
Dependable Computing and Assessment of Dependability

Jean Arlat1,2
1 CNRS; LAAS; 7, avenue du Colonel Roche;
2 Université de Toulouse; UPS, INSA, INP, ISAE, UT1, UTM, LAAS;

F-31077 Toulouse Cedex 4, France

Abstract

This paper covers the main design and evaluation issues that are to be considered when developing dependable com-
puter systems. In the first part it briefly addresses the fault tolerance techniques (encompassing error detection, error
recovery and fault masking) that can be used to cope with accidental faults (physical disturbances, software bugs, etc.)
and to some extent, malicious faults (e.g., attacks, intrusions). The second part covers the methods and technique— both
analytical and experimental — that can be used to objectively assess the level of dependability achieved.
The trend in controlled experiments, from simple fault injection-based tests meant for evaluating a specific fault-
tolerant computer architecture towards the development of benchmarks aimed at comparing the dependability features
of several computer systems, is also briefly illustrated.

1 Introduction
This paper addresses the main design and assessment is-
sues that are to be considered when developing depend-
able computer systems. Special emphasis is put on ex-
perimental evaluation of fault tolerance and on recent
trends towards dependability benchmarking.
The first part briefly introduces the main concepts and
current terminology related to dependable computing. The
fault tolerance techniques (encompassing error detection,
system recovery, and compensation) are briefly described.
Also an analysis of the impact of fault tolerance on de-
pendability is proposed.
The second part covers the methods and techniques
— both analytical and experimental — for dependability
assessment. The current evolution in research work on
controlled experiments, from simple fault injection-based
tests meant for evaluating a specific fault-tolerant com-
puter architecture towards the development of bench-
marks aimed at comparing the dependability features of
several computer systems, is also briefly illustrated.

2 Dependable computing

2.1 Basic concepts
This section summarizes the main related terminology
proposed by Jean-Claude Laprie and the IFIP WG 10.4 in
[1], and updated in [2].
The dependability of a computer system characterizes its
aptitude to deliver a service that can be trusted with justi-
fied confidence.
Depending on the application domain for which the sys-
tem is intended, the accent can be put on various facets of
the dependability; this means that dependability can be
perceived from various, but complementary viewpoints
that define its attributes:

• readiness for usage leads to the attribute of availability;
• continuity of service leads to reliability;
• non-occurrence of catastrophic consequences for the

environment leads to safety;
• non-occurrence of unauthorized disclosure of informa-

tion leads to confidentiality;
• non-occurrence of inadequate information alterations

leads to integrity;
• ability to conduct repairs and introduce evolutions leads

to maintainability.
The association with confidentiality of integrity and
availability relative to the authorized actions leads to
security.
The service may fail for two main reasons: i) it does not
respect any more the functional specification, ii) the func-
tional specification did not describe in an adequate way
the intended function of the system. The latter meaning
has led to an alternative more comprehensive definition
that complements the original one. It is meant to provide a
criterion to decide whether confidence can be granted to
the service by referring to its aptitude to avoid service
failures that are more frequent or more serious than ac-
ceptable. Failures of the service that are more frequent or
more serious than acceptable reveal a dependability
failure.
A failure of the service (or simply a failure, in short) is an
event that occurs when the delivered service deviates
from the correct service. A failure of the service is thus a
transition from “correct service” to “incorrect service”,
i.e., not fulfilling the function of the system. The delivery
of an incorrect service is a “breakdown” of the service.
The transition from incorrect service to correct service is
the restoration of the service.
The deviation of the correct service can take several
forms, which are the modes of failure; the consequences
of the failures on the environment of the system are clas-

