
J. Arlat
W. C. Carter

Implementation and Evaluation of a (b,k)-Adjacent Error-
Correcting/Detecting Scheme for Supercomputer Systems

This paper describes a coding scheme developed for a specific su.uercomputer architecture and structure. The code considered is a
shortened (b,k)-adjacent single-error-correcting double-errorprobabilistic-detecting code with b = 5, k = 1, and code group width
= 4. An evaluation of the probabilistic double-error-detection capability of the code was performed for drfferent organizations of the
codingldecoding strategies for the codewords. This led to the selection of a system organization encompassing the traditional
feature of memory data error protection and also providing for the detection of major addressing errors that may result from faults
affecting the interconnection network communication modules. The cost of implementation is a limited amount of extra hardware
and a negligible degradation in the double-error-detection properties of the code.

Introduction
The requirement of superfast performance for large-scale su-
percomputing systems has led to the development of new
types of highly parallel architectures: tens (or more) of proc-
essors concurrently working on different parts of the same
problem. This trend has been necessitated by the speed limi-
tations of computer technologies, such as gallium arsenide or
Josephson junction devices, which can increase computer
speed only by about a factor of 10 with current uniproc-
essor architectures [1,2], whereas multiprocessor architectures
have the potential of providing much larger speed increases,
from 1 0 0 to 1000 times the current speed.

With these new architectures, the analysis of systems such
as fusion power reactors, turbulent flow around ships or
planes, and weather analysis and prediction would be possible
on a three-dimensional basis, applications that are practically
unmanageable with today's computer performance. Also, it
should be noted that the solution of such 3-D models would
require not only ultrahigh speed but also a very large primary
memory of capacity up to 10" words [3]. With such large-
capacity memories, the problem of data protection against the
effects of errors becomes one of great significance requiring
particular attention.

The study presented in this paper constitutes a contribution
to this problem; it has been developed in the framework of a
large ongoing project, currently funded in France, for research

and development in supercomputer systems. A core machine
is currently being developed to serve as a basis upon which
more powerful systems can be built. It is a multiple-instruction-
stream, multiple-data-system (MIMD) machine intended for
scientific computation and designed to act as an array proc-
essor when connected to a host computer system. This ma-
chine is expected to provide an average computation speed of
more than twenty million floating-point operations per second
(20 MFLOPS). The development of a machine aimed at an
average computation speed in excess of 100 MFLOPS and
featuring more than lo8 words of primary memory is being
planned.

Clearly, with such a structure, the error-tolerance charac-
teristics of main memory have to be carefully investigated.
Along these lines, a preliminary study was performed to
identify and apply possible solutions in the case of the core
machine. Although more restricted in size, this structure fea-
tures most of the characteristics to be considered for the
development of a coding scheme that could be applied in
future upgraded systems. This study and the results obtained
are presented in this paper.

For this computer system, the choice of the code to protect
information depends more upon the structural features of the
core machine than upon the main memory features, so the
core computer system will be briefly described. As shown in

Topyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor. 159

J. ARLAT AND W. C. CARTER IBM J. RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984

Figure 1 Symmetric N X N Omega network, with N = 16.

Figure 1, the core machine consists of 16 processor modules
(Po, PI, . . ., P I S) interconnected, by means of a symmetric
Omega-type interconnection network [4], to I6 memory mod-
ules (Ma, MI, . . . , MIS) which constitute the primary memory
of the system. The processor modules are composed of stand-
ard array processors. Each such processor has a small local
memory protected by a single-error-correcting, double-error-
detecting (SEC-DED) modified Hamming code [5-71. The
Omega-type network was selected in order to provide an
acceptable tradeoff between the amount of hardware and the
necessary control complexity, flexibility, rearrangeability, de-
lay, etc. [8,9]. The memory modules are characterized by a
capacity of 1M words of 64 bits each. These modules are
composed of four banks of 64 data modules, each data module
one bit wide and containing 256K bits. Initially, a SEC-DED
modified Hamming code was envisioned for data protection.

In practice, the conceptual network of Fig. 1 is modified as
indicated in Figure 2. Each network ensures bidirectional
switching of B lines for each terminal module; these lines
represent address, data, control bits, etc. Simultaneous switch-
ing of these B bits may be obtained by the superposition of B
identical 1-bit-wide slices. However, for efficiency, specific
circuits allowing the switching of b bits in parallel have been
developed [lo]. The network can thus be viewed as the super-
position of [B/b 1 slices ([B/b 1 represents the least integer
greater than or equal to B/b) logically equivalent to the N X

N Omega network illustrated in Fig. 1 (where N = 16).

The actual structure being implemented is characterized by
N = 16, B = 100, and b = 4. Each slice is made up of four

160 identical stages composed of eight (8 X 8) switching modules,

each of them being able to take two states: the through state
and the cross state. The total number of switching modules in
general is (N/2) [B/b 1 log, N, so in this case 800 switching
modules are used.

The main structural modifications intended in order to
reach higher performance levels are 1) increasing the number
of primary memory modules to about one hundred and
providing double access capability, 2) including a stage of
specific computing modules, each connected to a memory
module, working in single-instruction-stream, multiple-data-
stream (SIMD) mode, and 3) extending the network connect-
ing primary memory modules with the array processor mod-
ules working in MIMD mode.

The major influences of these modifications on the problem
of primary memory protection are related to I) the increase
in the number of memory modules and in the resulting
capacity of the primary memory, and 2) the increase in the
size of the network. Both factors would tend to make the
system much less reliable and available. It thus appears that
basically the same problems have to be solved for both struc-
tures in order to derive an efficient error-correcting scheme.
This allows methods which may provide sufficiently high
system availability for the upgraded machine to be tested and
evaluated on the core machine.

