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Summary & Conclusions - This study addresses the use of 
fault injection for explicitly removing designhnplementation faults 
in complex fault-tolerance algorithms & mechanisms (FTAM), viz, 
fault-tolerance deficiency faults. A formalism is introduced to repre- 
sent the FTAM by a set of assertions. This formalism enables an 
execution tree to be generated, where each path from the root to 
a leaf of the tree is a well-defined formula. The set of well-defined 
formulas constitutes a useful framework that fully characterizes 
the test sequence. The input patterns of the test sequence (fault 
& activation domains) then are determined to cover specific struc- 
tural criteria over the execution tree (activation of proper sets of 
paths). This provides a framework for generating a functional 
deterministic test for programs that implement complex FTAM. 

This methodology has been used to extend a debugging tool 
aimed at testing fault tolerance protocols developed by BULL 
France. It has been applied successfully to the injection of faults 
in the inter-replica protocol that supports the application-level fault- 
tolerance features of the architecture of the ESPRIT-funded Delta4 
project. The results of these experiments are analyzed in detail. 
In particular, even though the target protocol had been in- 
dependently verified formally, the application of the proposed 
testing strategy revealed two fault-tolerance deficiency faults. 

1. INTRODUCTION 

Acronyms 

FT fault-tolerance 
ftd FT deficiency 
FTAM FT algorithms & mechanisms 
FT/TS the FT test strategy proposed in this paper. 

According to the now widely recognized dependability ter- 
minology [ 1,2]  and as illustrated in [3], fault injection encom- 
passes both objectives of the dependability validation process: 
fault removal and fault forecasting. 

Concerning the fault removal objective, fault injection is 
explicitly aimed at reducing, by verijcation, the presence of 

'The singular & plural of an acronym are always spelled the same. 

Testing of Fault Tolerance 

faults in the designlimplementation of FTAM whose conse- 
quences would be deficiencies in their anticipated behavior when 
faced with faults that are explicitly intended to handle. That is, 
faults are injected to uncover such potential ftd-faults and thus, 
to determine the most appropriate actions for improving the 
FTAM. 

For fault forecasting, the main issue is to rate, by evalua- 
tion, the eficiency of the operational behavior of the FTAM. 
This type of test is aimed mainly at estimating the parameters 
that usually characterize the operational behavior of the error 
processing and fault treatment: coverage and latency. 

Much work has been devoted to fault injection [4-lo]. Until 
recently, most experiments on actual fault-tolerant systems have 
dealt mainly with the fault-forecasting objective. We have shown 
[l 11 that the data gathered during experiments aimed at fault 
forecasting can be used in a feedback loop, to impact the 
designhmplementation of the FTAM. However, this extrinsic 
fault-removal capability corresponds only to a by-product and 
is in no way a systematic approach for testing complex FTAM. 

Usually, fault-injection based attempts to validate (verify 
& evaluate) FTAM that consist of test sequences where the in- 
put patterns (the injected faults) are selected according to 
fault/error models intending to simulate (as much as possible) 
the consequences of activating real faults. Heavy ion radiation 
[ 121, pin-level fault injection [7] , software-implemented fault 
injection [13-151, failure acceleration [6], or as well, fault in- 
jection in simulation models [lo, 161 are typical techniques to 
reach this objective in the context of physical- or software-fault- 
injection experiments. See also [17, 181 for surveys on these 
fault-injection techniques. 

As expressed in [3], more efficient & direct approaches 
to this problem need to be investigated. Indeed, real fault- 
tolerant system correspond to distributed computing architec- 
tures that incorporate a variety of (hardware & software) error 
detection and error-processing techniques. Although in several 
cases, elementary error detection mechanisms are simple, their 
interconnection can pose serious testing problems. Furthermore, 
the error processing and application-level FT features usually 
rely on complex software-implemented FT protocols that need 
to be tested thoroughly. This need has also been recognized in- 
dependently in [ 191 which describes the FT testing techniques 
used for the FAA Advanced Automation System, and in [20] 
and, subsequently, in [21] which proposes heuristics for deter- 
ministically testing FT protocols. 

A detailed representation of such complex FTAM and, in 
particular, of their structure is needed to improve the efficien- 
cy of a fault-injection test sequence. Indeed, this would enable 
the test criteria to be extended to include structural criteria 
establishing explicit conditions for determining the input pat- 
terns (from both fault & activation attributes) that activate the 
FTAM . 

This knowledge then can provide a useful basis for guiding 
the fault-injection process, in particular for: 
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monitoring the coverage of the test sequence with respect to 

favoring the detection of potential ftd-faults 

Such guidelines are of prime interest for controlling a fault- 
injection test sequence, because the number of faults that can 
be injected in practice is limited. As such, the test should restrict 
the number of redundant experiments (injected faults that lead 
to an equivalent sensitizing of the FTAM). 

Here, we address the problem of efficiently testing FTAM 
that feature the kind of functions implemented by FTprotocoZs 
(diagnosis, decision-making, and reconfiguration) in a 
distributed computing environment. We elaborate on work 
previously reported in [22]. In particular, we report on an 
enhanced set of experiments performed when applying the 
FT/TS on a real FT protocol; the presentation & analysis of 
the results obtained have been extended accordingly. 

Section 2 presents the motivation for using a formal testing 
approach. Sections 3 & 4 present the formalism and its applica- 
tion, respectively, to the testing of FTAM by way of fault in- 
jection. Section 5 applies FT/TS to an actual FT protocol, viz, 
the Inter Replica protocol (IRp) of the Delta-4 fault-tolerant 
distributed architecture [23]. Section 6 describes the FT/TS aim- 
ed at providing a general framework suitable to define, con- 
struct, and conduct fault injection-based test sequences 
specifically aimed at removing ftd-faults. Section 7 discusses 
the results and their application. 

the extended test criteria and, thus, 

(design/implementation faults in the FTAM) . 

