
ON THE PERFORMANCE OF SOFTWARE FAULT-TOLERANCE STRATEGIES+

A. Grnarov’, J. Arlat””, A. Avizienis

Computer Science Department

University of California

Los Angeles, Cahfornia 90024, USA

ABSTRACT

In the papera comparison of processing time and reliability

performance for the Recovery Blocks scheme and N-Version Pro-

gramming technique IS presented. Derived queueing models can be

useful in deciding which of tbe strategies should be used, depending

on system parameters.

INTRODUCTION

Despite all efforts in careful design of software systems,

they are unlikely to be error free and a lot of effort is still required

to ehminate “bugs” after a system has been made available to the

user, Recently self-checking software approachesi,2 (limited to

detection of software failures), and fault-tolerant software

approaches3–5 which allow to recover after a software failure
occured, were proposed. Figure 1 presents a general model for

umfied interpretation of the two mam fault-tolerance strategies:

Recovery Blocks scheme~b and N-Version Programmings’. The

Recovery Blocks scheme (RB) consists of three major entities: a

primary alterndte (AI), a list of supplementary alternates

(.42, ,.. , AN-I) and an acceptance test (AT). The AT can be

considered as an abstract implementation of the function performed

by alternates. When conditions stated by ATare not met, a purging

of data E performed and a new alternate is called. According to

pubhshed work, in tbe paper a sequential application of RB is con-

sidered only. The N-Version Programmmg (NV) requires N>2

independently designed programs (versions) for the same function

(task) The obtained results after each stage of computation are

compared and, in the case of disagreement, a preferred result can be

identified by a majority vote (possibly inexact) or another predeter-

mined strategy (e.g., two-out-of-N). The bad versions are

recovered by updating them with data provided by identified good

versions and normal processing of all N versions can be resumed.

The primary motivation for NVwasthe exploitation of fault-tolerant

multiple hardware systems, which make a parallel execution of the

versions (NW) quite practical. However, in order to perform a fair

comparison wltb RB, we also consider a “sequentia~ application of

NV (NVS). Inthemodel ltisassumed that aprogram is partitioned

into S segments, executed oneat a given time, and that the’’length

(execution time) of the segments is exponentially distributed
P1, P2, ,P~ represents alternates and versions in the case of
RB and NV respectively, “TesV k the execution of AT m the case

of RB, and the comparison of “c-vectors” for NV7. “Continue” is

‘This research is supported in part by the ONR Contract NOOO14-

79-C-0866, in part by the INRIA, France, in part by the NSF

Contract MCS78-18918, and in part by a Grant of the Battelle
Memorial Institute.

* On leave from Electrical Engineering Department, Umverslty of

Skopje, Yugoslavia.

*‘ On leave from LAAS du CNRS, Toulouse, France.

continuation of the program when A T k successful (for RB only),

No processing time is required for this state, “Update” is execution

of the deciwon strategy in NV followed by updating of all versions

with tbe “best” result. “Recovery” means selection and initialization

of the next alternate or version for RB or NVS respectively, For

NVP (as well as for RB and NVS after tbe last alternate or version

bas been executed), it means a transition to “Safe Down and Repair”

state, where a higher level (global) recovery is initiated. “Next Seg-

ment” is the outcome of this state meanning that all actions that

return the system to the successful execution of this segment are

included as part of the “Repair” action, “Failure” is entered when a

fault is undetected I.e., invalid results are passed on to the next seg-

ment. This can happen when correlated faults occur i.e., when m

the same way fail: a) RB: an alternate and AT, b) NVS: two ver-

sions, c) NVP: majority of the versions.

In order to determine the average segment processing time

(~) in the system with RB or NV fault-tolerance strategy, tbe

queueing theory8 is used. The program segments are considered as

“customers” and “service rates” of states are defined as follows: p~ is

the average service rate for processing a segment in a perfect system

wltbout fault-tolerance strategy; p~ = ~ is the average service
..

rate of “Safe Down and Repair State” while “Continue” and “Fadure”

states have infimte service rates. Queueing models have been

derived for each strategy, but due to the limitation of space, deriva-

tion of NVS mode19 will not be presented in this paper.

In the followlng we will assume that p * =l—q*
* *

and

P: = 1 – Q; where “*” stands for any symbol.