Determining the error correction and detection techniques
for the data transmission and storage subsystem of the core
system began with a study of the effects of the failures of single
components. Both the local memories in the sixteen processors
and the memory modules will be implemented by I-bit-wide
data modules; therefore, single failures will produce single
errors, and standard Hamming SEC-DED codes would suffice.
However, as stated previously, for circuit efficiency in the
Omega network, four bits are switched in parallel. Thus, a
single component failure in one slice of the Omega network
could produce any one of the fifteen possible error patterns in
the four bits of data, address, or control information being
transmitted through that slice. Therefore, a single-bit SEC-
DED code is inappropriate for transmissions between the
processors and the main storage modules. A solution is to use
a code which is SEC-DED for groups of four bits [1 I].

A practical implementation consideration was that the
planned SEC-DED code for the 64-bit-wide data words in the
main memory uses eight check bits, and any code chosen for
implementation should use a comparable number of check
bits, as well as a comparable amount of circuitry and number
of logic levels. In addition, the code chosen must have error
correction and detection power near that of a single-bit SEC-
DED code, but over groups of four bits.

The usual solution for error correction and detection over
groups of b bits is to use a Reed-Solomon b-adjacent code

J. ARLAT AND W. C . CARTER IBM J. RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984

[1 1, 121. The implementations of encoding/decoding circuitry
in [1 11 and [121 are based on arithmetic in the finite field
GF(26) and are serial in nature. Cocke [131 showed that the
encoding/decoding operations could be performed in the
prime field [usually GF(2); thus ordinary Boolean algebra can
be used], and Bossen [141 provided an efficient parallel imple-
mentation of such codes. The practical difficulty with such b-
adjacent codes is that if b-bit-wide SEC-DED is desired, then
36 check bits are necessary and the maximum data length for
the 3b check bits is

mmu = b(2' - 1). (1)

If b = 4, then 12 check bits are necessary, and only 60 data
bits can be covered by such a code. Carter, Wadia, and Hsieh
[15, 161 introduced (b,k)-adjacent codes with a parallel encod-
ing technique. These codes use 2b + k bits for a SEC code
and 3b + 2k bits for a SEC-DED code for groups of data bits
which are b - k bits wide. As pointed out in [161, this type of
code was primarily designed to overcome the inherent data
length limitation of b-adjacent codes. A (b,k)-adjacent SEC
code has a code group width q = b - k, 2b + k check bits,
and the maximum number of data bits handled is

m' = q(26 - I). (2)

The addition of k check bits increases the maximum number
of data bits that can be handled by more than a factor of 2k.
If b = 5 and k = 1, then data in 4-bit-wide groups will be
corrected, and the maximum length of data which may be
corrected is 4(3 1) = 124 bits.

The difficulty of detecting errors in two distinct b-bit-wide
groups may be solved as follows. It is well known that error-
correction codes operating on shortened data have a proba-
bility of detecting multiple errors which are not corrected. The
ability of b-adjacent and (b,k)-adjacent codes to perform such
detection was discussed in [15, 171 and was seen to be quite
high. The double-error detecting ability of a shortened SEC
code depends on the shortened code chosen from the SEC
code of maximum length. For a (b,k)-adjacent SEC code of
length qd there are

(2 b I) possible choices.

A shortened (b,k)-adjacent SEC code with b = 5 and k = 1
can correct all 15 error patterns in 4-bit-wide groups, can
cover as information the 84 bits needed for parallel transmis-
sion of the 64 data bits and 20 address bits used in the core
machine, can detect many double errors involving two 4-bit-
wide data groups (with arbitrary data patterns), and uses only
nine check bits for each word in main memory. Since such a
code satisfies all the practical system requirements for availa-
bility, except possibly high enough probability of double-error
detection, it was decided to investigate the properties of such
a code, devise and compare specific codes, and determine if

IBM J. RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984

-1oe.N

Figure 2 Structure of the system.

the probabilistic four-adjacent double-error detection would
be sufficient to fulfill the core system availability requirements,
considering the relative probability of occurrence of single and
multiple four-adjacent errors. The shortened length chosen
must have length 4 X 2 1. There are

(i;) = 44 352 165 possible choices for such a code.

In the following sections of this paper we first describe the
procedure for generating the specific code as well as that of
exploiting the syndrome to identify the error. The double-
error-detection properties of the code are then examined, using
a systematic investigation of the error combinations that allow
evaluation of the double-error-detection probability. Follow-
ing that, different implementations of the code are examined
and evaluated on the basis of their double-error-detection
capabilities. These implementations differ by 1) the coding
scheme, which may include only data lines or both data and
address lines in the generation of the check bits, the latter
taking into account faults affecting the commutation modules
that convey the address lines in the network; and 2) the
decoding scheme, which, depending on the use of the redun-
dancy of the code, may correct all bits of the codeword or
may correct data and check bits only, to satisfy different
architectural requirements.

Description of the code

General background
Let q = b - k be the code group bit width for a (b,k)-adjacent
code. The panty check matrix for such a code can be written
as

H = I, I, ' ' ' I, 1,
[c& cb,q ' ' ' cgq 0 b . q (3) 161

1. ARLAT AND W. C. CARTER

Table 1 Correspondence between shortened and complete matrices.