2. MOTIVATION FOR USING 
A FORMAL TESTING APPROACH 

The choice o f  

* a description level, 
a formalism, 
the derivation of the model, 
the model’s processing, 

for determining the input patterns of the test are important issues. 
The description level depends on the phase, during the 

development process of the FTAM, when the fault-injection test 
sequence is to be performed. In early design phases, only high- 
level functional information is available; however, the expres- 
sion of the requirements constitutes a valuable framework for 
specifying the predicates that characterize the service of the 
FTAM to be used for testing in subsequent phases. The more 
implementation details that are available, the more structural 
features that can be included in the model, and the richer are 
the conditions characterizing the control patterns. However, in 
practice, the complexity of the FTAM considered requires - 
even when the implementation is available - that the 
description: 

* be an abstraction of the implementation that can be formally 

0 is compatible with the predicates characterizing the service 
expressed, 

of the FTAM. 

The benefits anticipated from this approach come from two 
distinct issues: 

The specific simplicity of the service provided by most FTAM 
(tree-like structure, strong dependence on fault set, and limited 
dependence on activation set [20]). 
The ultimate goal is to characterize as precisely as possible 
a fault injection test sequence to be performed on the com- 
plete FTS. rl 

Potential candidate models for conducting such a test in- 
clude graphical or procedural expressions of the structure and/or 
behavior of the FTAM. Typical examples are trees, Petri nets, 
flow charts, state machine languages, and Calculus of Com- 
municating Systems (CCS-based languages: Estelle & LOTOS 
languages [24]). The formalism to be used for describing the 
FTAM must: 

provide facilities to access, either directly or implicitly, the 
path features needed to develop structural testing strategies. 

0 must permit expression of both the specification of the ser- 
vice and the details abstracted from the implementation, in 
order to conduct the test. 4 

A model that satisfies many of the requirements for 
developing structural testing strategies is a program path tree. 
In [25],  the tree nodes represented the structures or instruction 
blocks, and tree edges denoted the temporal relationship ex- 
isting between the nodes. We have shown that this type of path 
tree offers excellent opportunities for accessing either directly 
or implicitly the path features needed to develop structural 
testing. 

However, to overcome the problem of the complexity of 
the program implementing the FTAM and to provide the 
designer with possibilities for dealing with the design faults by 
means of modifying the model of the FTAM (the set of asser- 
tions), a formalism has been chosen for obtaining the model 
of the FTAM and the tree of all possible executions: the execu- 
tion tree. 

This formalism is equivalent to state transition models or 
Petri nets; however, it more easily supports design changes and 
also features consistency & completion checks of the model. 
The process of constructing an execution tree can be related 
to the construction of a proof tree in symbolic execution ap- 
proaches [26]. However, FT/TS is different, as it encompasses 
both symbolic execution of the model and testing of the actual 
implementation of the protocol software. Section 3 defines this 
formalism in detail. 

3. DEFINITION OF THE FORMALISM 

Acronyms & Abbreviations 

WDF well-defined formula 
A-WDF activated WDF 
ET execution tree 
EV event variable 
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A-EV 
AA 
SAA 
SAA* 
IEV 

TERM 
I-IEV 

Notation 

activated EV 
atomic action 
sequence of AA (involves more than 1 AA) 
an AA or SAA (this is used for simplicity of notation) 
initial EV 
installed initial event variable: an edge 
TERMinating event variable. 

e 
r 
U 

d 
II/ 

4 an injected fault. 
* 
o 
& AND 
V OR 
1 NOT 
IP( a )  Input_Predicate(Pre-Condition) 
PEAT( a )  Possible Events on Action Termination 

set of basic elements (section 3.1) 
set of rules forming WDF (section 3.2) 
set of assertions (section 3.3) 
set of derivation rules (section 3.4) 
output predicate associated with the event variable 
labeled TERM 

implies: logically follows in time 
implies: as a result may come one of the following 

= Output-Predicate(Post-Condition). 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

The quadruple ( e ,  r, a,  d )  is defined as a formalism. 

3.1 Set of Basic Elements 

The set e consists of the subsets: 

EV; 
SAA*; 
logical connectives: &, V (OR), 1 (NOT); 
left & right parentheses: (, ); 
*, ”; 
dedicated EV: IEV and TERM. 

An EV is a variable that modifies its value after occurrence of 
an event. An event can be internal or external to the program. 
An example of an internal event is the completion of an SAA* , 
which corresponds to the execution of some procedure(s) in the 
program. Examples of external events are received messages 
and injected faults. An EV can be an observable parameter of 
the system that can have two states, FALSE and TRUE. 

IP( .) establishes the conditions for activating the SAA* . 
PEAT( .) defines a set of EV, among which one might 

become TRUE after the completion of the SAA*. 
An AA is indivisible in the sense that, once initiated, it 

is carried out to completion. SAA is a more complex action. 
An SAA* is performed by some procedure(s) that can change 
the status of only one EV -E PEAT from FALSE to TRUE, 
or can leave all EV unchanged. The EV whose status is to be 
changed depends on the procedure(s). 

3.2 Set of Rules 

The set r of rules (R1 - R4) forms a WDF. 

R1. Each WDF starts with IEV. 
R2. A WDF is a sequence of alternating EV and SAA*, 

R3. Each WDF terminates with TERM. 
R4. The semantics of the WDF describes the behavior of 

connected by ‘ ‘ * ’ ’ . 

the system under design, according to its specification: 

IEV * SAAj * EVj * SAAi.1 * EVj+l * ... * TERM. 

(1) 

Eq (2) is a section: 

EVj * SAAf * EVj+l. 

An example of a section is: 

C4 * COMPLEX ACTION-l(vote) = ’Cl, 

C 1, C4 are branching variables 

COMPLEX ACTION-l(vote) is a complex action. 

Each WDF can be considered as a chain of sections. 

3.3 Set of Assertions 

The formal specification of the system is a set of asser- 
tions a of the form: 

IP(EV1, EV2, ..., EV,) * SAAT PEAT(EVi,l, EVi,Z, 

. . . , EVj,,). (3)  

An assertion is activated when its IP(.) is TRUE. Several 
criteria for the set of assertions a are postulated as: 

Al .  the set a is a formal description of the specification; 
A2. it must be complete, in the sense that a WDF could 

be derived in the formalism < e ,  r, a,  d> , ie, there are no 
missing-assertions (a successor exists for every EV); 

A3. it must be consistent: only one assertion can be ac- 
tivated at a given time. 

