
IEEE TRANSACTIONS ON RELIABILITY, VOL. 45, NO. 3, 1996 SEPTEMBER 443

Fault Injection for Formal

Dimiter Avresky, Member IEEE

Jean Arlat, Member IEEE

Jean-Claude Laprie, Member IEEE

Yves Crouzet

Texas A&M University, College Station

LAAS-CNRS, Toulouse

LAAS-CNRS , Toulouse

LAAS-CNRS, Toulouse

Key Words - Fault-tolerance testing, Faultlerror injection,
Designlimplementation fault removal, Execution tree, Well-defined
formula

Summary & Conclusions - This study addresses the use of
fault injection for explicitly removing designhnplementation faults
in complex fault-tolerance algorithms & mechanisms (FTAM), viz,
fault-tolerance deficiency faults. A formalism is introduced to repre-
sent the FTAM by a set of assertions. This formalism enables an
execution tree to be generated, where each path from the root to
a leaf of the tree is a well-defined formula. The set of well-defined
formulas constitutes a useful framework that fully characterizes
the test sequence. The input patterns of the test sequence (fault
& activation domains) then are determined to cover specific struc-
tural criteria over the execution tree (activation of proper sets of
paths). This provides a framework for generating a functional
deterministic test for programs that implement complex FTAM.

This methodology has been used to extend a debugging tool
aimed at testing fault tolerance protocols developed by BULL
France. It has been applied successfully to the injection of faults
in the inter-replica protocol that supports the application-level fault-
tolerance features of the architecture of the ESPRIT-funded Delta4
project. The results of these experiments are analyzed in detail.
In particular, even though the target protocol had been in-
dependently verified formally, the application of the proposed
testing strategy revealed two fault-tolerance deficiency faults.

1. INTRODUCTION

Acronyms

FT fault-tolerance
ftd FT deficiency
FTAM FT algorithms & mechanisms
FT/TS the FT test strategy proposed in this paper.

According to the now widely recognized dependability ter-
minology [1,2] and as illustrated in [3], fault injection encom-
passes both objectives of the dependability validation process:
fault removal and fault forecasting.

Concerning the fault removal objective, fault injection is
explicitly aimed at reducing, by verijcation, the presence of

'The singular & plural of an acronym are always spelled the same.

Testing of Fault Tolerance

faults in the designlimplementation of FTAM whose conse-
quences would be deficiencies in their anticipated behavior when
faced with faults that are explicitly intended to handle. That is,
faults are injected to uncover such potential ftd-faults and thus,
to determine the most appropriate actions for improving the
FTAM.

For fault forecasting, the main issue is to rate, by evalua-
tion, the eficiency of the operational behavior of the FTAM.
This type of test is aimed mainly at estimating the parameters
that usually characterize the operational behavior of the error
processing and fault treatment: coverage and latency.

Much work has been devoted to fault injection [4-lo]. Until
recently, most experiments on actual fault-tolerant systems have
dealt mainly with the fault-forecasting objective. We have shown
[l 11 that the data gathered during experiments aimed at fault
forecasting can be used in a feedback loop, to impact the
designhmplementation of the FTAM. However, this extrinsic
fault-removal capability corresponds only to a by-product and
is in no way a systematic approach for testing complex FTAM.

Usually, fault-injection based attempts to validate (verify
& evaluate) FTAM that consist of test sequences where the in-
put patterns (the injected faults) are selected according to
fault/error models intending to simulate (as much as possible)
the consequences of activating real faults. Heavy ion radiation
[121, pin-level fault injection [7] , software-implemented fault
injection [13-151, failure acceleration [6], or as well, fault in-
jection in simulation models [lo, 161 are typical techniques to
reach this objective in the context of physical- or software-fault-
injection experiments. See also [17, 181 for surveys on these
fault-injection techniques.

As expressed in [3], more efficient & direct approaches
to this problem need to be investigated. Indeed, real fault-
tolerant system correspond to distributed computing architec-
tures that incorporate a variety of (hardware & software) error
detection and error-processing techniques. Although in several
cases, elementary error detection mechanisms are simple, their
interconnection can pose serious testing problems. Furthermore,
the error processing and application-level FT features usually
rely on complex software-implemented FT protocols that need
to be tested thoroughly. This need has also been recognized in-
dependently in [191 which describes the FT testing techniques
used for the FAA Advanced Automation System, and in [20]
and, subsequently, in [21] which proposes heuristics for deter-
ministically testing FT protocols.

A detailed representation of such complex FTAM and, in
particular, of their structure is needed to improve the efficien-
cy of a fault-injection test sequence. Indeed, this would enable
the test criteria to be extended to include structural criteria
establishing explicit conditions for determining the input pat-
terns (from both fault & activation attributes) that activate the
FTAM .

This knowledge then can provide a useful basis for guiding
the fault-injection process, in particular for:

0018-9529/96/$5.00 01996 IEEE

~ _ _ ~ -

444 IEEE TRANSACTIONS ON RELIABILITY, VOL. 45, NO. 3, 1996 SEPTEMBER

monitoring the coverage of the test sequence with respect to

favoring the detection of potential ftd-faults

Such guidelines are of prime interest for controlling a fault-
injection test sequence, because the number of faults that can
be injected in practice is limited. As such, the test should restrict
the number of redundant experiments (injected faults that lead
to an equivalent sensitizing of the FTAM).

Here, we address the problem of efficiently testing FTAM
that feature the kind of functions implemented by FTprotocoZs
(diagnosis, decision-making, and reconfiguration) in a
distributed computing environment. We elaborate on work
previously reported in [22]. In particular, we report on an
enhanced set of experiments performed when applying the
FT/TS on a real FT protocol; the presentation & analysis of
the results obtained have been extended accordingly.

Section 2 presents the motivation for using a formal testing
approach. Sections 3 & 4 present the formalism and its applica-
tion, respectively, to the testing of FTAM by way of fault in-
jection. Section 5 applies FT/TS to an actual FT protocol, viz,
the Inter Replica protocol (IRp) of the Delta-4 fault-tolerant
distributed architecture [23]. Section 6 describes the FT/TS aim-
ed at providing a general framework suitable to define, con-
struct, and conduct fault injection-based test sequences
specifically aimed at removing ftd-faults. Section 7 discusses
the results and their application.

the extended test criteria and, thus,

(design/implementation faults in the FTAM) .

2. MOTIVATION FOR USING
A FORMAL TESTING APPROACH

The choice o f

* a description level,
a formalism,
the derivation of the model,
the model’s processing,

for determining the input patterns of the test are important issues.
The description level depends on the phase, during the

development process of the FTAM, when the fault-injection test
sequence is to be performed. In early design phases, only high-
level functional information is available; however, the expres-
sion of the requirements constitutes a valuable framework for
specifying the predicates that characterize the service of the
FTAM to be used for testing in subsequent phases. The more
implementation details that are available, the more structural
features that can be included in the model, and the richer are
the conditions characterizing the control patterns. However, in
practice, the complexity of the FTAM considered requires -
even when the implementation is available - that the
description:

* be an abstraction of the implementation that can be formally

0 is compatible with the predicates characterizing the service
expressed,

of the FTAM.

