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Abstract

Safety and availability are issues of major importance in many
critical systems. Ensuring simultaneously both attributes is
sometimes difficult. Indeed, the introduction of redundancy to
increase the overall system availability can lead to safety problems
that would not otherwise exist. In this paper, we present a protocol
for duplex redundancy management in critical systems that aims to
increase the system availability without jeopardizing its safety. An
application to a fully-automated train control system is described.

1 Introduction

Fault-tolerant computing systems are increasingly used to meet the stringent
dependability requirements of automatic train control systems that, besides
safety, extend to availability and to maintainability. Indeed, improvement of
quality of service, continuity of service and cost-effective exploitation are adding
new challenges to railway system designers beyond the underlying safety
concerns. The introduction of redundant components is a necessary condition for
increasing the overall system availability with respect to physical component
failures. Here, we consider redundancy based on replicated fail-safe components.
We formally investigate the conditions under which the safety properties of fail-
safe components are preserved when they are replicated. We focus our analysis on
duplicated fail-safe units interconnected with other such duplex systems by means
of a local area network.

Given some safety constraints, we show that inconsistency of replicated units
can lead to safety degradation even if each replicated component (taken
individually) satisfies the given safety constraints. One way to circumvent such a
problem is to avoid inconsistency by using, for example, an atomic broadcast
protocol which ensures that replicated components agree on a consistent
computational state. Unfortunately, such protocols rely on strong assumptions
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that cannot be satisfied with a sufficiently high confidence to meet the safety
requirements of highly critical applications. Indeed, such a solution requires a
perfectly reliable network ensuring bounded inter-process communication times.

Given that one cannot ensure that such strong assumptions will hold all the
time in the real system, we propose a technique to tolerate state inconsistency.
This technique consists in detecting potential inconsistencies and switching the
system to a configuration that does not compromise safety in case of a real
inconsistency. PADRE (Protocol for Asymmetric Duplex REdundancy) is an
implementation of this technique for duplex redundancy, using the timed
asynchronous system model [1]. We have chosen the timed asynchronous model
because this model relies on realistic assumptions. Furthermore, our target
systems (railway systems) have at least one safe state into which they can be
switched at any point in time. This allows us to use the fail-awareness paradigm
[2] to build a fail-safe protocol.

The rest of this paper is structured as follows. In Section 2, we state the
problem by showing how state inconsistency can lead to safety degradation of
replicated components even when each component is fail-safe. In Section 3, we
present the system model. We formally investigate, in Section 4, the conditions
under which the safety properties are preserved. In particular, we present a
technique based on detection of potential inconsistencies and switching the duplex
controller to a configuration where it does not impair safety in case of a real
inconsistency. In Section 5, we present PADRE, which is a protocol that
implements this technique using the timed asynchronous system model. Finally,
Section 6 concludes the paper.

2 Problem statement

The ability to build large complex systems from independently verified
components is necessary for building affordable safe systems. For a critical
system, it is important to guarantee that safety properties or safety constraints
(Sc) of individual components are preserved in a system composed from those
components. Given a set of n fail-safe redundant units u1, u2, …, un which satisfy
individually a safety constraint Sc and a system composed of u1, u2, …, un, the
main problem we address in this paper is the preservation of Sc in that composite
system. We consider the special case where n = 2.

In this section, we show by means of an example that state inconsistency
between redundant units can lead to violation of Sc.
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2.1 Formalism and notations

In this sub-section, we define the formalism and notations that will be used in
the rest of this paper. In particular, we formally define safety constraints by using
temporal logic.

Here we consider a linear temporal logic, based on the set of real-time values Ω,
with three temporal operators:
¨ — meaning “now and forever”,
◊  — meaning “now or sometime in the future”,
◊d — meaning “now or within bounded delay d in the future”.

Given a formula A then ¨A, ◊A, and ◊dA are also formulas. We use:
−  A to express that the formula A is a theorem, i.e., it is always true.

We now use this linear temporal logic to express safety constraints of a critical
system processing a critical transaction defined as a sequence of actions which, if
executed incorrectly, can lead to a catastrophic failure.