sified and ordered according to the severity of the failures.
When the function of the system comprises a set of ele-
mentary functions, the failure of one or more services ful-
filling these functions can leave the system in a degraded
mode, which still offers a subset of services to the user.
Several of these degraded modes can be identified, such
as limited performance service, restricted service, emer-
gency service, etc. In this case, a partial failure of the sys-
tem is being considered.
The delivered service being a sequence of states, a failure
of the service means that at least one state (external to the
system) deviates from the correct service.
Such a deviation results from an error. The allocated or
supposed cause of an error is a fault. The faults can be
internal or external to the system. Usually, the former
presence of a vulnerability, i.e., of an internal fault which
makes it possible for an external fault to impair the behav-
ior of the system, is necessary so that an external fault can
lead to an error, and, possibly, to a failure.
Generally, a fault causes initially an error in the internal
state of a component, the external state of the system not
being immediately affected. It follows the definition of an
error: part of the state of the system that is likely to pro-
voke its failure, which occurs when the error impacts the
service delivered to the user. It should be noted that num-
ber of errors do not affect the external state of the system,
and thus do not cause a failure.
The dependability specification of a system describes
what is necessary for the dependability attributes in terms
of frequency and severity of the failures of the service for
a given set of faults, or a given operational environment.
The development and operation of a dependable system
requires the combined use of a set of methods that can be
classified as:
• fault prevention: how to prevent the occurrence or the

introduction of faults;
• fault tolerance: how to provide a service to fulfill the

function of the system in spite faults;
• fault removal: how to reduce the presence (number, se-

verity) of the faults;
• fault forecasting: how to estimate the presence, the fu-

ture rate, and the possible consequences of the faults.
The principal concepts that were introduced so far can be
summarized by the dependability tree shown in Figure 1.
As shown in the figure both fault prevention and fault tol-
erance are contributing to dependability procurement
(how to deliver a trustworthy service with justified confi-
dence?), while fault removal and fault forecasting are de-
voted to dependability assessment.
A recent generalization [3] has introduced the concept of
resilience that extends the notion of dependability to ac-
count for system evolution and/or environment modifica-
tions by considering the persistence of service delivery
that can justifiably be trusted, when facing such changes.
In the sequel of this section, we rather focus on the fault
tolerance attribute. The issues related to dependability as-
sessment (and especially, fault forecasting) are dealt with
in Section 3.

Figure 1: The dependability tree

2.2 Fault tolerance
Fault tolerance aims at avoiding the failure of the com-
puter system and maintaining its operation by means of
error detection and system recovery techniques that en-
compass: i) error processing (often enough when dealing
with soft/transient faults) and ii) fault treatment (when
coping with solid/permanent faults) in order to passivate
the faulty component.
Usually, fault treatment is supplemented by corrective
maintenance actions, in order to eliminate the passivated
components.
In most cases, error detection is the primary action that
initiates the fault tolerance strategy. Several techniques
can be used: error detecting codes, dual execution and
comparison, timing (watchdog) and execution checks,
likelihood checks, etc. In that context, a very useful con-
cept corresponds to the notion of self-checking compo-
nent, that either delivers a correct service or explicitly
raise an error signal upon failure.
Three main forms of error processing can be distin-
guished:
• Backward recovery (rollback): It consists in periodi-

cally saving the system state, so as to be able, upon de-
tection of an error, to return the system to a previous
(hopefully, error free) state.

• Forward recovery: As an alternative or complementary
approach to rollback, it consists in searching for a new
state acceptable for the system, from which it will be
able to resume operation (possibly in a degraded mode).

• Compensation: It corresponds to the case when the er-
roneous state features enough redundancy to make it
possible to mask the error; it can be applied upon detec-
tion of an error or systematically, independently of the
presence or the absence of error. Typical examples in-
clude error correcting codes or Triple Modular Redun-
dancy (TMR).

These techniques are comprehensive in the sense they ap-
ply to physical faults, design faults as well as to interac-
tion faults — accidental or malicious (attacks). The
classes of faults that can be tolerated by a given system

depend on the assumptions considered for the fault toler-
ance mechanisms being implemented. This is conditioned
by the independence of the redundancies with respect to
the processes of creation and activation of the faults.
A classical fault tolerance approach is to carry out multi-
ple treatments via several channels, sequentially or in par-
allel. When only physical faults are to be tolerated, the
multiple channels can be identical, assuming that hard-
ware components are likely to fail independently. This is
however not adequate for coping with solid design faults
or attacks; indeed, in that case, the multiple channels are
required to implement the same function via distinct de-
signs and implementations, thus resorting to the notion of
functional diversification.

