

Sixth European

Dependable Computing Conference

EDCC-6 Coimbra, Portugal 18-20 October 2006

Communication Integrity in Networks for Critical Control Systems

A. Youssef, Y. Crouzet A. de Bonneval, J. Arlat

J.-J. Aubert, P. Brot

Context and Motivation

 Usage of fully-digital communication networks into critical embedded systems (commercial aircrafts)

Flexible control

- accommodate distinct commands on different actuators
 - -> all devices cannot be connected to the same bus
- Need for intermediate functional nodes "Interstage-nodes" (not simple repeaters)

Context and Baseline

- Slow dynamics of the process (more than one erroneous command sustained before leading to an undesired event)
 - -> Option to (re-)use previous command (even erroneous)
- Undesired Event (UE) = "Runaway" of the controlled surface -> Discrepancy wrt nominal reference value ≥ 5° [servomechanisms with max. speed of 50°/s] "Erroneous ref. value applied for 100ms (10 cycl.) => UE"
- Safety requirement "risk of UE ≤ 10-9/h"
 -> Constraint on communication system integrity
 "Number of undetected erroneous messages < threshold t"
- Recovery (mitigate issues) -> back-up actions
 - ◆ Ensure the correct updating of the reference value to the servomechanism
 - ◆ Do not discard too quickly the communication system
 - ◆ Do not impair the required safety level
- Favor options with limited structural redundancies

Undesired Event & Recovery Strategies

- Re-use of the previous ("correct") command and "filtering":
 - ◆ RS1(r): launch the recovery after r consecutive processing cycles for which an error has been signaled;
 - RS2 (r,b) launch the recovery after r processing cycles for which an error has been signaled out of a set of b successive cycles
- **Example** (r = 3 and b = 10)

Target UE: Reception of 3 erroneous messages in a set of 10 cycles

Architectural Issues

Basic Architecture

Example: Hierachical Organization of Interstage Nodes

Risk Analysis (Using Classical CRC)

- Message length ≈ 100 bits Bit Error Rate (ɛ) ∈ [0,0.5/bit]
- CRC-16: # control bits (p) = 16 Hamming distance (d) = 5

Impact of Interstage Nodes

Interstage nodes process data

- Classical approaches: -> Inefficient and/or improper
 - Basic coding techniques (CRC)
 - End-to-end detection mechanims (HEDC, Keyed CRC, Safety Layer)
 Applicable, but most meant to cope with a single message
- —> Introduce some degree of diversification
 - data and redundancy (e.g., TMR)
 - data and coding (Turbo Codes)
 - coding function (e.g., rotation of the coding function)
 Multiple Error Coding Function ->
 (m = 3)

Principle and Objective/Benefit

High Integrity Requirement Control Node Controlled Node Intestage Node Ideally PNdet. PNdet. Data 3 PueF3 Data 3 Data 2 PueF2 Data 2 Data 1 PueF1 **2**-p Data 1 PueF1 With Without PueFi<<1 Decoding and checking F2 Stuck-at-fault Repetitive Multiple Errors Coding 2 Data Memory Memory Addresing Error Buffering CB **Data** CB Data

p bits

≈100 bits

Impact on Detection and Recovery Latency

Implementation Using CRCs: Selection of the Generator Polynomials

■ Π = small degree polynomial featuring "standard" error detection properties (e.g., [1+x] => detection of odd-weight errors)

■ P'i and P''i ≠ Pi ∀i

Generator Polynomial Selection

$G_1(x) = (1+x) \cdot (1+x+x^7) \cdot (1+x^2+x^3+x^4+x^8) = 1+x^3+x^5+x^6+x^7+x^9+x^{10}+x^{12}+x^{15}+x^{16}$						
Examples of potentially good candidates						
G(x) = (1+x). 7-degree irreducible polynomial . 8-degree irreducible polynomial						
Identifier	Polynomial representation	Decomposition into irreducible polynomials				
$G_2(x)$	1+x+x ⁶ +x ⁷ +x ⁸ +x ⁹ +x ¹⁰ +x ¹³ +x ¹⁵ +x ¹⁶	$(1+x)$. $(1+x+x^3+x^5+x^7)$. $(1+x+x^2+x^4+x^5+x^6+x^8)$				
$G_3(x)$	1+ <i>X</i> + <i>X</i> ⁶ + <i>X</i> ¹⁰ + <i>X</i> ¹² + <i>X</i> ¹⁶	$(1+x)$. $(1+x+x^2+x^3+x^7)$. $(1+x+x^4+x^5+x^6+x^7+x^8)$				
$G_4(x)$	1+ <i>x</i> ⁵ + <i>x</i> ⁶ + <i>x</i> ⁷ + <i>x</i> ⁸ + <i>x</i> ⁹ + <i>x</i> ¹⁰ + <i>x</i> ¹⁶	$(1+x)$. $(1+x^3+x^7)$. $(1+x+x^2+x^5+x^6+x^7+x^8)$				
Examples of potentially bad candidates						
$G(x) = (1+x) \cdot (1+x+x^7) \cdot 8$ -degree irreducible polynomial						
$G_5(x)$	$1+x+x^2+x^3+x^5+x^6+x^9+x^{10}+x^{12}+x^{14}+x^{15}+x^{16}$	$(1+x)$. $(1+x+x^7)$. $(1+x+x^5+x^6+x^8)$				
$G_6(x)$	$1+x^3+x^6+x^7+x^{10}+x^{13}+x^{14}+x^{16}$	$(1+x) \cdot (1+x+x^7) \cdot (1+x^2+x^3+x^4+x^5+x^7+x^8)$				