Example 3-1 

The #a & #b are 2 assertions: 

a. IP(ACK & WRRAVLl ) * STOP RR 8 C2 V ’C2, 
b. IP(ACK & WRRAVLl & C2) * cnf + o VALIDATED 

-TERM ; 

C2 is a branching variable, 
0 ACK is an external EV. 
0 WRRVALl and VALIDATED are internal EV that corres- 

pond to certain states of the model. 
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For the state transition model, IP( a )  of the assertion con- 
tains a state variable. The following chain of sections is activated 
by executing sequentially assertions #a & #b: 

WRRAVLl * CHECKEV.DEV * ACK 3 STOPRR * 
C2 * cnf + e VALIDATED-TERM. -4 

Example 3-2 

The #c is an example of an assertion (generated) by the 
interpreter where the IP( .) gathers all edges leading to the same 
action cnf-(MI) abort and provides the same output post- 
condition KILLED (TERM). 

Table 1 shows the algorithm for building the ET. During 
the automatic generation of the ET, if no assertion is activated, 
it means that a is not complete (there are missing assertions) 
or if more than one assertion is activated, then a is not consis- 
tent. The missing assertions and the contradiction between asser- 
tions require a to be checked. In such cases, some revisions 
should be made by the system designer to complete the genera- 
tion of the ET. 

4. FORMAL TESTING OF FTAM 
BY FAULT INJECTION 

c. IP(C1 & ’C2 & ‘TURN & (WRRVALl V WTOKEN) V The ET obtained by the algorithm of table 1 can be used 
C1 & ’C2 & CLAIM & (WRRVALl V WTOKEN ) V 
ACK & ’C2 & (WTOKEN v WRRVALl v WCPVAL1) 
V LOCAL REQUEST & ’C2 & (WSIGNO V WACKO V 
WREQ) V CLAIM & C1 & ’C2 & WCPVALl) * cnf- 
(MI), abort e KILLED-(TERM); 

C1, C2 are branching variables, 
TURN, CLAIM, ACK, LOCAL REQUEST are external EV, 
WRRVAL1, WTOKEN, WCPVALl, WSIGNO, WACKO, 
WREQ are internal EV that correspond to certain states of 
the model. -4 

3.4 Set of Derivation Rules 

Consider a WDF that is valid with regard to the anticipated 
behavior of the FTAM. The set d gives the rules (D1 - D6) 
for this WDF to be derived from the set of assertions a. 

D 1. The WDF is processed step-by-step from the beginn- 
ing (IEV) to the end (TERM). At every step, one section is ex- 
ecuted as depicted by (2). 

D2. At each step of formal derivation, a is searched to find 
an assertion for which: 

the IP( .) of the assertion is true (the assertion is activated); 
the SAA* in the activated assertion corresponds to the SAA* 

the PEAT(.) of the activated assertion includes the post- 
in the current section of the WDF; 

conditions of the current section of the WDF. 

D3. If such an assertion (in D2) does not exist, then a is 

D4. If there exists more than one assertion that is activated, 

D.5. If only one assertion is activated, proceed to D6. 
D6. The formal derivation continues if the post-condition 

of the current section is not TERM. The derivation is successful 
when TERM is reached. 4 

Such a WDF thus can be considered as a test case for a.  

incomplete. 

then a is inconsistent. 

3.5 Execution Tree 

Dejnition: An ET is a tree graph with EV as edges and SAA* 
as nodes. Only one edge (IEV) extends from the root; edges, 
labeled TERM, lead to the leaves of the tree. 

as a general structure to represent the behavior of the FTAM. 

Table 1. Algorithm for Generating an Execution Tree 

begin 
IEV = “TRUE” 
while (there exist non-terminated edges in the tree) 

EDGE =one of the nonterminated edges, 
if (there does not exist an activated assertion) 
/ *  The set of assertions is “incomplete” * /  

STOP 
endif 

Append the SAA* of the assertion as node to the EDGE, 
Append to the new node all EV, listed in PEAT of the assertion, as non- 

terminated edges, 
endif 

if (only one assertion is activated) 

if (more than one assertion is activated) 
/ *  The set of assertions is “inconsistent” * /  

STOP 
endif 

endwhile 
end 

The set of all paths from the root to all leaves is the com- 
plete set of WDF, derived from a and of the algorithm in table 
1. This represents the global knowledge of the system designer. 
The ET is a language-independent notation of the program im- 
plementation of the FTAM. It supplies, in a concise and easily 
processable manner, the characteristics of the program that are 
useful for developing a suitable efficient testing strategy. 

The testing strategy for FTAM is based on the set of WDF 
(the set of all paths from the root to each leaf of the ET). This 
set represents the structural deterministic test for the model of 
the FTAM and provides a framework for generating afinc- 
tional deterministic test for the program implementing the 
FTAM. 

FT/TS, based on the ET, presents a framework for building 
an exhaustive deterministic test. The set of WDF allows one 
to determine the probe insertion points [20] on the paths for 
monitoring their activation during dynamic testing [27] and, con- 
sequently, for checking the coverage of a selected path with 
the test cases. 

Apart from the ET, a WDF can be written to describe the 
service of the FTAM. The derivation of such a WDF on the 
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set of assertions could be checked by using the set of rules in 
section 3.4. A similar approach was used [28] for verifying pro- 
tocol specification, where formulas defining the service were 
directly evaluated on a state graph. However, FT/TS extends 
such an approach because: 

it provides stronger conditions for testing the model of FTAM 
it is aimed at deriving cases for testing the program implemen- 
tation of the FTAM. 

4.1 Formal Characterization 

The information from the ET can be used for testing the 
program implementation of the FTAM. The synchronization of 
an external event with the instant when the program is in a 
specific state can be achieved by applying the appropriate se- 
quence of input data (in the activation set A for the FTAM), 
which can be obtained from the ET. The codsidered external 
event can be a message that can contain an e r r d n  erroneous 
message is simulated by injection of a fault from the set F of 
the FTAM, along with the provision of proper activation do- 
main. A non-erroneous message is simply simulated by sen- 
sitizing the proper variables. As a result (and for clarity) er- 
roneous external events are calledfaults. In what follows, we 
focus on the case: the considered event corresponds to the in- 
jection of af;  from F. An analogous behavior can be describ- 
ed, and distinct paths can be activated, when no fault is 
considered. 

