
 

A
l
g
o
r
i 
t
h
m
i
c
 
 

A
p
p
l 
i
c
a
t 
i
o
n
 
 

O
p
e
r
a
t 
i
o
n
 
 

X 

X 

X 

O 
O 

 

F 
T 
M X 

X 
dm 



©  LAAS-CNRS — 2012� 30 

The Fault Injection Techniques 

Logical & 
Information 

Physical 

M 
E 
A 
N 

Simulation 
Model 

Prototype/ 
Real System 

Modèle Simulation- 
based 

SW- 
Implemented 

Physical 
(HWI) 

 

TARGET SYSTEM 

Built-in test devices  
(SCIFI)  FIMBUL�

system  DEPEND, REACT, ...�
RT Level   ASPHALT, ...�

Logical Gate  Zycad, Technost, ...�
Switch  FOCUS, ... 

�
Wide Range  MEFISTO, VERIFY,...�

communication  ORCHESTRA�
node �    �    CoFFEE�

debugger   FIESTA �
task  FIAT�

executive   Ballista, (DE)FINE, �
                      MAFALDA-RT,�
memory  DEF.I, SOFIT, ...�

instr. set  FERRARI�
processor  Xception, …�

Compile-time  
software mutation  
 SESAME, G-SWFIT�

≈ ∅ �
Heavy-ions  FIST,… 
EM perturbations  TU Vienna�
Pins  MESSALINE, Scorpion,�
            DEFOR, RIFLE, AFIT, …LASER beam�

μsimulation  SSI ICs�
FPGA-based FI    FADES�

Programmable 
HW 



©  LAAS-CNRS — 2012� 31 

The Fault Injection Techniques 

Logical & 
Information 

Physical 

Simulation 
Model 

Prototype/ 
Real System 

Modèle Simulation- 
based 

SW- 
Implemented 

Physical 
(HWI) 

 

Built-in test devices  
(SCIFI)  FIMBUL�

system  DEPEND, REACT, ...�
RT Level   ASPHALT, ...�

Logical Gate  Zycad, Technost, ...�
Switch  FOCUS, ... 

�
Wide Range  MEFISTO, VERIFY,...�

communication  ORCHESTRA�
node �    �    CoFFEE�

debugger   FIESTA �
task  FIAT�

executive   Ballista, (DE)FINE, �
                      MAFALDA-RT,�
memory  DEF.I, SOFIT, ...�

instr. set  FERRARI�
processor  Xception, …�

≈ ∅ �
μsimulation  SSI ICs�

FPGA-based FI    FADES�

Programmable 
HW 

Compile-time  
software mutation  
 SESAME, G-SWFIT�

M 
E 
A 
N 

TARGET SYSTEM 

Heavy-ions  FIST,… 
EM perturbations  TU Vienna�
Pins  MESSALINE, Scorpion,�
            DEFOR, RIFLE, AFIT, …LASER beam�



©  LAAS-CNRS — 2012 32 

Simulation-based Fault Injection 

Knowledge of 

 

 
 

Events Occur  
in the Model 

 

When? 
Where? 
Why? 
What? 

  Early Validation of Fault Tolerance Mechanisms (FTMs)  

  Validation of FTMs Integrated into the Design Process 

  Different Abstraction Levels -> Error Models 

  Controllability:  
  Reachability/Access 
  Synchronization of FI with target system state 

  Observability: 
  Extract and/or validate abstract error models 
  Analyze error propagation/masking processes 



©  LAAS-CNRS — 2012 33 

Steps for FI in Simulation Models 
Logic Level 

1) Obtain the net-list of a design 
2) Simulate the model using a logic-level simulator. 
3) During the simulation, apply an workload/activity representative of the 

intended application 
4) Save the behavior of the system under fault-free conditions  

by recording all the changes in the logic levels of monitored nodes 
5) Apply the activity again and inject a fault to a selected node. 
6) Monitor changes for all monitored nodes 
7) Compare the readouts from the fault-injected and fault-free runs and 

identify the differences to determine if, where, and when the fault was 
activated and the resulting errors propagated 

8) Process the obtained readouts to obtain the desired measures 



©  LAAS-CNRS — 2012 34 

Improving Fault Simulation Efficiency 

  Parallel fault simulation: several faults are simulated 
concurrently — each bit of a machine word (but one), maps 
to one specific fault 

  Fault collapsing: the outcome of some experiments can be 
known a priori    

  from the analysis of the topology of the model only — static fault collapsing 
  also by considering the workload [e.g., a fault injected on a VHDL signal that is 
written before it is read can be omitted] — dynamic fault collapsing 

  Mixed-mode simulation: fault-free portions of the system 
are simulated at logic level, and 

  either, part of the system affected by faults or errors is simulated  
at device level — static mixed mode simulation 

  or part of the system that faults or errors can affect is dynamically 
switched between device and logic levels during the simulation  
— dynamic mixed mode simulation 



©  LAAS-CNRS — 2012 35 

FI in Simulated Systems at System Level  
Challenges (cont.) 

3) Difficulty of quantifying the impact of the workload (i.e., system’s 
software) on dependability 

  Workload (software) should be represented in the model of the 
system and incorporated into the overall dependability study 

  This representation can be algorithmic/analytical, where the effect of 
the workload on system dependability is captured, or can be actual 
user programs that are executed 

4)  Time required to execute the simulation 
  Hybrid and/or hierarchical simulation methods should be developed 
that: 
   a)  decompose a complex model into simpler submodels 
   b)  analyze each submodel individually 
   c)  combine the obtained results to obtain an overall solution 
  The simulation is hybrid when step a) is a simulation model,  
but step c) is an analytical model 

  The simulation is hierarchical when steps a) and c) are simulation 
models 



©  LAAS-CNRS — 2012 36 

VHDL-based Fault Injection 

  Inherent Hierarchical Abstraction Capabilities 

  Widespread Use in Digital Design  

  Suitable for Developing High-level Models  
of Computer Systems 

  Unique Syntactical Framework for Structural  
& Behavioral Descriptions 

  Link with Other Design Environments:  
  System-level [e.g., Statemate™] 
  Analog and Mixed-Signal (AMS) 
  Hardware synthesis tools 



©  LAAS-CNRS — 2012� 37 

Fault Injection into VHDL Models 
  Language syntax supports mixed-mode simulation 

  Use of Built-in Commands of the Simulator 
  Signal manipulation        forcing a value on a signal  

  Variable manipulation       alter value of a variable  
in a VHDL process 

 

  Modification of the VHDL Code 
  Incorporation of a saboteur      alter value and/or timing  
characteristics of one (or several) signal(s)  

  Replace a VHDL component by a mutant      alter behavior  
of a VHDL component  

 

   Supporting Environment: MEFISTO-L  
 (Multi-level Error/Fault Injection Simulation TOol -  
 developed at LAAS) 

Fault 
activation�



©  LAAS-CNRS — 2012 38 

Behavioral vs. Structural Simulation 
A VHDL-based Case Study [Jenn et al. 1994 - FTCS-24] 
1) Improve Accuracy of High-level

 Descriptions wrt FI Issues

          Implement Multilevel Simulation   

          Compare the Impact of: 
a) the abstraction levels of the

  (description + fault) models,
b) the activity,
                        on:

- the error classes observed
- the distribution / error classes
- the latency

2) Exploit/Evaluate the FI 
 Techniques Supported by 
 MEFISTO

Structural Description

Behavioral Description

Error
Classes

VHDL Model

Fault

Fault

E

E'

M

VHDL Model M'

F

F' v



©  LAAS-CNRS — 2012 39 

Characterization of the Experiments 

Buses: Internal buses
Xfer: Buffer command
Latch: Latch command
Select: MX command
Func: ALU command
Misc: Other

≈ 80 s ≈ 25 s

Structural

Random Stuck-at on Signals
Duration < Φ1

Behavioral

Random Bit Flips of Variables

Model

Faults

Fault Classes

Activations

Simulation Time

Sorting programs: Bubblesort & Heapsort

PC: Program counter
CR: Control  register (flags)
IR: Instruction register
AR: Address register
DR: Data register
UR: User register

*

•  Experiments carried out in mid-90s�



©  LAAS-CNRS — 2012� 40 

Predicates for the Error Classes 

instruction (i)� instruction (i+1)� instruction ≥(i+2)�

Fetch� R� W� R� W� R� W�Fetch� Fetch�

Address bus�

Data bus�

 �Instruction(i)� is the instruction being executed when the fault was injected�

                                 Predicates�

 DE�=� error on any signal during the execution of instruction(i)�

 DF� =� address bus error in the fetch phase of instruction(i+1)�

 ID� =� address bus error in the read or write phase of instruction(≥i+1), �
or data bus error in the write phase of instruction(≥i+1)�

 IF� =� address bus error in the fetch phase of instruction(≥i+2)�

Error Class�

Direct Execution�

 Direct Flow� �

Indirect Data�

Indirect Flow�



©  LAAS-CNRS — 2012 41 

Analysis of Latency for Indirect Errors 14

R/W

Data Bus

User Register File

Address Bus

Reg. 0

Reg. #

R/W

Data Bus

User Register File

Address Bus

Reg. 0

R/W

Data Bus

User Register File

Address Bus

Reg. 0

R/W

Data Bus

User Register File

Address Bus

Reg. #



©  LAAS-CNRS — 2012 42 

Fault Injection on a Real System/Prototype 

  Physical Fault Injection (ΦFI) 
(Hardware-Implemented)  

  Injection with contact (e.g., pin-level) 
  Injection without contact (heavy-ion radiation, EMI, laser,…) 

  Software-Implemented Fault Injection (SWIFI)  
  Compile Time (e.g., mutation of source code)  
  Run Time (e.g., bit-flip on code or data words in memory) 



©  LAAS-CNRS — 2012 43 

Pin-level Fault Injection 

  MESSALINE (LAAS-CNRS, France) 

x

x

Forcing Insertion

Equipotential Line

Active probes: Fault is applied via probes 
 attached to pins, altering the voltage/current 

Socket insertion: A socket is inserted 
 between the target chip and its circuit board  
 



©  LAAS-CNRS — 2012 44 

Example: Pin-level FI in MESSALINE 

•  timing parameters  (delay, width, period,  …) 
programmable

• synchronization  of the injection on a signal 
from the target system

• monitoring of the activation  of the  injected 
fault

• multiplicity:  up to 32  injection points

l Fault models l Other characteristics 
Forcing Insertion

Stuck-at-0 ..............................
Stuck-at-1 ..............................
Stuck-at-External Value..........
Logical Bridging (previous pin)
Logical Bridging (next pin) .....
Physical Bridging ...................
Intermediate Voltage Level ....
Inversion (effective error) .......
Open ......................................

width

delay
Start of 
Exp.

period

l Injection techniques 

•   Forcing: Fault  directly        applied with multipin grips on IC(s) pin(s) and equipotential line(s) 
•    Insertion:     Faulted IC(s)    removed          from the target system and inserted on a specific box  

where solid state switches ensure its(their) proper isolation 



©  LAAS-CNRS — 2012 45 

Heavy-Ion Radiation 



©  LAAS-CNRS — 2012� 46 

Electromagnetic Interferences (EMI) 

Burst  
Generator�

Target IC�

EMI Probe�

1�

2�

Plates�



©  LAAS-CNRS — 2012 47 

Laser Beam Fault Injection 

R. Velazco, P. Fouillat, R. Reis (Eds.)
Radiation Effects on Embedded Systems
Springer, 2007, 265p



©  LAAS-CNRS — 2012� 48 

Source Code Mutation  
[SESAME] 

  Mutation = elementary fault (constant, operateur, symbol) 

  Compilation eliminates non valid  mutants 

  Derivation/assessment of test sequences:  
A good  test sequence T  for a program P should be able  
to kill all mutants in P 

  Mutation Score (P,T) = 
# mutants of P revealed by T 

# mutants of P 

Y. Crouzet, H. Waeselynck, B. Lussier and D. Powell 
The SESAME Experience: From Assembly Languages to Declarative Models  
Proc. 2nd Workshop on Mutation Analysis (Mutation2006), (Raleigh, NC, USA), 2006.�



©  LAAS-CNRS — 2012 49 

Run Time SWIFI 

  Simulation of the consequences of physical HW faults  
(and SW faults, as well) : 

  by corrupting software execution 

  by mutating executable code or data 

  Fault model: bit-flip [transient] in memory cells, registers,… 

  Suited for the validation of SW-implemented FTMs 

  Cost-effective and pragmatic approach 

  Representativity of injected faults? 



©  LAAS-CNRS — 2012� 50 

Principle of SWIFI Techniques 
  Xception  
(U. Coimbra, Port.) 

  Structure 
Target  

Application�

Fault Setup�
(lib)�

Application  
output file�

User Space

Fault  
parameters�

Log file�

Fault Injection�
�

Exception Handler�

Kernel

Xception system call�

Target System�Host Computer�

Experiment  
Manager�

Experiment  
Results�

Fault  
Archive�

Corrupt SRR0 (0x1000@Mask = 0x2340)�
Set Trace Mode�
Return from exception �

:�
Inst. A�0x1000�
Inst. B�0x1004�
Inst. C�0x1008�

:�
Inst. P�0x2340�
Inst. Q�0x2344�

:�

Reset Trace Mode�
If Inst P is an Absolute Branch to Address Y  

� SRR0 = Y�
If Inst P is a Relative Branch with Offset = X �

�SRR0 = 0x1000 + X�
Otherwise (Inst P is not a branch) �

�SRR0 = 0x1004�
Return from exception �

  Example: 
 (transient fault  
on address bus  
during inst. fetch 



©  LAAS-CNRS — 2012 51 

On FI in Networks/Distributed Systems  
  To inject realistic faults, one must have the ability to inject 
faults based on the state of the system 

  This knowledge about state can come from: 
  The local portion of the application 
  Information transmitted between portions of the application on different 
hosts (and thus becoming local information) 

  Explicit information passed between nodes of the fault injector itself,  
to obtain system state information 

  The two main problems: 
  The injection of the fault in the “right” state 
  The verification that the fault was correctly injected 

  Due to added complexity of injecting faults in networks/
distributed systems, fewer tools have been developed than 
for stand-alone systems 
 Fiat, EFA, DOCTOR, DeFINE, NFTAPE, Orchestra, Loki, CoFFEE,…  



©  LAAS-CNRS — 2012 52 

Assessment and Comparison  
of Fault Injection Techniques 

  Impact of the faults -> errors provoked and propagated 
  Representativity — FI Technique vs. Real Faults 

  Software Faults 
  Run Time SWIFI 
  Compile Time SWIFI (Mutation) 

  Physical Faults (SEUs) 
  Run Time SWIFI 

  Equivalence —  FI Techniques�
  ΦFI and Compile Time SWIFI 
  Scan Chain-Implemented Fault Injection vs. FI in Simulation 



©  LAAS-CNRS — 2012 53 

Mutation vs. Real Software Faults 

7%
8%

85%

  Impact of the Mutation Experiments  
(wrt Real Faults) 

2272 

Not found in error set  
created by real faults  

  Critical software from civil nuclear field - 12 programming faults 

[Daran & Thévenod-Fosse 1996 — ISSTA 96] 

10%

30%60%

5%

13%

82%

ImmediatePropagatedOther errorsCommon errors

  Sets of Errors Provoked => 395 distinct errors 

140 

<—            Mutation Data Base         —>  
2272 rec => 348 Distinct Errors 

208 47 
<—    Real Fault Data Base    —>  
1450 rec => 255 Distinct Errors 



©  LAAS-CNRS — 2012 54 

Run Time SWIFI vs. Software Faults 

  SW Fault Classification (ODC) 
  Assignment 
  Checking 
  Interface 
  Timing 
  Algorithm 
  Function 

Can be (easily) emulated by SWIFI 

-> Main open issues are related  
   to fault-trigerring conditions? 



©  LAAS-CNRS — 2012� 55 

SWIFI Bit-flips vs. SEUs 

  Computerized system (80C51 µcontroller) 
  Activity: 6x6 matrix multiplication  

3%�

46%�
  51%�

Sequence loss�Erroneous result�Tolerated�

SWIFI Bit-flips 

1.5%�

44%�
  54.5%�

SEUs Radiation 

12245� ≈�

[Velazco et al. 2000 — IEEE ToNS Dec. 2000] 



©  LAAS-CNRS — 2012 56 

Scan Chain-Implemented Fault Injection  
vs. Simulation 

  32-bit Processor (Saab Ericsson Space) 
  Control program 

Exceptions
16%

Control Flow 3%

Other 1%
Failure 4%

Overwritten
61% Latent

15%

Exceptions
23%

Control Flow 1%

Other 0%
Failure 6%

Overwritten

42%

Latent
28%

SCIFI Simulation (VHDL)  

[Folkesson et al. 1998 — FTCS-28] 

33405 7990



©  LAAS-CNRS — 2012 57 

FI at OS API vs. Internal Function Mutation 
[Jarboui et al. 2002 — PRDC-2002] 

  Target:  
  Linux OS 
  Scheduling component  

Invalid API 
parameter 

Bit-flipped 
API parameter 

Bit-flipped 
internal function 

parameter 

507 1890 552



©  LAAS-CNRS — 2012 58 

About the Faultload 

R. Moraes, R. Barbosa, J. Durães, N. Mendes, E. Martins, H. Madeira 
Injection of faults at component interfaces and inside the component code: are they equivalent?  
EDCC-6, Coimbra, Portugal, pp. 53-64 

ESA Command and  
Data Management System  

DHS PRPL

RETMS Linux 

Appli. 