C ; i 4 (i) 0 1 2 3 4 5 6 7 8 9 1 0
C+ (j) 0 1 2 3 4 30 29 28 27 17 18

C2.4 (i) 1 1 12 13 14 15 16 17 18 19 20 . . .
C3 (j) 16 19 26 5 6 7 21 20 8 9 . . .

where I, and 0, represent the identity and null square matrices
of dimension y , O , , corresponds to the y,z-dimension null
matrix, and the Cb,, 0 5 i I rn, represent the b,q-dimension
matrices obtained by deleting the same set of k columns from
the b,b matrices CjJ,, 0 I j I 2', corresponding to the powers
over GF(2) of the nonzero elements of GF(2') [15, 161.

These matrices represent the distinct powers of the compan-
ion matrix c b = c h , b of the primitive polynomial of degree b,

0 0 . . ' 0 0 to

1 0 0 0 tl 1
and are characterized by the following properties:

1. Cb = (Yi, Yi+', . . ., Y'+&'), where the YJ, 0 ~j I 2' - 2,
represent the column vectors of the successive powers of
the root p(x): Y.

2. C ~ Y J = Y'+J, for i , j , 0, 1, . . ., 2 b - 2.
3. If Y' + YJ = Y", then C6 + C$ = CF, for i , j , rn E

(0, 1, . . .) 2 6 - 2).

These properties of the companion matrix allow for an easy
derivation of its distinct powers, since w = 2 - 1, C! = Cb =

I b 1161.

Construction of the code and derivation of the decoding
expressions
As previously mentioned, a consideration of the possible errors
which may occur because of the architecture of the supercom-
puters being designed shows that a single fault in the Omega-
type interconnection network can cause from one to four
faults in a group of four adjacent bits in a memory unit. Thus,
for single-error correction, any of the 15 possible error patterns
in such four-adjacent groups must be corrected. The super-
computers have a word length of 64 bits, which must be
divided into 4-bit code groups. A standard b-adjacent code

162 with b = 4 cannot be used since the maximum data length for

such a code is 60 bits. Thus a (b,k)-adjacent code with b = 5
and k = 1 was chosen. This code handles code data groups of
width q = b - k = 4, and has a maximum data length of 124
bits. This flexibility in length is exploited, as described in
subsequent sections.

The specific check matrix is easily deduced from the general
matrix (3) and can be written as

where r is determined by the number of data bits that are
considered by the relation r = rrn/bl - I , (r I 30).

The companion matrix is derived from the primitive poly-
nomial

p(x) = 1 + x2 + x5, (6)

and all the distinct powers can be easily obtained following
the previously described method. In practice, the choice of the
C& among the Cjs can be made arbitrarily, provided that in
all cases the same column is deleted. Nevertheless, it has to be
noted that this choice presents a direct influence on 1) the
hardware implementation complexity of the code, and 2) its
multiple group error detection abilities. The constraints re-
lated to the latter condition cannot be simply identified at this
stage and are addressed in the next section. Thus, the selection
of the matrices was based on the first influence only and ended
in the correspondence between matrices C+ and C& indicated
in Table 1, where the C;,< are actually obtained by deletion of
the fifth column in the associated C+. Note that only C;,<
matrices, which are used in the different implementations of
the code, have been considered here.

The logical equations for the generation of the check bits
can be derived easily from the matrix H". In the following, B,
is used in place of C&, for conciseness of the presentation;
furthermore, the symbols + and Z are used to represent
addition modulo-2, i.e., exclusive-or, while the symbols . and
n represent the logical AND operation, v and U represent the
logical OR, and - represents negation.

c, = d,J, 0 I j I 3,
r

(~ 4 , ~ 5 , c6, C7)= = C Bi(di0, drt, dr27
i

where (dm, dr l , dr2, dis)T represents the transposed vector of the
data bits of group i, for i = 0, 1, . . . , r.

The bits of the syndrome vector (so+,) are then identified
by

J. ARLAT AND W. C. CARTER IBM J. RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984

i = 0, I , . . ., r, (8)

where db and c;, 0 s k 5 8, have been used instead of do and
ck to account for possible errors that could affect data and
check bits. Considering an error vector (ep, ejl, eJ2, ej3)',
corresponding to any error combination that affects data group
j , j = 0, I , . . . , r, then the following expressions apply:

(so, S I , s2, sdT = (ep, ejl, eJ2, ejd', (9)

(sa, SS, s6, s7, SS)' = &(SO, SI , s2, S 3) T (10)

Equation (9) allows the determination of faulty bits in a group
that can be identified by use of Eq. (10); the associated group
pointer is determined by

G j (S4r 35, s6, S7, = BJ(so, S I , S2, S S) ~ . (1 1)

It has been shown [161 that if an error exists in group j , G, =

1 and G, = 0 for all i # j . Correction of data bits of group i is
then obtained from the following equation:

dqC = d,, + G,s,, 0 5 j 5 3. (12)

Error control on check bits can be implemented according to
the following relations. An error vector (eo, el, e2, e3)T affecting
check bit group I (co-c3) results in

Gs, = 1, n sk = 0, 0 S J 5 3, 4 5 k 5 8,
k

which leads to the determination of the associated group
pointer as

GCI = (SO V S I V S2 V S 3) ' (S4 S5 & S7 Sa). (13)

In the same way, it can be verified that pointers for check bit
group 2 (c4-c7) and group 3 (C s) are defined as

Gc2 = (So S I S2 33) . (S 4 V S5 V S6 V S7)&, ,

Gc, = SO SI S2 S 3 Sq SS 3.5 S7 Ss . (14)

Correction of the check bits is then obtained using the follow-
ing equations:

CJc = Cl + G ~ I . SJ = Cj + SJ S4 S5 S6 S7 , O 5 j 5 3,

C k , = ck + Gc2. sk = ck + sk $1 S2 i 3 Sg , 4 5 k 5 7,

Car = Cn + GC3.Sg = Cg 30 S I $2 i3 34 is S7 Sg . (15)

Evaluation of the double-error-detection probability
In order to evaluate the efficiency of the code, it is important
to characterize its ability to identify multiple error conditions,
Le., conditions that affect more than one group of the code-
word. Furthermore, multiple-error-detection ability strongly
relies on the amount of redundancy of the code that is not

IBM J. RES. DEVELOP. 1 (01. 28 NO. 2 MARCH I

explicitly used for correction. As a consequence of the (b,k)
code organization, no systematic way is known to determine
the probability of detection of multiple errors [161.