2.3 The actual impact of fault tolerance
We briefly investigate here how the fault tolerance tech-
niques might influence the dependability, by analyzing
their actual impact on the risks of fault, error and failure
affecting a target system. In that respect, it is worth point
out that the dependability of a system can be sketched as
follows [4]:
Dependability ≈ 1 - Pr{fault} × Pr{error/fault} × Pr{failure/error}
where the Pr{.} denote relevant (absolute and conditional)
probabilities.
The goal is to identify what would be the impact of de-
veloping a fault-tolerant solution with respect to a non
fault-tolerant one in the light of these probabilities:
• Pr{fault}: If PrNFT{fault} denotes the probability of a

fault in a non fault-tolerant system, the question is what
can be inferred for a fault-tolerant version of that sys-
tem? Actually, it is rather clear that due to the additional
components (either hardware or software redundancies),
it can be concluded that faults are more likely to occur,
thus PrFT{fault} > PrNFT{fault}.

• Pr{error/fault}: In that case the issues at stake are less
clear cut, however, many examples can be put forward
that evidence that the implementation of a fault-tolerant
system results in an increase of this probability. Just for
illustration, let us consider the case of tests that are run
to asses the “fault-proofness” of a system at start time or
background procedures meant to reduce the risk of
faults accumulating without being signaled (e.g., mem-
ory scrubbing). These tests and procedures clearly tend
to increase the occurrences of an error when a fault is
present.

• Pr{failure/error}: The picture at this stage is not very
favorable as we have concluded that all previous rele-
vant probabilities were increased in the case of a fault-
tolerant system. Accordingly, it is not possible for a
fault-tolerant system to actually exhibit an improved
dependability, unless:

PrFT{failure/error} << PrNFT{failure/error}
Hopefully, this typically corresponds to the behavior
observed for a fault-tolerant computer system in prac-
tice.

Two remarks:
1) This simple analysis exemplifies the limitation at-

tached to architectures consisting in many replicated
channels and missing efficient capabilities to detect,
diagnose, isolate the failed channels and to reconfig-
ure the system.

2) The conditional probability Pr{failure/error} is to be
linked to the concept of “coverage” introduced in the
late sixties (e.g., see [5]) to model the potential imper-
fect behavior of fault tolerance in reliability assess-
ment studies as:

c = Pr{system recovers/system fails}
What corresponds to “system recovery” is dependent
upon the target system; for example, in some situations
recovery may only mean detection. Also, according to the
current terminology a more adapted reference would
rather be an “error” than a “failure”. Accordingly, it can
be considered that c ≈ 1 - Pr{failure/error}.
Parameter c is thus essential as it has a prominent impact
on the dependability level that can be achieved. Accord-
ingly, some specific effort is needed to accurately esti-
mate its actual (range of) value. These issues will be ad-
dressed in details in the next section.

3 Dependability assessment

3.1 The methods
Dependability assessment methods suitable for fault-
tolerant computer architectures encompass three main ap-
proaches: verification (e.g., formal methods or testing),
analytical evaluation (relying on models featuring sto-
chastic processes) and controlled experiments (in particu-
lar, using fault injection techniques).
The diagram of Figure 2 details the link between these
methods and the two attributes contributing to depend-
ability assessment: fault prevention and fault forecasting
(Figure 1).

●

●

●

●

Figure 2: The main approaches
for dependability assessment

While testing is still very much used, formal verification
techniques (such as model checking) are increasingly ap-
plied in order to minimize the risk of residual design
faults to be found in the target system. Still, such formal
approaches are somewhat limited in scalability and thus
have real difficulty in handling complex systems.
Model-based evaluation techniques are commonly used to
evaluate and compare, from the dependability point of

view, different architecture alternatives (encompassing
various fault tolerance mechanisms) at the design stage.
Despite continuous progress in accounting for imperfect
coverage of the fault tolerance mechanisms, the modeling
approach has its own limits when one is trying to accu-
rately describe the behavior of a computer system in pres-
ence of faults. This is in particular related to the level of
abstraction that is attached to the models. Indeed, a model
can be either inherently abstract (e.g., due to lack of de-
tailed information) or kept intentionally abstract, so that
the model is actually tractable.
This means that, in practice, other approaches are needed
beyond analytical evaluation, in order to develop more
precise/sophisticated models or account for actual system
behaviors. These encompass simulation-based approaches
and experiment-based approaches. In the latter case, in
addition to field (failure) measurements and data analysis,
a specific class of experiment-based approach is often be-
ing considered in the context of dependable computing,
that is termed: controlled experiments. Here the concept
of controlled experiments refers to fault injection experi-
ments where faults are deliberately injected to objectively
characterize the faulty behavior and/or assess dependabil-
ity measures of a computer system.
In the sequel, we focus on the necessary connection be-
tween analytical evaluation and controlled experiments
and illustrate the benefits that can be obtained towards the
definition of dependability benchmarks.