Given a critical transaction ct and a unit u, we denote by h the predicate such
that h(ct,u) is true if the unit u is executing the critical transaction ct and false if
not. We define a safety constraint with respect to a critical transaction ct by means
of two predicates L and R on the state Su of a unit u as follows:

(h(ct,u)∧L(Su)) ⇒ ¨(h(ct,u)∧R(Su))

Such a formula expresses that, while executing the critical transaction ct, if the
state Su of unit u becomes such that the predicate L holds then it must be the case
that predicate R holds, and that Su can only evolve in a way that allows the
predicate R to continue to hold. We say that such a formula is a property of a unit
u iff this formula is a theorem for that unit:

−  (h(ct,u)∧L(Su)) ⇒ ¨(h(ct,u)∧R(Su))

2.2 State inconsistency

The introduction of redundancy can lead to safety problems that would not
otherwise exist. We illustrate this problem by means of an example. We consider a
fully-automated train control system made up of a set of section controllers, each
in charge of a section of railway track (Fig. 1). Control of a train is handed over
from one controller to the next when the train is located in an inter-section lock. In
such a system, one of the critical transactions to be handled is automatic train
driving, which is carried out by assigning each train a “target”. A target is the point
up to which a train may proceed, e.g., the next station, the next intersection lock,
the track block before the next train, etc. The section controller must ensure that
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there is no obstacle, e.g., another train, between the current position of the train
and the assigned target.

One way to achieve such a requirement is to ensure that trains’ positions are
known precisely by the section controllers. The following strategy can be used.
To enter into a new section, a train must be identified by the controller of that
section while the train is in the lock. If the train is successfully identified, the train
is registered in the monitoring list of the controller. This monitoring list allows the
controller to periodically poll the trains under its control to check their positions.

Lock
Y

T1T2T3 Z

zone under monitoring of controller k

Section k-1 Section k
Block

Controller kController k-1

ukuk-1

network

Fig. 1: Intersection handover with simplex controllers

Let us denote by drive the critical transaction of automatic driving. Let us
consider the predicates PROCEEDTi,Y and FREETi,Y such that: PROCEEDTi,Y(Suk) is true
if the state of unit uk allows the train Ti to proceed to the target Y and false
otherwise; FREETi,Y(Suk) is true if according to the state of unit uk the track is free
between the current position of the train Ti and the target Y and false otherwise.
By using the previous formalism, one can define a safety constraint for the critical
transaction drive with the following formula:

(h(drive,uk)∧PROCEEDTi,Y(Suk)) ⇒ ¨(h(drive,uk)∧FREETi,Y(Suk))

This formula means that, while unit uk is executing drive (h(drive, uk) is true)
then to authorize train Ti to proceed to Y (PROCEEDTi,Y(Suk) is true), it must be the
case that unit uk perceives the track to be free between the train Ti and the target Y
(FREETi,Y(Suk) is true). Note that PROCEEDTi,Y(Suk) cannot be true if uk has not
registered Ti (a controller cannot assign a target to a train it does not know), but
this does not violate the safety constraint (without a new target, train Ti will stop
at its previous target, in this case, point Z).

Let us consider now that the controller of section k is made up of two units uk1

and uk2 in primary/secondary configuration and with unit uk1 as the primary.
Consider a handover scenario where, due to transmission errors, the primary unit
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uk1 identifies and registers the train T2 at time t and assigns it the target Y, while
the secondary unit uk2 does not register the train T2 (Fig. 1).

Now assume that unit uk1 fails at some time t’ > t while the train T2 is
advancing to the target Y, so uk2 becomes the primary unit of the duplex controller
(Fig. 2).

Lock
Y

T1T2T3
Z

zone under monitoring of controller k

Section k-1 Section k

Controller kController k-1

ghost
trainX

network

uk2uk1

Fig. 2: Intersection handover with duplex controllers

Since uk2 has not registered the train T2, this train has become a “ghost train”.
Indeed, when the train T3 reaches the lock, it is identified by the unit uk2 which
assigns it the target Y instead of X (Fig. 2). Of course, according to uk2’s
computational state there is no train between the current position of train T3 and
the target Y (FREET3,Y(Suk2) = true) so unit uk2 satisfies the safety constraint.
However this will not prevent the train T3 from crashing into the train T2 if it
attempts to reach its target Y. Such a situation cannot happen in absence of
replication. Indeed, if the section controller consists of only a single unit and if
this unit fails to register train T2 then, as stated earlier, train T2 would be forced to
stop at its previous target Z instead of being authorized to enter section k.