The benefits anticipated from this approach come from two
distinct issues:

The specific simplicity of the service provided by most FTAM
(tree-like structure, strong dependence on fault set, and limited
dependence on activation set [20]).
The ultimate goal is to characterize as precisely as possible
a fault injection test sequence to be performed on the com-
plete FTS. rl

Potential candidate models for conducting such a test in-
clude graphical or procedural expressions of the structure and/or
behavior of the FTAM. Typical examples are trees, Petri nets,
flow charts, state machine languages, and Calculus of Com-
municating Systems (CCS-based languages: Estelle & LOTOS
languages [24]). The formalism to be used for describing the
FTAM must:

provide facilities to access, either directly or implicitly, the
path features needed to develop structural testing strategies.

0 must permit expression of both the specification of the ser-
vice and the details abstracted from the implementation, in
order to conduct the test. 4

A model that satisfies many of the requirements for
developing structural testing strategies is a program path tree.
In [25], the tree nodes represented the structures or instruction
blocks, and tree edges denoted the temporal relationship ex-
isting between the nodes. We have shown that this type of path
tree offers excellent opportunities for accessing either directly
or implicitly the path features needed to develop structural
testing.

However, to overcome the problem of the complexity of
the program implementing the FTAM and to provide the
designer with possibilities for dealing with the design faults by
means of modifying the model of the FTAM (the set of asser-
tions), a formalism has been chosen for obtaining the model
of the FTAM and the tree of all possible executions: the execu-
tion tree.

This formalism is equivalent to state transition models or
Petri nets; however, it more easily supports design changes and
also features consistency & completion checks of the model.
The process of constructing an execution tree can be related
to the construction of a proof tree in symbolic execution ap-
proaches [26]. However, FT/TS is different, as it encompasses
both symbolic execution of the model and testing of the actual
implementation of the protocol software. Section 3 defines this
formalism in detail.

3. DEFINITION OF THE FORMALISM

Acronyms & Abbreviations

WDF well-defined formula
A-WDF activated WDF
ET execution tree
EV event variable

AVRESKY ET AL: FAULT INJECTION FOR FORMAL TESTING OF FAULT TOLERANCE 445

A-EV
AA
SAA
SAA*
IEV

TERM
I-IEV

Notation

activated EV
atomic action
sequence of AA (involves more than 1 AA)
an AA or SAA (this is used for simplicity of notation)
initial EV
installed initial event variable: an edge
TERMinating event variable.

e
r
U

d
II/

4 an injected fault.
*
o
& AND
V OR
1 NOT
IP(a) Input_Predicate(Pre-Condition)
PEAT(a) Possible Events on Action Termination

set of basic elements (section 3.1)
set of rules forming WDF (section 3.2)
set of assertions (section 3.3)
set of derivation rules (section 3.4)
output predicate associated with the event variable
labeled TERM

implies: logically follows in time
implies: as a result may come one of the following

= Output-Predicate(Post-Condition).

Other, standard notation is given in “Information for Readers
& Authors” at the rear of each issue.

The quadruple (e , r, a, d) is defined as a formalism.

3.1 Set of Basic Elements

The set e consists of the subsets:

EV;
SAA*;
logical connectives: &, V (OR), 1 (NOT);
left & right parentheses: (,);
*, ”;
dedicated EV: IEV and TERM.

An EV is a variable that modifies its value after occurrence of
an event. An event can be internal or external to the program.
An example of an internal event is the completion of an SAA* ,
which corresponds to the execution of some procedure(s) in the
program. Examples of external events are received messages
and injected faults. An EV can be an observable parameter of
the system that can have two states, FALSE and TRUE.

IP(.) establishes the conditions for activating the SAA* .
PEAT(.) defines a set of EV, among which one might

become TRUE after the completion of the SAA*.
An AA is indivisible in the sense that, once initiated, it

is carried out to completion. SAA is a more complex action.
An SAA* is performed by some procedure(s) that can change
the status of only one EV -E PEAT from FALSE to TRUE,
or can leave all EV unchanged. The EV whose status is to be
changed depends on the procedure(s).

3.2 Set of Rules

The set r of rules (R1 - R4) forms a WDF.

R1. Each WDF starts with IEV.
R2. A WDF is a sequence of alternating EV and SAA*,

R3. Each WDF terminates with TERM.
R4. The semantics of the WDF describes the behavior of

connected by ‘ ‘ * ’ ’ .

the system under design, according to its specification:

IEV * SAAj * EVj * SAAi.1 * EVj+l * ... * TERM.

(1)

Eq (2) is a section:

EVj * SAAf * EVj+l.

An example of a section is:

C4 * COMPLEX ACTION-l(vote) = ’Cl,

C 1, C4 are branching variables

COMPLEX ACTION-l(vote) is a complex action.

Each WDF can be considered as a chain of sections.

3.3 Set of Assertions

The formal specification of the system is a set of asser-
tions a of the form:

IP(EV1, EV2, ..., EV,) * SAAT PEAT(EVi,l, EVi,Z,

. . . , EVj,,). (3)

An assertion is activated when its IP(.) is TRUE. Several
criteria for the set of assertions a are postulated as:

Al . the set a is a formal description of the specification;
A2. it must be complete, in the sense that a WDF could

be derived in the formalism < e , r, a, d> , ie, there are no
missing-assertions (a successor exists for every EV);

A3. it must be consistent: only one assertion can be ac-
tivated at a given time.

Example 3-1

The #a & #b are 2 assertions:

a. IP(ACK & WRRAVLl) * STOP RR 8 C2 V ’C2,
b. IP(ACK & WRRAVLl & C2) * cnf + o VALIDATED

-TERM ;

C2 is a branching variable,
0 ACK is an external EV.
0 WRRVALl and VALIDATED are internal EV that corres-

pond to certain states of the model.

446 IEEE TRANSAmIONS ON RELIABILITY, VOL. 45, NO. 3, 1996 SEPTEMBER

For the state transition model, IP(a) of the assertion con-
tains a state variable. The following chain of sections is activated
by executing sequentially assertions #a & #b:

WRRAVLl * CHECKEV.DEV * ACK 3 STOPRR *
C2 * cnf + e VALIDATED-TERM. -4

Example 3-2

The #c is an example of an assertion (generated) by the
interpreter where the IP(.) gathers all edges leading to the same
action cnf-(MI) abort and provides the same output post-
condition KILLED (TERM).

Table 1 shows the algorithm for building the ET. During
the automatic generation of the ET, if no assertion is activated,
it means that a is not complete (there are missing assertions)
or if more than one assertion is activated, then a is not consis-
tent. The missing assertions and the contradiction between asser-
tions require a to be checked. In such cases, some revisions
should be made by the system designer to complete the genera-
tion of the ET.

4. FORMAL TESTING OF FTAM
BY FAULT INJECTION

c. IP(C1 & ’C2 & ‘TURN & (WRRVALl V WTOKEN) V The ET obtained by the algorithm of table 1 can be used
C1 & ’C2 & CLAIM & (WRRVALl V WTOKEN) V
ACK & ’C2 & (WTOKEN v WRRVALl v WCPVAL1)
V LOCAL REQUEST & ’C2 & (WSIGNO V WACKO V
WREQ) V CLAIM & C1 & ’C2 & WCPVALl) * cnf-
(MI), abort e KILLED-(TERM);

C1, C2 are branching variables,
TURN, CLAIM, ACK, LOCAL REQUEST are external EV,
WRRVAL1, WTOKEN, WCPVALl, WSIGNO, WACKO,
WREQ are internal EV that correspond to certain states of
the model. -4

3.4 Set of Derivation Rules

Consider a WDF that is valid with regard to the anticipated
behavior of the FTAM. The set d gives the rules (D1 - D6)
for this WDF to be derived from the set of assertions a.