The determination of this probability requires that a de-
tailed study of the error combinations be performed. As a
result of the inherent complexity of the procedure, and of the
relative probability of multiple errors, the study reported here
has been limited to the consideration of double errors only.
The procedure consists in the characterization and enumera-
tion of the various double-error combinations that would
result in a wrong correction.

For example, if one considers a double-error combination
(ern, e,l, ei2, e,3) and (ep, ejl, e,2, eJ3) affecting groups i and j ,
respectively, the problem is to identify the cases when these
two errors induce an erroneous correction on group k; i.e.,
they can be viewed as a single equivalent error (em, ekl, ek2,
ek3). Furthermore, it has to be noted that the error combina-
tion consisting of (ea, eil, ei2, (ep, ell, eJ2, e,3), (em, ekl, em,
ek3), and all other error bits equal to zero, forms a valid
codeword. Such an approach is investigated in detail hereafter
for each error combination affecting the various groups of
codewords. For better readability of the presentation, errors
affecting data bits and check bits are considered separately
and joint conditions are derived when possible.

Errors affecting data bit groups only
Basic conditions for miscorrection can be stated as

e,, + e,, = ek, + 0, 0 5 rn 5 3, (16)

where subscripts i, j , and k identify distinct data bit groups
only. Furthermore, pointer Gk has to be activated (ck = I) ,
I.e.,

B ~ S O , S I , S2 , 5'3)' = (52, SS, s6, 5'7, (17)

Considering relation (8) which characterizes the syndrome
vector, it follows that sm = ek,, and that

(s4, ss, s6, s7, Sn)' = &(ea, erl, er2, e,dT + B,(ep, e,!, eJ2, eJ3)T9

which leads to

= &(So, S I , S2, &IT . (18)

Equations (16) and (18), as expressed above, are explicitly
considering that the double-group error (e,& 0 5 rn
5 3, is equivalent to the single-group error (ek,,JT, which
induces miscorrection of group k. Nevertheless, two more
analogous conditions have to be considered, which can be
obtained by rotation of subscripts i , j , and k, i.e.,

(e,,)' + (e d T -+

984 J. ARLAT AND W. C.

163

ZARTER

One should note that this remark holds for the other cases
that are investigated hereafter in this section.

One single error which affects the check bit groups
The cases corresponding to the three groups forming the check
bits are described successively.

Error affecting thefirst group (co-c3)
In this case, the conditions to be considered can be expressed
as

ei, + ej, = e, f 0, 0 I m I 3;

and from (81, it follows that s, = 0, which leads to

Bi(en, eil, eiz, + Bj(ep, eji, eJ2, e,dT

(19)

= (0, 0, 0, 0, O)? (20)

From a practical point of view, it is important to note that
conditions (1 9) and (20) can be expressed analogously as
relations (16) and (1 8) respectively, provided that 1) the error
vector affecting the first check bit group is represented with
the same notation as for data bit groups, and the subscript 16
is introduced, i.e., e, = eI6,, and 2) the null matrix 0 5 . 4 is
included in the set of values of the shortened “B” matrices,
i.e., B,+, = 05,4. The number of double-group error combi-
nations satisfying the conditions stated by relations (1 7) and
(19) is denoted N-.

Error affecting the second group (c4-c,)
It can be easily verified that this case corresponds to

e,, + e,, = 0, 0 I m I 3;

and from relation (8), it follows that

M e a , eil, ei2, ~ 3) ~ + B,(e,, e i l , eJ2, e,,)‘ = (e4, e5, e67 e7, OIT,

which leads to

(B, + &)(en, ell, eiz, = (e4, e5, e6, e7, 0lT. (22)

Error affecting the third group (bit c8)
The conditions that need to be satisfied here are defined by

e,, + e,, = 0, 0 5 m 5 3,

and

B,(ea, eil, eiz, + B,(ep, ejl, e,2, = (0, 0, 0, 0,

that is,

(B, + B,)(ea, eil, e,2, e# = (0, 0, 0, 0, 1)‘. (24)

It has to be noted that conditions imposed by relations (22)
and (24) can be considered jointly, provided that the error
vector considered covers the error combinations just identi-
fied. Hereafter, NG is used to denote the number of such
combinations.

(21)

(23)

Two errors which affect the check bit groups
Here also, we distinguish the consequences of the errors
affecting the various check bit groups.

Errors affecting groups I and 2
According to the form of the check matrix H”, the conditions
for miscorrection correspond to

e,, = e,, 0 I m 5 3,

&(en, G I , eiz, e,3Y = (e4, e5, e6, e7, O)? (25)

Errors affecting groups I and 3
The conditions to be verified correspond to

ei, = e,, 0 5 m 5 3,

&(em, eil, ei2, ~ 3) ~ = (0, 0, 0, 0, (26)

Errors affecting groups 2 and 3
According to the inherent properties resulting from the con-
struction of the code, it is important to note that any double-
error combination (e4, e5, e6, e7, 0), e8 = 1, affecting groups 2
and 3, represents an error vector on five adjacent bits that is
perfectly identifiable and is thus correctable. It follows that
such a form of error cannot induce erroneous correction on
another single group of a codeword; in effect, in this case, the
syndrome bits so+, are all equal to zero.