To circumvent such a problem, one approach would be to re-specify the
application, by taking into account the fact that the section controller is made up
of two units. Before issuing a critical output (such as allowing a train to enter a
new section), the lists of trains monitored by each unit could be compared to
check that they are consistent. Unfortunately, such an ad hoc solution introduces
redundancy-related considerations at the application level. This makes the
application programs very expensive to build, to verify and to maintain. To avoid
this, we propose a redundancy management mechanism (PADRE) that frees the
application programmer from such complications.
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3 System model

We consider distributed real-time systems for critical applications with
networked controllers made up of two fail-safe units The units can communicate
with each other and with remote units by messages sent over a network (Fig. 3).

Duplex controller

Communication system

Fig. 3: System architecture

We base our approach on the timed asynchronous model [1].
First, the network is very reliable, but not enough for human lives to depend on

it. Thus, from a safety viewpoint, we must assume that the network can lose or
delay messages. However, message integrity is ensured by error-detecting codes.
In the terminology of [3], messages sent over the network have
omission/performance failure semantics.

Second, the units use a cyclic real-time executive such that it can be guaranteed
that a message accepted by an operational unit will be processed in a bounded
time interval or the unit will halt1.

Third, although the local clocks of units are not synchronized, every unit
checks the rate of drift of its local clock with respect to real-time and switches
itself off if the drift exceeds a predefined bound2. Consequently, the local clock of
an operational unit has a bounded rate of drift from real-time.

3.1 Local hardware clock

All processes that run on a unit can access the unit’s hardware clock. Given a
hardware local clock H, we denote by H(t) the value displayed by H at real time t.
We denote by Ω the set of real time values. Let ρ be the constant maximum drift
rate that bounds the drift rate of a correct clock with ρ<<1. We assume that the
clock granularity is negligible with respect to any useful time interval. In fact, we
assume that a correct hardware local clock H satisfies the following relation:

∀ t1,t2∈Ω (t2 - t1)(1 - ρ) ≤ H(t2) - H(t1) ≤ (t1 - t2)(1 + ρ)

                                                
1 Note that this is a stronger condition than that imposed by the process management service of  [1].
2 This requires the local clock to be self-checking; see [4, pp 94-97] for a rudimentary technique.
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3.2 The datagram service

The datagram service provides primitives for transmitting unicast and broadcast
messages. The datagram service can delay or lose messages but provides the
following properties:

• Validity: if the datagram service delivers a message m to a process p at time t
and identifies a process q as m’s sender, then q has indeed sent m at some
earlier time s < t.

• No-duplication: each message has a unique sender and is delivered at a
destination process at most once.

We denote by td(m) the transmission delay of a message m.
We assume that any message sent between two remote processes p and q has a

transmission delay that is at least δmin : ∀m, td(m) ≥ δmin.
Messages can experience arbitrary transmission delays. However, we define a

one-way time-out delay δ, such that: a message m whose transmission delay is at
most δ, i.e., td(m) ≤ δ, is called timely otherwise, the message is late. The constant
δ is closely related to the availability of services built using the timed
asynchronous model. So, δ must be chosen such that most messages are delivered
within δ time units (Fig. 4).

Late messagesTimely messages

δ td(m)

p(td(m))

Fig. 4: Timely and late datagram messages

3.3 ∆-F-subsets and stable-subsets

Given a time interval and two processes p and q, we say that p and q are
F-connected in that time interval, iff i) p and q are timely (their scheduling delays
are bounded), ii) all but at most F messages sent between p and q are timely in that
time interval (delivered within δ time units). When F = 0 we shall simply say that
p and q are connected.

Given a constant ∆ such that ∆ > δ, a process p is ∆-disconnected from a
process q in a given time interval, iff any message m that is delivered to p during
that time interval from q has a transmission delay greater than ∆ time units.



Essamé, Arlat, Powell

We say that a non empty subset of processes S is a ∆-F-subset in an interval
[s, t] iff all processes in S are F-connected in [s, t] and processes in S are
∆-disconnected from all other processes. The notion of ∆-F-subset was introduced
in [1]3.

We say that a non empty subset of processes S is a stable-subset in an interval
[s, t] iff S is a ∆-0-subset in [s, t]. The notion of stable-subset is very useful when
using the timed asynchronous system model. Indeed, a stable subset has the same
behavior as that defined by the synchronous system model. This allows problems
such as consensus to be specifiable in the timed asynchronous system model, but
with respect to stable-subsets. Such specifications rely on a progress assumption
[5] that states that the system is infinitely often “stable”: there exists some
constant η such that for any time s, there exists a time t ≥ s and a majority of
processes SS such that SS forms a stable-subset in [t, t + η].

3.4 The fail-aware datagram service

The basic datagram service presented in Section 3.2 can delay messages.
However, since such late messages can impair safety, we require a fail-aware
datagram service similar to the one described in [6].