Definitions (for activation of a specific path in the ET). 

A-Chain. The chain that provides the activation domain to 
reach a specific edge in the ET; an A-Chain begins from the 
root of the ET and ends with edge I-IEV. 
A-WDF. It begins with A-EV and ends with TERM, where 
A-EV is initiated by an external event that triggers from 
FALSE to TRUE (eg, f j  in the case considered here). 

The remainder of this section illustrates the relationship 
between I-IEV and A-EV corresponding to &: 

I-IEV * AAk (resp. SAAZ) * fi. (4) 

Consider a valid (terminating) path in the ET expressed 
by the WDF: 

I-EV * SAAT * ... * I-IEV SAAZ 

* f j  =+ SAAZ * ... * $-TERM. (5) 

Lemma 1. There is no implementation fault in the path p of 
FTAM iff it terminates and provides the same $ as the WDF 
from the corresponding path of the ET - as depicted by (5): 

if ( $ p  A 5) then there exists p such that (Hp A $). (6) 

Notation 

$ p  program activation domain that corresponds to the A- 
Chain (I-EV, I-IEV) plus the subsequent SAAZ in (5)  

447 

fault that is injected in the program at the instant, when 
the program state corresponding to the I-IEV of the 
ET, is reached 
path that starts from the injected fault J;  and cor- 
responds to the A-WDF of (5 )  
proposition that the program terminates 

J ;  

P 

Hp 
$ output predicate. 4 

The proof of lemma 1 relies on the fact that the program 
implementation of the FTAM is obtained s-independently from 
the ET. As a result, it must have the same behavior (it executes 
the same actions by means of different procedures, setting up 
the branching variables, etc). It must terminate and produce the 
same $, as predetermined by the ET. The input data enabling 
proper activation of the program are obtained from a static 
analysis of the A-Chain and from the A-WDF, viz, the sequence 
of sections starting from& and ending with $-TERM in (5). 

This strategy also applies for testing parts of the FTAM 
that do not deal with fault-tolerance issues as shown in lemma 2. 

Lemma 2 .  If no fault exists (ie, no fault has to be injected), then 
& is simply replaced with A-EV in the WDF of (5 ) ;  and (6) of 
lemma 1 is modified as: 

if ( $ p  A A-EV) then there exists p such that (Hp A 4). (7) 

4.2 Practical Outcome 

The assessment of (5) & (6) forms a syndrome that fully 
determines the outcome of the test. Table 2 depicts the possi- 
ble combinations for this syndrome and characterizes the con- 
clusions that can be drawn. Column #1 simply indicates whether 
the ET may or may not terminate. A non-terminating ET means 
that the set of assertions is not complete and consistent, as can 
be revealed by the algorithm in table 1. Nevertheless, consider- 
ing such a case in the analysis of the syndrome is of practical 
interest when only a part of the ET is available to conduct the 
test sequence, as explained in the remainder of this section. Col- 
umn #2 indicates whether the executed program terminates pro- 
perly and provides the same output predicate predetermined by 
the ET. 

Table 2. Syndrome analysis 

Activated Paths in Program terminates 
Execution Trees terminate correctly Conclusion 

Correct activated paths Yes Yes 
Yes no Implementation fault 
no no Design fault 
no Yes Eliminated design fault 

Row #1 is obtained when (5) & (6) are satisfied. 
Row #2 identifies an implementation fault that corresponds 
to “(6) is not valid (ie, the program does not terminate or, 
if it terminates, it does not supply the same output predicate)”. 
Row #3 corresponds to “(5) is not valid”; in most cases, this 
implies “(6) is not valid either”. As a result, a design fault 
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has been revealed. The designer should revise the set of asser- 
tions to terminate the path. In some cases, even when (5)  is 
not valid, (6) could be valid; this corresponds to “the design 
fault might have been eliminated during the implementation 
of the FTAM”. This is identified in row #4 by the term 
eliminated design fault. Such a singular case was observed 
in the preliminary experiments based on a not-entire execu- 
tion tree. Otherwise, and according to the general framework, 
it should be classified as a design fault. 

Lemma 1 provides a formal framework for determining 
F for testing the program that implements the FTAM and for 
solving the main problem of the synchronization of the injected 
fault with a specific state of the program during its execution. 

The ET provides a template to investigate several struc- 
tural test criteria (eg, coverage of leaves, paths); enabling one 
to estimate the structural coverage of the ET. The selected 
criteria guide the selection of A & F in the ET. Once A & F 
have been obtained, they can be applied to test the program. 
It is not necessary to trace the activated path in the program 
for testing it. Only II/ has to be observed & checked. Thus, a 
deterministic functional test for the program can be generated 
be lemmas 1 & 2. 

Sections 4.2.1 & 4.2.2 concern the coverage of the pro- 
gram provided by the test. 

4.2.1 Coverage Assessment 

The coverage can be assessed only from the structural 
coverage of the ET (generally, the coverage of the ET is pro- 
viding an upper bound for the coverage of the program). 

4.2.2 Functional Test 

Notation 

PredPTCf;) set of predicted paths in the ET departing from 
& and terminating with the same output predicate 

PredP, O.;) set of predicted paths in the program departing 
from f J  and terminating with the same output 
predicate. 

A deterministic functional test provides only limited power 
for covering the structure of the program, but its combination 
with statistical structural testing might improve the coverage. 
Indeed, the functional test of the program does not enable one 
to identify the path actually tested within the corresponding 
PredPp U;). Nevertheless, because: 

* [PredPT(f;), PredPpq)] is generally appreciably reduced 
compared to [PTO.;), Ppcf;)]  of all paths in the [ET, pro- 
gram] departing from&; and 

0 the oracle-problem (how to determine the correct response 
of the program for each input) is basically solved by 
knowledge of the ET; 

it follows that the structural statistical testing methodology [29] 
might be used to improve the coverage of the paths within 
PredP, U;). 

