
Tolerance of Design Faults

David Powell1,2, Jean Arlat1,2, Yves Deswarte1,2, and Karama Kanoun1,2

1 CNRS ; LAAS ; 7 avenue du Colonel Roche, F-31077 Toulouse Cedex 4, France
2 Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ; F-31077

Toulouse Cedex 4, France
{david.powell,jean.arlat,yves.deswarte,karama.kanoun}@laas.fr

http://www.laas.fr

Abstract. The idea that diverse or dissimilar computations could be
used to detect errors can be traced back to Dynosius Lardner’s anal-
ysis of Babbage’s mechanical computers in the early 19th century. In
the modern era of electronic computers, diverse redundancy techniques
were pioneered in the 1970’s by Elmendorf, Randell, Aviz̆ienis and Chen.
Since then, the tolerance of design faults has been a very active research
topic, which has had practical impact on real critical applications. In this
paper, we present a brief history of the topic and then describe two con-
temporary studies on the application of diversity in the fields of robotics
and security.

Keywords: design-fault, software-fault, vulnerability, fault-tolerance,
recovery blocks, N-version programming, N-self-checking components.

Faults introduced into a computing system during its development1 are a major
concern in any critical application. The first defense against design faults is of
course to attempt to avoid their the occurrence in the first place by applying
the techniques of fault prevention (i.e., “careful design”) and fault removal (i.e.,
“verification and testing”). Such a fault avoidance strategy is the basic tenet of
quality management, i.e., of “getting it right the first time” [19] by building a
system with zero defects. This is a laudable objective, but one whose satisfaction
is difficult to guarantee with sufficient confidence, at least for non-trivial systems,
when the conseqences of failure are extreme in either economic or human terms.
In highly-critical applications, it is reasonable to assume that the system will
indeed contain residual design faults and then apply fault tolerance (i.e., “diverse
redundancy”) and fault forecasting (i.e., “dependability evaluation”) techniques
so that it can be deemed to be dependable despite faults, i.e., to complement
fault avoidance by a fault acceptance strategy [11].

This paper is primarily concerned with the tolerance aspect of fault accep-
tance, i.e., how to introduce so-called “diverse” redundancy into a system that

1 Development faults can be introduced during specification, design or implementa-
tion. In accordance with common usage, we generically refer to such faults as design
faults.

C.B. Jones and J.L. Lloyd (Eds.): Festschrift Randell, LNCS 6875, pp. 428–452, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.laas.fr

Tolerance of Design Faults 429

can be managed in such a way as to decrease the likelihood of system failure due
to residual design faults. We first give a brief history of this concept and then
describe two contemporary studies concerning:

– the tolerance of deficiencies in planning domain knowledge for robotics;
– the tolerance of security vulnerabilities in commercial off-the-shelf operating

systems for aviation applications.

1 A Concise History of Design-Fault Tolerance

In this section, we first give a brief overview of the main approaches that have
been studied for building systems that can tolerate residual design faults and
then summarize the substantial amount of work that had been devoted to evalu-
ating the dependability that such design-fault tolerance techniques can procure.
To illustrate practical applications of the technology, we then describe two crit-
ical computer-based systems in which design-fault tolerance has been deployed.

1.1 Design-Fault Tolerance Techniques

The notion of using redundant dissimilar computations to detect errors appears
to have first been proposed in the 19th century in the context of Babbage’s me-
chanical computers [49]. In the modern era of electronic computers, the notion of
design diversity for design-fault tolerance was formulated in the 1970’s [26,65,9].
It has been notably used in critical systems to enhance safety (i.e., to provide a
fail-safe behaviour) or availability (i.e., to ensure service continuity).

Redundant components produced in accordance with the design diversity ap-
proach are usually called variants. In addition to the existence of at least two
variants, design-fault tolerance requires a decision maker (often referred to as
the adjudicator) providing a supposedly error-free result from the execution of
the variants. The specification common to all variants must explicitly mention
the decision points, i.e., a) when the decisions must be taken, and b) the data on
which the decisions must be made, hence the data handled by the adjudicator.