D 1. The WDF is processed step-by-step from the beginn-
ing (IEV) to the end (TERM). At every step, one section is ex-
ecuted as depicted by (2).

D2. At each step of formal derivation, a is searched to find
an assertion for which:

the IP(.) of the assertion is true (the assertion is activated);
the SAA* in the activated assertion corresponds to the SAA*

the PEAT(.) of the activated assertion includes the post-
in the current section of the WDF;

conditions of the current section of the WDF.

D3. If such an assertion (in D2) does not exist, then a is

D4. If there exists more than one assertion that is activated,

D.5. If only one assertion is activated, proceed to D6.
D6. The formal derivation continues if the post-condition

of the current section is not TERM. The derivation is successful
when TERM is reached. 4

Such a WDF thus can be considered as a test case for a.

incomplete.

then a is inconsistent.

3.5 Execution Tree

Dejnition: An ET is a tree graph with EV as edges and SAA*
as nodes. Only one edge (IEV) extends from the root; edges,
labeled TERM, lead to the leaves of the tree.

as a general structure to represent the behavior of the FTAM.

Table 1. Algorithm for Generating an Execution Tree

begin
IEV = “TRUE”
while (there exist non-terminated edges in the tree)

EDGE =one of the nonterminated edges,
if (there does not exist an activated assertion)
/ * The set of assertions is “incomplete” * /

STOP
endif

Append the SAA* of the assertion as node to the EDGE,
Append to the new node all EV, listed in PEAT of the assertion, as non-

terminated edges,
endif

if (only one assertion is activated)

if (more than one assertion is activated)
/ * The set of assertions is “inconsistent” * /

STOP
endif

endwhile
end

The set of all paths from the root to all leaves is the com-
plete set of WDF, derived from a and of the algorithm in table
1. This represents the global knowledge of the system designer.
The ET is a language-independent notation of the program im-
plementation of the FTAM. It supplies, in a concise and easily
processable manner, the characteristics of the program that are
useful for developing a suitable efficient testing strategy.

The testing strategy for FTAM is based on the set of WDF
(the set of all paths from the root to each leaf of the ET). This
set represents the structural deterministic test for the model of
the FTAM and provides a framework for generating afinc-
tional deterministic test for the program implementing the
FTAM.

FT/TS, based on the ET, presents a framework for building
an exhaustive deterministic test. The set of WDF allows one
to determine the probe insertion points [20] on the paths for
monitoring their activation during dynamic testing [27] and, con-
sequently, for checking the coverage of a selected path with
the test cases.

Apart from the ET, a WDF can be written to describe the
service of the FTAM. The derivation of such a WDF on the

AVRESKY ET A L FAULT INJECTION FOR FORMAL TESTING OF FAULT TOLERANCE

set of assertions could be checked by using the set of rules in
section 3.4. A similar approach was used [28] for verifying pro-
tocol specification, where formulas defining the service were
directly evaluated on a state graph. However, FT/TS extends
such an approach because:

it provides stronger conditions for testing the model of FTAM
it is aimed at deriving cases for testing the program implemen-
tation of the FTAM.

4.1 Formal Characterization

The information from the ET can be used for testing the
program implementation of the FTAM. The synchronization of
an external event with the instant when the program is in a
specific state can be achieved by applying the appropriate se-
quence of input data (in the activation set A for the FTAM),
which can be obtained from the ET. The codsidered external
event can be a message that can contain an e r r d n erroneous
message is simulated by injection of a fault from the set F of
the FTAM, along with the provision of proper activation do-
main. A non-erroneous message is simply simulated by sen-
sitizing the proper variables. As a result (and for clarity) er-
roneous external events are calledfaults. In what follows, we
focus on the case: the considered event corresponds to the in-
jection of af; from F. An analogous behavior can be describ-
ed, and distinct paths can be activated, when no fault is
considered.

Definitions (for activation of a specific path in the ET).

A-Chain. The chain that provides the activation domain to
reach a specific edge in the ET; an A-Chain begins from the
root of the ET and ends with edge I-IEV.
A-WDF. It begins with A-EV and ends with TERM, where
A-EV is initiated by an external event that triggers from
FALSE to TRUE (eg, f j in the case considered here).

The remainder of this section illustrates the relationship
between I-IEV and A-EV corresponding to &:

I-IEV * AAk (resp. SAAZ) * fi. (4)

Consider a valid (terminating) path in the ET expressed
by the WDF:

I-EV * SAAT * ... * I-IEV SAAZ

* f j =+ SAAZ * ... * $-TERM. (5)

Lemma 1. There is no implementation fault in the path p of
FTAM iff it terminates and provides the same $ as the WDF
from the corresponding path of the ET - as depicted by (5):

if ($ p A 5) then there exists p such that (Hp A $). (6)

Notation

$ p program activation domain that corresponds to the A-
Chain (I-EV, I-IEV) plus the subsequent SAAZ in (5)

447

fault that is injected in the program at the instant, when
the program state corresponding to the I-IEV of the
ET, is reached
path that starts from the injected fault J; and cor-
responds to the A-WDF of (5)
proposition that the program terminates

J ;

P

Hp
$ output predicate. 4

The proof of lemma 1 relies on the fact that the program
implementation of the FTAM is obtained s-independently from
the ET. As a result, it must have the same behavior (it executes
the same actions by means of different procedures, setting up
the branching variables, etc). It must terminate and produce the
same $, as predetermined by the ET. The input data enabling
proper activation of the program are obtained from a static
analysis of the A-Chain and from the A-WDF, viz, the sequence
of sections starting from& and ending with $-TERM in (5).

This strategy also applies for testing parts of the FTAM
that do not deal with fault-tolerance issues as shown in lemma 2.

Lemma 2 . If no fault exists (ie, no fault has to be injected), then
& is simply replaced with A-EV in the WDF of (5) ; and (6) of
lemma 1 is modified as:

if ($ p A A-EV) then there exists p such that (Hp A 4). (7)

4.2 Practical Outcome

The assessment of (5) & (6) forms a syndrome that fully
determines the outcome of the test. Table 2 depicts the possi-
ble combinations for this syndrome and characterizes the con-
clusions that can be drawn. Column #1 simply indicates whether
the ET may or may not terminate. A non-terminating ET means
that the set of assertions is not complete and consistent, as can
be revealed by the algorithm in table 1. Nevertheless, consider-
ing such a case in the analysis of the syndrome is of practical
interest when only a part of the ET is available to conduct the
test sequence, as explained in the remainder of this section. Col-
umn #2 indicates whether the executed program terminates pro-
perly and provides the same output predicate predetermined by
the ET.

Table 2. Syndrome analysis

Activated Paths in Program terminates
Execution Trees terminate correctly Conclusion

Correct activated paths Yes Yes
Yes no Implementation fault
no no Design fault
no Yes Eliminated design fault

Row #1 is obtained when (5) & (6) are satisfied.
Row #2 identifies an implementation fault that corresponds
to “(6) is not valid (ie, the program does not terminate or,
if it terminates, it does not supply the same output predicate)”.
Row #3 corresponds to “(5) is not valid”; in most cases, this
implies “(6) is not valid either”. As a result, a design fault

448 IEEE TRANSACTIONS ON RELIABILITY, VOL. 45, NO. 3, 1996 SEPTEMBER

has been revealed. The designer should revise the set of asser-
tions to terminate the path. In some cases, even when (5) is
not valid, (6) could be valid; this corresponds to “the design
fault might have been eliminated during the implementation
of the FTAM”. This is identified in row #4 by the term
eliminated design fault. Such a singular case was observed
in the preliminary experiments based on a not-entire execu-
tion tree. Otherwise, and according to the general framework,
it should be classified as a design fault.

