IEEE/IFIP International Conference
on Dependable Systems and

Networks
Florence, Italy, June 28-July 1, 2004

Characterization
of the Impact of Faulty Drivers
on the Robustness of the Linux Kernel

Arnaud Albinet, Jean Arlat, Jean-Charles Fabre

|f" ,Ir -
=L -
ey
” -

DependabilityBenchmarking

Outline

e Motivation, Context and Objectives

® The Approach and Testbed

e Examples of Results and Analyses

® Conclusion and On-Going Work

Motivation

@ Drivers account for a large proportion of reported
OSs fallures

o%

12%

@ Error distribution (Linux)
[Chou et al. 2001] 51% 17%

® Main Rationale

+ Developpers are “outsiders”

+ Drivers form an increasing part of OS code
(already 70% of LOC in Linux 2.4.1)

15%

l Drivers

M File system
Il Network code
] Archi/i386

] Other

Context and ODbjectives

® OS Kernel Interfaces:

+ Hardware Layer

: _ Application Processes
+ Application Processes

+ Driver Programs AP1 Il AP2 APn
AP ;
- 0)
® Possible approaches i g
targeting drivers: 3 Keliqe' t a
+ Code mutation (BEMBUREl eI m
‘ + Interface Driver-Kernel
Qx Hardware
» Definition of a Driver Programming Interface
» LiInux as a Target

» Framework for Accommodating Various
Dependability Concerns

The Proposal for the Linux DPI

® The drivers make use of specific system calls to perform
tasks. These are denoted symbols (functions, constants &
variables) in the case of Linux (more than 1000 symbols in
release 2.4.18 including # 700 kernel functions)

Categories

Typical Symbols

Interrupt Management

Kmalloc, kfree, free_pages, exit. mm ,...

File System Management

add_timer, del_timer, request_irq, free_irq, irq_stat,
add_wait_queue, finish_wait, ...

Control Block Manmagement

: ; _foltow _up, follow_down, filemap_fdatawrite,
filemap_fdatawait, lock page, ...

Others

e Example i nt

request _irq

(allocation of a peripheral device to an interrupt channel)

int request_irq(unsigned int irqg, void (*mhandl er)(),
unsi gned | ong irgflags, const char * dé\\/iame, void *dev_id)

Channel allocated

pointer to the interrupt manager

Etc. ...

5

Robustness Testing at the DPI Level

e SWIFI -> Corruption of kernel call parameters

void foo (typel parl,

O

type2 par2,

!

type3 par3, .);

N

typel type2 type3
Bad vall.l Bad val2.1 Bad val3.1
Bad vall.2 Bad val2.2 Bad val3.2
Bad vall.3 Bad val2.3 Bad val3.3
Type Corrupted value 1 Corrupted value 2 Corrupted value 3
int 0

INT MIN(0x80000000)

INT MAX (0X7FFFFFFF)

unsigned int

0

INT MIN(0x80000000)

ULONG MAX (OXFFFFFFFF)

unsigned short

0

SHRT MIN (0x8000)

USHRT MAX (OXFFFF)

* (pointer)

NULL

random()

All bits = 1 (OXFFFFFFFF)

b

Experimental Context: The Testbed

Workioad
AP1 | AP2 ... | APn
A ; Kernel call

A
e Workload .—4— T Iy | parameter
Behavior : Y ap Y , corruption
o 1 = |
Exceptions ¥ Faulted Driver ’ | Kernel Call
Raised : : | Code Returned
, Linux Kernel |P| £ !
I (Benchmark Target) | / Other Drivers Vol T
: = |
i [—
: - ‘ - :
! Hardware SR), ———
: B L
E e e e [-—-————-—-—=-=-=-==--- I T r—--- =1
System Under Benchmark Monitoring