Commands 

Telemetry 

Ground Control 

RS 232 

… 
Faults in code    

(Generic-SWFIT)    

Faults in API calls      
(Xception)      

Faults in Target Code 

Correct 
Wrong 
Crash 
Hang 

Interface Faults 

Outcomes 
Payload 

Application 



©  LAAS-CNRS — 2012 59 

Managing the size of the F set  
  HWIFI: Analysis of the 
connection list (MESSALINE) 

  SWIFI: Analysis of the SW code 
(GOOFI) 

R1 + 16 —> R2 
R1 + 12 —> R1 

17 —> R3 
R2 + R3 —> R4 
R1 + R2 —> R3 
R3 + R4 —> R2  

Valid points  
for FI 
in R2

Other applications of fault collapsing    
 - Assembly code [Benso et al 98]  
 - VHDL models [Berrojo et al 02] 

Path- & stress-based FI [Tsai et al 99]  

—> Formal techniques (e.g., symbolic execution?) 

  Increase of 1 order of magnitude  
   in the effectiveness  of faults 

  Reduction of the F set:  
   2 orders (CPU reg.); 4-5 (data mem.), 
   still with similar estimation of coverage�

R. Barbosa, J. Vinter, P. Folkesson, J. Karlsson 
Assembly-Level Pre-injection Analysis for Improving Fault Injection Efficiency 
EDCC-5, Budapest, Hungary, 2005 



©  LAAS-CNRS — 2012 60 

About Fault Collapsing  
(Injection on Data) 

A. Benso, M. Rebaudengo, I. Impagliazzo*, P. Marmo*
Fault-List Collapsing for Fault Injection Experiments
Proc. Annual Reliability & Maintainability Symp. (RAMS'98), (Annaheim, CA, USA), pp.383-388, 1998.
* Ansaldo Trasporti

Faults injected here have no effects

Faults injected here on the same bit
are equivalent

w: Write — r : Read



©  LAAS-CNRS — 2012 61 

HW-Fault Injection and Simulation 

  FPGA-based FI technique 
[De Andrés et al. DSN2006] 
  

Execution platform 

 
SW under test 

Hooks Hooks 

Test control/observation 

Global simulation 
  

SW under test 

Test control/observation 

Hooks Hooks 

  Virtual execution platform (incl. 
proc.) — ATLAS, F RNTL prog. 

  Limitation of capabilities of SWIFI techniques wrt HW-level 
  Increase of dependability concerns at HW level 

Field Programmable Gate Array 

MB: Memory Block 

CB: Configurable Block 

F = stuck-at, open, short, bit-flip, delay, etc. 



©  LAAS-CNRS — 2012� 62 

Physical Fault Injection 

Method

�Alteration of 
logical levels � 
on IC pins ��

�Alteration of 
power supply 
levels�

�Heavy-ion 
radiation�

�Cut of 
metallizations  
by laser beam�

Controllability

• Distribution ext. IC�

• Temporal (theor.)�

•  Internal access  
to IC (implicit)� ��

•  Internal access  
to IC (explicit)�

•  Internal location 
within IC (explicit)�

Reproducibility

� 
Theoretical�

�Risk of  
degradation�

 �
�

     Destructive�



©  LAAS-CNRS — 2012� 63 

Main Features of the FI Approaches 

Simulation-based�

•  Arbitrary Controllability 
& Observability�

• �Early Application in 
Validation Process�

• �Generic Approach �

�
�

Software-implem.�

•  Ease of Implementation�

•  Validation of Software 
Implemented FT 
Mechanisms�

•  Injection of Specific 
Errrors�

Physical Injection�

•  Injection of Real Faults�

•  Prototype Close to Final 
System�

• �≈ Generic Approach�

• �Global System Level 
Validation  (HW  & SW 
FTMs and Applicative 
SW)�

•  Synchronization of Faults with System State�
�

•  Reproducibility�



©  LAAS-CNRS — 2012 64 

Multicriteria Comparison of FI Techniques 

Accuracy (wrt to real [HW] faults)�

Overall Cost

Time

Simulation (transistor level)�

Simulation logic level) �

Simulation (V)HDL�

SWI FI

Simulation Tor/gate  
(+ HW accel. engine)�

Pin-level

Internal Injection (HIR)�

HW adaptation (a posteriori)�

HW modification (e.g., BIST)�



©  LAAS-CNRS — 2012 65 

Experimental Assessment of Dependability 

  Dependability Evaluation 

  Fault Injection Techniques 

  Examples of Experimental Results 



©  LAAS-CNRS — 2012� 66 

FI Experiments on MARS: Dual Objectives 
  Extensive Assessment the "Building Block" of the 
MAintainable Real-time System (MARS) FT Architecture:  
the Fail-Silent Node 

  Compare the 4 Fault Injection Techniques Considered 
(Heavy-Ion radiations, Pin-Forcing, EMI and CT-SWIFI) 

Application Unit�
Application  

Unit�
(68070 + MMU)�

F�
I 
F 
O�

F�
I 
F 
O�

Application Unit�
Communication  

Unit�
(68070 + MMU)�

FTU�
Node 0�

Node 1�

Shadow 
node�

Redundant 
Real-Time Bus�

HI� EI�

PF�

SI�

J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, G. H. Leber 
Comparison of Physical and Software-Implemented Fault Injection Techniques 
IEEE TC, 52 (9), pp.1115-1133, September 2003 



©  LAAS-CNRS — 2012� 67 

The Four FI Techniques  

 
 
 
 
 
 
 

Equipotential line�

Tested  
IC�

Stuck-at Fault�

Burst  
Generator�

Target IC�

EMI Probe�

1�

2�

Plates�

  Heavy-Ion Radiation (HIR) 
+  Reachability (Internal IC faults) 

�

  Pin-level Injection by Forcing (PIF) 
+  Controllability  
   (distribution among ICs, timing) 

  Electro-Magnetic Interference (EMI) 
+  Flexibility (adaption to several systems)�

Data�

Code�

M
e
m
o
r
y�

SWC�

  Software-Implemented Fault Injection  
(Compile Time)  
+  Ease of application�

SWD�

SWIFI�



©  LAAS-CNRS — 2012� 68 

The Distributed Testbed 

Error data  
COMM. unit�

Injectors�

AL� 7�
A�

RS232�

C�
RS232�

Target  
IC�

Power �

A�
RS232�

Data Generator� Golden Node� N-U-T� Camparison Node�

Control�Injection �

(HIR, PIF, EMI SWIFI) 

Status�

Error data  
APPL. unit�

AL� 6�

MARS Node�

Gateway �

Observe/Statcalc�Application 
Loading�

Local Area Network�

APPL.�
COMM�

Faults�

Output  
Buffer �

≠ ?�

Heavy Ions  (Chalmers UT)�
Pin Forcing (LAAS-CNRS)�
EM Interference: (TU Vienna)�
SWIFI code & data (TUVienna)�

Injectors�

Control�Injection �

UNIX Workstation�

Dual CPU�
Appl. & Comm.�



©  LAAS-CNRS — 2012 69 

The Error Detection Mechanisms (EDMs) 
  Level 1 — Hardware  

  CPU: Bus Error, Address Error, Illegal Opcode, Privilege Violation,  
      Zero Divide, etc. 
  NMI: W/D Timer, Power, Parity, FIFO Mngmt, Memory Access,  
       NMI from other Unit, etc. 

 
  Level 2 — Software 

  Operating System (OS): Processing time overflow, various assertions 
in the OS, etc. 
  Compiler Generated Run-Time Assertions (CGRTA): Value range 
overflow, etc. 

 
  Level 3 — Application 

  Message Checksum 
  Double Execution (Checksum Comparison) 



©  LAAS-CNRS — 2012� 70 

Error Distributions 
[All Error Detection Mechanisms Enabled] 

0%� 10%� 20%� 30%� 40%� 50%� 60%� 70%� 80%� 90%� 100%�

HIR�

PIF �

EMI�

SWC�

SWD�

Hardware� Software� Application� Other Unit� No Error  
Information�

Fail Silence  
Violation�Error Detection Mechanims�



©  LAAS-CNRS — 2012� 71 

Relative Contribution of HW EDMs 
(All EDMs Enabled) 

66%�

21%�

13%�

HIR
71% 1%�

PF 74%�

25%�

EMI
35%

7%�

16%�

77%�

PIF
84% 48%�52%�

SWC
71%

100%�

SWD
5%

CPU�
Exceptions�

�
Non Supported  
Exceptions�

Non-Maskable  
Interrupts�
NMI�



©  LAAS-CNRS — 2012� 72 

Detailed Contribution of HW EDMS 
(All EDMs Enabled) 

100%�

Predefined  
CPU Exceptions  
�

Non Supported 
Exceptions  
�

HIR�PIF�EMI�SWC�SWD�

0%�

20%�

40%�

60%�

80%�

NMI�

128�

255� 0�
20�

30�

50�

200�

10�

�

CPU  
EXCEPTIONS�

�

    PIF�

     HIR�
          EMI�

31 



©  LAAS-CNRS — 2012 73 

Distribution of Most Frequent Exceptions 
(Excluding [Exc. # 31: NMI]) 

Illegal Opcode

Bus Error Address Error

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 9 11 24 34 37 38 39 40 58 60 62 255

Pin-Forcing
(97%)

Heavy-Ion 
(98%)

EMI
(100%)

Reset Traps

* *



©  LAAS-CNRS — 2012� 74 

Examples of Experimental Results - 1 

Station�

NAC : Network Attachment Controller
AMp : Atomic Multicast protocol

Physical Injection�
(MESSALINE)�

AMp/MAC� D  Predicate: 
Self extraction 

of the injected station 

T  Predicate: 
Protocol properties OK 

and error confined 

Target System (Delta-4)�

NAC/AMp

Host HostHost Host

1) “Standard”  
   [limited self-checking]�

2) Duplex Arch. �
  [enhanced self-checking]�

NAC/AMp NAC/AMpNAC/AMp

Several releases  
ofAMp�



©  LAAS-CNRS — 2012 75 

Examples of Experimental Results - 2 

Errors tolerated, 
but not detected�

Errors detected,  
but not tolerated�

Mean Latency and dormancy�

13.5%

1%

Non significant�
experiments�

94%F D T
85% 99%

87 ms 1,8 s

Failure

6% 0.5%

E

!?

