
1

J.-J. Aubert, P. Brot

Communication Integrity
in Networks

for Critical Control Systems
A. Youssef, Y. Crouzet
A. de Bonneval, J. Arlat

6th European Dependable Computing Conference
University of Coimbra
 Sixth European

 Dependable Computing Conference

EDCC-6 Coimbra, Portugal

18-20 October 2006

2

Context and Motivation
Usage of fully-digital communication networks into critical
embedded systems (commercial aircrafts)

 Flexible control
accommodate distinct
commands on different actuators

-> all devices cannot be connected
to the same bus

Need for intermediate functional nodes
“Interstage-nodes” (not simple repeaters)

Array Array ofof
microspoilersmicrospoilersField busField bus

Primary I-nodePrimary I-node Secondary I-nodeSecondary I-node

ControlControl
nodenode

Hierarchical Hierarchical controlcontrol

Arrays of
microspoilers

new

3

Context and Baseline

Slow dynamics of the process (more than one erroneous command
sustained before leading to an undesired event)
-> Option to (re-)use previous command (even erroneous)

Undesired Event (UE) = “Runaway” of the controlled surface
-> Discrepancy wrt nominal reference value 5°
[servomechanisms with max. speed of 50°/s]
“Erroneous ref. value applied for 100ms (10 cycl.) => UE”

Safety requirement “risk of UE 10-9/h”
-> Constraint on communication system integrity
“Number of undetected erroneous messages < threshold t”

Recovery (mitigate issues) -> back-up actions
Ensure the correct updating of the reference value to the servomechanism

Do not discard too quickly the communication system

Do not impair the required safety level

Favor options with limited structural redundancies

4

Undesired Event & Recovery Strategies

Re-use of the previous (“correct”) command and “filtering”:
RS1(r): launch the recovery after r consecutive processing cycles for which
an error has been signaled;
RS2 (r,b) launch the recovery after r processing cycles for which an error
has been signaled out of a set of b successive cycles

RS1 :-(

RS2 :-)

Target UE: Reception of 3 erroneous messages in a set of 10 cycles

RS1(3): Control
Surface Runaway!

RS2(3,10):
Recovery Action

Command

processed

Time

Erroneous command

Valid command

Threshold for control
surface runaway

10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms 90 ms 100 ms

Erroneous command is not detected:

It i used as the new ref. value

Erroneous command is detected:

the current ref. value is maintained

D D D D D DND ND ND ND

 Example (r = 3 and b = 10)

5

Architectural Issues

Basic Architecture

Example: Hierachical Organization of Interstage Nodes

6

Risk Analysis (Using Classical CRC)

10-25/h
Noise-induced
corruptions

Generally “bit-flip”

[Baicheva 2000]
 = 10-8/bit

Pue(,n) () • d
d
nIndependent

Random Errors

Message length 100 bits — Bit Error Rate () [0,0.5/bit]
CRC-16: # control bits (p) = 16 — Hamming distance (d) = 5

10-10/h

Wiring Break or Short Circuit; Crosstalks

 0.5/bit
Pue(,n) 2-p - 2-n 2-pIndependent

Multiple Errors
Wiring
Defects

Wiring defect rate 10-5/h

10-12/h

10-10/h

10-7/h

Amplification Buffers

Stuck-at Fault on Data Path

Address Control Buffers

Pue 2-p • pstuck

Faults Affecting
Interstage Nodes

Pue 2-pIndependent
Multiple Errors

Repetitive
Multiple Errors

IS Node failure rate 10-5/h

Pue pcontr

Pstuck pcont 1/%

Single
Message

10-80/h

10-18/h

10-12/h

10-18/h

10-7/h

3 / 10
Messages

7

Control
Node

Controlled
Node

 Classical approaches: -> Inefficient and/or improper
Basic coding techniques (CRC)
End-to-end detection mechanims (HEDC, Keyed CRC, Safety Layer)
Applicable, but most meant to cope with a single message

Multiple errors

Interstage nodes process data

Impact of Interstage Nodes

—> Introduce some degree of diversification
 data and redundancy (e.g., TMR)
 data and coding (Turbo Codes)
 coding function (e.g., rotation of the coding function)

 Multiple Error Coding Function ->
 (m = 3)

CF-1

CF-3

CF-2

8

 PNdet.

PueF2

PueF1

PueF3

 PueFi<<1

With

F2

F3

 Stuck-at-fault

Memory Addresing Error

Repetitive Multiple Errors

Data 1

Control Node Intestage Node Controlled Node

 Data Memory

Principle and Objective/Benefit

Decoding and checking

F1

High Integrity Requirement

Data 2

Data 3

 BufferingData CB Data CB

Data 1

1Data 2

PueF1

1Data 3

 Without

 Ideally

2-p

2-p

2-p

Coding

PNdet.

100 bits p bits

9

Impact on Detection and Recovery Latency
m=1

m=2

m=3

m=4

10

Implementation Using CRCs:
Selection of the Generator Polynomials

 = small degree polynomial featuring “standard” error detection properties

(e.g., [1+x] => detection of odd-weight errors)

P’i and P’’i Pi i

11

Generator Polynomial Selection

This was analyzed and confirmed via extensive simulation runs

12

Simulation Framework (Matlab-Simulink)

Others

13

Example of Analysis: Target Codes

14

Examples of Results from Simulation Runs

IEEE-WG77.1

[Ga - Gb]

CRC-CCITT

[Ga —G] : with {c, d, g, h}

2 -15

2 -16

multiple of Ga(x)

Custom

Ga(x) = (1+x) . (1+x+x15) = 1+x3+x15+x16

Gb(x) = (1+x
2
+x

3
+x

4
+x

8
) . (1+x+x

2
+x

4
+x

5
+x

6
+x

8
)

CRC-16

Gg(x) = (1+x) . (1+x+x2+x3+x7) . (1+x+x4+x5+x6 +x7+x8)

Gc(x) = (1+x) . (1+x+x2+x3+x4+x12 +x13+x14+x15)

Pue

15

About Improvement Achieved

Threshold: 10-9/h

16

Concluding Remarks

Pragmatic and Novel Approach for Mitigating High Integrity
Requirements in Critical Communications Systems

CRC-based Implementation:
Theoretical issues associated to properties of generator polynomials provide
a sound basis for identifying criteria for selecting suitable coding functions
Criteria validated via extensive simulation runs

Generalization: investigation of alternative policies for
mixing distinct coding functions (CF)

Formalization: derivation of closed-form expressions
Probability of undetected errors (Pue)
(Min) Latency for system recovery action after an error is undetected (LRA)
[# of message cycles]

Example: m>1 # of distinct CF; r # of reported error detections,
 b size of frame of messages (only for RS2)

LRA(RS1) = r+1 for r < m ; LRA(RS2) = for LRA < bm r /(m 1)