However, the benefit that can be expected from this added
double-error-correction ability, resulting from the considera-
tion of bits c4-c8 as a “single” group, has to be weighted with
respect to the following points: 1) only 15 combinations on
the total set of possible double-group error combinations are
concerned, 2) due to the physical implementation of the
system (groups of four bits), such a “single” error event is
significantly less likely to occur than any actual single error
event, and, moreover, 3) this “single” error is as likely to occur
as any double error affecting other groups, which induces a
tremendous increase in the number of miscorrections in the
cases where these two errors have the same characteristics as
a “single” error affecting check bits c4-c8. Such cases can be
identified by the following relations:

eim + e,, = 0, 0 5 m I 3,

(B, + B,)(ea, e t l , e,2, e d T = (ea, es, e67 e7, 1IT, (27)

which are definitely much less restrictive than the just-men-
tioned limitation to 15 correctable combinations.

This explains the reason for limiting the correction ability
of the code to single groups. Therefore, no case for miscorrec-
tion has to be considered for double errors affecting check bit
groups 2 and 3, as they result in the activation of the two
associated pointers and thus can be detected. The number of
non-detected double-error combinations which affect the
check bit groups is denoted N q .

fOL. 28 NO. 2 MARCH I 984 I

Determination of the double-error-detection probability
A program has been developed which includes the three sets
of conditions previously defined, in order to identify
Nm, N-, and NG. It is important to note that all other
double-error combinations will be detected hence, the double-
error-detection probability is derived by reference to the total
number of double-error combinations Nde. The determination
of Nde is made easy by considering that the double-error
combinations are characterized by the following: 1) if Cg is
safe, the selection of two error groups among the remaining r
+ 3 groups that constitute a codeword; and 2) if cs is faulty,
the choice of one group among r + 3. In both cases, it is
considered that each group consists of four-adjacent bits,
which corresponds to 15 distinct combinations. It follows that
Nde is given by

Nde = (I ; ') X 15* + (I t ') X 15.

Considering that all double-error combinations have a con-
stant density function, the probability of double-error detec-
tion can thus be expressed as

The numerical evaluation of this probability is strongly related
to the actual implementation of the code that was discussed
previously. The description of three different coding schemes,
as well as the evaluation of their respective error-detection
ability, based on results introduced in this section, is presented
in the next section.

Selection of a coding scheme
As implicitly stated in previous sections, a straightforward
implementation of the code would consist in the consideration
of data bits only (mb = 64) in the generation of check bits.
However, the network also conveys m.' = 20 address bits for
selecting the memory word from each memory module. An
extension of the monitored lines to these address lines is made
possible without an increase in the number of check bits since
mb + m.' < 124. This is desirable in order to enhance the
range of covered faults. Figure 3 illustrates the general orga-
nization of the coding scheme for the two cases just discussed.

These schemes are investigated in detail subsequently with
respect to their capability for error detection. Furthermore, an
estimate of the hardware complexity of the considered imple-
mentations is indicated as well, based on the coding/decoding
equations presented earlier.

Consideration of data bits only
Such a scheme allows for the correction of 1) all memory
faults that affect any single four-adjacent-bit groups in a word,
and 2) network faults affecting any single commutation mod-
ule that conveys data and check bits. However, no detection

Figure 3 General coding/decoding scheme.

Table 2 Number of nondetected double errors-monitoring of data
bits only.

14280
-

2835 390

is provided for errors on address bits resulting from either
faults affecting the address decoding in memory modules or
the commutation modules conveying the address lines. De-
spite this strongly restrictive range of covered faults, this
scheme is interesting, as it is characterized by the more efficient
ability to cope with double-group errors, and the associated
figure for double-error-detection probability is used as an
optimal reference benchmark for subsequently considered
schemes. This property is directly related to the fact that only
half of the redundancy potentially available is used.

In this case, r = 15, and thus the value of the total number
of double-error combinations is easily derived from relation
(28) and is equal to Nde = 34 695. The associated numbers of
nondetected double-error combinations derived from condi-
tions introduced previously are given in Table 2. Application
of relation (29) leads to P d d = 49.55 percent. It is important
to note that this value is independent of the mode of imple-
mentation of the decoding scheme, since, in this case, redun-
dancy provided by the code has to be fully used to correct all
codeword bits. 165

IBM J. RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984 J. ARLAT AND W. C . CARTER

I Memorv I

E l Network

L

Figure 4 Basic implementation. [Note: Error forms are denoted by
(1) no error, (2) single group error, and (3) noncorrectable errors.]

As far as the hardware complexity of this implementation
is concerned, about 500 two-input logical functions were
identified, among which almost three-fourths are exclusive-or
functions. This value serves also as a reference benchmark for
comparison with other implementations.

Inclusion of address bits
The main advantage of the inclusion of the address bits in the
generation of the code is the added ability to cope with
addressing errors resulting from faults affecting both memory
and commutation modules. Address bits are not stored, and
only check bits corresponding to the data and the address of
the word in which they reside are stored, as indicated in Fig.
3. Identification of addressing errors is then made possible
when monitoring the syndrome vector. In practice, all address-
ing faults cannot be detected because of 1) the inherent
limitation of code redundancy with respect to multiple faults,
and 2) the different behaviors associated with read and write
cycles. The first point has already been discussed; we stress
here the difference that results whether the first manifestation
of the fault occurs during a write cycle or a read cycle. This
helps to identify the strengths and weaknesses of the scheme.