5 .  APPLICATION 

5.1 Target System 

FT/TS was applied to the Inter-Replica protocol (IRp) of 
the Delta-4 distributed fault-tolerant architecture [30], whose 
specification had been s-independently verified formally. The 
IRp implements the coordination functions necessary to handle 
communications between replicated application entities 
(replicas) at the multipoint communication session layer. 

The tested portion of the IRp corresponds to the decision 
making module that corresponds to 3500 lines of C language. 
Figure 1 shows the target-system architecture for the fault- 
injection experiments. Three stations are considered that are 
connected via a Local Area Network. 

Station 0 Station 1 Station 2 

I I I 

Local Area Network 

Figure 1. Delta-4 Target-System Architecture 

An interactive simulator (about 21k C-language lines) 
developed to assist the designer when debugging the IRp pro- 
gram was made available by BULL France. In particular, the 
simulator provides the proper environment for the real IRp pro- 
gram to be executed concurrently on stations 0, 1, 2. The 
simulator was extensively used and validated prior to these 
experiments. 

5.2 Derivation of the Execution Trees 

The formalism ( e ,  r, a,  d )  was used for generating the 
ET from the state transition model of the IRp. From this model, 
a set of assertions was derived as formal specification of the 
IRp. Set a ,  consisting of 157 assertions, has been derived from 
the state table of the protocol, provided by the designer. Set 
a is appreciably reduced to 54 by an interpreter of assertions 
that is written in C. Classes of equivalence (different edges in 
ET leading to the same action that activates the same post con- 
ditions) were found in a to reduce the complexity of the formal 
specification. 

A set of WDF was obtained from ET and used as a test 
case for the IRp program. ET was used for designating a subset 
of injected faults in F that covered proper paths in the ET. 

Fragments of the ET of stations 0, 1, 2, sensitized by the 
set of 8 first experiments that were performed manually on the 
3-station architecture, are shown in figures 2a, 2b, 2c, respec- 
tively. The experiments have been identified by numbers at the 
leaves of the ET. However, several experiments can reach the 
same leaf. For example, experiments 1 ,2 ,  4, 5 reach the same 
leaf (labeled 1, 2 and 4, 5, respectively) in figure 2a. The fact 
that each experiment reaches a leaf means that 
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IEV 

, 

TURN 

r 
I 
I I A &  ..::;:;:;:;:::. 

8 

Figure 2a. Part of ET for IRp of Station 0 
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Figure 2c. Part of ET for IRp of Station 21 

* the appropriate values of the set of branching variables and 
event variables corresponding to the external events have been 
supplied; and 
the right path has been activated in all cases. 

The faults (FAULT INJECTION j) are injected as exter- 
nal events (LOCAL REQUEST) containing wrong information. 
There exist 3 types of actions in these 8 experiments that cause 
the IRp to reach the event variable TERM; ie, the ET terminates: 

1. cnf + : which leads to a VALIDATED-TERM; 
2. cnf-(MI), abort: the local signature is not correct; 
3. stop RR, cnf(NM), abort: no majority has been reached. 

In cases 2 & 3 ,  a KILLED-TERM is reached. 

5.3 Revealing Design/Implementation Faults in the FTAM 

We illustrate the fault-revealing power of FT/TS by con- 
sidering in detail 2 fault-injection experiments. These 2 ex- 
periments (#2 & #4) have been selected because they illustrate 
both the experimental process and the type of analyses involv- 
ed for revealing ftd-faults. For each experiment, IRp begins on 
each station with activated event variable IDLE. Experiment 
#2 illustrates the concurrent-activation process (table for ob- 
taining the Activated Execution Trees. The selection of the set 
of injected faults is based on lemma 1. The place & moment 
of the injection of the faults are determined from the concur- 
rent static analysis of the ET (figures 2a, 2b, 2c). The number 
of injected faults is determined by the number of paths from 
the ET, which terminate with KILLED-TERM. 

5.3.1 Experiment #2 

It is anticipated that the activated ET terminate in states 
that set-up the 3 following EV (VALIDATED-TERM, 
VALIDATED-TERM, KILLED-TERM), for stations 0, 1, 2, 
respectively. Table 3 shows the subset of assertions describing 
this part of the protocol. The " 1 " (NOT) is replaced by "!" 
in the current version of the automated tool VERIFY. The pro- 
tocol is started by invoking LOCAL REQUEST on station 0. 
This activates internal EV WRRVALl and sends the message 
TURN to all stations. 

When receiving this TURN, station 0 activates the next 
internal EV WRRVALl along the identified path. When receiv- 
ing TURN, stations 1 & 2 activate internal EV WRRVALO. 

When external EV LOCAL REQUEST is activated, sta- 
tion 1 is directed to action SEND ACK to all stations. 

When receiving this ACK, both stations 1 & 0 reach their 
required leaves (labeled 2) .  Reception of the ACK directs sta- 
tion 2 to activate EV WREQ. A fault is injected by simulating 
an erroneous LOCAL REQUEST (FAULT INJECTION 2). An 
anticipated behavior then is for the station to reach the leaf label- 
ed 2 along the identified path. 

The following paths are activated on different stations 0, 
1, 2 after performing all these actions (see table 3): 

* On station #O 

LOCAL REQUEST & IDLE & !C1 * START RR, SEND 
T * TURN & WRRVALl & !C1 & !C3 + EMPTY * 
ACK & WRRAVLl & C2 =) cnfS =$ VALIDATED-TERM 
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Table 3. Assertions' Subset 

Experiment 2 - Station 0 

I P ( g  & WRRAVLl & C2 (IWTOKEN & ACK & C2 I/WCPVALl& ACK 
& C2 I/WSIGNl& ACK I/WACKl& ACK I/WREQ & LOCAL REQUEST 
& C2 1 * cnf + o VALIDATED-TERM 

I P ( B  & WRRVALl & ! C l &  !C3 I /  WRRVALl & CA-3 & !C3 & TEND 
I /  WRRVALl & CA-3 & !C3 & EPDOWN I/) * EMPTY e WRRVALl 

IP(L0CAL REQUEST & IDLE & !C1 11 LOCAL REQUEST & IDLE & 
C10 ( 1  LOCAL REQUEST & WRRVALO & C4 & !ClI/) * START RR, 
SEND T e WRRVALl 