Lemma 1 provides a formal framework for determining
F for testing the program that implements the FTAM and for
solving the main problem of the synchronization of the injected
fault with a specific state of the program during its execution.

The ET provides a template to investigate several struc-
tural test criteria (eg, coverage of leaves, paths); enabling one
to estimate the structural coverage of the ET. The selected
criteria guide the selection of A & F in the ET. Once A & F
have been obtained, they can be applied to test the program.
It is not necessary to trace the activated path in the program
for testing it. Only II/ has to be observed & checked. Thus, a
deterministic functional test for the program can be generated
be lemmas 1 & 2.

Sections 4.2.1 & 4.2.2 concern the coverage of the pro-
gram provided by the test.

4.2.1 Coverage Assessment

The coverage can be assessed only from the structural
coverage of the ET (generally, the coverage of the ET is pro-
viding an upper bound for the coverage of the program).

4.2.2 Functional Test

Notation

PredPTCf;) set of predicted paths in the ET departing from
& and terminating with the same output predicate

PredP, O.;) set of predicted paths in the program departing
from f J and terminating with the same output
predicate.

A deterministic functional test provides only limited power
for covering the structure of the program, but its combination
with statistical structural testing might improve the coverage.
Indeed, the functional test of the program does not enable one
to identify the path actually tested within the corresponding
PredPp U;). Nevertheless, because:

* [PredPT(f;), PredPpq)] is generally appreciably reduced
compared to [PTO.;), Ppcf;)] of all paths in the [ET, pro-
gram] departing from&; and

0 the oracle-problem (how to determine the correct response
of the program for each input) is basically solved by
knowledge of the ET;

it follows that the structural statistical testing methodology [29]
might be used to improve the coverage of the paths within
PredP, U;).

5 . APPLICATION

5.1 Target System

FT/TS was applied to the Inter-Replica protocol (IRp) of
the Delta-4 distributed fault-tolerant architecture [30], whose
specification had been s-independently verified formally. The
IRp implements the coordination functions necessary to handle
communications between replicated application entities
(replicas) at the multipoint communication session layer.

The tested portion of the IRp corresponds to the decision
making module that corresponds to 3500 lines of C language.
Figure 1 shows the target-system architecture for the fault-
injection experiments. Three stations are considered that are
connected via a Local Area Network.

Station 0 Station 1 Station 2

I I I

Local Area Network

Figure 1. Delta-4 Target-System Architecture

An interactive simulator (about 21k C-language lines)
developed to assist the designer when debugging the IRp pro-
gram was made available by BULL France. In particular, the
simulator provides the proper environment for the real IRp pro-
gram to be executed concurrently on stations 0, 1, 2. The
simulator was extensively used and validated prior to these
experiments.

5.2 Derivation of the Execution Trees

The formalism (e , r, a, d) was used for generating the
ET from the state transition model of the IRp. From this model,
a set of assertions was derived as formal specification of the
IRp. Set a , consisting of 157 assertions, has been derived from
the state table of the protocol, provided by the designer. Set
a is appreciably reduced to 54 by an interpreter of assertions
that is written in C. Classes of equivalence (different edges in
ET leading to the same action that activates the same post con-
ditions) were found in a to reduce the complexity of the formal
specification.

A set of WDF was obtained from ET and used as a test
case for the IRp program. ET was used for designating a subset
of injected faults in F that covered proper paths in the ET.

Fragments of the ET of stations 0, 1, 2, sensitized by the
set of 8 first experiments that were performed manually on the
3-station architecture, are shown in figures 2a, 2b, 2c, respec-
tively. The experiments have been identified by numbers at the
leaves of the ET. However, several experiments can reach the
same leaf. For example, experiments 1 ,2 , 4, 5 reach the same
leaf (labeled 1, 2 and 4, 5, respectively) in figure 2a. The fact
that each experiment reaches a leaf means that

AVRESKY ET AL: FAULT INJECTION FOR FORMAL TESTING OF FAULT TOLERANCE 449

IEV

,

TURN

r
I
I I A & ..::;:;:;:;:::.

8

Figure 2a. Part of ET for IRp of Station 0

LOCAL REQUEST
SUBTREE I

Figure 2b. Part of ET for IRp of Station 1

450 IEEE TRANSACTIONS ON RELIABILITY, VOL. 45, NO. 3, 1996 SEPTEMBER

Figure 2c. Part of ET for IRp of Station 21

* the appropriate values of the set of branching variables and
event variables corresponding to the external events have been
supplied; and
the right path has been activated in all cases.

The faults (FAULT INJECTION j) are injected as exter-
nal events (LOCAL REQUEST) containing wrong information.
There exist 3 types of actions in these 8 experiments that cause
the IRp to reach the event variable TERM; ie, the ET terminates:

1. cnf + : which leads to a VALIDATED-TERM;
2. cnf-(MI), abort: the local signature is not correct;
3. stop RR, cnf(NM), abort: no majority has been reached.

In cases 2 & 3 , a KILLED-TERM is reached.

5.3 Revealing Design/Implementation Faults in the FTAM

We illustrate the fault-revealing power of FT/TS by con-
sidering in detail 2 fault-injection experiments. These 2 ex-
periments (#2 & #4) have been selected because they illustrate
both the experimental process and the type of analyses involv-
ed for revealing ftd-faults. For each experiment, IRp begins on
each station with activated event variable IDLE. Experiment
#2 illustrates the concurrent-activation process (table for ob-
taining the Activated Execution Trees. The selection of the set
of injected faults is based on lemma 1. The place & moment
of the injection of the faults are determined from the concur-
rent static analysis of the ET (figures 2a, 2b, 2c). The number
of injected faults is determined by the number of paths from
the ET, which terminate with KILLED-TERM.

5.3.1 Experiment #2

It is anticipated that the activated ET terminate in states
that set-up the 3 following EV (VALIDATED-TERM,
VALIDATED-TERM, KILLED-TERM), for stations 0, 1, 2,
respectively. Table 3 shows the subset of assertions describing
this part of the protocol. The " 1 " (NOT) is replaced by "!"
in the current version of the automated tool VERIFY. The pro-
tocol is started by invoking LOCAL REQUEST on station 0.
This activates internal EV WRRVALl and sends the message
TURN to all stations.

When receiving this TURN, station 0 activates the next
internal EV WRRVALl along the identified path. When receiv-
ing TURN, stations 1 & 2 activate internal EV WRRVALO.

When external EV LOCAL REQUEST is activated, sta-
tion 1 is directed to action SEND ACK to all stations.

When receiving this ACK, both stations 1 & 0 reach their
required leaves (labeled 2) . Reception of the ACK directs sta-
tion 2 to activate EV WREQ. A fault is injected by simulating
an erroneous LOCAL REQUEST (FAULT INJECTION 2). An
anticipated behavior then is for the station to reach the leaf label-
ed 2 along the identified path.

