
Integrating COTS Software

into Dependable Systems:
Support to the Selection Process

IEEE/IFIP DSN-2003 — San Francisco, CA, USA — 22-25 June 2003

Jean Arlat
(delivered by Jean-Charles Fabre)

IST-2000-25425
Dependability Benchmarking

Panel: Technology Impact on Dependability

Components and Systems Concerned

Components of a computer system

Hardware

Executive

Appl.

MW

Appl.

Executive

Application

Executive

Middleware

Application

Executive

MW

Appl.
Appl.

Application

Executive

Middleware

Middleware

No Reuse

“COTS”

Components:

• Application: Oracle, Flight Control,…
• Middleware: CORBA, DCOM, OLE,…
• Operating System: Unix, Windows, Linux,…
• Microkernel: Chorus, LinxOS, PalmOS,…
• Processor: Pentium, PowerPC,…

Embedded control systems… RT microkernel-based

Large-scale distributed systems… middleware-based

How to Build Dependable Systems
from (Undependable) COTS Components?

Assess the behavior in presence of faults -> Selection

Level of Confidence sufficient -> Integrate

Level of Confidence not sufficient:
 -> Discard!
 -> Fault containment mechanisms & service degradation
 -> Error recovery mechanisms & service continuity

Target Systems: Software Executives

Motivation
Complex software components whose development requires a great deal
of expertise

Basic services (management of memory, communication, synchronization,
tasks, I/O, files, etc.) supporting application requirements

Applications rely heavily on their behavior, including in the presence
of faults

What executives?
Real-time microkernels: Chorus, LynxOS, VxWorks,…

Generic OSs: Linux, Windows,…

Middleware: Corba, Dcom,…

Synchronisation
by mutex

Parameter fault injection

Appli.
Fail

Appli.
Hang

Syst.
Hang

Exception Error
Status

No Obs

Memory

management

Chorus vs. LynxOS

API 0
10
20
30
40
50
60
70
80
90
100

0
10
20
30

40
50
60
70

Chorus Classix r3.1
LynxOS r 3.0.1

Fault injection

Targeting COTS microkernels

Alarm
27.3%

Incorrect
result
6.5%

Deadline
missed
10.7%

Correct
0.7%

Error
status
54.8%

1036
Exp.

SCH

Correct
71.2%

Application
hang
0.1%

Incorrect
result
28.7%

1229
Exp.

TIM

Correct
79.7%

Error
status
19.4%

Deadline
missed
0.1%

Incorrect
results
0.1%

Application
hang
0.6%

System
hang
0.1%

1451
Exp.

PCP

Example of 3 fault injection campaigns
SCH: corruption of the running task
TIM: corruption of timers
SYN: corruption of synchronization system calls

Application failures in SCH and TIM and efficient error
detection mechanisms in PCP

Real-time microkernels features

Targeting CORBA implementations

bitflips in IIOP requests

CORBA successive versions

Situation can change according to the evolution of the COTS
implementation through successive versions
 Additional ED and FT mechanisms must evolve accordingly!

ORBacus v3 ORBacus v4

0

10

20

30

40

ServiceCrash
ServiceHang
UNKNOWN

COMM_FAILURE
BAD_OPERATION
MARSHAL
OBJECT_NOT_EXIST
NotFound
InvalidName

Conclusion, Ongoing Work & Challenges

Objective Insights to support Developer’s Design Choices and
selection of the most robust COTS candidate

Development of protection mechanisms by means of
complementary wrapping techniques

Solutions to adapt architectural choices, error detection and
recovery mechanisms to the evolution of systems in
operation

Crucial need for dependability benchmarking
Comprehensive set of Benchmark Prototypes: Transaction Systems, OSs,
Embedded Control Applications, …
The DBench project had this aim of disseminating Benchmark Prototypes