I Machine

Ethernet

Experimental Context:
Considered Drivers and Workload

® Benchmark Target and System Under Benchmark

+ Linux Kernel 2.2.20 et 2.4.18
+ Distribution Debian 3.0
+ Hardware architecture x86 Pentium

e Target Drivers

+ Network Card drivers (SMC-ultra, Ne2000)
+ Sound Card driver (Soundblaster)
*

® \Workload

+ Several specific workloads dedicated to each of the drivers

De-installation — Re-installation

— Series of Requests —
De-installation — Re-installation

Experimental Context: Main Outcomes

e Internal
Error code (EC) returned to the driver at the level of the DPI

® EXxternal

4

4
4

Exception (XC): Events raised by the hardware & the Kernel
and observable at the level of the API

Kernel Hang (KH): The Kernel does not reply

Workload Aborted (WA): The workload is abruptely interrupted
(some service requests could not be made)

Workload Incorrect (WI1): The workload has completed,
but has failed to execute correctly all the service

Workload Completed (WC): In order to measure the duration
of the workload

Possible Outcomes and Diagnoses

Outcomes
| Notification Failure Modes
- ec | xc | wa| wi | kH
o1 1 0 0 0 0
02 1 1 0 0 0
o3 0 1 0 0 0
o4 1 1 0 0 1
05 1 0 0 0 1
06 0 1 0 0 1
or| o 0 0 0 1
o8| 1 1 1 X 1
o9l 1 0 1 X 1
o10| 0 1 1 X 1
o11| o 0 1 X 1
012 0 0 0 0 0
mn" “ 1 o n

Some Results - Network Card Drivers
(first event)

SMC-ultra Driver — Linux V2.2

Not activated
Error code

No Obs.

WL Incorrect EXCGptiOﬂ

Kernel Hang

NE2000 Driver — Linux v2.4

SMC-ultra Driver — Linux V2.4

Not activated

ror code

Exception

No Obs.

WL Incorrect
0%

Kernel Hang

Error code

Kernel Hang

WL Incorrect | .
Exception

11

Availability

Safety

Responsiveness
of the Kernel of the Kernel

of the WL

Measures and Viewpoints

ID | All Outcomes (exc. 012) | Description
RK1|01-03 An error is notified by the kernel
before the WL completes correctly
RK2 |04-06, 08-010, An error is notified by the kernel
013-015, 021-023 before a failure is observed
RK3 |O16 No error is notified and the WL is aborted
RK4 |07, 011,024 No error is notified and the Kernel hangs
RK5 (020 No error is notified and the WL completes incorrectly
AK1 |01-03 The WL completes correctly and an error is notified
by the Kernel
AK?2 |013-020 The WL is aborted or completes incorrectly
AK3 |04-07 The WL hangs or the WL completes correctly
Ak4 |08-011, 021-024 The WL hangs or the WL is aborted or completes incorrectly
SW1|[01-03 The WL completes correctly and an error is notified
by the Kernel
SW2 [06-0O7 The WL completes correctly and the Kernel hangs
SW3|08-011, 013-016 The WL is aborted or the Kernel hangs
SW4 |013-016 The WL completes incorrectly and the Kernel hangs
SW5 |017-020 The WL completes incorrectly and the Kernel does not hang |

12

Kernel Responsiveness Viewpoint

84%

59%

SB 2.2

[0 RK2
M RK3
RK4

[BRKS |

83%

SMC 2.2

60%

SMC 2.4

NE 2.4

13

Analyses According To Different Viewpoints
Example: Network Card Drivers

”The considered property is not satisfied”

5020

45%0]

40%0

35%0

3020
25%0
2020

15%0

10%0
5%0

0%o z
SMC 2.2 SMC 2.4

NE 2.4

| |Responsiveness K [| Availability K

[] safety W

14

Concluding Remarks

Specific and suitable approach to develop robustness
benchmarks wrt driver errors

Analysis framework that accommodates various dependability
concerns

Current experiments: Assess the portability to other Kernels
(Windows, MacOS X)

Complement the scope of a Dependability Benchmark aimed
at characterizing the robustness of an OS

15