The following paths are activated on different stations 0,
1, 2 after performing all these actions (see table 3):

* On station #O

LOCAL REQUEST & IDLE & !C1 * START RR, SEND
T * TURN & WRRVALl & !C1 & !C3 + EMPTY *
ACK & WRRAVLl & C2 =) cnfS =$ VALIDATED-TERM

AVRESKY ET A L FAULT INJECTION FOR FORMAL TESTING OF FAULT TOLERANCE 451

Table 3. Assertions' Subset

Experiment 2 - Station 0

I P (g & WRRAVLl & C2 (IWTOKEN & ACK & C2 I/WCPVALl& ACK
& C2 I/WSIGNl& ACK I/WACKl& ACK I/WREQ & LOCAL REQUEST
& C2 1 * cnf + o VALIDATED-TERM

I P (B & WRRVALl & ! C l & !C3 I / WRRVALl & CA-3 & !C3 & TEND
I / WRRVALl & CA-3 & !C3 & EPDOWN I/) * EMPTY e WRRVALl

IP(L0CAL REQUEST & IDLE & !C1 11 LOCAL REQUEST & IDLE &
C10 (1 LOCAL REQUEST & WRRVALO & C4 & !ClI/) * START RR,
SEND T e WRRVALl

Experiment 2 - Station 1

IP(ACK & WRRAVLl & C2)I WTOKEN & ACK & C2 I/ WCPVALl & ACK

ACK & WACKl I/ WREQ & LOCAL REQUEST & C2 1 1) J cnf + e

IP(L0CAL REQUEST & IDLE & C1 &!Cl0 11 TURN & WRRVALl & C1

& C2 (1 WSIGNl & ACK (1

VALIDATED-TERM

& C2 & C3 & C4 1 1 WTOKEN & TURN & C4 & A-RR & !C10 11 WTOKEN
& TURN & C4 & A-RR & C3 I/ WTOKEN & CLAIM & C 1 & C2 & !C10
& C4 11 WTOKEN & A-RR & !C10 & TEND 11 WTOKEN & A-RR & !C10

RR & C3 & TEND 1 1 LOCAL REQUEST & WRRVALO & C4 & C1 &
!C10)I LOCAL REQUEST & WRRVALO & C4 & C1& C3 11 WCPVALl
& CLAIM & C 1 & C2 & !C10 & C4 1 1 WCPVALl & CLAIM & C 1 & C2
& !C3 & C4 1 1 WSIGNl &TURN & CA-8 & C3 & C4 I / WSIGNl & CLAIM

& EPDOWN (1 WTOKEN & A-RR & C3 & EPDOWN I/ WTOKEN & A-

& CA-8 & C3 & C4 1 1 WSIGNl & SIGN & CA-8 & C3 & C4 1 1 WSIGNl
& TEND & CA-6 & C7 & CA-9 & C3 & C4 I/ WSIGNl & EPDOWN &
CA-6 & C7 & CA-9 & C3 & C4 /I WACKO & TEND & CA-6 & C7 & CA-9
& C4 I(WACKO & EPDOWN & CA-6 & C7 & CA-9 & C4 (I) * SEND
A e WACKl

I P (m & IDLE & !C1 (1 TURN & WRRVALO & !Cl11 WRRVALO &
TEND & CA-6 & C7 & CA-3 & !C9 11 WRRVALO & EPDOWN & CA-6
& C7 & CA-3 & !C9 1 1) * EMPTY o WRRVALO

Experiment 2 - Station 2

IP(ACK & WRRAVLl & C2 I / WTOKEN & ACK & C2 /I WCPVALl & ACK
& & C2 /I WSIGNl & ACK /I ACK & WACKl I(LOCAL REQUEST

WREQ & ! C2 (I) * cnf + Q KILLED-TERM

IP(ACK & IDLE (1 ACK & WRRVALO 11) * START LATE o WREQ

IP(- & IDLE & !C1 I / TURN & WRRVALO & !C1 1 1 WRRVALO &
TEND & CA-6 & C7 & CA-3 & !C9 11 WRRVALO & EPDOWN & CA-6
& C7 & CA-3 & !C9 1 1) * EMPTY WRRVALO

On station #1

TURN & IDLE & ! C 1 * EMPTY * LOCAL REQUEST &
WRRVALO & C4 & C1 & !ClO- SEND A- ACK &
WACKl =. cnf+ * VALIDATED-TERM

On station #2

TURN & IDLE & !Cl* EMPTY * ACK & WRRVALO
* START LATE =) LOCAL REQUEST & WREQ &!
C2 - cnf+ * KILLED-TERM 4

However, when executing the actual program, the leaf
"KILLED-TERM'' could not be reached. This case can be
classified as an implementation fault, according to the syndrome
analysis in table 2. This fault corresponds to a fault made in

the procedure to implement the validation of the signatures ex-
changed by the replicated entities and to control the branching
variable C2. Intermittent erroneous behaviors of the im-
plemented IRp for some activations of the program, induced
by this fault, were known by the designer; however, it was not
easy to diagnose precisely. The support provided by the testing
strategy, the syndrome obtained, and the knowledge of the con-
ditions for activating the paths in the activated trees were useful
for diagnosing the fault. Accordingly, this fault could be easily
corrected by the designer of IRp. Thus, the effectiveness of
FT/TS for revealing implementation faults in the program im-
plementation of the IRP was demonstrated.

5.3.2 Experiment #4

The activated ET should terminate in states that set-up the
3 following EV (VALIDATED-TERM, KILLED-TERM,
VALIDATED-TERM), for stations 0, 1, 2, respectively. The
EV KILLED-TERM is the predicted result associated with the
fault injection labeled 4 on station 1.

The external event, which must occur on station 1 (figure
2b) for the proper path to be initiated, is the fault injection label-
ed 4 at the instant when the protocol activates EV WRRVALO,
for which :

.

the Activation-Chain is:

IEV =) CHECK STATE * IDLE * CHECK EVENT DEF
= TURN * COMPLEX ACTIONS-3,2 (vote) * 'C1 =.
EMPTY ACTION * WRRVALO;

the Activated Well-Defined Formula is:

Fault injection 4 * CHECK EVENT DEF * C4 * COM-
PLEX ACTION-l(vote) * 'C1 + START RR, SEND T - WRRVALl * CHECK EVENT DEF =) TURN =.
COMPLEX ACTIONS-3,2 (vote) * '431 * CHECK C3
* 'C3 - EMPTY ACTION * WRRVALl * CHECK
EVENT DEF 3 ACK * STOP RR 3 CHECK C2 -
'C2 * Cnf-(MI), ABORT * KILLED-TERM 4. 4

The proper values of the set of branching variables ('Cl,
'C2, 'C3, C4,) and of the external EV, TURN, ACK are
supplied by stations 0 & 2 in the same manner as explained for
experiment #2.

An external event (labeled LOCAL-REQUEST-4) occurs
in state IDLE of station 0 (figure 2a) to activate the proper path
belonging to the set of predicted paths PredPT(f4), where:

the A-Chain is:

IEV =. CHECK STATE * IDLE;

the Activated Well-Defined Formula is:

LOCAL REQUEST 4 - CHECK C8 * C8 * CHECK C4 - C4 * COMPLEX ACTION-l(vote) * 'C1 3. . .
Cnf+ * VALIDATED-TERM 4.