Experiment 2 - Station 1 

IP(ACK & WRRAVLl & C2 )I WTOKEN & ACK & C2 I/ WCPVALl & ACK 

ACK & WACKl I/ WREQ & LOCAL REQUEST & C2 1 1  ) J cnf + e 

IP(L0CAL REQUEST & IDLE & C1 &!Cl0 11 TURN & WRRVALl & C1 

& C2 (1 WSIGNl & ACK (1 

VALIDATED-TERM 

& C2 & C3 & C4 1 1  WTOKEN & TURN & C4 & A-RR & !C10 11 WTOKEN 
& TURN & C4 & A-RR & C3 I/ WTOKEN & CLAIM & C 1 &  C2 & !C10 
& C4 11 WTOKEN & A-RR & !C10 & TEND 11 WTOKEN & A-RR & !C10 

RR & C3 & TEND 1 1  LOCAL REQUEST & WRRVALO & C4 & C1 & 
!C10 )I LOCAL REQUEST & WRRVALO & C4 & C1& C3 11 WCPVALl 
& CLAIM & C 1 &  C2 & !C10 & C4 1 1  WCPVALl & CLAIM & C 1 &  C2 
& !C3 & C4 1 1  WSIGNl &TURN & CA-8 & C3 & C4 I /  WSIGNl & CLAIM 

& EPDOWN ( 1  WTOKEN & A-RR & C3 & EPDOWN I/ WTOKEN & A- 

& CA-8 & C3 & C4 1 1  WSIGNl & SIGN & CA-8 & C3 & C4 1 1  WSIGNl 
& TEND & CA-6 & C7 & CA-9 & C3 & C4 I/ WSIGNl & EPDOWN & 
CA-6 & C7 & CA-9 & C3 & C4 /I WACKO & TEND & CA-6 & C7 & CA-9 
& C4 I( WACKO & EPDOWN & CA-6 & C7 & CA-9 & C4 (I) * SEND 
A e WACKl 

I P ( m  & IDLE & !C1 ( 1  TURN & WRRVALO & !Cl11 WRRVALO & 
TEND & CA-6 & C7 & CA-3 & !C9 11 WRRVALO & EPDOWN & CA-6 
& C7 & CA-3 & !C9 1 1 )  * EMPTY o WRRVALO 

Experiment 2 - Station 2 

IP(ACK & WRRAVLl & C2 I /  WTOKEN & ACK & C2 /I WCPVALl & ACK 
& & C2 /I WSIGNl & ACK /I ACK & WACKl I( LOCAL REQUEST 

WREQ & ! C2 (I) * cnf + Q KILLED-TERM 

IP(ACK & IDLE ( 1  ACK & WRRVALO 11) * START LATE o WREQ 

IP(- & IDLE & !C1 I /  TURN & WRRVALO & !C1 1 1  WRRVALO & 
TEND & CA-6 & C7 & CA-3 & !C9 11 WRRVALO & EPDOWN & CA-6 
& C7 & CA-3 & !C9 1 1 )  * EMPTY WRRVALO 

On station #1 

TURN & IDLE & ! C 1 * EMPTY * LOCAL REQUEST & 
WRRVALO & C4 & C1 & !ClO- SEND A- ACK & 
WACKl =. cnf+ * VALIDATED-TERM 

On station #2 

TURN & IDLE & !Cl* EMPTY * ACK & WRRVALO 
* START LATE =) LOCAL REQUEST & WREQ &! 
C2 - cnf+ * KILLED-TERM 4 

However, when executing the actual program, the leaf 
"KILLED-TERM'' could not be reached. This case can be 
classified as an implementation fault, according to the syndrome 
analysis in table 2. This fault corresponds to a fault made in 

the procedure to implement the validation of the signatures ex- 
changed by the replicated entities and to control the branching 
variable C2. Intermittent erroneous behaviors of the im- 
plemented IRp for some activations of the program, induced 
by this fault, were known by the designer; however, it was not 
easy to diagnose precisely. The support provided by the testing 
strategy, the syndrome obtained, and the knowledge of the con- 
ditions for activating the paths in the activated trees were useful 
for diagnosing the fault. Accordingly, this fault could be easily 
corrected by the designer of IRp. Thus, the effectiveness of 
FT/TS for revealing implementation faults in the program im- 
plementation of the IRP was demonstrated. 

5.3.2 Experiment #4 

The activated ET should terminate in states that set-up the 
3 following EV (VALIDATED-TERM, KILLED-TERM, 
VALIDATED-TERM), for stations 0, 1, 2, respectively. The 
EV KILLED-TERM is the predicted result associated with the 
fault injection labeled 4 on station 1. 

The external event, which must occur on station 1 (figure 
2b) for the proper path to be initiated, is the fault injection label- 
ed 4 at the instant when the protocol activates EV WRRVALO, 
for which : 

. 

the Activation-Chain is: 

IEV =) CHECK STATE * IDLE * CHECK EVENT DEF 
= TURN * COMPLEX ACTIONS-3,2 (vote) * 'C1 =. 
EMPTY ACTION * WRRVALO; 

the Activated Well-Defined Formula is: 

Fault injection 4 * CHECK EVENT DEF * C4 * COM- 
PLEX ACTION-l(vote) * 'C1 + START RR, SEND T - WRRVALl * CHECK EVENT DEF =) TURN =. 
COMPLEX ACTIONS-3,2 (vote) * '431 * CHECK C3 
* 'C3 - EMPTY ACTION * WRRVALl * CHECK 
EVENT DEF 3 ACK * STOP RR 3 CHECK C2 - 
'C2 * Cnf-(MI), ABORT * KILLED-TERM 4. 4 

The proper values of the set of branching variables ('Cl, 
'C2, 'C3, C4,) and of the external EV, TURN, ACK are 
supplied by stations 0 & 2 in the same manner as explained for 
experiment #2. 

An external event (labeled LOCAL-REQUEST-4) occurs 
in state IDLE of station 0 (figure 2a) to activate the proper path 
belonging to the set of predicted paths PredPT(f4), where: 

the A-Chain is: 

IEV =. CHECK STATE * IDLE; 

the Activated Well-Defined Formula is: 

LOCAL REQUEST 4 - CHECK C8 * C8 * CHECK C4 - C4 * COMPLEX ACTION-l(vote) * 'C1 3. .  . 
Cnf+ * VALIDATED-TERM 4. 