3.2 Analytical evaluation
Analytical evaluation of dependability has been exten-
sively investigated, leading to numerous proven methods
and techniques that have been successfully developed and
used.

3.2.1 Modeling techniques
Modeling relies on the analytical or graphical description
of the system behavior. For a graphical description, de-
pendability measures are assessed by allocating probabili-
ties or stochastic processes to model parameters. Among
the main types of models extensively used are reliability
diagrams, fault trees and state graphs (Markov chains,
stochastic Petri nets, etc.). These methods have long been
recognized as a determining factor for rational decision
making when considering different possible architectures
or maintenance policies during the design of fault-tolerant
systems (as detailed in studies on ESS, FTMP, STAR,
SIFT systems), e.g., see [6] or in more recent studies, e.g.,
[7, 8].
Evaluation can be broken down into three main closely
related phases associated with:
• the choice of the measures to be evaluated, which is

generally part of system requirements;
• the construction of one (or several) model(s) that corre-

sponds to the description of the behavior of the system
being studied, using elementary stochastic processes
and as a function of the measures considered;

• the processing of the model(s), that corresponds to the
computation of the dependability measures.

Numerous software packages have been devised over the
last thirty years to assist design engineers in their evalua-
tion tasks (see [9-11]).

3.2.2 Modeling a fault-tolerant system
Let us consider a basic duplex architecture as described
by the diagram of Figure 3-a. The architecture features
two identical self-checking units (SCU) executing in par-
allel the same tasks on the same inputs (I). A switch is
ensuring the delivery of the results of one (active) unit to
the outputs (O).
The relevant behavior is easily described by the simple
state graph1 shown on Figure 3-b. Upon failure of one
unit (each unit is characterized by a failure rate λ). that
unit is identified and passivated; accordingly, the service
can be resumed by using the valid unit. Actually, this is
assuming the perfect operation of the fault tolerance
mechanisms (error detection, recovery, switch, etc.); this
would correspond to a coverage (c) of 100%. Otherwise, a
system failure is (conservatively) assumed (1 – c); for
example, an error affecting the active unit is not detected
and erroneous results are delivered to the output devices.
Moreover, the system may also fail to deliver a proper
service when both units are failed. Such a risk of exhaus-
tion of the available redundant resources is compensated
by the repair of the first failed unit (repair rate: μ). When
repaired the unit is reinserted into the architecture.

SCU: Self-checking unit

Restoration

a) Architectural

diagram
b) Corresponding state graph

c) Analysis of the impact of the coverage factor

Figure 3: Modeling and evaluation of a duplex architecture

1 The graph can be easily mapped to a Markov chain as de-

picted on the figure.

Figure 3-c illustrates the relative improvement concerning
the Mean Time To Failure (MTTF) that can be achieved
by such a duplex system with respect to the case of a sin-
gle unit (MTTFUnit = 1/λ). The horizontal axis is scaled
according to the ratio of the Mean Time to Repair
(MTTR) of one unit to its MTTF — actually, λ/μ. It is
worth pointing out that in practice the respective orders of
magnitude are very dissimilar: 1/μ ≈ hours, 1/λ ≈ months.
Accordingly, it follows that: λ/ μ << 1. The curves shown
for different values of c, clearly indicate the strong impact
of the coverage on the considered dependability measure.
This confirms the simple analysis carried out in
Section 2.3 and definitely motivates the need to accu-
rately estimate such a parameter.

3.3 Controlled experiments
The types of controlled experiments that are being con-
sidered here are primarily meant to assess the behavior of
computer systems in presence of faults. They rely on fault
injection techniques that allow for a pragmatic testing to
be conducted on an elaborated simulation-model of the
target system or on the target system itself.