Respectively, the external event LOCAL REQUEST-4 is
applied to state WRRVALO of station 2 (figure 2c) to activate

45 2 IEEE TRANSACTIONS ON RELIABILITY, VOL. 45, NO. 3, 1996 SEPTEMBER

Table 4. Simulation Script for Experiment #4

Launch simulator ...
Initialize IRp <cn3 elsaRR 012,s

[tsR 8(sim)] more exp4.s

Station 0 Station 1 Station 2
Code of the comm./ scheduling mode 9 9 9
Code of the station 0 1 2
Code selection.. S- DATA S-DATA
MSAP name ... 3003 1 3003 1 3003 1
CNX name ... 3 3 3
Synchronization (Y/N) N N N
Transfer type %MULTICAST SMULTICAST S-MULTICAST

...
... S D A T A

S-METOO S-METOO S N E T O O
.. 1 2 1
nue (Return) (Return) (Return)

Experiment end [Station number (to quit >3)] 4

the proper path belonging to the set of predicted paths
PredP,(J4), where:

the A-Chain is:

IEV * CHECK STATE * IDLE * CHECK EVENT DEF
3 TURN * COMPLEX ACTIONS-3,2(vote) * 'C1 -
EMPTY ACTION 3 WRRVALO * CHECK EVENT DEF
* TURN * COMPLEX ACTIONS 3,2(vote) * 'C1 *
EMPTY ACTION * WRRVALO;

the Activated Well-Defined Formula is:

LOCAL REQUEST-4 * CHECK C4 * C4 * COMPLEX
ACTION-l(vote) 3 C1 - CHECK EVENT DEF *
('Cl0 v C3) - SEND ACK - WACKl * CHECK
EVENT DEF ACK * Cnf+ 3 VALIDATED-TERM 4.

During generation of the ET of the IRp that corresponds
to the behavior of station 2, the protocol did not terminate. It
was halted at the edge labeled DESIGN FAULT WRRVALl.
According to the syndrome analysis depicted in table 2 , we can
classify this situation as an eliminated design fault, because the
program did terminate when subjected to the test case defined
by this experiment. This eliminated design fault corresponds
to the use of a wrong variable (WRRVALl instead of
WRRVALO) in the set of assertions (state table); this fault subse-
quently was corrected in the implementation of the IRp, but re-
mained in the state table that we used to obtain the set of asser-
tions. FTlTS might have revealed such a fault as a design fault
had the ET been fully constructed.

5.4 Design & Realization of a Test Sequence

The set of assertions and the derived activated ET (such
as those in figure 2) provide a useful framework for specifying
experiments that selectively exercise the program implementa-
tion of the IRp.

As an example, consider the process of making active a
path in experiment #4 that terminates in a state, which sets up
the Event Variable KILLED-TERM; the path has a leaf that
is labeled with 4 3 in figure 2b. The respective A-Chain and
A-WDF of the activated path are depicted in section 5.3.2. One

can identify the following external event variables TURN, fault
injection 4, TURN and ACK, which have to be provided in se-
quence to make the considered path active. The ET also iden-
tifies the conditions for synchronizing the injection of the fault
with the state of station 1.

The interactive simulation environment developed by
BULL to test communication protocols functionally was suc-
cessfully used to support FT/TS when testing the FTAM within
the IRp. Essentially, the simulator was used manually to per-
form the first set of fault injection experiments, such as those
described in section 5.3. The main action during an experiment
is to provide all necessary conditions (external EV, branching
variables) for malung active a selected ET path. Accordingly,
the operator must provide data to the simulator when prompted
to do so. These inputs are based on the information derived from
the static analysis of the ET, as described above.

Table 4 depicts a typical form of the dialogue between the
operator and the simulator to specify an experiment (more
precisely, it corresponds to the specification of experiment #4).
The inputs that are listed in each column for each station are
entered by the operator in sequence, one station after another.

At the beginning, all three stations 0, 1, 2 (1001,1003,
1007), must be connected and MSAP(Mu1ticast Service Access
Point), S SAP (Session Service Access Point), SMAP(System
Management Application Process), connection name (CNX
name) need to be established. Such an activation is performed
by a specific file (<cn3 elsaRR 012.s 9) shown in table 4.

Considering again experiment #4, the following steps must
be performed:

1. The message TURN is to be sent by station 0. The A-
Chains and AWD formulas for stations 0 & 2 are shown in sec-
don 5.3 and in figures 2a & 2c, respectively. Thus, the operator
has to-be first on station 0. Station 0 has to send the message
TURN to all stations (0 & 2) connected to MSAP-3003 1. To
do this, the operator must: 1) provide the series of inputs shown
in column 'Station 0' in table 4, and 2) activate the external
variable - Local Request (Data 1).

2. Then, according to the A-Chain in figure 2b, station
1 activates the EV WRRVALO. At that point, a synchronization

AVRESKY ET AL: FAULT INJECTION FOR FORMAL TESTING OF FAULT TOLERANCE

45 3

between the injected fault (Fault Injection 4) and the proper state
of station 1 can be realized. For that, the operator has to-be
on station 1 and inject the fault by providing wrong data (eg,
2 instead of 1, as shown in table 4). Station 1 then has to send
a message TURN to activate WRRVAL1.

3. As indicated by ET of figure 2c, after receiving the
message TURN twice, station 2 activates the EV WRRVALO.
The operator has to-be on station 2 to enter external event Local
Request 4. Then, station 2 has to send a message ACK and to
activate Validated TERM. 4

After receiving a message ACK, station 1 should terminate
and make active the message KILLED TERM. After receiving
ACK, station 0 must terminate and then activate Validated
TERM.

Although essentially we used the interactive simulator
manually during the first set of experiments, it proved to be
a useful tool for implementing FT/TS for complex FTAM. In
particular, the design & realization of additional fault-injection
experiments can be greatly facilitated - and to a large extent
mechanized - by the generation of simulation scripts, analogous
to the one in table 4. The scripts can be automatically & effi-
ciently executed by the simulation environment.

Such a mechanization would be highly desirable for ex-
tending the coverage of the actual paths of the IRp program im-
plementation when a set of predicted paths has been selected
in the IRp activated ET. In particular, this would be readily
achievable when considering the inputs to be provided to the

& Data row in the script in table 4. Randomly (or statistically)
selected data can be easily applied there.

6 . SUMMARY OF FT/TS

FT/TS is a formal testing approach for FT algorithms &
mechanisms. To highlight the major features of FT/TS, figure
3 depicts a general framework that helps to identify the main
steps of the testing strategy.

The left part of the diagram corresponds to the design &
implementation steps. From the designer’s intention (informal
requirements), a formal model is established (eg, under the form
of a state table, or flow graph). As shown by dashed arrows,
another possibility is to present directly the behavior by a set
of assertions. In this approach, the assertions are not generated
from the code of the program; the model is used to elaborate
the program. For testing purposes, a simulator is generally
available for providing a proper environment for debugging the
program. If the FTAM is a FT protocol, the simulator must
enable the concurrent execution of the protocol program by
analyzing a simulation script to provide necessary external con-
ditions for exercising the program with several replicas of the
application processes. Such concurrent execution enables one
to test several paths simultaneously.