Given a constant ∆, the fail-aware datagram service computes an upper bound
ub(m) on the real transmission delay of each m and classifies m as fast or slow
according to the following rule:

if ub(m) < ∆ then m is fast
else m is slow.

In particular, if processes exchange message periodically, the constant ∆ can be
chosen such that timely messages are always classified as fast messages. Then, the
fail-aware datagram service provides the following properties:

• Validity: if the fail-aware datagram service delivers a message m to a process
p at time t and identifies a process q as m’s sender, then q has indeed sent m
at some earlier time s < t.

• No-duplication: each message has a unique sender and is delivered at a
destination process at most once.

• Fail-awareness: each message classified as a fast message has experienced a
real transmission delay of at most ∆ time units.

∀m (m is fast) ⇒ (td(m) < ∆)

                                                
3In [1], the term ∆-F-partition was used. We have chosen the term ∆-F-subset to avoid
misunderstanding with the mathematical meaning of a partition as a set of disjoint subsets.
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• Timeliness: there exists a constant τ such that if two processes p and q
exchange messages at least every τ time units then, if p and q are connected
in an interval [s - δ, s + τ], each timely message sent in [s, s + τ] must be
classified as a fast message.

For more details on how to compute the upper bound ub(m) and how to choose
the constant ∆ such that the Fail-awareness property and the Timeliness property
always hold, the reader should refer to [6].

The fail-aware datagram service is fundamental for our redundancy management
mechanism. Indeed, this service is used to detect when the communication system
has suffered a performance failure. In addition, our mechanism uses the same fail-
awareness philosophy to deliver messages to the application layer.

4 Safety properties preservation in a duplex controller

We have shown in Section 2.2 that state inconsistency can impair safety. One
solution to handle this problem could have been to avoid state inconsistency by
having units agree before accepting new inputs. Unfortunately, it has been shown
that two units cannot achieve agreement if messages between them can be lost
(e.g., see the two generals’ problem in [7]). Here, we present an alternative
solution that allows the safety constraints to be guaranteed by tolerating state
inconsistency. The key idea of our approach is to detect potential state
inconsistencies and to switch the duplex controller to a configuration which allows
the safety constraints to hold in case of a real inconsistency. To achieve that, we
use an asymmetric coordination of replicated units. The asymmetric coordination
of replicated units consists of letting one unit, called the Primary, have a
dominating role with respect to the other unit. The Primary can take unilateral
decisions (such as the order in which the inputs must be accepted). The Primary
can impose its choice on the other unit without resorting to a consensus protocol.
Asymmetric coordination is particularly attractive when it is impossible to have a
majority agreement, as in the case of a duplex controller. However, one can only
use this technique if the Primary cannot send erroneous messages, which is the
case here since all units are fail-safe.

4.1 Mode of operation of a fail safe-unit

To achieve the asymmetric coordination of a duplex controller, we define four
modes of operation for each fail-safe unit: primary, standby, quarantine and failed
(Fig. 5). When the unit is in the quarantine or failed modes, it is said to be non-
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operational or safe, and cannot deliver outputs to the environment. A unit in the
primary or standby modes is said to be operational.

primary standby

quarantinefailed

Failure

Init

In quarantine

R
e-

in
te

gr
at

io
n

Redundancy swapping

Failure

Failure

Operational 

Non operational

Fig. 5: Modes of operation of a fail safe unit

A unit is in the primary mode when it is the current Primary. A unit in the
standby or the quarantine modes is called the Secondary. The current Secondary
can be in the standby mode only if its state is consistent with the current
Primary’s state. Otherwise, it is in the quarantine mode. The quarantine mode is
an intermediate mode that is introduced for safety purposes: the Secondary is put
in quarantine when its state might be inconsistent with the Primary’s state.
Toward this goal, we can state the following objective for safe operation: The
protocol that manages the redundant pair of units must either ensure that their
states are kept consistent or else force the Secondary  into the quarantine mode.

The quarantine mode allows a configuration of the duplex controller (one unit in
the primary mode and the other unit in the quarantine mode) which does not
impair safety. Indeed, when the Secondary unit is in quarantine, it is non-
operational, so it cannot carry out any interaction with the environment (thus
avoiding actions that could be in conflict with safety actions carried out by the
Primary unit), nor can it be switched to the primary mode (thus avoiding the sort
of situation described in Section 2.2).

