
1

Characterization
of the Impact of Faulty Drivers

on the Robustness of the Linux Kernel

Arnaud Albinet, Jean Arlat, Jean-Charles Fabre

IEEE/IFIP International Conference
on Dependable Systems and
Networks
Florence, Italy, June 28-July 1, 2004

2

Outline

Motivation, Context and Objectives

The Approach and Testbed

Examples of Results and Analyses

Conclusion and On-Going Work

3

5%
12%

17%

15%

51%

Other

Archi/i386

Network code

File system

Drivers

Motivation

Drivers account for a large proportion of reported
OSs failures

Error distribution (Linux)
[Chou et al. 2001]

Main Rationale
Developpers are “outsiders”
Drivers form an increasing part of OS code
(already 70% of LOC in Linux 2.4.1)

4

Hardware

Definition of a Driver Programming Interface
Linux as a Target
Framework for Accommodating Various
Dependability Concerns

Possible approaches
targeting drivers:

Code mutation
Interface Driver-Kernel

Context and Objectives

OS Kernel Interfaces:
Hardware Layer
Application Processes
Driver Programs

Hardware

OS Kernel
(Benchmark Target)

AP2AP1 APn

API

Application Processes

DP2

DP1

DPm

D
r
i
v
e
r

P
r
o
g
r
a
m
s

D
P
I

5

Example int request_irq
(allocation of a peripheral device to an interrupt channel)

The Proposal for the Linux DPI
The drivers make use of specific system calls to perform
tasks. These are denoted symbols (functions, constants &
variables) in the case of Linux (more than 1000 symbols in
release 2.4.18 including 700 kernel functions)

…Others

fput, fget, iput, follow_up, follow_down, filemap_fdatawrite,
filemap_fdatawait, lock_page, ...

Control Block Management

add_timer, del_timer, request_irq, free_irq, irq_stat,
add_wait_queue, finish_wait, ...

File System Management

Kmalloc, kfree, free_pages, exit_mm ,...Interrupt Management

Typical SymbolsCategories

Etc. ...

int request_irq(unsigned int irq, void (*handler)(),
unsigned long irqflags, const char * devname, void *dev_id)

Channel allocated

unsigned int irq

pointer to the interrupt manager

void (*handler)()

6

Robustness Testing at the DPI Level

SWIFI -> Corruption of kernel call parameters

void foo (type1 par1, type2 par2, type3 par3, …);

Bad_val1.3

Bad_val1.2

Bad_val1.1

type1

Bad_val3.3

Bad_val3.2

Bad_val3.1

type3type2

Bad_val2.3

Bad_val2.2

Bad_val2.1

7

Experimental Context: The Testbed

AP1 AP2 … APn
Workload

Hardware

Linux Kernel
(Benchmark Target)

API
D
P
I Other Drivers

Faulted Driver Kernel Call
Code Returned

Kernel call
parameter
corruption

Ethernet

System Under Benchmark Monitoring
Machine

• Workload
Behavior

• Exceptions
Raised

8

Benchmark Target and System Under Benchmark
Linux Kernel 2.2.20 et 2.4.18
Distribution Debian 3.0
Hardware architecture x86 Pentium

Target Drivers
Network Card drivers (SMC-ultra, Ne2000)
Sound Card driver (Soundblaster)
…

Workload
Several specific workloads dedicated to each of the drivers

Experimental Context:
Considered Drivers and Workload

De-installation — Re-installation

— Series of Requests —
De-installation — Re-installation

9

Experimental Context: Main Outcomes

Internal
 Error code (EC) returned to the driver at the level of the DPI

External
Exception (XC): Events raised by the hardware & the Kernel
and observable at the level of the API

Kernel Hang (KH): The Kernel does not reply

Workload Aborted (WA): The workload is abruptely interrupted
(some service requests could not be made)

Workload Incorrect (WI): The workload has completed,
but has failed to execute correctly all the service

Workload Completed (WC): In order to measure the duration
of the workload

10

Possible Outcomes and Diagnoses

Outcomes Priority to

11

Some Results - Network Card Drivers
(first event)

SMC-ultra Driver — Linux V2.4

No Obs.

Error code

Exception

WL Incorrect

Kernel Hang

Not activated

17%

17%

34%

21%

0% 11%

SMC-ultra Driver — Linux V2.2

7%

22%

22%

19%

9%

21%

Error code

Exception
WL Incorrect

Kernel Hang

No Obs.

Not activated

NE2000 Driver — Linux v2.4

Error code

Exception
WL Incorrect

Kernel Hang

No Obs.

Not activated

14%

10%

31%

15%

13%

17%

12

The WL exhibits a failsafe behavior

The Kernel is still alive

The Kernel is able to notify an error

Measures and Viewpoints
DescriptionAll Outcomes (exc. O12)ID

R
es

p
o

n
si

ve
n

es
s

o
f

 t
h

e
K

er
n

el
S

af
et

y
o

f
th

e
W

L

No error is notified and the WL completes incorrectlyO20RK5

No error is notified and the Kernel hangsO7, O11,O24RK4

No error is notified and the WL is abortedO16RK3

An error is notified by the kernel
before a failure is observed

O4-O6, O8-O10,
O13-O15, O21-O23

RK2

An error is notified by the kernel
before the WL completes correctly

O1-O3RK1

A
va

ila
b

ili
ty

o

f
th

e
K

er
n

el

The WL completes incorrectly and the Kernel does not hangO17-O20SW5

The WL completes incorrectly and the Kernel hangsO13-O16SW4

The WL is aborted or the Kernel hangsO8-O11, O13-O16SW3

The WL completes correctly and the Kernel hangsO6-O7SW2

The WL completes correctly and an error is notified
by the Kernel

O1-O3SW1

The WL hangs or the WL is aborted or completes incorrectlyO8-O11, O21-O24Ak4

The WL hangs or the WL completes correctlyO4-O7AK3

The WL is aborted or completes incorrectlyO13-O20AK2

The WL completes correctly and an error is notified
by the Kernel

O1-O3AK1

13

Kernel Responsiveness Viewpoint

11% 12% 14%

29%

17%

26%

32%

60%

51%

51%

23%

9%

4%
1%

33%

27%

SB 2.2 SMC 2.2 SMC 2.4 NE 2.4

RK1

RK2

RK3

RK4

RK5

59%

41%

83%

17%

60%

40%

84%

16%

14

Analyses According To Different Viewpoints
Example: Network Card Drivers

”The considered property is not satisfied”

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

SMC 2.2 SMC 2.4 NE 2.4

Responsiveness K Availability K Safety W

15

Specific and suitable approach to develop robustness
benchmarks wrt driver errors

Analysis framework that accommodates various dependability
concerns

Current experiments: Assess the portability to other Kernels
(Windows, MacOS X)

Complement the scope of a Dependability Benchmark aimed
at characterizing the robustness of an OS

Concluding Remarks