The r.h.s. of the graph describes the main steps of FT/TS.
The main goal is to help the designer when performing a
systematic test of the FTAM. Step #1 corresponds to defining
a set of assertions characterizing the service anticipated from
the program using FT/TS (see section 3). Although these asser-

tions can be obtained directly from the designer’s intention, they
can also be derived from the model. An interpreter can pro-
vide possibilities for reducing the complexity of the formal
specification. A tool can be used for constructing the tree of
all possible executions from the set of assertions. The deriva-
tion of the ET includes testing for both missing or several ac-
tivated assertions, which enables the set of assertions to be cor-
rected (viz, removal of a designfault); such a feedback can also
affect the model. Furthermore, well-defined formulas express-
ing specific service characteristics can be expressed within the
formalism, and processed by the interpreter to verify their validi-
ty on the ET. To represent the behavior of a FT protocol for
several replicated entities, several activated ET are considered
for which distinct paths can be activated. The intent of this ap-
proach is to enforce the role of static analysis of the ET in the
elaboration of deterministic fault injection test sequences for the
program.

.. .. ._ . .
Dekign
t

Transformation

I
Implementation

Simulator

Concurrent Activation

Static Analysis

L Designer t> Conclusion

Figure 3. General Framework

In practice, such a goal can only be achieved under some
constraints. In particular, controllability and/or observability
restrictions do not always provide all the required conditions
for the sensitization of a single path. Rather, the practically
available conditions specify a set of predicted paths on the pro-
gram (see section 4).

Static analysis performed with these activated trees pro-
vides two main results:

the conditions of activation,
the anticipated outcomes for the activated paths.

454 Ibl5k

Both results characterize the sensitization & observation domains
that guide the designer when elaborating on a systematic test
case and when providing the fault (F) and activation (A) at-
tributes to be incorporated into the simulation script to perform
the fault injection experiment using the simulator.

The simultaneous dynamic testing of the program and of
the concurrent activation of specific paths in the ET results in
a syndrome that:

characterizes the outcome of the test conducted for each side
of the diagram,

* facilitates the diagnosis of fault tolerance deficiencies-faults
(see table 2).

7. DISCUSSION

FT/TS was used successfully to conduct test sequences aim-
ed at explicitly removing design/implementation faults in com-
plex FT algorithms & mechanisms.

The main strength of FT/TS is its ability to test the FT
algorithms & mechanisms in a systematic way by activating all
paths of the associated ET. This systematic process enforces
the power of fault injection to reveal potential FT deficiency
faults. In particular, the strategy provides a framework for
generating a functional deterministic test for programs im-
plementing complex FT protocols.

The application of the strategy to a real protocol that sup-
ports the FT features of the Delta-4 distributed system illustrates
its usefulness and its practical implementation. Even though the
protocol had been independently verified formally, the applica-
tion of the strategy revealed two FT deficiency-faults.

FT/TS is a heavy-weight approach, but is definitely need-
ed to provide a high level of assurance when implementing FT
algorithms & mechanisms. lndeed FT/TS is well suited to
discover test-resistant faults, such as those revealed in the tested
protocol. If the entire ET has been built, FT/TS can guarantee
the absence of faults in the FT algorithms & mechanisms.

The study reported here describes an early (mostly manual)
application of FT/TS for which only a limited number of ex-
periments were conducted. However, the formalism permits the
mechanization of major steps of the strategy. In particular, it
is possible to use an interpreter of assertions to reduce
automatically the set of assertions by identifying classes of
equivalence. Other possible mechanizations concerning the con-
struction of the complete ET, running a sequence of ex-
periments, are being implemented. Accordingly, a tool
(VERIFY) has been written to support the application of FT/TS
for the formal verification of software. This is written in C + +
and currently has about 6k lines. VERIFY has been implemented
on SPARC workstations running the Solaris 2.4 operating
system. It is an interactive tool and has been successfully used
to derive the 57 compressed assertions that fully describe the
Delta-4 protocol and the set of all possible paths (27 paths).
However, no further ftd-faults were unveiled as a result of con-
structing all execution paths. Further applications of VERIFY
concern two additional major protocols for NASA & AT&T.

I KANbACI IUN> U N Kl5LIABILI 1 Y , V U L . 43, NU. 3 , J Y Y O SCr 1 LIVIBCK

The communication multimedia protocol for AT&T Bell
Laboratories has been presented by 131 assertions. As well,
a state-explosion problem was not observed during the genera-
tion of the ET. In this case, the set contains 35 paths and the
average number of levels in the ET is 30. No state-explosion
problem was observed by generating all possible paths for any
of these protocols.

ACKNOWLEDGMENT

We are pleased to thank David Powell and Pascale
ThCvenod (from LAAS) for pertinent discussions during the ear-
ly stages of this research, and Philippe Reynier (from BULL)
for his help with the simulation environment. This work was
performed within the framework of PDCS, ESPRIT Basic
Research Action #3092, “Predictably Dependable Computing
Systems”.

REFERENCES

J.-C. Laprie, “Dependable computing and fault tolerance: Concepts and
terminology”, Proc. 15th Int’l Symp. Fault-Tolerant Computing
(FTCS-l5), 1985, pp 2-11; IEEE Computer Society Press.
J.-C. Laprie (Ed), Dependability: Basic Concepts and Terminology in
English, French, German, Italian, and Japanese, 1992; Springer-Verlag.
J. Arlat, Y. Crouzet, J.-C. Laprie, “Fault injection for the experimen-
tal validation of fault tolerance”, Proc. Esprit Conference (Esprit ’91)
(CEC-DGXIII), 1991, pp 791-805; Office of Official Publications of the
European Communities.
2. Segall, D. Vrsalovic, D. Siewiorek, et al, “FIAT % Fault injection-
based automated testing environment”, Proc. I F h Int ’1 Symp. Fault-
Tolerant Computing (FTCS-18), 1988, pp 102-107; IEEE Computer
Society Press.
U. Gunneflo, J. Karlsson, J. Torin, “Evaluation of error detection
schemes using fault injection by heavy-ion radiation”, Proc. 19*h Int ’I
Symp. Fault-Tolerant Computing (FTCS-19), 1989, pp 340-347; IEEE
Computer Society Press.
R. Chillarege, N.S. Bowen, “Understanding large system failures % A
fault injection experiment”, Proc. 19“ Int’l Symp. Fault-Tolerant Com-
puting (FTCS-19), 1989, pp 356-363; IEEE Computer Society Press.
J. Arlat, M. Aguera, L. Amat, et al, “Fault injection for dependability
validation % A methodology and some applications”, IEEE Trans. Soft-
ware Engineering, vol 16, 1990 Feb, pp 166-182.
C.J. Walter, “Evaluation and design of an ultra-reliable distributed ar-
chitecture for fault tolerance”, IEEE Trans. Reliability, vol 39, 1990
Oct, pp 492-499.
G.S. Choi, R.K. Iyer, “FOCUS: An experimental environment for fault
sensitivity analysis”, IEEE Trans. Computers, vol 41, 1992 Dec, pp
1515-1526.
K.K. Goswami, R.K. Iyer, “Simulation of software behavior under hard-
ware faults”, Proc. 23rd Int’l Conj Fault-Tolerant Computing
(FTCS-23), 1993, pp 218-227; IEEE Computer Society Press.
J. Arlat, M. Aguera, Y. Crouzet, et al, “Experimental evaluation of the
fault tolerance of an atomic multicast protocol”, IEEE Trans. Reliabili-

J. Karlsson, P. LidCn, P. Dahlgren, R. Johansson, “Using heavy-ion
radiation to validate fault-handling mechanisms”, IEEE Micro, vol 14,
1994 Feb, pp 8-23.
J.H. Barton, E.W. Czeck, Z.Z. Segall, D.P. Siewiorek, “Fault injec-
tion experiments using FIP.T”, IEEE Trans. Compufers, vol 39, 1990
Apr, pp 575-582.

ty, V O ~ 39, 1990 Oct, pp 455-467.