We call nominal configuration, the configuration where one unit is in the
primary mode and the other unit is in the standby mode. We call safe
configuration, the configuration where one unit is in the primary mode while the
other unit is in quarantine. In the nominal configuration, availability is ensured
even a unit fails. In the safe configuration, fault-tolerance is sacrificed temporally
so as to ensure safety. In that configuration, availability is only ensured if the
current Primary does not fail. However, in both configurations, safety is always
ensured. In the safe configuration, a recovery procedure allows the Secondary unit
to reinitialize its state from the Primary unit, allowing the duplex controller to
revert to the nominal configuration.
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In the next two subsections, we give some safety-related and availability-
related properties of the redundancy management mechanism.

4.2 Safety-related properties

We call history of unit u at time t, denoted H(u,t), the string of events that unit
u has accepted since its initialization up until time t, ordered following the time of
taking them into account. Given two units i and j, we say that H(i,t) is a prefix of
H(j,t) (denoted H(i,t) p H(j,t)) iff H(i,t) is a segment of H(j,t) and
inf(H(i,t)) = inf(H(j,t)) where inf(H(i,t)) denotes the first element of H(i,t).

Let Su(t) be the state of a unit u at time t and Eu(t) its mode, with
Eu(t)∈{primary, standby, quarantine, failed}. Here we define three properties that
are needed to guarantee a safe behavior of a redundant pair of fail-safe units u1 and
u2. Given i and j, such that i,j∈{u1,u2}, i ≠ j, then the following properties are
required4 :
UP: Unique Primary: both units cannot be in the primary mode

simultaneously:
−  (Ei = primary) ⇒ (Ej ≠ primary)

MQ: Quarantine: the Secondary unit must leave the standby mode within a
bounded delay Q if its state is inconsistent with the Primary’s state and
it cannot return to the standby mode while its state is inconsistent:
−  (Ei = primary) ∧ (Si ≠ Sj) ⇒ ◊Q¨((Si ≠ Sj) ⇒ (Ej ≠ standby))

PH: Prefix of History: the history of the Primary unit must always be a prefix
of the history of the Secondary unit:
−  (Ei = primary)∧(Ej = standby) ⇒ (H(i) p (H(j))

The UP property prohibits the possibility of having two Primary units. This is
for safety, since we must have only one Primary at any given instant. The MQ
property reflects the need to ensure that the Secondary unit cannot be maintained
in the standby mode if its state is inconsistent with the Primary’s state. However,
inconsistency is authorized for a bounded duration (operator ◊Q) at the end of
which the Secondary unit must leave the standby mode. The Secondary unit
cannot come back to the standby mode while its state is still inconsistent
(operator ¨). The PH property ensures that the Secondary unit is aware of all
events that have been taken into account by the Primary. In particular, this
property ensures that the computation carried out by the Secondary unit cannot
be late with respect to that of the Primary unit. This is a very useful property
when redundancy switching occurs. Indeed, it ensures that the Secondary unit has

                                                
4 The temporal logic notation allows all properties to be stated without explicit time parameters.
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at least the same knowledge of the controlled process as the Primary unit. So,
since both units are fail-safe, if the Primary unit leaves the controlled process in a
non-dangerous state then the Secondary unit, when becoming Primary will
maintain the controlled process in a non-dangerous state.

Moreover, property PH guarantees that the Secondary unit cannot revert to the
standby mode without recovering its history from the Primary unit. Indeed, let us
suppose that unit i is in the primary mode (Ei = primary) and that unit j does not
recover its history from unit i, i.e: ¬(H(i) p (H(j)), we have:
(1) −  (Ei = primary); (hypothesis: unit i is in the primary mode)
(2) −  ¬(H(i) p (H(j)); (hypothesis: unit j does not recover its history from unit i)
(3) −  (Ei = primary)∧( Ej = standby) ⇒ (H(i) p (H(j)); property PH
(4) −  ¬(H(i) p (H(j)) ⇒  ¬((Ei = primary)∧(Ej = standby)); contraposition of (3)
(5) −  ¬(Ei = primary)∨¬(Ej = standby); modus ponens on (2) and (4)
(6) −  (Ei = primary) ⇒ ¬(Ej = standby); rewriting of (5) and definition of ⇒
(7) −  ¬(Ej = standby); modus ponens on (1) and (6); or equivalently:
(8) −  Ej ≠ standby; unit j cannot be in the standby mode n.
This result can be summarized by the following relation:

−  (Ei = primary)∧¬(H(i) p (H(j)) ⇒ (Ej ≠ standby).