3.3.1 The fault injection attributes
A fault injection test sequence is made up of series of
elementary experiments for which a faulty condition is
applied to the target system. The test sequence is also
characterized by an input domain and an output domain.
The input domain corresponds to a set of injected faults F
and a set A that specifies the data sustaining the activity of
the target system and thus, the activation of the injected
faults. The output domain corresponds to a set of readouts
R that are measurements collected so as to characterize
the target system behavior in the presence of faults. Fi-
nally, a set of measures M is obtained that is derived from
the analysis and processing of the FAR sets. Indeed, each
experiment in the test sequence specifies a particular point
in the {F × A × R} space. Altogether, the FARM sets con-
stitute the major attributes that can be used to fully char-
acterize a fault injection test sequence.

3.3.2 The fault injection techniques
Two types of criteria have to be considered for character-
izing fault injection-based experiments aimed at validat-
ing fault-tolerant computer systems: the level of abstrac-
tion of the target system and the form of application of
fault injection (see Table 1).
With respect to the level of abstraction, the target system
can be:
• a physical implementation (possibly under the form of a

prototype);
• a simulation model describing the structure and/or the

behavior of the system under test.
The form of application of fault injection can be:
• physical, when faults are injected directly into the hard-

ware components through physical or electrical altera-
tions;

• information-based, by means of an alteration of digital
variables or of memory contents.

 Abstraction

Application
Simulation

Model
Prototype or
Real System

Logical
and Information Simulation-based

Software-
implemented

Physical Programmable
Hardware

Hardware-
implemented

Table 1: The fault injection techniques

Most of earlier studies associate these two criteria and can
be simply characterized using the application form: thus,
one can simply consider physical injection (hardware im-
plemented) and fault simulation.
The search for solutions to mitigate the cost and limita-
tions of simulation and to cope with the difficulty to de-
vise physical injectors and carry out experiments, explains
the increasing trend towards the developing of techniques
for injecting at the information level on a physical target
system. This is reflected by a departure from the goal of
injecting actual faults by considering rather error injec-
tion [12]. Indeed, the consequences of faults are emulated
by altering the execution of the software running on the
target system. Such an approach is often referred to as
software-implemented fault injection (SWIFI). Specific
techniques include: i) x-oring at runtime data bits in regis-
ters or memory (bit-flip) or ii) modifying data or instruc-
tions in the program code before execution (mutation).
For obvious reasons, the conjunction between “Physical”
application and “Simulation” has remained an empty op-
tion. Recently, this gap has been filled by the emergence
of fault injection techniques that exploit the flexibility and
reconfiguration capabilities offered by programmable
hardware devices (such as FPGAs), both for implement-
ing an executable model and for injecting faults, e.g.,
see [13].

3.4 From controlled experiments
to dependability benchmarks

3.4.1 About dependability benchmarking

Performance benchmarks are widely used to evaluate sys-
tem performance while dependability benchmarks are still
at their very early stage. Indeed, several popular perform-
ance benchmarks exist for many specific domains that
constitute invaluable tools to objectively assess and com-
pare computer systems or components. The proposals for
dependability benchmarks are more recent and also less
widely recognized. However, one has to refer to the work
carried out in the framework of the IFIP WG 10.4 SIG on
Dependability Benchmarking2 and within the IST project
DBench3, which have contributed to the issue of a com-

2 www.dependability.org/wg10.4/SIGDeB
3 www.laas.fr/DBench

prehensive book [14] gathering the main current advances
and offers.
In practice, the basic foundations for dependability
benchmarking heavily relies on the research activities de-
veloped to design, conduct and exploit controlled experi-
ments featuring fault injection test sequences. Indeed, for
what concerns the input domain, the fault dimension (the
so-called faultload in that context) is essential to extend
the classical workload that typically characterizes, to-
gether with the associated (performance) measures, a per-
formance benchmark. Clearly, an analogy is to be made
with respect to the F and A attributes mentioned earlier.
In addition to performance measurements, e.g., perform-
ance degradation in presence of faults, the relevant meas-
ures attached to dependability benchmarking encompass a
wide variety of facets including the assessment of system
robustness, the characterization of failure modes and error
signaling, the estimation of restart times, etc.