Let us consider first an addressing error occumng during a
write cycle in the memory word of address X that results in a
write in location previous data and check bits contained in
Y(DC,) are overwritten by the new content (DC,) that was 166

J. ARLAT AND W. C. CARTER

addressed to X . In order to examine the consequences of this
error on further read attempts, we distinguish two cases,
considering that the initial fault is either permanent or tran-
sient.

If the fault is permanent, all further attempts to address X
will attain Y, whose content is DCX. No error indication will
appear in the processing of the syndrome, which is acceptable
since expected data have been reached. On the other hand,
any attempt to address Y in order to retrieve DCy will deliver
DC,, which makes reference to address X in the memorized
check bits. Thus, the concatenation of address bits sent Y and
delivered information DC, constitutes an invalid codeword
(in the limit of the inherent redundancy of the code), and the
error can be identified.

Transient addressing faults considered here correspond to
faults that vanish before any further read cycle is performed.
In this case, it is still possible to reach location X, but retrieved
content DCi corresponds to the old value of the variable that
has been stored in Y by error; such an error cannot be
identified by the proposed scheme, as concatenation of X and
DCi is a valid codeword. However, any attempt to access the
data initially stored in Y(DCy) induces the same consequences
as in the case of permanent faults.

In the case of an addressing fault, either transient or per-
manent, occumng during a read cycle of location X that
results in the access of the content of Y (DCY), it can be
verified that concatenation of retrieved content DCy and
address sent X constitutes in both cases a nonvalid codeword
and is thus identifiable.

It is also important to note that another consequence of the
inclusion of the address bits in the generation of the check
bits is constituted by the reduction of the double-errordetec-
tion probability of the code; this follows from the related
increase of 1) the number of groups to process to generate the
check bits, which leads to r = 20, and 2) the number ofdouble-
error combinations to account for, which is equal to Nded =
52 270. However, as opposed to the case where only data bits
are considered, it is important to note that, due to the specific
consequence of address faults that were just identified, only
the detection and diagnosis of faults that affect address bits
are of practical interest. Two implementations of the decoding
policy have been considered, and these are now described and
evaluated.

Basic implementation
The basic principle of this implementation is illustrated in
Figure 4. As previously discussed, during a memory read
cycle, check bits related to the address sent and data read from
memory are compared to the stored check bits in order to
obtain the syndrome vector. Syndrome analysis allows for 1)

IBM J. RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984

identification of the error form, and 2) generation of the group
pointers according to equations presented previously. Study
of the different error forms results in the distinction of three
principal cases identified in Fig. 4.

1. No error indication appears and data are directly delivered
without entering the correction circuit.

2. A single group error is diagnosed and all the bits (data +
address + check) pass through the correction circuit to
restore the erroneous group; corrected bits are then sent
back to the syndrome generator and equality to zero of the
output is tested before corrected data are delivered to the
processor module. This feedback-type correction is known
as the wraparound correction [181; it ensures that the
corrected word constitutes a valid codeword and allows
detection of faults that could occur in the correction state.

3. This case corresponds basically to noncorrectable errors
(double error, for example); an interrupt signal has to be
generated in order to process this case by investigation of
error characteristics. Note also that this form of error
diagnosis must include any error (yet single) in the address
bit groups.

According to this implementation, for which correction of
all bits is performed before data are delivered in the case of
single-error indication, conditions for miscorrection resulting
from double errors that were presented previously are still
valid, provided that 1) five supplementary shortened matrices
are included in the set of “BT matrices, where i = 0, I , . . . , r
= 20, according to the correspondence stated in Table I , and
2) address bits are characterized by 4 k , with 16 5 j 5 20, 0 5

k 5 3. Moreover, as previously considered, this set may be
extended with a null matrix denoted B,+l.

It follows that this implementation leads to the numbers of
nondetected double-error combinations indicated in Table 3.
Thus, the value of the probability of double-error detection is
P d d = 34.27 percent. This figure shows that the obtained
benefit in addressing error identification, resulting from the
inclusion of address bits in the generation of the check bits,
results in a relative P d d decrease of more than 30 percent in
this implementation.

Considering the hardware overhead associated with this
implementation, a basic estimation leads to 744 two-input
functions, which corresponds to a relative increase of 48
percent with respect to the previous implementation.

Modlfied implementation
The major cause in the significant degradation of p d d observed
for the previous implementation lies in the constraint imposed
by the wraparound correction, which requires that correction
be applied on all groups. A modification of the implementa-
tion which eliminates the wraparound correction has been

IBM J. RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984

20’

4
c’

(C

,,9

9

Group #, pomter
16

Correctlon (Exception)

I

Figure 5 Modified implementation. (Note: Error forms are denoted
by A, single error on data bits; B, no error or single error on check
bits; C, single error on address bits or noncorrectable error.)

Table 3 Number of nondetected double errors-monitoring of data
and address bits-basic implementation.

N Z N G

32208 4935 490

investigated in order to improve the probability of double-
error detection. The modified implementation is described in
Figure 5. Furthermore, two important points justify this mod-
ification: 1) it is not necessary that corrected check bits be
delivered to the processor modules, and thus no correction
circuit is needed for the check bits, and 2) activation of
pointers corresponding to address groups has to initiate an
error processing at the system level. The latter point is inter-
esting since it involves a double error leading to erroneous
identification of a single error on the address groups resulting
in a detection decision (with possible erroneous diagnosis) but
not in a miscorrection leading to system failure. It follows that
conditions on nondetected double errors become more restric-
tive than the ones presented previously. These new conditions
are now investigated.