In conclusion, property PH imposes the implementation of a recovery
mechanism that allows the Secondary unit to recover its history from the Primary
unit. It has been shown formally in [8] that properties UP, MQ and PH are
sufficient to ensure preservation of the safety constraints of redundant fail-safe
units in a duplex controller.

4.3 Availability-related properties

While a unit is in the quarantine mode, it cannot deliver outputs to the
controlled process. Moreover, it is unable to replace the other unit should the
latter fail. Consequently, to provide availability, the protocol must attempt to
maintain the Secondary in the standby mode or to bring it back to that mode when
it has been put into quarantine.

To ensure availability, two progress properties must therefore be respected,
but only in the absence of failures:

AG: Agreement: there exists a constant τ such that, in absence of failures,
every message accepted by one unit at time t must have been accepted by
the other unit within the interval [t - ω, t + ω]

LQ: Limited Quarantine: in absence of failures, a unit in the quarantine mode
must eventually switch back to the standby mode.
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Property AG prevents useless solutions in which the unit in the standby mode
immediately switches to the quarantine mode. Property LQ prevents the trivial
solution in which one unit always remains in the quarantine mode. For safety,
there is no obligation to achieve consistency or to maintain both units operational
since those are availability requirements. However, there is an obligation to put
and keep the Secondary unit in quarantine whenever its state is inconsistent with
the Primary’s state.

5 PADRE

In this section, we present a redundancy management protocol called PADRE
(Protocol for Asymmetric Duplex REdundancy) which ensures the properties UP,
MQ, PH, AG and LQ. The protocol is implemented by means of two protocol
entities (one in each unit) which intercept all messages addressed to the
application layer (Fig. 6). The protocol attempts to deliver all messages to the
application layer of both units. If a transmission error should occur that prevents
the message from being delivered to the application layer of both units, then a
state inconsistency can occur. In this case, the protocol must ensure that property
MQ holds by forcing the Secondary unit to switch to the quarantine mode.

PADRE

Duplex

fa-datagram

PADRE

fa-datagram

Application
process

Protocol 
messages

Protocol 
entities

Inputs 
messages

Legend

Application
process

Communication system

Fail-safe
unit

Fail-safe
unit

Fig. 6: Padre
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5.1 Specifications

PADRE uses the fail-aware paradigm to ensure safety. The protocol relies on a
fail-aware datagram service and satisfies the following requirements:
R1: Validity: if PADRE delivers a message m to an application process p at time

t and identifies a process q as m’s sender, then q has indeed sent m at some
earlier time s < t.

R2: No-duplication: each message has a unique sender and is delivered at a
destination process at most once.

R3: Fail-awareness: there exist two constants ω and Q such that, if the protocol
entity of the Primary unit receives a message m at time t, and the Secondary
unit is in the standby mode, then:  
a) either the protocol entity of the Primary delivers m to its application

layer at time t1 (t1 > t) with a true indicator if m has been delivered to
the application layer of the Secondary within the interval [t - ω, t].

b) or the protocol entity of the Primary delivers m to its application layer
at time t1 (with t1 > t + Q) with a false indicator and the Secondary is
put into quarantine, if it does not fail, at the latest at time t + Q.

R4: Asymmetry: the protocol entity of the Secondary only delivers to the
application layer messages that are forwarded to it by the protocol entity of
the Primary. All such messages are delivered with their indicator set to true.

R5: Timeliness: There exists a constant I such that when the Secondary unit is in
the standby mode:
a) if both protocol entities are connected in the interval [t, t + I], then the

Secondary unit is not put in quarantine in this interval;
b) if the Primary unit fails at time t, the Secondary unit must switch to the

primary mode within the time interval [t, t + I].
The requirements R1 and R2 are safety-related requirements which ensure that

PADRE delivers only real messages. Furthermore, requirement R1 is necessary to
ensure property PH. Requirement R3 bounds the difference between the instants
at which the protocol entities deliver messages to the application layer. Indeed,
this requirement ensures that when the protocol entity of the Primary delivers a
message to its application layer, this message has been delivered to the application
layer of the Secondary or the Secondary has been put into quarantine. In
particular, its clause R3-a) allows properties AP and PH to be satisfied while its
clause R3-b) allows property MQ to be satisfied. Requirement R4 expresses the
asymmetric behavior of the protocol. An indicator set to true tells the application
entity (should it wish to know) that the duplex pair is still capable of tolerating a
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fault. Requirement R5 ensures that the duplex controller remains available in the
absence of communication failures.

