
1

 Joining Efforts Towards
Dependability & Security

Assessment

Jean Arlat
(jean.arlat@laas.fr)

3rd Information Trust Institute Workshop
on Dependability and Security

Panel 4 — Assessment
University of Illinois at Urbana-Champaign, USA — Tuesday December 5, 2006

2

Assessment

Accidental faults: HW, SW, Operator

Fault/Error models (stuck-at, bit-flip, ODC, etc.)

Probabilistic modeling (simulation, CTMC, SPN, SW reliability growth, etc.)
—> Integration into the main design thread (UML, AADL)

Experimentation (field measurement, fault injection, dependability
benchmarking, etc.)

Malicious faults: Insiders, Outsiders

Threats and vulnerabilities

Evaluation criteria (TCSEC, ITSEC, CC) qualitative assessment
—> quantitative assessment of operation security?

Experimentation (testing scripts, fault injection, honeypots, etc.)

Modeling & Simulation, Controlled Experimentation, Field Measurement

 dependability
benchmarking

—> quantitative assessment of operation security?

honeypots

3

2001-2004 — IST project DBench (LAAS-CNRS, Chalmers U., Critical SW,
U. Coimbra, U. Erlangen, Microsoft, U. Valencia) [www.laas.fr/dbench]

1999->… — IFIP WG 10.4 SIGDEB (CMU, Critical SW, HP, IBM, Intel,
LAAS-CNRS, Sun, U. Coimbra, UIUC, U. Valencia, etc.)
[www.laas.fr/~kanoun/ifip_wg_10_4_sigdeb]

Workload

Faultload

Analytical

measures

Experimental

measures

Benchmark

measures

Model

processing

Readouts

processing

Model

 Prototype

target system

Modeling

Experimentation

Dependability Benchmarking
Agreement: Representativeness, Reproducibility,

Portability, Cost Effectiveness, Scalability
Representativeness

—> Book [K. Kanoun & L. Spainhower Ed., IEEE CS, 2007]

4

From Software Faults to Faultload (1/2)

IBM Orthogonal Defect Classification
A SW fault is characterized by the change in the code that
is necessary to correct it

Fault trigger Conditions that make the fault to become an error

Fault type Type of mistake in the code
Assignment values assigned incorrectly or not assigned
Checking missing or incorrect validation of data, or incorrect loop,

or incorrect conditional statement
Timing/serialization missing or incorrect serialization of shared resources
Algorithm incorrect or missing implementation that can be fixed

without the need of design change
Function incorrect or missing implementation that requires a design change

to be corrected

Typical Data Table

1rewrittenportedmissfunctionreliabilitysoft configsystem test8/30/978/4/9712543

1refixedoutsourcedincorrectalgorithmintegrity
securitycoveragefunction

test7/15/976/5/9712470

2newin-housemisscheckingusabilitysimpleunit test6/15/976/1/9712377

2newin-housemissassigncapabilityconformancedes/rev3/8/973/1/9712345

severityagesourcequalifiertypeimpacttriggeractivityclosed
date

open
dateID

http://www.research.ibm.com/softeng/ODC/ODCEG.HTM#datatable

5

U. Coimbra: Study Failure Reports from 9 OSS Programs:
(text editors, Linux kernel, game, etc.)

6.7 %

37.2 %

8.0 %

25.7 %

22.1 %

ODC distribution
(U. Coimbra)

8.74 %36Function

43.41 %198Algorithm

8.17 %43Interface

17.48 %137Checking

21.98 %118Assignment

ODC distribution
(IBM papers)# of faultsODC Type

From Software Faults to Faultload (2/2)

0Extraneous

15Wrong

21Missing

Func.

6Extraneous

37Wrong

155Missing

Alg.

0Extraneous

32Wrong

11Missing

Interf.

0Extraneous

47Wrong

90Missing

Check.

10Extraneous

64Wrong

44Missing

Assign.

faultsNatureODC types

 Alternative Fault Classification —>
 Faults considered as language constructs that are:

Missing (e.g., missing part of a logical expression)

Wrong (e.g., wrong value used in assignment)

Extraneous (e.g., extra condition in a test)

—> Propose a Mutation Strategy
 for machine-code level

Emulation of Software Faults: A Field Data Study and a Practical Approach,
J. Durães, H. Madeira, IEEE TSE, Vol. 32 No.11, Nov. 2006, pp. 849-867

6

Quantitative Assessment of Security

Node = set of privileges

Arc = vulnerability class

Path = sequence of vulnerabilities
that could be exploited by an attacker
to defeat a security objective

Arc weight = effort to exploit the
vulnerability

Vulnerabilities Modeling
“privilege graph”

B

objective

C

F

1
2

4

5

6

7

3

intruder

0,1

1

10

102

103

06/04 08/04 09/04 11/04 12/04 02/05 04/96 05/05 07/05

Date

METF (no backtracking)

METF (exhaustive search)

paths

Application (LAAS Network)

-> Questions?

Is such a model valid in the real world?

Considered behaviors are two extreme ones,
but, what would be a “real” attacker behavior?

Weight parameters are assessed arbitrarily (subjective?)A

Internet

1- Dictionary attack

Automated scripts

4- Intrusion attack

Humans

2- Share

information?

3- Get

information?

ssh + weak

passwords

IPs dedicated

to dictionary attacks

IPs dedicated

to intrusion attacks

knowledge base

of attacks?

Debian DebianHigh-interaction

honeypot

Firewall

-> Wanted ! Real Data

CADHo project: “Collection and analysis of Attack Data based
on Honeypots (Eurecom, LAAS-CNRS, Renater)

 Both low- (35 worldwide) and high-interaction honeypots

 Typical behavior:

7

Some Concluding Remarks

Academia/Industry Cooperation: Some successful stories…
-> LIS Laboratory for Dependability Engineering [www.laas.fr/LIS] 1992-2000

-> RIS Network for Dependability Engineering [www.ris.prd.fr] 2001-2004
(LAAS-CNRS, Airbus, Astrium, EdF, Technicatome, Thales)

-> ReSIST Resilience for Survivability in IST (NoE) [www.resist-noe.org] 2006-2008

With few exceptions, industry reluctant to disclose
fault/threat data (including contextual information)

—> OSS community
—> Deployment of honeypots

Security assessment compatible with quantitative approaches?

Some Additional Challenges Ahead:
System Features:

Ubiquity, Evolvability, Openess, Scalability, Diversity
Network of Mobile Entities (Hidenets) [www.hidenets.aau.dk]

Interdependencies in Critical Infrastructures (Crutial) [crutial.cesiricerca.it]

Assessment Techniques:
Analytical Evaluation and Experimentation
Formal methods (Proving, Model Checking) and Testing
Accidental and Malicious Faullts