There exist three main approaches for design-fault tolerance using design di-
versity [47]: recovery blocks, N-version programming and N-self-checking soft-
ware. These approaches can be seen as resulting from the application to soft-
ware of three basic types of error processing [11]: backward error recovery, fault
masking, and error detection and recovery. When continuity of service is not
mandatory, an alternative pragmatic approach is simply to attempt to detect
an erroneous task as early as possible in order to suspend it and prevent propa-
gation of error(s); this approach is often referred to as “fail-fast” [29,14]. Error
detection is provided by executable assertions relating to the data processed, the
intermediate results, or the task outputs. The implementation of these assertions
is based on a defensive programming style and error processing is generally imple-
mented through exception handling. In the subsequent paragraphs, we elaborate
further on the three above-mentioned diversity-based approaches.

430 D. Powell et al.

In recovery blocks [65,5], variants are referred to as alternates and the adju-
dicator is an acceptance test applied to the results produced by the alternates.
Thus, if the results provided by the primary alternate fail the acceptance test,
the secondary alternate is executed and so on, up to the satisfaction of the accep-
tance test or the exhaustion of the available alternates, in which case the recovery
block is considered as globally failed (still, a fail-safe behaviour is enforced).

For N-version programming [9,8], variants are referred to as versions, and the
adjudicator casts a vote on the results provided by all versions. In this case, the
decision is carried out cooperatively among the versions involved, instead of by
means of an absolute check with respect to a pre-defined acceptance test.

N-self-checking software [47] can be viewed as a hybrid technique based on the
two previous ones. In this case, at least two self-checking software components
(SCSC) are executed in parallel. Each SCSC can be made up of either the asso-
ciation of a variant and an acceptance test, or of two variants and a comparison
algorithm. In the latter case, only one of the variants (main) is required to imple-
ment the expected function, the other variant can either implement the function
with reduced accuracy, or compute the reverse function (whenever possible), or
even simply operate on some intermediate results of the main variant as in the
so-called certification path approach [69].

Recovery blocks and N-version programming have been extensively investi-
gated in the literature and have both prompted numerous variations or combi-
nations, such as consensus recovery blocks [67], distributed recovery blocks [41]
or t/(n−1) variant programming [77]. This trend of work has been further devel-
oped via the concept of Coordinated Atomic Actions (CA-actions) that provide
a unified scheme for coordinating complex concurrent activities and supporting
error recovery between multiple interacting components in distributed object
systems. CA-actions integrate and extend two complementary concepts: conver-
sations and transactions (e.g., see [66,15]). Although N-self-checking software
has been less extensively studied in academic circles, it is nevertheless a rather
common approach in operational systems [74]. Typical examples will be provided
in Section 1.3.

In the previous paragraphs, we have focused on different aspects of software
design-fault tolerance. One can equally apply design diversity to provide pro-
tection against design faults affecting complex hardware components, such as
processors. Accordingly, distinct processors can be used to implement the re-
dundant channels (e.g., see [78]).

Another option for coping with design faults is data diversity [3]. The rationale
relies on the observation that residual software faults inducing failures during oper-
ational life areusually “subtle” faults (also knownasHeisenbugs [29])whose activa-
tion is caused by rare situations corresponding to certain values in the input space
(at large) — e.g., operation in a specific range of values, operating system induced
memory leaks, etc.) — that are difficult to reproduce. The idea is that such fail-
ures could be averted by applying a minor “perturbation” to the input data, that
would still be acceptable for the software. A very “extreme” approach is known
as environment diversity [37], which encompasses several progressive procedures:

Tolerance of Design Faults 431

retry, restart and reboot. A specific form of environment diversity has been pop-
ularized under the label software rejuvenation [34,18]. Thus, data diversity works
in cases when a single channel (thus relying on time redundancy) or identically-
redundant (i.e., non dissimilar) channels are executing on distinct data. It is thus
cheaper to implement thandesigndiversity techniques.Datadiversityhas alsobeen
intensively used for coping with the risk of common mode failures resulting from
faults affecting hardware components in redundant channels (e.g., see [62]). Re-
cently, data diversity has also been proposed as a suitable approach for coping with
malicious intrusions (e.g., see [60]).