Property UP concerns the designation of the Primary unit. To fulfil this, it
would have been desirable to use a software mechanism such as a leader election
protocol. Therefore, considering the fault assumptions of our system model
(unbounded communication delay and messages can be lost), this would require a
third unit to allow a majority decision. The principle used would then be as
follows: a unit of the duplex computer which wishes to become the Primary must
obtain the support of that third unit, knowing that the latter can only support one
unit at a time, and this support is of limited duration and has to be renewed
periodically. Such an extension to redundancy levels greater than two is described
in [8].

However, such an approach is contrary to the principle of autonomous duplex
controllers. Therefore, the property UP is handled by hardware using a bi-stable
safety relay which ensures that only one unit can be in the primary state at once.

In conclusion, the requirements R1 through R5, together with the bi-stable
safety relay, allow satisfaction of the properties UP, MQ, PH and AP. The
property LQ is taken into account by the Secondary recovery mechanism, which
will be described later.

5.2 Description

We successively describe the nominal and safe configurations.

Nominal configuration: in this configuration, both units are operational. So, safety
is the key issue. The main idea is to attempt to ensure state consistency through
broadcasting inputs to both units atomically. If atomicity cannot be ensured, the
Secondary unit is put into quarantine, to ensure safety property MQ. The
principle used is the following (Fig. 7):
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Fig. 7: PADRE  principle
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a) Primary
§ Send, every R time units, a message to the Secondary “Don’t switch to

quarantine” and set the quarantine time-out delay Q (the quarantine time-
out delay is the time-out delay such that if the Primary stops sending
“Don’t switch to quarantine” messages at time t then the Secondary will
leave the standby mode at the latest by time t + Q).

§ Each time an input message is received from a remote controller, forward
this message to the Secondary, set a wait time-out delay of A time units and
wait for an acknowledgement:
• if the acknowledgement is received before the wait time-out expires,

accept the message;
• if the wait time-out expires then start operating autonomously:

- stop sending “Don’t switch to quarantine” messages,
- stop forwarding input messages to the Secondary,
- accept the pending message(s) after the quarantine time-out delay Q

expires.
§ If the Primary fails, the safety relay will switch the current Secondary to the

primary mode.
b) Secondary
§ Wait for the periodic “Don’t switch to quarantine” message. When receiving

such a message, set a stay-alive time-out delay I (Fig. 7). If no such message
is received before the stay-alive time-out expires, then switch to the
quarantine  mode.

§ Each time an input message is received directly from a remote controller,
forward this message to the Primary (when the Primary receives this
message, it behaves as previously).

§ Each time an input message is received from the Primary, send an
acknowledgement to the Primary and accept the message. (Note that the
message can be accepted immediately by the Secondary since the Primary
has seen the same message, so the latter will either accept the message in a
bounded time or cause the Secondary to switch to the quarantine mode.)

§ The failure of the Secondary has no immediate effect. The Primary will be
informed of the failure when it next attempts to forward a message since it
will not receive an acknowledgement.

Safe configuration: in this configuration, the Secondary unit is in quarantine. So,
the key issue is availability since, while the Secondary unit is in quarantine, it is
not in a position to replace the Primary should the latter fail. For availability, the
state of the Secondary has to be made consistent with that of the Primary so that
it can revert to its backup role. This is achieved by executing a protocol that
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copies the state of the Primary to the Secondary. We use the recursive state
recovery protocol of [9]. In this protocol, the state is divided into “chunks” that
can be transferred in a single message. A tagging mechanism is used to identify
chunks that have been modified since they have been transferred. The transfer of
chunks continues recursively until there are no newly-tagged chunks. The last
chunk is identified as such by the Primary. The Secondary must remain in
quarantine until state transfer has been successfully completed. The protocol can
be summarized as follows:
a) Primary
§ Transfer state to Secondary. When the last state transfer message has been

sent to the Secondary5:
• resume forwarding input messages, instead of delivering them directly to

the application,
• resume sending “Don’t switch to quarantine” messages.

b) Secondary
§ Wait for last state transfer message and switch to the standby mode.

For improved availability, messages and message acknowledgements can be
repeated.

5.3 Choice of the quarantine time-out delay Q

Due to space restriction, we cannot give the expressions of all PADRE’s
parameters (A, R, I, ω and Q). However, since the quarantine time-out delay is a
key parameter of PADRE, here we give the relationship that must be satisfied
when choosing this delay.