0%�

20%�

40%�

60%�

80%�

10ms�100ms� 1s� 10s� 100s�

NAC
"duplex"

100%�
D Pred. T Pred.

NAC Std

Std� Duplex�

D  Predicate: 
Self extraction 

of the injected station 

T  Predicate: 
Protocol properties OK 

and error confined 
!



©  LAAS-CNRS — 2012� 76 

Main Interactions between Analytical  
and Experimental Evaluation  

Processing  
by Stochastic Processes �

Fault Injection�
Testing�

Target System�

3

5

7

4

6

1 

Construction �
of Empirical & Physical �

Models�

Estimation of FTMs�
Coverage Parameters�

Evaluation of  
Dependability Measures�

Calibration & Validation�

2
8Construction of 

Axiomatic Models�



©  LAAS-CNRS — 2012 77 

Link between Exp. & Anal. Eval.: An Example 

NAC NAC NAC NAC

spare

Token ring

Host Host Host Host

Architecture

—4  C T,1  � λ�N

1 2 3 

4 

μ� μ�

 2  λ�

4 λ     +�H 4 CT  λ  �N 3 λ     +�H   3 CT λ  �N

4 ( C
—

T,2 +  C
—

T,3 ) λ   �N
N3  C

—
T  λ� � N

Model

MTFF network
MTFF station

10

10

10

λ/μ�

+1

+2

+3

10-4 10-3 10-2

NAC Std - AMp V2

NAC Std - AMp V1

NAC Std - AMp V2.5

NAC Duplex - AMp V2.5

Coverage Factors

— — —

NAC Std - AMp V 1

NAC Std - AMp V 2

NAC Std -AMp V 2.3

NAC Duplex - AMp V 2.5

CT CT,1 CT,2 CT,3

79,08% 2,32% 11,77% 6,83%

85,02% 8,73% 2,80% 3,45%

90,32% 7,79% 1,05% 0,84%

99,55% 0,32% 0,00% 0,12%

Target System



©  JA — LAAS-CNRS — 2012� 1 

Hardware- and Software-Fault 
Tolerance  

Design and Assessment of Dependable Computer Systems 
 
 
 

Jean Arlat  
[jean.arlat@laas.fr]

[http://homepages.laas.fr/arlat]

Annecy, May 28th, 2012�

The 17th IEEE European Test Symposium
May 28th – June 1st, 2012 —  Annecy, France

Test Spring School  
May 26th-28th, 2012� 3/3�



©  JA — LAAS-CNRS — 2012 2 

Agenda 

  Introduction: Motivation and Outline 

  Part 1: Basic Concepts and Terminology 

  Part 2: Fault-Tolerant Computer Architectures 

  Part 3: Experimental Assessment of Dependability 

  Part 4: Dependability Benchmarking 

  Conclusion: Wrap up, Emerging Challenges and Future Trends 

  To Probe Further… 



©  JA — LAAS-CNRS — 2012 3 

About Benchmarks 
  Benchmark = A measure that characterizes a property of a system, 
along with the specification of the procedure for obtaining the 
benchmark measure 

  The main issues in judging the effectiveness of a benchmark are: 
  The representativeness of the benchmark measure as an indicator  
of the property (dependability in our case here) of the system 

  The ease with which the benchmark can be applied  
and ported to many different systems 

  Examples of performance benchmarks include: 
  Simple performance benchmark: Evaluate the raw speed of program execution 
(execution time of a series of instructions divided by the number of instructions) 

  Kernel benchmark: Use small, key pieces of code from real programs  
to estimate overall program performance 

  Synthetic benchmark: Attempt to match the average frequency of operations  
and operands over a chosen, large set of programs 

  Integrated benchmarks: Consist of a series of multiple individual benchmarks,  
combined in some way to provide an overall measure 

  While prevalent for evaluating performance, the use of benchmarks 
for dependability assessment is much less widespread, and few 
attempts to develop such benchmarks exist 



©  JA — LAAS-CNRS — 2012 4 

“Benchmark-Specific” Properties 

  Portability: Applicability to various Target Systems  

  Reproducibility: Ability for another party to run the 
benchmark and obtain statistically equivalent results 

  Usability: Ease of installation, running and interpretation  

  Fairness: Comparisons made should rely on equitable 
assessments 

  Scalability: Applicability to evolving Target Systems  
e.g., configuration changes, etc. 
 

—> Agreement on procedures, and disclosure & publication policies 



©  JA — LAAS-CNRS — 2012 5 

Motivation for Dependability Benchmarks 
  Evaluating the effectiveness of FT Mechanisms in a statistically 
sound way is a very difficult task (e.g., see previous section) 

  Benchmarks are meant at obtaining simple measures for such an 
effectiveness — and more generally — to characterize the behavior 
in presence of faults of system and/or part of a system under 
benchmark, including the list of experienced failure modes 

  Benchmark measures are typically obtained by: 
  Associating numeric (or qualitative) scores to proper and improper responses  
to benchmark tests and recording the time to complete tests 

  Candidate dependability benchmarks related to the assessment of FTMs include: 
  Observing the system without injecting faults (to observe the performance 

overhead of the fault tolerance mechanisms) 
  Injecting several fault sets in the same part of the system, but under different 

activity sets (to observe the effect of system activity on fault tolerance) 
  Injecting several sets of faults in different parts of the system (to observe the 

relative fault tolerance of different parts of a system). 
  Often, an overall benchmark score is obtained by combining the scores obtained 
in different tests (e.g., average of the scores) 



©  JA — LAAS-CNRS — 2012� 6 

Views about Dependability Benchmarking 

Dependability 
Benchmarking ≈�

Agreement/Acceptance 
Usefulness 
Fairness 
Usability 

Portability 
etc. 

Dependability 
Assessment 

Performance  
Benchmarking 

Desired Properties 

Dependability 
Assessment 

Performance  
Benchmarking 

Dependability 
Benchmarking ≈ 

 
+

Naive View … :-) 

More Realistic View: 



©  JA — LAAS-CNRS — 2012 7 

FI Campaign vs. Dependability Benchmark 

  1 Target System  
  In-Deep Knowledge OK 
  FTMs testing 
  Fault and Activity sets 
  Sophisticated faults 
  Measures = conditional 
dependability assessment 

  One-of-a-kind process:  
“heavy duty” still OK 

  Developer’s view 
  Results published, experiment 
context often proprietary   

  > 1 Target Systems [Components] 
  Limited Knowledge only 
  Global system behavior  
  Fault- and Work-load 
  Reference (interface) faults 
  Measures = Dependability assess. 
—> Fault occurrence process 

  Recurring process:  
“user friendly” required 

  End User/Integrator’s view 
  Results and procédure openly 
disclosed 

Dependability Benchmarking FTS Assessment 

Common Properties 
Non Intrusiveness: No influence on temporal behavior, nor target system alteration  

Representativeness: Fault and Activity/Work set/loads 
Repeatability: Derivation of statistically equivalent results  



©  JA — LAAS-CNRS — 2012 8 

Pionneering Work and Evolution 
  Fuzz [Miller 1995] 
  CrashMe [Carrette 1996] 
  Robustness Benchmarks  
[Siewiorek et al. 1993 - FTCS-23] [Mukherjee et al. 1997 - IEEE TSE] 

  Fault Tolerance Benchmark [Tsai et al. 1996 - FTCS-26] 
  Comparing the Robustness of OSs [Koopman et al.1999 - FTCS-29] 

  Dependability Assessment of Microkernel-based Systems 
[Fabre et al. 1999 - DCCA-7] [Arlat et al. 2002 — ToC] 

  Dependability Analysis of CORBA Middleware  
[Marsden et al. 2002 - SRDS]  

  -> The IST DBench Project [http://www.laas.fr/dbench] 



©  JA — LAAS-CNRS — 2012 9 

About Robustness 
  IEEE Std. Glossary: 

“The degree to which a system or component can function 
correctly in the presence of invalid inputs or stressful 
environmental conditions” 

 

  Avizienis et al. 2004:  
 “Dependability with respect to external faults.” 
Thus characterizes system reaction to a specific class  
of faults. 