3.4.2 Features of dependability benchmarking
While fault injection is definitely central to dependability
benchmarking, the related requirements and properties
attached to the latter somewhat differ from those charac-
terizing fault injection experiments meant for evaluating a
specific fault-tolerant computer (FTC) system.
Table 2 depicts the main characteristics of dependability
benchmarking

FTC system assessment Dependability benchmarking
• One single target system
• In-deep knowledge
• Testing of FTMs
• Fault and Activity sets
• Sophisticated faults
• •Measures: conditional

dependability assessment

• One-of-a-kind process; heavy

duty process, still fine
• Developer’s view
• Results published, but ex-

periment context often pro-
prietary

• Several target systems
• Limited knowledge only
• Global system behavior
• Fault- and Work-load
• Reference (interface) faults
• Measures: dependability as-

sessment (accounts for the
fault occurrence process)

• Recurring process: lighter
process, preferred

• End-user/Integrator’s view
• Results and procedure

openly disclosed

Table 2: Characteristics of dependability benchmarking

While the assessment of a FTC system concentrates on a
specific system, dependability benchmarking is actually
meant to compare several architectures and systems.
Also, the levels of knowledge about the target system(s)
significantly differ. Indeed, the target systems to be
benchmarked can well be off-the-shelf computer systems
or components (e.g., COTS operating systems).
Built-in FTMs are obvious targets to devise the fault in-
jection experiments when one is assessing a FTC system.
In the other case, detailed information about the imple-
mented FTMs might not be available, so a more global
analysis is usually carried out.

The fault sets (or faultload) differ from the point of view
of their sophistication: indeed, while in one case the inti-
mate knowledge about the target system allows for devis-
ing very elaborate faulty conditions, in the other case only
easily reproducible and portable faultoads are to be con-
sidered. In practice, in order to guarantee a fair compari-
son among the systems to be compared, this means that
faults affecting well-identified interfaces are to be pre-
ferred.
Concerning the Measures, while the former approach
classically concentrates on the assessment of the effi-
ciency of the fault tolerance mechanisms (FTMs) — thus
mainly conditional dependability measures4, dependabil-
ity benchmarking aims at providing a more comprehen-
sive set of measures that actually encompass the fault oc-
currence process.
Being usually a one-of-kind effort, the assessment of a
FTC system can be a tedious (heavy duty) process; on the
other hand, dependability benchmarking is rather a recur-
ring process, accordingly it is expected that lighter proce-
dures be applicable.
While the assessment of a specific FTC system typically
refers to a developer’s perspective, on the other side what
is put forward is rather a end-user or an integrator per-
spective.
This has also an impact on the way the results are made
available. For a benchmark to be useful, in addition to the
measures being obtained, it is essential that the actual
procedure be disclosed so that the experiments being per-
formed can be actually reproduced.
Moreover, as for the case of the assessment of FTC sys-
tem, to be meaningful, a benchmark should satisfy a set of
properties such as representativeness and repeatability.
However, some additional properties are also required:
portability, cost-effectiveness, etc.

3.4.3 Towards dependability benchmarks
Dependability benchmarks are usually based on modeling
and experimentation, with tight interactions between
them. In particular, analysis and classification of failure
data can support the identification of realistic faultloads
for the experimentation.
On the other hand, measurements collected during ex-
periments can be processed via analytical models to de-
rive dependability measures (e.g., see [4]).
Some possible benchmarking scenarios can be sketched in
reference to Figure 4, where layers identify the three steps
analysis, modeling and experimentation and arrows A to
E represent the corresponding activities and their interre-
lations [15].
For example a scenario consisting of modeling supported
by experimentation would include the three steps and
links A, B and E; in that case, the expected outputs are
comprehensive measures obtained from processing the
models.

4 Typical examples include: the estimation of various cover-

age factors or error detection latencies, etc.

3.4.4 The initial target: OS benchmarking
In recent years, several attempts have been made to pro-
pose and implement benchmark prototypes supporting the
assessability of OS kernels.
Figure 5 depicts the software architecture of a computer
system and provides a basis on which this thread of work
can be illustrated. As shown on the figure, the kernel fea-
tures three main interfaces with its environment. The first
one (bottom) is basically concerned with hardware inter-
actions, while the other two (top and right) are software
related.
The “lightning” symbols in Figure 5 identify possible lo-
cations where faults can be applied. These locations and
related faults are briefly described as follows:
1) The main interactions concerning the lower interface

are made by raising hardware exceptions. Several
studies (e.g., see [16, 17]) have been reported in which
faults were injected by means of bit-flips into the
memory of the system under benchmark or via special
debugging interfaces [18].