1.2 Design-Fault Tolerance Evaluation

The main objective when using design-fault tolerance approaches is to enhance
system dependability attributes (such as safety or availability). However, the
development and operation of design-fault tolerant systems: i) usually induce a
significant cost overhead, essentially in terms of development and maintenance
effort, and ii) for some techniques, give rise to a non-negligible increase in the
execution time (i.e., a degradation in performance). It is therefore very impor-
tant to determine what types of benefits can be expected from using design-fault
tolerant systems, and to assess the positive as well as the negative impacts of
design-fault tolerance approaches. In this section, we give a global overview of
the kind of assessments that have been performed to characterize design-fault
tolerance approaches as well as the varieties of results that can be obtained from
these assessments. Emphasis is mainly put on their impact on system depend-
ability. This overview is not exhaustive due to the huge amount of literature
related to the topic, dating back to the early 1980’s .

Assessment is carried out based on: i) statistical modeling approaches, or ii)
controlled experiments, or iii) field data related to real-life systems. The lat-
ter two approaches are usually referred to as empirical studies. Each kind of
approach has its advantages and limitations. Obviously, results based on field
data are more significant than those based on experimentation and modeling.
Unfortunately, there are few such analyses, because they require the collection
of very specific data, most of the time related to (hopefully) very rare events,
hence requiring a long period of data collection to lead to meaningful results.

It is well known that the primary causes of N-version programming failures are
due to correlated faults in versions and precision problems in the voting compo-
nents. For recovery-block programming, the main causes of failures correspond
to related faults between the variants or between one variant and the acceptance
test (see, e. g., [7] for more details). For self-checking software components, the
main cause of failure is due to the inefficiency of the self-checking algorithms.

Not surprisingly, as far as we are aware, all published studies, be they based
on modeling or on experimentation, show that the effectiveness of design-fault
tolerance techniques is strongly related to: i) the degree of independence of the
versions and the effectiveness of the decision or voting mechanism, in the N-
version programming technique, ii) the effectiveness of the acceptance test for
the recovery block techniques, and iii) the effectiveness of the error detection

432 D. Powell et al.

and recovery mechanisms in N-self-checking software. However, even though the
above general results are agreed on, in some papers they are presented either
i) in an optimistic way to show the superiority of design-fault tolerance tech-
niques compared to fault-avoidance techniques, or ii) in a pessimistic way to
show their limitations. For example, even if an early experimental work [43] was
considered as controversial (and is usually referenced as such), the experimental
results confirm the above general conclusions. Moreover, based on the results
published in the same paper, but processing the data differently, a subsequent
study [31] showed that there is a substantial reliability improvement for the
N-version programming system compared to a single software system.

Consequently, the difficulty in quantifying the effectiveness of design-fault tol-
erance techniques lies on the characterization of the above limiting factors and of
their impact on the global system dependability. Modeling has been carried out
based on various techniques, such as state graphs or Markov chains [30,46,48],
fault trees [23], stochastic reward nets [71], software execution schema (to iden-
tify the combination of fault activations leading to failure) [7,70], Bayesian
approaches [51], the derivation of the intensity of coincident errors [25,61], or
the derivation of score functions [64]. These evaluations either compare various
design-fault tolerance techniques and give conditions under which one technique
is superior to other(s) or to a single version, or concentrate on a single design-
fault tolerance technique to provide conditions under which this technique is a
better strategy than a single version.

Modeling approaches require several assumptions to build tractable models
that can be processed to provide usable results. Some assumptions are more
realistic than others. Additionally, modeling requires numerical values of some
parameters that are not all available from field data. More assumptions are thus
needed related to the numerical values of the parameters. Nevertheless, sensi-
tivity analyses with respect to the assumptions as well as to numerical values
of the parameters lead to interesting results. Moreover, they allow the identifi-
cation of the most significant parameters, which should be evaluated accurately
to correctly quantify the practical dependability gain induced by design-fault
tolerance.

Some controlled experiments have been carried out on software programs de-
veloped by professional programmers while, in other experiments, the programs
have been developed in academic environments. As far as we are aware, exper-
iments involving professional programmers are rare. They are based on a small
number of versions. For example: i) in [4], only a single software version was
developed and the experiments compare the reliability obtained with that single
version when fault-tolerance is enabled with that obtained when fault-tolerance
is disabled, and ii) in [16] three versions have been developed to analyze the
impact of the N-version programming approach to software-fault tolerance, in-
cluding back-to-back testing.

Experiments carried out in academic environments have, in general, been
applied to relatively small investigational software systems, developed by less
experimented programmers (most of the time, by students) because of cost

Tolerance of Design Faults 433

considerations, thus under conditions that are sometimes far from industrial
development conditions. Usually these experiments involved a large number of
software programs, allowing several analyses to be carried out, based on the
combination of several versions, back-to-back testing, fault injection, etc.