Modifications of conditions imposed by relations (16), (18),
and (20) correspond to the limitation of variation of subscript
k to k 5 15 and k = 21; furthermore, it is important to
remember that these relations explicitly represent the case

i + j - + k ; V i , j = O , I , ..., 21; i#j.

For the two other cases deduced by rotation, it follows that

j + k + i , i 5 15, i = 21;

V j , k = O , 1, . . . , 21; i # j ,

and

k + i + j , j 5 15, j = 21;

V k , i = O , 1, ..., 21; k # i. 167

J. ARLAT AND W. C. CARTER

Table 4 Number of nondetected double errors-monitoring of data
and address bits-modified implementation.

249 17 4149 462

Modifications of conditions (22) and (24) require considera-
tion of only the following cases, where cgi identifies check bit
group i:

Finally, conditions (25) and (26) have to be restricted with
respect to the variation of subscript i in the cases where the
resulting error affects address bits, which leads to

The associated numbers of double-error combinations that
will be miscorrected are given in Table 4; this leads to a
probability of detection of double group errors equal to Pded
= 48.44 percent, which compares very well with the bench-
mark figure corresponding to the classical implementation of
the code. This figure clearly shows the efficiency of the modi-
fied implementation.

The hardware overhead to consider in this case is charac-
terized by an increase of 32 percent with respect to the
estimation presented for the case where only data bits are
monitored in the construction of the code.

These results, along with the address-error-detection abili-
ties of this code, clearly show the efficiency of this modified
implementation.

Conclusion
An efficient error-correcting scheme designed to be imple-
mented on a supercomputer system has been presented. The
problem of primary memory data error protection is crucial
in such systems due to the unusually large capacity and the

168 complexity and length of computations to be performed.

Based on structural considerations inherent in the system,
the considered code is a shortened redundant (5,l)-adjacent
code intended for single four-adjacent error correction. Such
a code has been selected mainly for its ease of derivation and
implementation. Different schemes for application of the code
have been investigated and evaluated, taking into account
both the range of faults covered and the double-error-detection
property. From this study, a preferred scheme that includes
both data bits and address bits in the construction of the code
has been selected. In particular, it has been shown that such a
scheme compares very well, on the basis of double-error-
detection capability, with a classical coding scheme for which
only data bits are considered in the generation of the check
bits; the evaluation indicated a relative degradation of less
than 2.5 percent. Moreover, another main advantage of this
scheme is its ability to detect addressing errors. Quantitative
evaluation of the efficiency of this added detection ability is
difficult because, as it has been shown, it relies heavily on both
the time characteristics of the errors and the sequencing of
write and read cycles. Nevertheless, as indicated by the pre-
sented qualitative study, a large proportion of addressing faults
can be detected; clearly these detection properties are limited
by the inherent redundancy provided by the code.

As a closing remark, it is important to stress that such an
error-correcting scheme, including both data and address bits
in the generation of check bits, and characterized by an
implementation based on the correction of data and check
bits only, constitutes an efficient mechanism that allows for
1) correction of memory and network single four-adjacent
errors, 2) detection of a large proportion of single four-adjacent
addressing errors, and 3) detection of about half of double
four-adjacent errors affecting either data, address, or check
bits.

Note
J. Arlat’s work was supported by SINTRA under Contract
No. 84255/55295/AA/BS. W. C. Carter contributed to this
study during his sabbatical leave at LAAS, CNRS, from Au-
gust 1981 to February 1982.

References and note
1. R. Bernhard, “Computing at the Speed Limit,” IEEE Spectrum

2. T. Nuyen Linh, “Survey of Semiconductor (Si, GaAs) and Jo-
sephson Technologies-Today and Tomorrow,” Proceedings.
Computer Science Convention A , SICOB, Paris, September 1982,
pp. 1-7 (in French).

3. N. R. Lincoln, “Technology and Design Tradeoffs in the Creation
of a Modem Supercomputer,” IEEE Trans. Computers C-31,

4. D. H. Lawrie, “Access and Alignment of Data in an Array
Processor,” IEEE Trans. Computers C-24, 1145-1 155 (1975).

5. Hamming introduced an excellent class of SEC-DED codes [6];
however, almost all practical implementations of SEC-DED codes
now use modified parity-check matrices of the type devised by
Hsiao [7] because of their higher probability of detection of
multiple errors and because of the hardware savings realizable in
their implementation.

19, NO. 7, 26-3 I (1982).

349-362 (1982).

J. ARLAT AND W. C. CARTER IBM J. RES. DEVELOP. VOL. 28 NO. 2 MARCH 1984

6. R. W. Hamming, “Error Detecting and Error Correcting Codes,’’
BellSyst. Tech. J. 29, 147-154 (1950).

7. M. Y. Hsiao, “A Class of Optimal Minimum Odd-Weight-Col-
umn SEC-DED Codes,’’ IBM J. Res. Develop. 14, 395-401
(1970).

8. T. Y. Feng, “A Survey of Interconnection Networks,” Computer

9. J. P. Shen and J. P. Hayes, “Fault Tolerance of a Class of
Connecting Networks,” Proceedings, International Symposium
on Computer Architecture, La Baule, France, May 1980, pp. 61-
71.

10. F. Larbey, ”Crossbar and Transcoder Circuits: Technical Specifi-
cations,” Report No. 26.069, Oct. 198 1, available from SINTRA,
92602 Asnieres, France (in French).

I I . I. S. Reed and G. Solomon, “Polynomial Codes over Certain
Finite Fields,” J. SOC. Indust. Appl. Math. 8, 300-304 (1960).

