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Components and Systems Concerned

Components of a computer system
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“COTS”

Components:

• Application: Oracle, Flight Control,…
• Middleware: CORBA, DCOM, OLE,…
• Operating System: Unix, Windows, Linux,… 
• Microkernel: Chorus, LinxOS, PalmOS,… 
• Processor: Pentium, PowerPC,…

Embedded control systems… RT microkernel-based

Large-scale distributed systems… middleware-based



How to Build Dependable Systems
from (Undependable) COTS Components?

Assess the behavior in presence of faults -> Selection

Level of Confidence sufficient -> Integrate

Level of Confidence not sufficient:
   -> Discard!
   -> Fault containment mechanisms & service degradation
    -> Error recovery mechanisms & service continuity



Target Systems: Software Executives

Motivation
Complex software components whose development requires a great deal
of expertise

Basic services (management of memory, communication, synchronization,
tasks, I/O, files, etc.) supporting application requirements

Applications rely heavily on their behavior, including in the presence
of faults

What executives?
Real-time microkernels: Chorus, LynxOS, VxWorks,…

Generic OSs: Linux, Windows,…

Middleware: Corba, Dcom,…
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Fault injection

Targeting COTS microkernels
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Example of 3 fault injection campaigns
SCH: corruption of the running task
TIM: corruption of timers
SYN: corruption of synchronization system calls

Application failures in SCH and TIM and efficient error
detection mechanisms in PCP

Real-time microkernels features



Targeting CORBA implementations

bitflips in IIOP requests



CORBA successive versions

Situation can change according to the evolution of the COTS
implementation through successive versions
 Additional ED and FT mechanisms must evolve accordingly!

ORBacus v3 ORBacus v4
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Conclusion, Ongoing Work & Challenges

Objective Insights to support Developer’s Design Choices and
selection of the most robust COTS candidate

Development of protection mechanisms by means of
complementary wrapping techniques

Solutions to adapt architectural choices, error detection and
recovery mechanisms to the evolution of systems in
operation

Crucial need for dependability benchmarking
Comprehensive set of Benchmark Prototypes: Transaction Systems, OSs,
Embedded Control Applications, …
The DBench project had this aim of disseminating Benchmark Prototypes