 Can be interpreted as system ability to: 
  Tolerate external faults 
  Handling exceptions 
  Tolerate attacks 
  … 



©  JA — LAAS-CNRS — 2012 10 

Robustness Benchmark 
  Robustness benchmark: Measure target ability to identify and handle 
errors in a consistent and predictable way 

  Proposal: Define several primitives robustness benchmarks and combine 
the results from these benchmarks to obtain an overall measure 

  The goals in defining the primitive benchmarks are to: 
  Be able to generate an explicit set of inputs that exercise a specified FTM (to permit 

classification of responses as “proper” or “improper”) 
  Be able to specify, when a fault from a particular primitive benchmark is injected, its 

aggregate effect on different areas of the system  
(OS, system calls, standard libraries, application itself) 

  Overall robustness measure: Combine the observations obtained from the 
individual primitive benchmarks using a two-dimensional table:  

  Rows correspond to different primitive benchmarks 
  Columns represent different areas of the target  

  Each entry in the table is the “product” of the: 
  Fraction of the corresponding system area that the primitive benchmark covers 
  Fraction of “proper responses” in the area when the primitive benchmark is applied 



©  JA — LAAS-CNRS — 2012 11 

About Interfaces (SW Executive) 

OS Kernel 
(Benchmark 

Target) 
 

AP1 APn AP2 

Application Processes 

Hardware 

DPm 

DP2 

DP1 
Driver  

Programs 

API 
Bit-flipping 

Parameter corruption 

Bit-flipping 
HRI, Forcing, 

etc. 

Bit-flipping 
Mutation 

Bit-flipping 
Mutation 

HWI 

D 
P 
I 

Bit-flipping 
Parameter corruption 

Bit-flipping 



©  JA — LAAS-CNRS — 2012 12 

Fault Tolerance Benchmark 

  The proposed fault tolerance benchmark uses a two-phase 
procedure: 
1) Determine whether the system tolerates the faults that it is intended to 

tolerate, and evaluate the effect these faults have on the fault tolerance 
mechanisms 

2) Evaluate the reaction of the system to faults that it is not designed to 
handle (an assessment of the degree of fault tolerance beyond what is 
expected) 

  For phase 1 tests, three types of measures are obtained: 
  Detection ratio: the ratio of the number of errors detected to the number 
of faults/errors injected 

  Performance degradation due to faults: two times are measured: 
  The time to execute the benchmark with faults. 
  The time to execute the benchmark without faults. 

  Number of catastrophic incidents 



©  JA — LAAS-CNRS — 2012 13 

Comparison of (C)OTS*  

  Goal: determine if (C)OTS software — Commercial or Open 
Source — will be adequate for mission-critical applications 

  Benchmark Targets:  
SW executives (µkernels,OSs, Middleware).  
They serve general-purpose and widely employed services,  
-> They are obvious candidates for off-the-shelf 
component acquisition 

  Develop and assess portable robustness benchmarking 
methodology to assess the dependability of (C)OTS SW 
Executives 

* (C)OTS = (Commercial) Off-The-Shelf



©  JA — LAAS-CNRS — 2012 14 

The   Ballista    Environment 

   Black box software testing tool, aimed at testing the APIs 
of COTS software.  

  Testing Principle 

  Testing Abstraction 
  Most test cases are exceptional 
   Test cases based on best-practice SW testing methodology 

http://www.ece.cmu.edu/~koopman/ballista/�



©  JA — LAAS-CNRS — 2012 15 

The CRASH* Severity Scale  
  Improper “responses” are grouped according to a 5-point 
CRASH scale 

  C - Catastrophic: the failure is not contained within a single task  
(i.e., a call to an OS function has caused other tasks, or even the 
system itself, to crash or hang) 

  R - Restart: the task fails by hanging, requiring the watchdog to kill 
and restart the task to return to normal execution 

  A - Abort: the task experiences an abnormal termination  
(e.g., a segmentation violation, in which the task attempts to access 
memory to which it does not have access permissions) 

  S - Silent: the task returns without flagging an error (e.g., a call to 
open a file with a NULL filename might return a success flag) 

  H - Hindering: the task returns with an incorrect error code (e.g., an 
invalid memory access code returned when the only erroneous input is an 
invalid file handle value) 

Phil Koopman et al. 
The Balista Project  
http://www.ece.cmu.edu/~koopman/ballista/index.html 



©  JA — LAAS-CNRS — 2012 16 

Generation of Test Cases 

  Robustness testing focuses on operating system calls 
  Targeted system calls:  
read(), write(), open(), close(), fstat(), stat(), and select() 

  Each call was tested by applying combinations of valid and 
invalid parameters 

  The parameter values are chosen to exercise: 
  Hypothesized faults (e.g., mismatch between file handle access request  
and file access permissions). 

  Memory protection mechanisms that might be wrongly handled  
(e.g., accessing a memory location beyond allocated memory to trigger a 
page fault and corresponding protection violation). 

  Multiple combinations of parameter values are tested  
for each function, yielding several hundred test cases  
(e.g., read() is tested with all combinations of 7 different file handle 
test cases, 9 different memory buffers, and 8 different lengths,  
for a total of 504 test cases) 



©  JA — LAAS-CNRS — 2012 17 

Approach for Fault Injection 
  The benchmark system consists 
of a watchdog, a starter  
and the chosen benchmarks 

  Starter: 
  Open the communication channels  

to the watchdog 
  Send periodic “I’m alive”  

messages to the watchdog 
  Start a separate benchmark process 

  Benchmark task applies the inputs from the input set (each consisting 
of a selected OS call and a set of parameters passed to that call). 
 ->When a test is completed, the resulting proper or improper behavior  
is communicated to the watchdog 

  Watchog: 
  Keep track of the status of the processes and log all test results to a file. 
  Decide, when a benchmark task failed, whether the task is active or not. 

Watchdog 

Starter 

Benchmarks 

File 



©  JA — LAAS-CNRS — 2012� 18 

Robustness Characterization of (C)OTS OSs 

Normalized failure rate (%)�

AIX�

FreeBSD�

HP-UX B.10.20�

Linux�

LynxOS�

QNX 4.24�

SunOS 5.5�

NetBSD�

Irix 6.2�

Irix 5.3�

HP-UX B.9.05�

OSF-1 3.2�

OSF-1 4.0�

QNX 4.22�

SunOS 4.13�

Abort   �

Silent�

Restart�
Catastrophic

0 �10 �20 �30 �40 �50�

15 «�(C)OTS�» OSs 
[Koopman & DeVale 99 (FTCS-29)]�

Invalid parameters in system calls  
at POSIX Interface 



©  JA — LAAS-CNRS — 2012 19 

Assessment and Design Prototype Tool 

Assessment  
by Fault injection 

Design Aid 

AnaLysis 

Microkernel 

Detection 
Failures  

propagation 
Execution traces 

MAFALDA 

Functional models 
Executables assertions  
Wrappers 
Reflective  
implementation 



©  JA — LAAS-CNRS — 2012 20 

Failure Mode Analysis 

•  Interface robustness 
•  Built-in Error detection 
    mechanisms 

•  Corruption of input parameters 
•  Corruption of kernel memory   
  segments (code & data) 

•  Internal component behavior 
•  Inter-component propagation 

• Evaluation 

• Fault model 

• Injection targets 

• Observation 

Error

Fault

microkernel interface

SYN COM MEM

SYN COM MEM

Fault

propagation

Microkernel components

Application

...

...

Workload

•  Microkernel system calls 
•  Internal kernel components 

• Fault types 
•  Bit-flip 
•  Random 

•  Statistics of failure modes 
•  Trace analysis (a posteriori) 

• Results 



©  JA — LAAS-CNRS — 2012 21 

Detailed Behavior Analysis  
in Presence of Faults 

μkCj�μkCi�

Microkernel

Application / middleware

Internal�
Corruption�

�
Error�

  Signal (detection)

  Error Status
  Exceptions

  Kernel hang

Propagation�

Error�

External �
Corruption 

(Application)��

API�

  Application failure
     (value, scheduling, etc.)

Propagation�

  Application Hang



©  JA — LAAS-CNRS — 2012 22 

Examples of Results 



©  JA — LAAS-CNRS — 2012 23 

Comparison of RT microkernels 

       Bit flips in kernel code segments 



©  JA — LAAS-CNRS — 2012� 24 

Analysis of Wrapping Impact 

87%�

0%�

9%�
2.2%� 0.5%�

0%�

20%�

40%�

60%�

80%�

100%�

Standard� SYN Wrapper� SYN & SCH�
Wrappers�

External errors� Internal errors�

Simulation of SEUs  
In memory (bitflips) 

Simulation of application software  
faults: corruption of API calls 

SYN� COM� MEM�

Microkernel components�

SCH�

3010  
 exp.�

 Non sign.�
28.5%�

DETECTION�
41.1%�

HANG�
21.3%�

FAILURE�
9%�

SYNCHRONIZATION 
μ kernel comp.�

(bit-flips in memory)�

FAILURE �



©  JA — LAAS-CNRS — 2012 25 

A Comprehensive  
Dependability Assessment Frame 

—> Minimal set of data needed from the Target System(s)  
(architecture, configuration, operation, environment, etc.)  
to derive actual dependability attributes? 