2) The upper interface corresponds to the Application
Programming Interface (API). The main interactions
are made via kernel calls. A significant number of
studies were reported that target the API to assess the
robustness of OS (e.g., under the form of code muta-

tions [19]), by means of bit-flips [20] or by altering
the system calls [21, 22]).

3) The third type of interactions are made via the inter-
face between the drivers and the kernel. The proposal
in [23] has concentrated on drivers code mutation. The
work reported in [24] proposes a complementary al-
ternative that explicitly targets the exchanges made
between the device drivers and the kernel via their in-
terface the “DPI (Driver Programming Interface)”
[25].

4 Concluding Remarks
In complement to insights and dependability evaluations
that can be obtained using analytical modeling and meas-
urements, the conduct of controlled experiments based on
fault injection are useful to better characterize the faulty
behavior and dependability of a computer system.
Such controlled experiments are intended to yield three
benefits:
• A better understanding of the effects of real faults and

thus of the related behavior of the target system.
• An assessment of the efficacy of the fault tolerance

mechanisms included into the target system and thus a
feedback for their enhancement and correction (e.g., for
removing designs faults in the fault tolerance mechanisms).

Figure 4: Dependability benchmarking steps and activities

Figure 5: Interactions between an OS kernel and its environment and possible fault injection locations

• A forecasting of the faulty behavior of the target system,
in particular encompassing a measurement of the effi-
ciency (coverage) provided by the fault tolerance
mechanisms.

In spite of such a solid basis, the development of practical
benchmark instances is a complex task. Indeed, it is nec-
essary to mitigate all the properties required for a bench-
mark (e.g., representativeness, repeatability, portability,
non-intrusiveness, cost-effectiveness). Indeed, in practice,
these properties are not independent. Some are correlated
(e.g., portability and non-intrusiveness) while others are
conflicting (representativeness and cost effectiveness).
For example, a proper selection of the faultload relying on
the software-implemented fault injection technique can
contribute positively to fulfill the cost effectiveness prop-
erty, but at the risk of degrading representativeness.
Accordingly, much work on these directions is still needed.

Acknowledgement. The author would like to acknowledge
the contributions of several PhD students and the fruitful in-
teractions on the topics addressed in this paper with col-
leagues of the Dependable Computing and Fault Tolerance
research group at LAAS-CNRS and of the IFIP WG 10.4. At
LAAS, a special mention is directed to the memory of
Jean-Claude Laprie, and thanks also go to Alain Costes,
Yves Crouzet, David Powell, Jean-Charles Fabre,
and Karama Kanoun.

References
[1] J.-C. Laprie (Ed.) Dependability: Basic Concepts and

Terminology in English, French, German, Italian and
Japanese, Vienna, Austria: Springer-Verlag, 1992.

[2] A. Avižienis, J.-C. Laprie, B. Randell and C. Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Trans. on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11-33, Jan.-March 2004.

[3] J.-C. Laprie, “From Dependability to Resilience,” in
Proc.38th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN-2008) - Fast
Abstracts, Anchorage, AK, USA, 2008.

[4] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie and D. Powell,
“Fault Injection and Dependability Evaluation of Fault-
Tolerant Systems,” IEEE Trans. on Computers, vol. 42,
no. 8, pp. 913-923, August 1993.

[5] W. G. Bouricius, W. C. Carter and P. R. Schneider,
“Reliability Modeling Techniques for Self-Repairing
Computer Systems,” in Proc. 24th. National Conference,
1969, pp. 295-309, (ACM Press).

[6] A. Avižienis (Ed.), Proceedings of the IEEE - Special
Issue: Fault-Tolerant Digital Systems, vol. 66 , no 10,
pp. 1107-1268, 1978.

[7] D. Powell (Ed.) Delta-4: A Generic Architecture for
Dependable Distributed Computing, Berlin, Germany:
Springer Verlag, 1991.

[8] D. M. Nicol, W. H. Sanders and K. S. Trivedi, “Model-
based Evaluation: From Dependability to Security,” IEEE
Trans. on Dependable and Secure Computing, vol. 1, no. 1,
pp. 48-65, Jan.-March 2004.

[9] A. M. Johnson Jr and M. Malek, “Survey of Software
Tools for Evaluating Reliability, Availability and
Serviceability,” ACM Computing Survey, vol. 20, no. 4,
pp. 227-269, December 1988.

