

IEEE/IFIP International Conference on Dependable Systems and Networks Florence, Italy, June 28-July 1, 2004

Characterization of the Impact of Faulty Drivers on the Robustness of the Linux Kernel

Arnaud Albinet, Jean Arlat, Jean-Charles Fabre

Outline

- Motivation, Context and Objectives
- The Approach and Testbed
- Examples of Results and Analyses
- Conclusion and On-Going Work

Motivation

 Drivers account for a large proportion of reported OSs failures

• Error distribution (Linux) [Chou et al. 2001]

- Main Rationale
 - ◆ Developpers are "outsiders"
 - ◆ Drivers form an increasing part of OS code (already 70% of LOC in Linux 2.4.1)

Context and Objectives

- OS Kernel Interfaces:
 - → Hardware Layer
 - **→** Application Processes
 - ◆ Driver Programs
- Possible approaches targeting drivers:
 - **→** Code mutation
 - **♦ Interface Driver-Kernel**

- > Definition of a Driver Programming Interface
- Linux as a Target
- Framework for Accommodating Various Dependability Concerns

The Proposal for the Linux DPI

• The drivers make use of specific system calls to perform tasks. These are denoted symbols (functions, constants & variables) in the case of *Linux* (more than 1000 symbols in release 2.4.18 including ≈ 700 kernel functions)

Categories	Typical Symbols	
Interrupt Management	nagement Kmalloc, kfree, free_pages, exit_mm ,	
File System Management	add_timer, del_timer, request_irq, free_irq, irq_stat, add_wait_queue, finish_wait,	
Control Block Management	fput, fget, iput, follow_up, follow_down, filemap_fdatawrite, filemap_fdatawait, lock_page,	
Others	•••	

Example int request_irq
 (allocation of a peripheral device to an interrupt channel)

```
int request_irq(unsigned int irq, woid (*handler)(),
unsigned long irgflags, const char * devname, void *dev_id)
```

Channel allocated

pointer to the interrupt manager

Robustness Testing at the DPI Level

SWIFI -> Corruption of kernel call parameters

Type	Corrupted value 1	Corrupted value 2	Corrupted value 3	
int	INT_MIN(0x80000000)	0	INT_MAX(0x7FFFFFF)	
unsigned int	0	INT_MIN(0x80000000)	ULONG_MAX (OxFFFFFFF)	
unsigned short	0	SHRT_MIN (0x8000)	USHRT_MAX(0xFFFF)	
* (pointer)	NULL	random()	All bits = 1 (0xFFFFFFFF)	

Experimental Context: The Testbed

Experimental Context:Considered Drivers and Workload

- Benchmark Target and System Under Benchmark
 - → Linux Kernel 2.2.20 et 2.4.18
 - Distribution Debian 3.0
 - → Hardware architecture x86 Pentium
- Target Drivers
 - ♦ Network Card drivers (SMC-ultra, Ne2000)
 - ◆ Sound Card driver (Soundblaster)
 - **+** ...
- Workload
 - ♦ Several specific workloads dedicated to each of the drivers

```
De-installation — Re-installation — Series of Requests — De-installation — Re-installation
```

Experimental Context: Main Outcomes

Internal

Error code (EC) returned to the driver at the level of the DPI

External

- ★ Exception (XC): Events raised by the hardware & the Kernel and observable at the level of the API
- ★ Kernel Hang (KH): The Kernel does not reply
- ♦ Workload Aborted (WA): The workload is abruptely interrupted (some service requests could not be made)
- ♦ Workload Incorrect (WI): The workload has completed, but has failed to execute correctly all the service
- Workload Completed (WC): In order to measure the duration of the workload

Possible Outcomes and Diagnoses

Outcomes						
#	Notification		Failure Modes			
	EC	ХC	WA	WI	KH	
01	1	0	0	0	0	
02	1	1	0	0	0	
O3	0	1	0	0	0	
O4	1	1	0	0	1	
O5	1	0	0	0	1	
O 6	0	1	0	0	1	
07	0	0	0	0	1	
08	1	1	1	Х	1	
09	1	0	1	Х	1	
O10	0	1	1	Х	1	
O11	0	0	1	Х	1	
O12	0	0	0	0	0	
O12	4	1		- 4	^	

Some Results - Network Card Drivers (first event)

SMC-ultra Driver — Linux V2.2

SMC-ultra Driver — Linux V2.4

NE2000 Driver — Linux v2.4

Measures and Viewpoints

ID	All Outcomes (exc. O12)	Description
RK1	01-03	An error is notified by the kernel before the WL completes correctly
RK2	O4-O6, O8-O10, O13-O15, O21-O23	An error is notified by the kernel before a failure is observed
RK3	O16	No error is notified and the WL is aborted
RK4	O7, O11,O24	No error is notified and the Kernel hangs
RK5	O20	No error is notified and the WL completes incorrectly
AK1	O1-O3	The WL completes correctly and an error is notified by the Kernel
AK2	O13-O20	The WL is aborted or completes incorrectly
AK3	04-07	The WL hangs or the WL completes correctly
Ak4	08-011, 021-024	The WL hangs or the WL is aborted or completes incorrectly
SW1	O1-O3	The WL completes correctly and an error is notified by the Kernel
SW2	O6-O7	The WL completes correctly and the Kernel hangs
	*	The WL is aborted or the Kernel hangs
SW4	O13-O16	The WL completes incorrectly and the Kernel hangs
SW5	O17-O20	The WL completes incorrectly and the Kernel does not hang
	RK1 RK2 RK3 RK4 RK5 AK1 AK2 AK3 AK4 SW1 SW1 SW2 SW3 SW4	RK1 O1-O3 RK2 O4-O6, O8-O10, O13-O15, O21-O23 RK3 O16 RK4 O7, O11,O24 RK5 O20 AK1 O1-O3 AK2 O13-O20 AK3 O4-O7

Kernel Responsiveness Viewpoint

Analyses According To Different Viewpoints Example: Network Card Drivers

"The considered property is not satisfied"

Concluding Remarks

- Specific and suitable approach to develop robustness benchmarks wrt driver errors
- Analysis framework that accommodates various dependability concerns
- Current experiments: Assess the portability to other Kernels (Windows, MacOS X)
- Complement the scope of a Dependability Benchmark aimed at characterizing the robustness of an OS