Experimental 
Measures 

Readouts 
Processing 

 
Benchmark  

 
Target(s) 

 
 

Experimentation 

Coverage  

Analytical  
Measures 

Model 
Processing 

Model

Modeling Dependability  

IST Project DBench (Dependability Benchmarking) — www.laas.fr/DBench and www.dbench.org 

Activity 
(Workload) 

Faults 
(Faultload) 

Benchmark  
Measures 



©  JA — LAAS-CNRS — 2012 26 

Dependability Benchmarking Dimensions 

DBench
Dependability Benchmarking



©  JA — LAAS-CNRS — 2012 27 

Comprehensive & Coordinated Study 

DBench
Dependability Benchmarking

Bit-flip in 
parameters 

Invalid call 
parameter 

Bit-flip in 
Int. Funct  
Parameters 

Real 
Driver Faults 

-> Software Faults 
    (Kernel-level) 

Educated  
low-level 
mutation 

High-level 
mutation 

-> Software Faults 
    (Application-level) 

Emulation 
Script 

Real Faults 
(field data) 

-> Operator & Database  
    Administrator Faults  

VHDL 
Simulation Analysis -> Hardware Faults 

Propag. from Φ-device level to RTL  



©  JA — LAAS-CNRS — 2012 28 

System Under Benchmark (SUB)  
and Benchmark Target (BT) 

Case of an Operating System

DBench
Dependability Benchmarking



©  JA — LAAS-CNRS — 2012 29 

Procedures and Rules 
  Standardized procedures for translating  the workload and 
faultload defined in the benchmark specification 

  Uniform condition to build the experiment benchmark set up 
and run the dependability benchmark according to the 
specification 

  Rules related to the collection of the experimental results 
  Rules for the production of the final measures from the 
direct experimental results 

  Scaling rules to adapt the same benchmark to systems  
of very different sizes 

  System configuration disclosures 
  Rules to avoid "gaming" to produce optimistic or biased 
results 

DBench
Dependability Benchmarking



©  JA — LAAS-CNRS — 2012 30 

Target Systems Considered 

  On Line Transaction Processing (OLTP)  
  TPC-C style specifications / real system 
  VHDL-based specifications / simulated hardware 

  General purpose operating systems (Linux, Windows 2000) 

  Embedded systems 
  Automotive application  
  Space application 

DBench
Dependability Benchmarking

<- 



©  JA — LAAS-CNRS — 2012 31 

Be
nc

hm
ar

k 
Ta

rg
et

s 
(B

T)
 

Sy
st

em
s 

U
nd

er
 B

en
ch

(a
rk

in
g 

(S
U
B)

 
Be

nc
hm

ar
k 

M
ea

su
re

m
en

t 
Sy

st
em

s 
(B

M
S) 

Information on BT and SUB Benchmarking Configuration

General Purpose Operating
System (GPOS) Kernel:
Linux and Windows 2000

Hardware platform: Pentium III
PC

On-Line Transaction
Processing (OLTP) system:
DBMS:  Oracle, Informix, and
PostgreSQL.
a) Classical OLTP:

- Operating System(s):
Windows 2000, Windows Xp

- Hardware platform: Pentium
IV PCs

b) Web services:
- Apache web server.
- Simulation on virtual

machines
using UMLinux framework

Diesel Engine Control Unit
(DECU)
application program (stand-
alone on SoC and implemented
with a RTOS)
Hardware platform: System-on-
Chip

- MPC 565 microcontroller
- NEXUS tracing and control

abilities
are used for application of
faultload and measurements

*

g y g g y

DBench
Dependability Benchmarking



©  JA — LAAS-CNRS — 2012 32 

OS-DBench — API-level Selective  
Parameter Susbtitution (Windows Family) 

  WL = PostMark 
  SPS => out-of-range data (OORD), 

incorrect data (ID) or  incorrect address (IA)  
  • FL0 = Reference FL  
       • FL1 = OORD + IA only  
               • FL2 = OORD only 

Error Code
Exception
No Obs.

55.5

27

17.5

55.2

24.5

20.3

56.1

23.1

20.8

NT4 XP 2000 

46.8

31.1

22.1

46.8

27.8

25.4

47.3

27.6

25.1

NT4 XP 2000 NT4 NT4 XP 2000 

66.2

28.6

67.1

27.8

67.1

27.8
5.2 5.1 5.1 

K. Kanoun, Y.  Crouzet, A. Kalakech, A.E. Rugina 
Windows and Linux Robustness Benchmarks with respect to Application Erroneous Behavior 
Dependability Benchmarking for Computer Systems (K. Kanoun, L. Spainhower, Eds.), pp. 227-254, 2008

DBench
Dependability Benchmarking



©  JA — LAAS-CNRS — 2012� 33 

Linux Drivers’s Assessment 

AP1� AP2� …� APn�
Workload�

Hardware�

Linux Kernel�
(Benchmark Target)�

API�
D  
P 
I� Other Drivers�

Faulted Driver� Kernel Call�
Code Returned�

Kernel call�
parameter �
corruption�

Ethernet�

System Under Benchmark� Monitoring 
Machine�

• �Workload 
Behavior�

• Exceptions 
Raised�

RoCADE: Robustnes Characterization Against Driver Errors�

ROCADE 



©  JA — LAAS-CNRS — 2012 34 

  Benchmark Target and System Under Benchmark  
  Linux Kernel 2.2.20 et 2.4.18 
  Distribution Debian 3.0 
  Hardware architecture x86 Pentium 

  Target Drivers 
  Network Card drivers  (SMC-ultra, Ne2000) 
  Sound Card driver (Soundblaster)  
  … 

  Workload 
  Several specific workloads dedicated to each of the drivers 
  

Experimental Context:  
Considered Drivers and Workload 

De-installation — Re-installation  
— Series of Requests —  

De-installation — Re-installation 



©  JA — LAAS-CNRS — 2012 35 

Some Results - Network Card Drivers 
(first event) 

SMC-ultra Driver — Linux V2.4 

No Obs. 

Error code 

Exception 

WL Incorrect 

Kernel Hang 

Not activated 

17% 

17% 

34% 

21% 

0% 11% 

SMC-ultra Driver — Linux V2.2 

7% 
22% 

22% 

19% 

9% 

21% 

Error code 

Exception WL Incorrect 

Kernel Hang 

No Obs. 

Not activated 

NE2000 Driver — Linux v2.4 

Error code 

Exception 
WL Incorrect 

Kernel Hang 

No Obs. 

Not activated 

14% 

10% 

31% 

15% 

13% 

17% 



©  JA — LAAS-CNRS — 2012 36 

Ordering & Severity of Outcomes (1/3) 

Detection

Failure

DetectionFailure

Failure

Detection

Observation Window



©  JA — LAAS-CNRS — 2012 37 

Ordering & Severity of Outcomes (2/3) 

Notification WL Failure First Priority to 

EC XC WA WI event? 1st event Notif. Failure 
1 0 0 0 0 N/A N/A N/A N/A 
2 1 0 0 0 EC D D D 
3 0 0 0 1 WI F F F 
4 1 0 0 1 EC D D F 
5 0 1 0 1 WI F D F 
6 0 0 1 1 WI F F F 
7 1 1 0 0 EC D D D 
8 1 0 1 0 EC D D F 

Notification WL Failure First 

EC XC WA WI event? 
1 0 0 0 0 N/A 
2 1 0 0 0 EC 
3 0 0 0 1 WI 
4 1 0 0 1 EC 
5 0 1 0 1 WI 
6 0 0 1 1 WI 
7 1 1 0 0 EC 
8 1 0 1 0 EC 

Notification WL Failure 

EC XC WA WI 
1 0 0 0 0 
2 1 0 0 0 
3 0 0 0 1 
4 1 0 0 1 
5 0 1 0 1 
6 0 0 1 1 
7 1 1 0 0 
8 1 0 1 0 

EC: Error Code 
XC: Exception  

WA: WL Aborted 
WI: WL Incorrect  

4: Detection, then Failure
5: Failure prior to Detection



©  JA — LAAS-CNRS — 2012 38 

Ordering & Severity of Outcomes (3/3) 

Notification WL Failure First Priority to 

EC XC WA WI event? 1st event Notif. Failure 
1 0 0 0 0 N/A N/A N/A N/A 
2 1 0 0 0 EC D D D 
3 0 0 0 1 WI F F F 
4 1 0 0 1 EC D D F 
5 0 1 0 1 WI F D F 
6 0 0 1 1 WI F F F 
7 1 1 0 0 EC D D D 
8 1 0 1 0 EC D D F 