To establish this relation, we consider the scenario illustrated by Fig. 8, where
the Primary unit sends a “Don’t switch to quarantine” message at time t1 and this
message is received by the Secondary unit at time t2.

                                                
5 Note that it is not necessary for the Primary to wait for the acknowledgment of the last chunk to resume
forwarding input messages. If the last chunk is lost, then the Secondary will not switch to the standby
mode and so will not acknowledge messages forwarded to it by the Primary, which will cause the latter
to resume autonomous operation.
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Fig. 8: The quarantine time-out delay Q

By definition, the “Don’t switch to quarantine” message allows the Secondary
unit to stay in the standby mode until time t3 such that I = Hs(t3) - Hs(t2) where I
is the stay-alive time-out delay and Hs the clock of the Secondary unit. So that the
Primary can be sure that the Secondary unit has put itself into quarantine, it is
required that: Hp(t3) ≤ Hp(t1) + Q or equivalently: Q ≥ Hp(t3) - Hp(t1).

We have:
t3 - t1 = (t3 - t2) + (t2 - t1) (1)

Since clocks of both units have bounded drift rate (ρ <<1), one can write:
Hp(t3) - Hp(t1) ≤ (t3 - t1)(1+ρ) (2)

and:
(t3 - t2) ≤ (Hs(t3) - Hs(t2))(1+ρ) = I(1+ρ)  (3)

We use the fail-aware datagram service to transmit the “Don’t switch to
quarantine” messages and throw away all slow messages. This guarantees that the
Secondary cannot use a message with a transfer delay greater than ∆ to refresh its
stay-alive time-out delay. So, one can write:

t2 - t1 ≤ ∆ (4)
Substituting (3) and (4) into (1) we obtain:

t3 - t1 ≤ ∆ + I(1+ρ) (5)
It follows from (2) and (5):

Hp(t3) - Hp(t1) ≤ ∆ (1+ρ) + I(1+2ρ) (6)
So, to ensure that the Secondary unit has put itself in quarantine knowing that

the Primary unit has stopped sending “Don’t switch to quarantine” messages, one
must have:

Q ≥ ∆(1+ρ) + I(1+2ρ)
This use of time-out to communicate knowledge without explicit message passing
is the “communication by time” paradigm of [1, 5].
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5.4 Application of PADRE

PADRE has been applied to the fully automated train control system with
networked duplex controllers considered in Section 2.2. We have shown that, in
such a system, the inconsistency of lists of monitored trains maintained by each
unit of a section controller can compromise safety. We illustrate in this subsection
how PADRE can be used to circumvent such a problem without re-specifying the
application. Indeed, PADRE allows transparent re-use of an application program
designed for a non-redundant section controller.

Each replicated unit has a PADRE protocol entity which intercepts all
messages that are addressed to the application modules of the unit. PADRE’s
protocol entity works as follows. When a message such as “Train T2 is entering
in section k” is addressed to an application module, this message is intercepted by
the protocol entity, which applies the protocol we have previously described. Let
us suppose that the Primary unit of section controller k receives the message
“Train T2 is entering in section k” (see Fig. 1). Its protocol entity will intercept
this message and forward a copy to the protocol entity of the Secondary unit and
set a timeout delay. If the protocol entity of the Secondary receives that copy, it
sends an acknowledgment to the protocol entity of the Primary and delivers the
message to the Secondary’s application module. If the protocol entity of the
Primary unit receives the acknowledgment before the timeout delay expires, it
delivers the message to the Primary’s application module. Otherwise, it stops
refreshing the Secondary unit and waits Q time units since its last “Don’t switch
to quarantine” message before delivering the message to the Primary’s application
module.

This principle ensures that when the Secondary unit is not in quarantine, it is
always aware of all events that have been taken into account by the Primary unit.
This ensures safe operation of the duplex controller without changing the
application modules.

6 Conclusion

In order to tolerate state inconsistency in a duplex fail-safe controller, we have
presented a technique that consists in detecting potential inconsistencies and
switching the duplex controller to a configuration where it does not impair safety
in case of a real inconsistency.

Using the timed asynchronous model and the fail-awareness paradigm, we have
developed a protocol which implements this technique. The key idea of the
protocol is to try to keep both units consistent by attempting to agree on input
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messages; however, if this agreement fails, the protocol switches the duplex
controller to a configuration ensuring safe operation.

This protocol has been applied to a fully-automated train control system made
up of duplex controllers. This protocol provides a design paradigm enabling a
substantial reduction in the cost of designing and validating critical systems.
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