AVRESKY ET A L FAULT INJECTION FOR FORMAL TESTING OF FAULT TOLERANCE 455

G.A. Kanawati, N.A. Kanawati, J.A. Abraham, “FERRARI: A flexi-
ble software-based fault and error injection system”, IEEE Trans. Com-
puters, vol 44, 1995 Feb, pp 248-260.
D.R. Avresky, P.K. Tapadiya, “Software-based fault-injection tool for
validation of software fault-tolerant techniques under hardware faults”,
Second ISSAT Int’l Conf Reliability & Quality in Design, 1995 Mar.
E. Jenn, 3. Arlat, M. Rimkn, et al, “Fault injection into VHDL models:
The MEFISTO tool”, Proc. 24Ih Int ’1 Symp. Fault-Tolerant Computing
(FTCS-24), 1994, pp 66-75; IEEE Computer Society Press.
J. Arlat, “Fault injection for the experimental validation of fault-tolerant
systems”, Proc. Workshop Fault-Tolerant Systems, 1992, pp 33-40;
IEICE .
J.A. Clark, D.K. Pradhan, “Fault injection % A method for validating
computer-system dependability”, Computer, vol28, 1995 lun, pp 47-56.
T. Dilenno, D. Yaskin, J.H. Barton, “Fault tolerance testing in the ad-
vanced automation system”, Proc. 21” Int ‘I Symp. Fault-Tolerant Com-
puting (FTCS-21), 1991, pp 18-25; IEEE Computer Society Press.
K. Ekhtle, Y. Chen, “Evaluation of deterministic fault injection for fault-
tolerant protocol testing”, Proc. 21 ’‘ Int ’I Symp. Fault-Tolerant Com-
puting (FTCS-21), 1991, pp 418-425; IEEE Computer Society Press.
K. Echtle, M. Leu, “The EFA fault injector for fault-tolerant distributed
system testing”, Proc. Workshop Fault Tolerant Parallel & Distributed
Systems, 1992, pp 28-35; IEEE Computer Society Press.
D. Avresky, J. Arlat, J.-C. Laprie, Y. Crouzet, “Fault injection for the
formal testing of fault tolerance”, Proc. 22& Int ’I Symp. Fault-Tolerant
Computing (FTCS-22), 1992, pp 345-354; IEEE Computer Society Press.
D. Powell (Ed) Delta-4: A Generic Architecture for Dependable
Distributed Computing, 1991 ; Springer-Verlag.
M. Diaz, C. Vissers, “SEDOS: Designing open distributed systems”,
IEEE Sofnvare, vol 16, 1989 Aug, pp 24-33.
A. Citimile, U. Carlini, “Reverse engineering: Algorithms for program
graph production”, Software Practice & Experience, vol21, 1991 May,

D. Brand, W.H. Joyner, “Verification of protocols using symbolic ex-
ecution”, Computer Networks, 1978 Feb.
B. Korel, “Automated software test data”, IEEE Trans. So&are
Engineering, vol 16, 1990 Aug, pp 870-879.
J.-C. Fernandez, J.-L. Richier, J. Voiron, “Verification of protocol
specifications using the Cesar system”, Protocol Spec$cation, Testing,
Ver$cation (M. Diaz, Ed) vol V, 1986, pp 71-90; North-Holland.
P. Thkvenod-Fosse, H. Waeselynck, Y. Crouzet, “An experimental study
of software structural testing: Deterministic versus random input genera-
tion”, Proc. 21 ’‘ Int ’1 Symp. Fault-Tolerant Computing (FTCS-2 l),
1991, pp 410-417; IEEE Computer Society Press.
M. ChCrtque, D. Powell, P. Reynier, et al, “Active replication in
Delta-4”, Proc, 22& Int ’1 Cant Fault-Tolerant Computing Systems
(FTCS-22), 1992, pp 28-37; IEEE Computer Society Press.

pp 519-537.

AUTHORS

Internet (e-mail): avresky@cs.tamu.edu
Dimiter R. Avresky (M) is with the Department of Computer Science

at Texas A&M University; this work was done while he was with LAAS-CNRS
in Toulouse. His research interests focus on hardware & software fault-tolerant
systems, parallel computers, functional languages, parallel programming, testing,
and fault-injection. He is an editor and co-author of Hardware and Software
Fault-Tolerance in Parallel Computing Systems, 1992, and Fault-Tolerant
Parallel and Distributed Systems, 1995. He is Member of IEEE and The New
York Academy of Sciences.

Dr. Jean Arlat; LAAS-CNRS; 7, Ave du Colonel Roche; 31077 Toulouse cedex,
FRANCE.
Internet (e-mail): arlat@laas.fr

Jean Arlat is Directeur de Recherche of CNRS, the French National
Organization for Scientific Research. He joined LAAS-CNRS in 1976. His
research has focused on dependable computing and, more specifically, on analytic
& experimental validation of fault-tolerant computers. He received the Cer-
tified Engineer Degree (1976) from the National Institute of Applied Sciences,
Toulouse; the Doctor in Engineering Degree (1979) in Automatic Control and
the Doctor of Sciences Degree (1990) in Computer Science from the National
Polytechnic Institute of Toulouse. In 1994-1995, he was Chair’n of the IEEE
Computer Society TC on Fault-Tolerant Computing.

Dr. Jean-Claude Laprie; LAAS-CNRS; 7, Ave du Colonel Roche; 31077
Toulouse cedex, FRANCE.
Internet (e-mail): laprie@laas.fr

Jean-Claude Laprie is Directeur de Recherche of CNRS. He joined
LAAS-CNRS in 1968, where he has directed the research group on Fadt
Tolerance and Dependable Computing since 1975. His research has focused
on dependable computing since 1973, and especially on fault-tolerance and depen-
dability evaluation. He received the Certified Engineer Degree (1968) from
the Higher National School for Aeronautical Constructions, Toulouse; the Doctor
in Engineering Degree (1971) in Automatic Control and the Doctor of Sciences
Degree (1975) in Computer Science from the University of Toulouse. In
1984-1985, he was Chair’n of the IEEE Computer Society TC on Fault-Tolerant
Computing, and was the Chair’n of IFIP WG10.4 on Dependable Computing
and Fault Tolerance from 1986 to 1995.

Dr. Yves Crouzet; LAAS-CNRS; 7, Ave du Colonel Roche; 31077 Toulouse
cedex, FRANCE.
Internet (e-mail): crouzet@laas.fr

Yves Crouzet is Charg de Recherche of CNRS. He joined LAAS-CNRS
in 1975. His research has focused on dependable computing and more special-
ly on experimental validation of fault-tolerant computers and software testing
approaches. He received the Certified Engineer Degree (1975) from the Higher
National School of Electronics, Electrical Engineering, Computer Science and
Hydraulics, Toulouse; the Doctor in Engineering Degree (1978) in Automatic
Control and the Habilitation diriger des Recherches (1995) in Computer Science
from the National Polytechnic Institute of Toulouse

Manuscript received 1995 August 14

Publisher Item Identifier S 0018-9529(96)07 148-5
Dr. D. R. Avresky; Dep’t of Computer Science; Texas A&M Univ; College
Station, Texas 77843-31 12 USA. 4 T R F

mailto:avresky@cs.tamu.edu
mailto:arlat@laas.fr
mailto:laprie@laas.fr
mailto:crouzet@laas.fr