Notification WL Failure First 

EC XC WA WI event? 
1 0 0 0 0 N/A 
2 1 0 0 0 EC 
3 0 0 0 1 WI 
4 1 0 0 1 EC 
5 0 1 0 1 WI 
6 0 0 1 1 WI 
7 1 1 0 0 EC 
8 1 0 1 0 EC 

Notification WL Failure 

EC XC WA WI 
1 0 0 0 0 
2 1 0 0 0 
3 0 0 0 1 
4 1 0 0 1 
5 0 1 0 1 
6 0 0 1 1 
7 1 1 0 0 
8 1 0 1 0 

EC: Error Code 
XC: Exception  

WA: WL Aborted 
WI: WL Incorrect  

End-user Viewpoint

Responsiveness

Safety



©  JA — LAAS-CNRS — 2012� 39 

The WL exhibits a failsafe behavior�

The Kernel is still alive�

The Kernel is able to notify an error �

Measures and Viewpoints 
ID All Outcomes (exc. O12) Description 

R
es

p
o

n
si

ve
n

es
s 

o
f 

 t
h

e 
K

er
n

el
�

S
af

et
y 
 

o
f 

th
e 

W
L
�

RK1 O1-O3 An error is notified by the kernel  
before the WL completes correctly 

RK2 O4-O6, O8-O10,  
O13-O15, O21-O23 

An error is notified by the kernel  
before a failure is observed 

RK3 O16 No error is notified and the WL is aborted 
RK4 O7, O11,O24 No error is notified and the Kernel hangs 
RK5 O20 No error is notified and the WL completes incorrectly 

A
va

ila
b

ili
ty

  
o

f 
th

e 
K

er
n

el
�

SW1 O1-O3 The WL completes correctly and an error is notified  
by the Kernel 

SW2 O6-O7 The WL completes correctly and the Kernel hangs 
SW3 O8-O11, O13-O16 The WL is aborted or the Kernel hangs 
SW4 O13-O16 The WL completes incorrectly and the Kernel hangs 
SW5 O17-O20 The WL completes incorrectly and the Kernel does not hang 

AK1 O1-O3 The WL completes correctly and an error is notified  
by the Kernel 

AK2 O13-O20 The WL is aborted or completes incorrectly 
AK3 O4-O7 The WL hangs or the WL completes correctly 
Ak4 O8-O11, O21-O24 The WL hangs or the WL is aborted or completes incorrectly 



©  JA — LAAS-CNRS — 2012 40 

Impact on the Measures 

  RK (Responsiveness of the Kernel) = ↑ error notification 
  AK (Availability of the Kernel) = ↓ kernel hangs;  
  SW (Safety of the Workload) = ↓ delivery of incorrect service  

Kernel call:  
parameter  
corruption  
at DPI 

D
E
F
I
C
I
E
N
C
I
E
S

ROCADE 

Linux 
1-RK 1-AK 1-SW 

Network card drivers�

A.Albinet, J. Arlat, J.-C. Fabre 
Benchmarking the Impact of Faulty Drivers: Applicationto the Linux Kernel 

in Dependability Benchmarking for Computer Systems (K. Kanoun and L. Spainhower, Eds.), pp.285-310, IEEE CS Press and Wiley, 2008 



©  JA — LAAS-CNRS — 2012 41 

  Faultload 
  Proper set of faults? 

  Successful security breach = combination of attack and vulnerability 

 —> (Potential) Analogy wrt Verification/Testing:  
    Error Propagation = Fault + Activity 

  Hardware-related issues (e.g., side channel attacks) 

  Hardware-induced faults is also a concern (Fault Injection targeting 
cryptographic circuits + Differential Fault Analysis) 

  Built-In-Self-Testing facilities -> Vulnerabilities wrt Security 

What is Different when Considering 
Security Issues? 

  Measures  
  What kind of security measures?  

  Is there an equivalent to the notion of “coverage”? 

  Significance of “false positives” — e.g., Intrusion Detection Systems 



©  JA — LAAS-CNRS — 2012 42 

Agenda 

  Introduction: Motivation and Outline 

  Part 1: Basic Concepts and Terminology 

  Part 2: Fault-Tolerant Computer Architectures 

  Part 3: Experimental Assessment of Dependability 

  Part 4: Dependability Benchmarking 

  Conclusion: Wrap up, Emerging Challenges and Future Trends 

  To Probe Further… 



©  JA — LAAS-CNRS — 2012 43 

On Fault Tolerance 
  Technological advances lead to pervasive, widely open, highly interactive, 
digital systems: cyber-physical systems 

  Increased functionalities and more complex embedded software components, 
and often vulnerable too  

  Moving away from the “zero-fault” hardware layer paradigm: non-perfect 
chips can be shipped by manufacturers and operated by end-users 

 Thus, an increased prevalence of dependability and security matters. 

As a complement to redundancy, diversification is a generic and 
comprehensive concept that is able to cope with various types of faults, 
either accidental or malicious  

  More and more there is a need for “anticipating” wrt uncertainty 
[environment and usage]  

 Evolvability and adaptability are becoming essential! 



©  JA — LAAS-CNRS — 2012 44 

One Step Beyond: 
the Notion of Resilience* 

  Dependability: The ability to deliver service that can 
justifiably be trusted 

  Resilience: The persistence of service delivery that can 
justifiably be trusted, when facing changes 

   —> The persistence of dependability when facing changes 

* J.-C. Laprie 
   From Dependability to Resilience 

   Fast Abstracts Session, IEEE/IFIP DSN, Anchorage, AK, USA, June 2008  

Why is this essential ? 

IST NoE 026764: Resilience for Survivability in IST — http://www.resist-noe.org/ 



©  JA — LAAS-CNRS — 2012 45 

On Fault Injection  
and Dependability Benchmarking 

  Significant conceptual and technological advances 

  Fault Injection-based assesment: recognized as a successful technique  
and is now largely applied in industry 

  Dependablity Benchmarking: rising and promising   

  Re-establish powerful and flexible HW-layer fault injection technologies 
(mandatory to test HW-implemented FTMs)  

  Faultload Representativeness: comprehensive hierarchical fault/error models 
and related tranfer functions 

  Agreed/Shared Benchmarking Frame, Repository & Procedures  
  Fairness —> common standard interfaces  
  Experiments —> Single fault / run vs. sequence of faults / run  

  Security issues (Faultload, Measures)  

  Mobile and Ubiquitous Computing 



©  JA — LAAS-CNRS — 2012 46 

Some Milestones: The Early Years… 
  Late 60s & 70s: FI exp. on major FT computer systems 

  STAR (JPL & UCLA), FTCS (Raytheon),… 

  Late 70s: Code mutation for SW testing 
  Early 80s: Pin-level FI technique  

  MSI FI chips (Spaceborne Inc) 
  Insertion —> Forcing : MESSALINE (LAAS)  

  Late 80s:  
  Heavy-ion radiation (Chalmers U) 
  The FARM FI attributes (LAAS) 
  Compile-time SWIFI : FIAT (CMU) 
  Failure Acceleration concept (IBM) 
  Hierarchical Simulation (UIUC) 

  Early 90s: FI in VHDL models  
  Petri Net-based simulation (U. Virginia) 
  Saboteur-based FI: MEFISTO (Chalmers U+LAAS)  

  Mid 90s: Run-time SWIFI  
  FERRARI (U Texas), Xception (U Coimbra) … 

  H
ardware  +  SW

 



©  JA — LAAS-CNRS — 2012 47 

Some Milestones: The Recent Years… 
  Late 90s: En-route to Dependability/Robustness  
Benchmarking  

  API-based FI: the CRASH scale and Ballista tool (CMU) 
  SW µkernels: MAFALDA (LAAS) 
  IFIP WG. 10.4 SIG DeB 
  BIST-based FI FIMBUL (Chalmers) 

  Early 00s: IST Project DBench 
  SW Executives: OS (DBenchOS-API, RoCADE-DPI), Corba (CoFFEE), … 
  Databases & Web services: OLTP-Bench, G-SWFIT (U Coimbra) 
  Embedded systems: (PU Valencia, Erlangen U., DeBERT Critical SW) 

  Mid 00s: Threats targeting vulnerabilities <-> security  
(UIUC, U Coimbra, U Leeds, U Marseille,…) 

  Late 00s 
  Book on Dependability Benchmarking (IFIP SIG DeB + FP6 DBench) 
  FPGA-based FI : FADES (PU Valencia,…) 
  Human/Operator errors: CMU, ConfErr (EPFL),… 
  Assessment of Intrusion Detection Systems (IBM, LAAS,…)  

H
W

 + SW
 

H
M

: 
A
cc+Int  



©  JA — LAAS-CNRS — 2012 48 

Research on FI developed at LAAS-CNRS 
  Methodology: 

  Conceptual Framework for Experimental Validation Based on FI 
  Distribution of Coverage (asymptotic value + latency) 
  Link Between Experimental and Analytical Evaluations 
  Estimators for Coverage Evaluation 
  Testing of Fault Tolerance Mechanisms 
  Asseswsment of (C)OTS SW Executives  
  Dependability Benchmarking 
  Experimental Assessment of Security  