This was analyzed and confirmed via extensive simulation runs

Simulation Framework (Matlab-Simulink)

Example of Analysis: Target Codes

$G_a(x) = (1+x) \cdot (1+x+x^{15}) = 1+x^2+x^{15}+x^{16}$ — Standard generator polynomial: CRC-16					
Standard generator polynomials $G(x) = (1+x) \cdot 15$ -degree polynomial					
Identifier	Polynomial representation	Decomposition into irreducible polynomials			
$G_b(x)$: IEEE-WG77.1	$1+x+x^5+x^6+x^8+x^9+x^{10}+x^{11}+x^{13}+x^{14}+x^{16}$	$(1+x^2+x^3+x^4+x^8) \cdot (1+x+x^2+x^4+x^5+x^6+x^8)$			
$G_c(x)$: CRC-CCITT	1+ <i>x</i> ⁵ + <i>x</i> ¹² + <i>x</i> ¹⁶	$(1+x)$. $(1+x+x^2+x^3+x^4+x^{12}+x^{13}+x^{14}+x^{15})$			
$G_d(x)$: IBM-SDLC	1+x+x ² +x ⁴ +x ⁷ +x ¹³ +x ¹⁵ +x ¹⁶	$(1+x)^2 \cdot (1+x+x^3+x^4+x^5+x^6+x^8+x^{10}+x^{12}+x^{13}+x^{14})$			
G _e (x): CRC-16Q*	1+x+x ³ +x ⁴ +x ⁵ +x ⁶ +x ⁸ +x ¹¹ +x ¹⁵ +x ¹⁶	$(1+x)$. $(1+x^3+x^5+x^8+x^9+x^{10}+x^{15})$			
$G_f(x): IEC-TC57$	$1+x+x^4+x^7+x^8+x^9+x^{11}+x^{12}+x^{14}+x^{16}$	$(1+x)^2 \cdot (1+x+x^3+x^6+x^7) \cdot (1+x^2+x^3+x^4+x^5+x^6+x^7)$			
Custom generator polynomials $G(x) = (1+x) \cdot 7$ -degree irreducible polynomial . 8-degree irreducible polynomial					
$G_{g}(x) = G_{3}(x)$	1+x+x ⁶ +x ¹⁰ +x ¹² +x ¹⁶	$(1+x)$. $(1+x+x^2+x^3+x^7)$. $(1+x+x^4+x^5+x^6+x^7+x^8)$			
$G_{\rm h}(x)=G_4(x)$	$1+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{16}$	$(1+x) \cdot (1+x^3+x^7) \cdot (1+x+x^2+x^5+x^6+x^7+x^8)$			

Examples of Results from Simulation Runs

About Improvement Achieved

Threshold: 10-9/h

Protection	SECF	MECF	
schemes → ↓ Fault classes: stuck-at on	(m = 1)	m = 2	m = 3
- buffer memory	1.5 x 10 ⁻¹² / h	2.3 x 10 ⁻¹⁷ / h	6.9 x 10 ⁻²² / h
- address control	10 ⁻⁷ / h	1.5 x 10 ⁻¹² / h	4.5 x 10 ⁻¹⁷ / h

Concluding Remarks

- Pragmatic and Novel Approach for Mitigating High Integrity Requirements in Critical Communications Systems
- CRC-based Implementation:
 - ♦ Theoretical issues associated to properties of generator polynomials provide a sound basis for identifying criteria for selecting suitable coding functions
 - ◆ Criteria validated via extensive simulation runs
- Generalization: investigation of alternative policies for mixing distinct coding functions (CF)
- Formalization: derivation of closed-form expressions
 - Probability of undetected errors (Pue)
 - ◆ (Min) Latency for system recovery action after an error is undetected (LRA)
 [# of message cycles]

```
Example: m>1 # of distinct CF; r # of reported error detections, b size of frame of messages (only for RS2)
```

$$LRA(RS1) = r+1 \text{ for } r < m$$
; $LRA(RS2) = [m \times r/(m-1)] \text{ for } LRA < b$