[10] C. Hirel, R. Sahner, X. Zang and K. S. Trivedi, “Reliability
and Performability Modeling Using SHARPE 2000,” in
Proc. 11th Int. Conf. on Computer Performance
Evaluation: Modelling Techniques and Tools, Schaumburg,
IL, USA, 2000, pp. 345-349.

[11] D. D. Deavours and W. H. Sanders, “The Möbius
Framework and its Implementation,” IEEE Trans. on
Software Engineering, vol. 28, 956-969, 2002.

[12] J. Arlat and Y. Crouzet, “Faultload Representativeness for
Dependability Benchmarking,” in Supplemental Volume
of the Annual IEEE/IFIP Int. Conf. on Dependable
Systems and Networks (DSN-2002) - Workshop on
Dependability Benchmarking, Washington, DC, USA,
2002, pp. F.29-F.30. see also http://www.laas.fr/DBench.

[13] D. de Andrés, J. C. Ruiz, D. Gil and P. Gil, “Fault
Emulation for Dependability Evaluation of VLSI Systems,”
IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 4, pp. 422-431, April 2008.

[14] K. Kanoun and L. Spainhower (Eds.), Dependability
Benchmarking for Computer Systems, IEEE CS Press and
Wiley, 2008.

[15] K. Kanoun, H. Madeira and J. Arlat, “A Framework for
Dependability Benchmarking,” in Supplemental Volume of
the Annual IEEE/IFIP Int. Conf. on Dependable Systems
and Networks (DSN-2002) - Workshop on Dependability
Benchmarking, Washington, DC, USA, 2002, pp. F.7-F.8,
see also http://www.laas.fr/DBench.

[16] J. Arlat, J.-C. Fabre, M. Rodríguez and F. Salles,
“Dependability of COTS Microkernel-Based Systems,” IEEE
Trans. on Computers, vol. 51, no. 2, pp. 138-163, Feb. 2002.

[17] W. Gu, Z. Kalbarczyk, R. K. Iyer and Z. Yang,
“Characterization of Linux Kernel Behavior under Errors,”
in Proc. Annual IEEE/IFIP Int. Conf. on Dependable
Systems and Networks (DSN-2003), San Francisco, CA,
USA, 2003, pp. 459-468.

[18] J.-C. Ruiz, P. Yuste, P. Gil and L. Lemus, “On
Benchmarking the Dependability of Automotive Engine
Control Applications,” in Proc. Annual IEEE/IFIP Int.
Conf. on Dependable Systems and Networks (DSN-2004),
Florence, Italy, 2004, pp. 857-866.

[19] J. Durães and H. Madeira, “Emulation of Software Faults:
A Field Data Study and a Practical Approach,” IEEE
Trans. on Software Engineering, vol. 32, no. 11,
pp. 849-867, November 2006.

[20] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun and T. Marteau,
“Impact of Internal and External Software Faults on the
Linux Kernel,” IEICE Trans. on Information and Systems,
vol. E86-D, no. 12, pp. 2571-2578, December 2003.

[21] P. Koopman and J. DeVale, “Comparing the Robustness of
POSIX Operating Systems,” in Proc. 29th Int. Symp. on
Fault-Tolerant Computing (FTCS-29), Madison, WI, USA,
1999, pp. 30-37.

[22] K. Kanoun and Y. Crouzet, “Dependability Benchmarks for
Operating Systems,” International Journal of Performability
Engineering, vol. 2, no. 3, pp. 275-287, July 2006.

[23] J. Durães and H. Madeira, “Mutidimensional Characterization
of the Impact of Faulty Drivers on the Operating Systems
Behavior,” IEICE Trans. on Information and Systems, vol.
E86-D, no. 12, pp. 2563-2570, December 2003.

[24] A. Albinet, J. Arlat and J.-C. Fabre, “Benchmarking the
Impact of Faulty Drivers: Application to the Linux
Kernel,” in Dependability Benchmarking for Computer
Systems (K. Kanoun and L. Spainhower, Eds.),
pp. 285-310, IEEE CS Press and Wiley, 2008.

[25] D. Edwards and L. Matassa, “An Approach to Injecting
Faults into Hardened Software,” in Proc. Ottawa Linux
Symposium, Ottawa, ON, Canada, 2002, pp. 146-175.