12. W. W. Peterson, Error Correcting Codes, MIT Press, Cambridge,
MA, 1961.

13. J. Cocke, “Lossless Symbol Coding with Non-Primes, ” IEEE
Trans. Info. Theory IT-5,33-36 (1959).

14. D. C. Bossen, ‘%Adjacent Error Correction,” IBM J. Res. De-
velop. 14,402-408 (1970).

15. W. C. Carter, E. P. Hsieh, and A. B. Wadia, “Multiple b-Adjacent
Group Error Correction and Detection Codes and Self-checking
Translators Therefor,” U. S. Patent 3,766,521, 1973.

16. W. C. Carter and A. B. Wadia, “Design and Analysis of Codes
and Their Self-checking Circuit Implementations for Correction
and Detection of Multiple b-Adjacent Errors,” Proceedings, 10th
International Symposium on Fault-Tolerant Computing, Kyoto,
Japan, October 1980, pp. 35-40.

17. W. G. Bouricius, W. C. Carter, E. P. Hsieh, D. C. Jessep, and A.
B. Wadia, “Modeling of a Bubble Memory Organization with
Self-checking Translators to Achieve High Reliability,” IEEE
Trans. Computers C-22, 269-275 (1973).

18. W. C. Carter and C. E. McCarthy, “Design and Analysis of an
Experimental Fault-Tolerant Memory System,” IEEE Trans.
Computers C-25, 557-568 (1976).

14, NO. 12, 72-78 (1981).

Received June 3, 1983; revised October 12, I983

Jean Ada1 Laboratory for Automatics and Systems Analysis
(LAAS), National Center for Scientific Research, 31400 Toulouse,
France. Dr. Arlat first joined the “Design and Validation of Depend-
able Computer Systems” team at LAAS in 1976. He prepared his
Doctor-Engineer diploma (Ph.D.) in automatics, investigating the
concept of diversification for the tolerance of hardware design faults,
which he received in 1979 from the Toulouse National Polytechnic
Institute. During 1979-80, he spent a postdoctoral year in the Com-
puter Science Department of the University of California at Los
Angeles, working on the evaluation of software fault tolerance strate-
gies. Since the end of 1980, he has been back at LAAS working on
dependability evaluation of fault-tolerant computer systems and has
been involved with several contracts with French industries. Currently,

IBM J . RES. DEVELOP. e VOL. 28 NO. 2 MARCH 1984

he is engaged in the preparation of a “Docteur &-Sciences” thesis
focusing on the development of methods for the evaluation of the
dependability of fault-tolerant systems including both modeling and
experimental approaches. Dr. Arlat is a member of the Institute of
Electrical and Electronics Engineers and the Fault-Tolerant Comput-
ing Technical Committee (FTC-TC), acting as a French correspondent
for the FTC-TC Newsletter.

William Caswell Carter IBM Research Division, P.O. Box 218,
Yorktown Heights, New York 10598. Dr. Carter joined IBM in the
Research Division in 1959 at Poughkeepsie, New York. From 1959
to 1961, he was a member of the technical staff at the Research
laboratory with responsibilities for cryogenic machine organization
for Project Lightning and for planning a specialized programming
system. From 1961 to 1966, he was in the Systems Development
Division in charge of systems automation for IBM System/360. His
responsibilities included System/360 diagnostic programs, design for
System/360 recovery, diagnostics and automatic test generation, de-
sign automation for ROS-controlled computers, and computer sys-
tems evaluation and planning. In 1966, he rejoined the Research
Division and continued work in the field of fault-tolerant computing.
From 1966 to 1972, he worked on architecture, modeling, and design
procedures. Since 1972, he has been studying microprogram validation
techniques as well. From 1947 to 1952, he was at Aberdeen Proving
Ground using the ENIAC to obtain new solutions for compressible
fluid flow problems and was adjunct instructor at the University of
Maryland and at Johns Hopkins University. From 1952 to 1955, he
was head of the Systems Section, Raytheon Computer Department,
with responsibilities for computer system evaluation, reliability and
serviceability, methods of logic design, programming systems, and
preparation of government proposals; and in addition, he was adjunct
professor at Boston University until 1956. From 1955 to 1959, he was
manager of the Systems Analysis Department, EDP Division, of
Minneapolis Honeywell, with design automation added to his respon-
sibilities. Dr. Carter received the B.A. (magna cum l a d e) from Colby
College, Waterville, Maine, in 1938 and the Ph.D. in mathematics
from Harvard University in 1947. Dr. Carter is a Fellow of the Institute
of Electrical and Electronics Engineers and a member of the American
Association of Rhodes Scholars, American Men and Women of sci-
ence, Who’s Who in America, Association for Computing Machinery,
Phi Beta Kappa, Society for Industrial and Applied Mathematics, and
Sigma Xi. He was an ACM National Lecturer on combinational
mathematics from 1962 to 1964 and 1967 to 1968 and an IEEE
Computer Society Distinguished Visitor from 1973 to 1974. He was
a member of the IEEE (AIEE) Computer Society Technical Committee
on systems from 1954 to 1964 and helped form the Technical Com-
mittee on fault-tolerant computing in 1970. He was Vice Chairman
of this committee from 1970 to 1972 and Chairman from 1973 to
1976. He has frequently served on FTCS program committees (Chair-
man 197 I) , is general Chairman of FTCS-I 1, and edited an IEEE TC
special issue on fault-tolerant computing in 1973. He was named to
the Computer Society Honor Roll in 1974 and was a member of the
Computer Society Technical Interest Council from 1976 to 1978. Dr.
Carter is a U.S. representative to IMEKO TC.lO, Technical Diagnos-
tics.

J. ARLAT P L N D W. C. (

169

:ARTER