Respectively, the external event LOCAL REQUEST-4 is 
applied to state WRRVALO of station 2 (figure 2c) to activate 
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Table 4. Simulation Script for Experiment #4 

Launch simulator ............................................. 
Initialize IRp <cn3 elsaRR 012,s 

[tsR 8(sim)] more exp4.s 

Station 0 Station 1 Station 2 
Code of the comm./ scheduling mode .................... 9 9 9 
Code of the station 0 1 2 
Code selection.. S- DATA S-DATA 
MSAP name ................................................... 3003 1 3003 1 3003 1 
CNX name ..................................................... 3 3 3 
Synchronization (Y/N) .................... N N N 
Transfer type ........ %MULTICAST SMULTICAST S-MULTICAST 

........................................... 
............................................... S D A T A  

S-METOO S-METOO S N E T O O  
.......................................... 1 2 1 
nue ................. (Return) (Return) (Return) 

Experiment end [Station number (to quit >3)] ......... 4 

the proper path belonging to the set of predicted paths 
PredP,(J4), where: 

the A-Chain is: 

IEV * CHECK STATE * IDLE * CHECK EVENT DEF 
3 TURN * COMPLEX ACTIONS-3,2(vote) * 'C1 - 
EMPTY ACTION 3 WRRVALO * CHECK EVENT DEF 
* TURN * COMPLEX ACTIONS 3,2(vote) * 'C1 * 
EMPTY ACTION * WRRVALO; 

the Activated Well-Defined Formula is: 

LOCAL REQUEST-4 * CHECK C4 * C4 * COMPLEX 
ACTION-l(vote) 3 C1 - CHECK EVENT DEF * 
('Cl0 v C3) - SEND ACK - WACKl * CHECK 
EVENT DEF ACK * Cnf+ 3 VALIDATED-TERM 4. 

During generation of the ET of the IRp that corresponds 
to the behavior of station 2, the protocol did not terminate. It 
was halted at the edge labeled DESIGN FAULT WRRVALl. 
According to the syndrome analysis depicted in table 2 ,  we can 
classify this situation as an eliminated design fault, because the 
program did terminate when subjected to the test case defined 
by this experiment. This eliminated design fault corresponds 
to the use of a wrong variable (WRRVALl instead of 
WRRVALO) in the set of assertions (state table); this fault subse- 
quently was corrected in the implementation of the IRp, but re- 
mained in the state table that we used to obtain the set of asser- 
tions. FTlTS might have revealed such a fault as a design fault 
had the ET been fully constructed. 

5.4 Design & Realization of a Test Sequence 

The set of assertions and the derived activated ET (such 
as those in figure 2) provide a useful framework for specifying 
experiments that selectively exercise the program implementa- 
tion of the IRp. 

As an example, consider the process of making active a 
path in experiment #4 that terminates in a state, which sets up 
the Event Variable KILLED-TERM; the path has a leaf that 
is labeled with 4 3  in figure 2b. The respective A-Chain and 
A-WDF of the activated path are depicted in section 5.3.2. One 

can identify the following external event variables TURN, fault 
injection 4, TURN and ACK, which have to be provided in se- 
quence to make the considered path active. The ET also iden- 
tifies the conditions for synchronizing the injection of the fault 
with the state of station 1. 

The interactive simulation environment developed by 
BULL to test communication protocols functionally was suc- 
cessfully used to support FT/TS when testing the FTAM within 
the IRp. Essentially, the simulator was used manually to per- 
form the first set of fault injection experiments, such as those 
described in section 5.3. The main action during an experiment 
is to provide all necessary conditions (external EV, branching 
variables) for malung active a selected ET path. Accordingly, 
the operator must provide data to the simulator when prompted 
to do so. These inputs are based on the information derived from 
the static analysis of the ET, as described above. 

Table 4 depicts a typical form of the dialogue between the 
operator and the simulator to specify an experiment (more 
precisely, it corresponds to the specification of experiment #4). 
The inputs that are listed in each column for each station are 
entered by the operator in sequence, one station after another. 

At the beginning, all three stations 0, 1, 2 (1001,1003, 
1007), must be connected and MSAP(Mu1ticast Service Access 
Point), S SAP (Session Service Access Point), SMAP(System 
Management Application Process), connection name (CNX 
name) need to be established. Such an activation is performed 
by a specific file (<cn3 elsaRR 012.s 9) shown in table 4. 

Considering again experiment #4, the following steps must 
be performed: 

1. The message TURN is to be sent by station 0. The A- 
Chains and AWD formulas for stations 0 & 2 are shown in sec- 
don 5.3 and in figures 2a & 2c, respectively. Thus, the operator 
has to-be first on station 0. Station 0 has to send the message 
TURN to all stations (0 & 2) connected to MSAP-3003 1. To 
do this, the operator must: 1) provide the series of inputs shown 
in column 'Station 0' in table 4, and 2) activate the external 
variable - Local Request (Data 1). 

2. Then, according to the A-Chain in figure 2b, station 
1 activates the EV WRRVALO. At that point, a synchronization 
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between the injected fault (Fault Injection 4) and the proper state 
of station 1 can be realized. For that, the operator has to-be 
on station 1 and inject the fault by providing wrong data (eg, 
2 instead of 1, as shown in table 4). Station 1 then has to send 
a message TURN to activate WRRVAL1. 

3. As indicated by ET of figure 2c, after receiving the 
message TURN twice, station 2 activates the EV WRRVALO. 
The operator has to-be on station 2 to enter external event Local 
Request 4. Then, station 2 has to send a message ACK and to 
activate Validated TERM. 4 

After receiving a message ACK, station 1 should terminate 
and make active the message KILLED TERM. After receiving 
ACK, station 0 must terminate and then activate Validated 
TERM. 