RECOVERY BLOCKS MODEL

A RB model is shown in Figure 2, where the following

notation is used for 1 = 1, 2, N–1:

P, = probability of no faults in alternate A,

PAT = Probability of success of,4 T

P, = Probability of success of A, if A, executed.

Q’, = Probablhty of failure in the same way of A, and AT

The service rate of state (alternate) I is given by ~, = 1 where the
t,

average alternate i processing time ~ = ~ + ~ + ~~~ while ~ is the

average segment execution time, ~ is the average alternate i setup
time, and ~4~ IS the average ,4 T execution time.
For computational convenience, we use

IA, =w, (l +a, +k)-’ =K, (l + tr,)-l

251

1604-8/80/0000-0251$00.75 @1980 IEEE

1
p 7A T

where p~ = ~, a, = ~,
,s

k = y and b, == a,+k

We also use the notation: Q, = c“, q, where c“, = 1, and

c“JE[l, +-] for~ =2,3,..., N–1; and also Q’, = c’, q, where
-,

c’, < [0,1] is the conditional probability P(,4, and ,47’ fail in the same

way if A, failed).

‘The following assumption can be made for the model:

a) The setup times for different alternates do not dffer significantly

and accordingly, a, = a, b, = b, and p, = P,(1 + b)-l = Ka

b) The probabilities of no faults in the alternates are the same, i.e.,

P, =P~, c“, = c“, and c’, = C’.

c) Since the coverage of AT increases with its “length (execution
time) and since the probability of software faults increases with the

length, we combine both of them in the probability of success of the

acceptance test given by F’4~ = c .pAT where the coverage

c = [(1–a)k+al and ~~T = (l–k. qO) while a k the minimal cov-

erage and q. k the probabilhy of software fault in A T if its length k

the same as the length of an alternate.

According to the previous, and using the general series -
8 the average segment processing time in the sYstemparallel stages ,

is given by:

‘RB=H+QP’11-(UN-2+*(P’)N-21

i-PAT q. I1–QN-’ R
— .

P ‘l+b
QN-2 11

Concerning the reliability of the RB strategy, we are interested m

the probability of entering the “Failure” state which is equal to

[PF~B = QAT 1 – (P’) N-l 1
PARALLEL N-VERSION PROGRAMMING MODEL

A model for parallel NV strategy IS shown in Figure 3,

where the transition probabilities are defined by:

P = Probability at least m versions agree

P’ = Probabdity at least m good versions if versions agree

IIN+l
while majority m N defined as m = — for N odd or even

2

Adoption of analogous assumptions as for RB leads to the following

notation:

w., =K, (l +a + d)-] =K, (l + u)-’

p id

where a = ~, d = =-, and v = a + d; while ? is the average
ts

version setup time, and t‘d is the average decision and best result

choice time.

For /=1,2,.., N, we consider also: p, = p, ; q’, = q’ = c“ q,,

where q‘, k the conditional probability P(V, fails if any other ver-

sion failed) while c“E [1, ~]; and the factor c’, = c’ to denote the

conditional probability P(V, fails m the same way as another failed
version if V, faded).

It follows that the average segment processing time in a system with

NVP strategy is given by

while L = N–m–l LL>O), q“= c’q’and p”= l–c’q’

The probability of fadure is given by

PFNVP = z

COMPARISON OF RB AND NV STRATEGIES

[n this section, we present some of the results derwed from

the discussed models, as well as results for sequential NV with two-

out-of-N decision strategy (2 NVS). As measures for evaluation, we

use: a) the relative increase of_the average segment processing time
Tfl-?

in a system defined as 66 = ~, b) the probabihty of failure

PFO, where /3: (RB, 2NVS and ~sVP)

In order to perform a coherent comparison, we define Nd, the

number of diversified entities required by each strategy, as: RB,

N – 1 alternates and the AT; NV, N versions.