  FI Techniques and Supporting Tools: 
  1987 - MESSALINE:  Pin-Level Fault Injector 
  1991 - SESAME: Software Mutation Analysis Tool 
  1994+(1998) - MEFISTO-(L): VHDL Fault Injection Environment (ESPRIT- PDCS+DeVa) 
  1999+(2002) - MAFALDA(-RT): SWIFI Tool for Microkernel Assessment  

        by Fault injection Analysis and Design Aid (ESPRIT - DeVa) 
  2001 - CoFFEE : Experimental Assessment of CORBA Middleware 
  2003 - OSDB : Prototype Dependability Benchmark for Oss 
  2004 – RoCADE : OS Robustness Testing wrt Driver Failures 
  2007+(2010) – Autonomous Robot Systems — Simulation-based Mutations 
  201X -  FI into Mobile Systems; DALI: Test of IDS; SOBAS: HW protection  



©  JA — LAAS-CNRS — 2012 49 

Controlled 
Experiments 

FAULTS

μ

λc 

c λ
Modeling  

and 
Simulation 

Target System … Highly evolutive Mobility Configurability  Attacks 

Field Data 
Measurement 

Comprehensive Assessment Framework    

Emerging Features and Challenges  



©  JA — LAAS-CNRS — 2012� 50 

Quantitative Assessment of Security   

Node =  set of privileges 
Arc = vulnerability class 

Path = sequence of vulnerabilities that could  
be exploited by an attacker to defeat  
a security objective 
Arc weight = effort to exploit vulnerability 

Vulnerabilities Modeling privilege graph 

B 

objective 

C 

D 
1 

2 
4 

5 

6 

7 

3 

intruder 

-> Questions? 
  Is such a model valid in the real world? 

  Considered behaviors (no backtracking/exaustive) are two 
extreme ones; what would be a “real” attacker behavior? 

  Weight parameters are assessed arbitrarily (subjective?) A 

Internet 
1- Dictionary attack 
Automated scripts 

4- Intrusion attack 
Humans 

2- Share  
information? 

3- Get  
information? 

ssh + weak 
passwords 

IPs dedicated 
to dictionary attacks 

IPs dedicated 
to intrusion attacks 

 
knowledge base 

of attacks?�

Debian Debian High-interaction 
honeypot 

Firewall 

-> Wanted ! Real Data 
CADHo project: “Collection and analysis of Attack Data based 
on Honeypots (Eurecom, LAAS-CNRS, Renater) 
  Both low- (35 worldwide) and high-interaction honeypots 

Typical behavior 

E. Alata, V. Nicomette, M. Kaâniche, M. Dacier, M. Herrb�
Lessons Learned from the Deployment of a High-interaction Honeypot�
Proc.EDCC-6, (Comibra, Portugal), pp.39-44, 2006�

0.1 

1 

10 

102 

103 

June August Oct. Dec. Feb. April May July 

Date 

METF (no backtracking) 
METF (exhaustive search) 
# paths 

Application (LAAS Network) 

1995 1996 

R. Ortalo, Y. Deswarte, M. Kaâniche�
Experimenting with Quantitative Evaluation Tools  
for Monitoring Operational Security �
IEEE Tr. On Software Engineering, 25 (5), pp.633-650, Sept./Oct. 1999�

A 



©  JA — LAAS-CNRS — 2012 51 

Thanks to… 

   ReSIST: Resilience for Survivability in IST (IST NoE 026764)  
[www.resist-noe.org] 

  SIGDeB: IFIP WG 10.4 on Dependable Computing and Fault Tolerance 
Special Interest Group on Dependability Benchmarking 
[www.dependability.org/wg10.4/SIGDeB] 

  DeBench: Dependability Benchmarking Project (IST-2000-25425) 
[www.laas.fr/Dbench] 

Useful Links 

  Colleagues of the Dependable Computing and Fault Tolerance 
research group at LAAS-CNRS 

  Members of IFIP WG 10.4, of the FP6 DBench project  
and of the “FTCS-DSN” community  



©  JA — LAAS-CNRS — 2012 52 

Agenda 

  Introduction: Motivation and Outline 

  Part 1: Basic Concepts and Terminology 

  Part 2: Fault-Tolerant Computer Architectures 

  Part 3: Experimental Assessment of Dependability 

  Part 4: Dependability Benchmarking 

  Conclusion: Wrap up, Emerging Challenges and Future Trends 

  To Probe Further… 



©  JA — LAAS-CNRS — 2012 53 

Journal and Conference Papers 
  J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins and D. Powell, “Fault Injection for 
Dependability Validation — A Methodology and Some Applications”, IEEE TSE, 16 (2), pp.166-182, February 1990.* 

  J.-C. Laprie, J. Arlat, C. Béounes and K. Kanoun, “Definition and Analysis of Hardware-and-Software Fault-Tolerant 
Architectures”, Computer, 23 (7), pp.39-51, July 1990.* 

  M.-C. Hsueh, T. K. Tsai and R. K. Iyer, “Fault Injection Techniques and Tools”, Computer, 30 (4), pp.75-82, April 1997. 
  J. V. Carreira, D. Costa and J. G. Silva, “Fault Injection Spot-checks Computer System Dependability”, IEEE Spectrum, 36, 
 pp.50-55, August 1999.* 

  P. Koopman and J. DeVale, “Comparing the Robustness of POSIX Operating Systems”, in Proc. FTCS-29, (Madison, WI, USA), 
pp.30-37, 1999.* 

  T. K. Tsai, M.-C. Hsueh, Z. Kalbarczyk and R. K. Iyer, “Stress-Based and Path-Based Fault Injection”, IEEE TC, 48 (11),  
pp.1183-1201, November 1999. 

  P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza Reorda and M. Violante, “Experimentally Evaluating an  
Automatic Approach for Generating Safety-Critical Software with respect to Transient Errors”, IEEE TNS, 47 (6),  
pp.2231-2236, December 2000. 

  J. Arlat, J.-C. Fabre, M. Rodríguez and F. Salles, “Dependability of COTS Microkernel-Based Systems”, IEEE TC, 51 (2),  
pp.138-163, February 2002. 

  J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs and G. H. Leber, “Comparison of Physical and Software-Implemented 
Fault Injection Techniques”, IEEE TC, 52 (9), pp.1115-1133, Sept. 2003.  

  A. Avižienis, J.-C. Laprie, B. Randell and C. Landwehr, “Basic Concepts and Taxonomy of Dependable and Secure Computing”, 
IEEE TDSC, 1 (1), pp.11-33, Jan.-March 2004.* 

  D. P. Siewiorek, R. Chillarege and Z. Kalbarczyk, “Reflection on Industry Trends and Experimental Research in Dependability”, 
IEEE TDSC, 1 (2), pp.109-127, 2004.* 

  A. Albinet, J. Arlat and J.-C. Fabre, “Characterization of the Impact of Faulty Drivers on the Robustness of the Linux 
Kernel”, in Proc. DSN-2004, (Florence, Italy), pp.867-876, 2004. 

  D. de Andrés, J. C. Ruiz, D. Gil and P. Gil, “Fault Emulation for Dependability Evaluation of VLSI Systems”, IEEE TVLSIS,  
16 (4), pp.422-431, April 2008. 

  J. Arlat and R. Moraes, “Collecting, Analyzing and Archiving Results from Fault Injection Experiments”, in Proc. LADC-2011,  
(São José dos Campos, Brazil), 2011. 

  J. Arlat, “Dependable Computing and Assessment of Dependability”, in GI/GMM/ITG Workshop on Reliability and Design, 
(Hamburg, Germany), VDE, 2011. 

* Highly recommended  



©  JA — LAAS-CNRS — 2012 54 

Books and Chapters 
  D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems - Design and Evaluation, 908p., Digital 

Press, Bedford, MA, USA, 1992. 

  J. Arlat, Y. Crouzet, P. David, J.-L. Dega, Y. Deswarte, J.-C. Laprie, D. Powell, C. Rabéjac,  
H. Schindler and J.-F. Soucailles, “Fault Tolerant Computing”, in Encyclopedia of Electrical and 
Electronics Engineering (J. G. Webster, Ed.), 7, pp.285-313, J. Wiley & Sons, New York, USA, 1999. 

  A. Benso and P. Prinetto (Eds.), Fault Injection Techniques and Tools for Embedded Systems Reliability 
Evaluation, Frontiers in Electronic Testing, 23, 245p., Kluwer Academic Publishers, London, UK, 2003. 

  K. Kanoun and L. Spainhower (Eds.), Dependability Benchmarking for Computer Systems, 362p., IEEE CS 
Press and Wiley, 2008. 

  D. Powell, J. Arlat, Y. Deswarte and K. Kanoun, “Tolerance of Design Faults”, in Festschrift Randell  
(C. B. Jones and J. L. Lloyd, Eds.), LNCS 6875, pp.428-452, Springer-Verlag, Berlin Heidelberg, 
2011. 

    