Although essentially we used the interactive simulator 
manually during the first set of experiments, it proved to be 
a useful tool for implementing FT/TS for complex FTAM. In 
particular, the design & realization of additional fault-injection 
experiments can be greatly facilitated - and to a large extent 
mechanized - by the generation of simulation scripts, analogous 
to the one in table 4. The scripts can be automatically & effi- 
ciently executed by the simulation environment. 

Such a mechanization would be highly desirable for ex- 
tending the coverage of the actual paths of the IRp program im- 
plementation when a set of predicted paths has been selected 
in the IRp activated ET. In particular, this would be readily 
achievable when considering the inputs to be provided to the 

& Data row in the script in table 4. Randomly (or statistically) 
selected data can be easily applied there. 

6 .  SUMMARY OF FT/TS 

FT/TS is a formal testing approach for FT algorithms & 
mechanisms. To highlight the major features of FT/TS, figure 
3 depicts a general framework that helps to identify the main 
steps of the testing strategy. 

The left part of the diagram corresponds to the design & 
implementation steps. From the designer’s intention (informal 
requirements), a formal model is established (eg, under the form 
of a state table, or flow graph). As shown by dashed arrows, 
another possibility is to present directly the behavior by a set 
of assertions. In this approach, the assertions are not generated 
from the code of the program; the model is used to elaborate 
the program. For testing purposes, a simulator is generally 
available for providing a proper environment for debugging the 
program. If the FTAM is a FT protocol, the simulator must 
enable the concurrent execution of the protocol program by 
analyzing a simulation script to provide necessary external con- 
ditions for exercising the program with several replicas of the 
application processes. Such concurrent execution enables one 
to test several paths simultaneously. 

The r.h.s. of the graph describes the main steps of FT/TS. 
The main goal is to help the designer when performing a 
systematic test of the FTAM. Step #1 corresponds to defining 
a set of assertions characterizing the service anticipated from 
the program using FT/TS (see section 3). Although these asser- 

tions can be obtained directly from the designer’s intention, they 
can also be derived from the model. An interpreter can pro- 
vide possibilities for reducing the complexity of the formal 
specification. A tool can be used for constructing the tree of 
all possible executions from the set of assertions. The deriva- 
tion of the ET includes testing for both missing or several ac- 
tivated assertions, which enables the set of assertions to be cor- 
rected (viz, removal of a designfault); such a feedback can also 
affect the model. Furthermore, well-defined formulas express- 
ing specific service characteristics can be expressed within the 
formalism, and processed by the interpreter to verify their validi- 
ty on the ET. To represent the behavior of a FT protocol for 
several replicated entities, several activated ET are considered 
for which distinct paths can be activated. The intent of this ap- 
proach is to enforce the role of static analysis of the ET in the 
elaboration of deterministic fault injection test sequences for the 
program. 

.. .. ._ . . 
Dekign 
t 

Transformation 

I 
Implementation 

Simulator 

Concurrent Activation 

Static Analysis 

L Designer t> Conclusion 

Figure 3. General Framework 

In practice, such a goal can only be achieved under some 
constraints. In particular, controllability and/or observability 
restrictions do not always provide all the required conditions 
for the sensitization of a single path. Rather, the practically 
available conditions specify a set of predicted paths on the pro- 
gram (see section 4). 

Static analysis performed with these activated trees pro- 
vides two main results: 

the conditions of activation, 
the anticipated outcomes for the activated paths. 
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Both results characterize the sensitization & observation domains 
that guide the designer when elaborating on a systematic test 
case and when providing the fault (F) and activation (A) at- 
tributes to be incorporated into the simulation script to perform 
the fault injection experiment using the simulator. 

The simultaneous dynamic testing of the program and of 
the concurrent activation of specific paths in the ET results in 
a syndrome that: 

characterizes the outcome of the test conducted for each side 
of the diagram, 

* facilitates the diagnosis of fault tolerance deficiencies-faults 
(see table 2). 

7. DISCUSSION 

FT/TS was used successfully to conduct test sequences aim- 
ed at explicitly removing design/implementation faults in com- 
plex FT algorithms & mechanisms. 

The main strength of FT/TS is its ability to test the FT 
algorithms & mechanisms in a systematic way by activating all 
paths of the associated ET. This systematic process enforces 
the power of fault injection to reveal potential FT deficiency 
faults. In particular, the strategy provides a framework for 
generating a functional deterministic test for programs im- 
plementing complex FT protocols. 

The application of the strategy to a real protocol that sup- 
ports the FT features of the Delta-4 distributed system illustrates 
its usefulness and its practical implementation. Even though the 
protocol had been independently verified formally, the applica- 
tion of the strategy revealed two FT deficiency-faults. 

FT/TS is a heavy-weight approach, but is definitely need- 
ed to provide a high level of assurance when implementing FT 
algorithms & mechanisms. lndeed FT/TS is well suited to 
discover test-resistant faults, such as those revealed in the tested 
protocol. If the entire ET has been built, FT/TS can guarantee 
the absence of faults in the FT algorithms & mechanisms. 

The study reported here describes an early (mostly manual) 
application of FT/TS for which only a limited number of ex- 
periments were conducted. However, the formalism permits the 
mechanization of major steps of the strategy. In particular, it 
is possible to use an interpreter of assertions to reduce 
automatically the set of assertions by identifying classes of 
equivalence. Other possible mechanizations concerning the con- 
struction of the complete ET, running a sequence of ex- 
periments, are being implemented. Accordingly, a tool 
(VERIFY) has been written to support the application of FT/TS 
for the formal verification of software. This is written in C + + 
and currently has about 6k lines. VERIFY has been implemented 
on SPARC workstations running the Solaris 2.4 operating 
system. It is an interactive tool and has been successfully used 
to derive the 57 compressed assertions that fully describe the 
Delta-4 protocol and the set of all possible paths (27 paths). 
However, no further ftd-faults were unveiled as a result of con- 
structing all execution paths. Further applications of VERIFY 
concern two additional major protocols for NASA & AT&T. 
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The communication multimedia protocol for AT&T Bell 
Laboratories has been presented by 131 assertions. As well, 
a state-explosion problem was not observed during the genera- 
tion of the ET. In this case, the set contains 35 paths and the 
average number of levels in the ET is 30. No state-explosion 
problem was observed by generating all possible paths for any 
of these protocols. 
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