Figure 4 compares the relative time penalties introduced by use of

RB, 2NVS and NVP strategies as functions of the diversified enti-

ties Nd, with the repair ratio R as a parameter. RB appears to be

more sensitive to the value of R than NV. Furthermore for both

2NVS and NVP, the time penalty is considerably reduced when Nd

grows; while for RB, the influence of Nd strongly depends on the

reliability of the AT, as it can be seen for ddTerent values of A T

processing time ratio k

Figure 5 presents the variations of the probabilities of failure for the

considered strategies as functions of Nd; we consider also the

influence of RB, the reliabihty of the A T as function of the initial

coverage a and the processing time ratio k; NV, the “correlation”

factor c’. These results point out the criticality of the A T on the

reliability of RB and shows that the impact of c’ with respect to NV

is approximately constant in the case of 2NVS while It increases
with the value of Nd in the case of NVP.

In both Figures, the values of other system parameters are assumed
to be. pa= PV=,999, qo=.OO1, c’’= 101a =.l, andd=. l.

CONCLUDING REMARKS

The models presented in the paper have been introduced in

order to achieve comprehensive and quantitative evaluation of the

performances of the software fault-tolerance strategies. The

developed queueing models are used for both time efficiency and

reliability evaluauon of the two main fault-tolerance strategies: the

Recovery Blocks scheme and the N-Version Programming. Some of

the obtained results are presented in the paper showing that the

models can be useful for system designers m deciding which of the

strategies should be used depending on system parameters.

REFERENCES

1. Yau, S. S, and Cheung, R. C., “Design of Self-Checking

Software”, Proc. 1975 Itlr. Cor~ Rel!able Software, pp. 450-457.

252

2.

3

4,

5,

Ayache, J. M , et. al., “Observer: A Concept for On-Line

Detection of Control Errors in Concurrent Systems”, Proc.

1979 Irrt,Symp, Fault-Tolerant Computmg, Madison, Wisconsin,

June 1979, pp. 79-86.

Fischler, M, A., et al., “Distinct Software: An Approach to

Reliable Computing”, Proc, 2nd USA -Japan Computer Conj,

Tokyo, Japan, 1975, pp. 1-7.

Randell, B , “System Structure for Software Fault-tolerance”,

IEEE Trans. Software Eng., June 1975, pp. 220-232.

Awzlenis, A,, “Fault-Tolerance and Fault-Intolerance: Comple-

mentary approaches to Reliable Computmg”, Proc. 1975 Ior.

Cotf Rel[able Sojfware, pp. 458-464.

s W?MWs

6,

7.

8.

9.

Lee, P. A., et. al., “A Recovery Cache for the PDP-1 l“, Proc.

1979 [rrt. Symp. Fault-Tolerant Computorg, Madison, Wisconsin,

June 1979, pp. 3-8.

Avizienis, A. and Chen, L., “On the Implementation of N-

Version Programming for Software Fault-Tolerance During

Execution”, Proc. of COMPSAC 77, November 1977, pp. 149-

155.

Klelnrock, L., Qaeue/ng Systems, Vol. 1: Theory, J. Wiley and

Sons, 1975.

Grnarov, A , Arlat, J. and Avizienis, A., “Modeling of

Software Fault-Tolerance Strategies”, Proc. 2980 Pittsburgh

Modehrrg and S/mu/ar/on Conf, Pittsburgh, Pennsylvania, May

1980.

*—xl

1 %%

i Nvs REPAIR

ro?+ux, RB8NV
NW

.

●

.

y
CCNTINIX i.

Pa Ii
SE : ALTErawrE

NEXTSE&f34T
SE@ENl PF3XESSIM ~ : ~RSIm

Figure 1 : General Model.

s

NEXl
SEGfNT

Figure 2: A RB Model

v 62NVS
A 8 NVP

1

._m J:t9
10+1 —.’=”3

.==———— =.—0—
k=,l

R=loz

I%
R=103V

+

k=,9R=1038 ._. _m—m R= 1132
R=1OZ

%—loo R=lOO~ ~ —v — v
. :—. — Oll=lO”

k=,9 ._-.-- =R=lOO

R=102A
.~

=<=,1

R=l’O; —A=2~A —A

1’-1 Ly lff=,9 C’=. ol u
1 1 I 1 1

2 3 4 5 6 Nd

Figure 4: Relative Increase of Processing Time.

s

Figure 3: A NVP Model.

\
1’-14

At’= ,01

1 ! I I 1
2 3 4 5 6 tid

Figure 5 Probability of Failure.

253

	FTCS 1971 - 2001
	Return to Main Menu

