Ministry of Science and Technology of China

Forum on High-end Fault-tolerant Computers Beijing, China — April 16, 2010

Dependability Assessment of Computing Systems: Analytical Evaluation & Controlled-Experiments

Jean Arlat

[jean.arlat@laas.fr]

Fault Tolerance ... and Coverage

Impact of FT Coverage on Dependability

Fault Injection-based Assessment

- —> Partial dependability assessment: controlled application of fault/error conditions
- Testing and evaluation (measurement) of <u>a</u> fault-tolerant system and of <u>its</u> FT algorithms & mechanisms
- Characterization (*measurement*) of faulty behaviors and failure modes of several systems/components
 - -> Benchmarking

Dependability Benchmarking

A Comprehensive Dependability Assessment Frame

—> Minimal set of data needed from the Target System(s) (architecture, configuration, operation, environment, etc.) to derive actual dependability attributes?

Examples of Benchmarking Results

Bit-flips into code segment

J. Arlat, J.-C. Fabre, M. Rodríguez, F. Salles Dependability of COTS Microkernel-Based Systems

IEEE Trans. Computsrs vol. 51, no. 2, pp. 138-163, February 2002.

E. Marsden, J.-C. Fabre, J. Arlat, "Dependability of CORBA Systems: Service Characterization by Fault Injection," Proc. SRDS-2002, Osaka, Japan, 2002, pp. 276-285.

System call parameter corruption at API

K. Kanoun, Y. Crouzet, A. Kalakech, A.E. Rugina, "Windows and Linux Robustness Benchmarks with respect to Application Erroneous Behavior", *Dependability Benchmarking for Computer Systems*, (K. Kanoun, L. Spainhower, Eds.), pp. 227-254, 2008

System call parameter corruption at DPI

A. Albinet, J. Arlat, J.-C. Fabre, "Benchmarking the Impact of Faulty Drivers: Application to the Linux Kernel", Dependability Benchmarking for Computer Systems (K. Kanoun, L. Spainhower, Eds.), pp. 285-310, 2008.

Examples of Benchmarking Results

Looking Ahead: An Ever Moving Target

D. Siewiorek, R. Chillarege, Z. Kalbarczyk

Reflections on Industry Trends and Experimental Research in Dependability IEEE TDSC, Vol. 1, No. 2, April-june 2004, pp. 109-127.

D. Siewiorek, X-Z. Yang, R. Chillarege, Z. Kalbarczyk Industry Trends and Research in Dependable Computing

Chinese Journal of Computers, Vol. 30, No. 10, 2007, pp.1645-1661.

Trend in Hardware Technology

Less than Perfect" Circuits (Manufacturing Defects and Transient Faults)

-> Resilience Achieved via Redundancy Techniques

Evolution of Information Infrastructures

- **■** Enhanced Functionalities and Complexity
- Economic Pressure —> reuse (COTS components)
- Intrusions, Attacks,...

Availability		Unavailability per year
6 x '9'	0,999999	32s
5 x '9'	0,99999	5mn 15s
4 x '9'	0,9999	52mn 34s
3 x '9'	0,999	8h 46mn
2 x '9'	0,99	3d 16h
1 x '9'	0,9	36d 12h

Internet Users (≈ 1.8 109 — end 2009)

Reported Security Incidents in Companies (F)

Attack/Vulnerability/Intrusion Model* (The MAFTIA IST Project)

^{*} P. Veríssimo, N. Neves, C. Cachin, J. Poritz, Y. Deswarte, D. Powell, R. Stroud, I. Welch Intrusion-Tolerant Middleware: The Road to Automatic Security IEEE Security & Privacy, 4 (4), pp.54-62, July-August 2006

Quantitative Assessment of Security

Vulnerabilities Modeling "privilege graph"

Node = set of privileges

Arc = vulnerability class

Path = sequence of vulnerabilities that could be exploited by an attacker to defeat a security objective

Arc weight = **effort** to exploit the vulnerability

R. Ortalo, Y. Deswarte, M. Kaâniche Experimenting with Quantitative Evaluation Tools for Monitoring Operational Security, IEEE Trans. Soft. Eng., 25 (5), pp.633-650, 1999

-> Questions?

- Is such a model valid in the real world?
- Considered behaviors (no backtracking/exaustive) are two extreme ones; what would be a "real" attacker behavior?
- Weight parameters are assessed arbitrarily (subjective?)

-> Wanted! Real Data

CADHo project: "Collection and analysis of Attack Data based on Honeypots (Eurecom, LAAS-CNRS, Renater)

Both low- (35 worldwide) and high-interaction honeypots

Typical behavior:

E. Alata, V. Nicomette, M. Kaâniche, M. Dacier Lessons Learned from the Deployment of a High-interaction Honeypot Proc. EDCC-6, (Comibra, Portugal), pp.39-44, IEEE CS Press, 2006.

The Integration of Information Processing into Everyday Objects and Activities

Ubiquituous & Pervasive Computing

Ambiant Intelligence

Internet of Things

■ Everyware, Haptic Computing, Things that Think, Cyber-Physical Systems,

So ... Let's be: Flexible, Adaptive, Inclusive and ... <u>Tolerant</u> about Terminology!;-)

•••

Main challenge wrt classical transaction systems

—> Managing dynamics, time, and concurrency in networked computational + physical systems Calls for Resilient Computing & Proactive Assessment

Thanks to...

- Colleagues of the Dependable Computing and Fault Tolerance research group at LAAS-CNRS
- Many partners of Delta-4, PDCS, DeVA & DBench projects, members of IFIP WG 10.4, and of the "FTCS-DSN" community

To Probe further

- A. Benso, P. Prinetto (Eds.), Fault Injection Techniques and Tools for Embedded Systems Reliability Evaluation, Frontiers in Electronic Testing, #23, 245p., Kluwer Academic Publishers, London, UK, 2003.
- SIGDeB: IFIP WG 10.4 on Dependable Computing and Fault Tolerance Special Interest Group on Dependability Benchmarking [www.dependability.org/wg10.4/SIGDeB]
- DeBench: Dependability Benchmarking Project (IST-2000-25425) [http://www.laas.fr/DBench]
- K. Kanoun, L. Spainhower (Eds.), Dependability Benchmarking for Computer Systems, 362p., Wiley-IEEE CS Press, 2008.
- ReSIST: Resilence for Survivability in IST EU Network of Excellence [www.resist-noe.org]

Thank you for your Attention!