Significant sets of experiments have been carried out since the 1980’s (see, e.g.,
[12,43,39,50,24]) and continued until more recently [76,56]. A major advantage
of controlled experiments concerns the validation of modeling approaches [67,75]
as well as some of the assumptions made by the various conceptual models.

Finally, some analyses addressed cost overhead induced by design-fault tol-
erance, either based on modeling [57] or on experimentation (see, e.g., [4,38]).
For example, based on observations of a real-life fault tolerant software system,
the latter reference showed that the global cost overhead from functional speci-
fications to system test ranges between 42% to 71%, excluding the requirement
specifications phase that is performed only once for the whole software system.
This overhead has been estimated to be 60% in [4].

1.3 Design-Fault Tolerance Applications

Modern passenger aircraft, such as the Airbus 320/330/340 family [17] and the
Boeing 777 [78], include computers in the main flight control loop to improve
overall aircraft safety (through stability augmentation, flight envelope monitor-
ing, windshear protection, etc.) and to reduce pilot fatigue. Of course, these
increases in aircraft safety must not be annihilated by new risks introduced by
the computing technology itself. For this reason, the flight control systems of
these aircraft are designed to be fault-tolerant and accordingly they rely exten-
sively on design diversity. Railway applications are also increasingly relying on
computer technology, in particular speed regulation and rail-traffic control. It
is clear, here also, that the stringent safety requirements have resulted in the
development of fault-tolerant architectures, incorporating hardware redundancy
and often also software redundancy (e.g., see [32,6]). The subsequent paragraphs
describe two typical examples in these application domains.

The Airbus 320 Flight Control System. Fault tolerance in the flight control sys-
tem of the Airbus 320/330/340 family is based on the error detection and com-
pensation technique [11], using the N-self-checking software approach described
in Section 1.1. Each flight control computer is designed to be self-checking, with
respect to both physical and design faults, to form a fail-safe subsystem.

Each computer consists of two lanes supporting functionally-equivalent, but
diversely-designed programs (Figure 1).

Both lanes receive the same inputs, compute the corresponding outputs and
check that the other lane agrees. Only the control lane drives the physical out-
puts. Any divergence in the results of each lane causes the physical output to be
isolated. Each flight control axis of the aircraft can be controlled from several
such self-checking computers.

The complete set of computers for each axis processes sensor data and executes
the control loop functions. However, at any given instant, only one computer in

434 D. Powell et al.

Relay

Lightning, EMI
and voltage
protection

Processor RAM
ROM I/O

Power
supply Watchdog

Control Lane

Processor RAM
ROM I/O

Power
supply Watchdog

Monitor Lane

28V DC

Critical outputs
(e.g., actuators)

Fig. 1. Self-checking computer featuring diversely-designed control and monitor lanes
(adapted from [72])

the set (the primary) is in charge of physically controlling the actuators. This
computer sends periodic“I’m alive” messages to the other computers in the set,
so that they may detect when it fails. Should the primary fail, it will do so in a
safe way (thanks to the built-in self-checking) without sending erroneous orders
to the actuators. According to a predetermined order, one of the other computers
in the set then becomes the new primary and can immediately close the control
loop without any noticeable jerk on the controlled surface.

The design diversity principle is also applied at the system level. The set of
computers controlling the pitch axis (Figure 2) is composed of four self-checking
computers: two Elevator and Aileron Computers (ELACs) and two Spoiler and
Elevator Computers (SECs), which are based on different processors and built by
different manufacturers. Given that each computer type supports two different
programs, there are overall four different pitch control programs.

There is also considerable functional redundancy between the flight control
surfaces themselves. Accordingly, it is possible to survive a complete loss of all
computer control of some surfaces, as long as the failed computers fail safely.
Furthermore, if all computers should fail, there is still a (limited) manual backup.
Similar system-level diversity has been implemented in subsequent planes of the
Airbus family; it also encompasses the power supply chains and the hydraulic
systems, see [72].

The ASF Computer Based Interlocking System. We consider the case of the
system developed by Ansaldo Segnalamento Ferroviario for the control of rail
traffic [58] and that manages the Termini station in Rome. As most systems of
this type, the Computer Based Interlocking (CBI) system implements a hierar-
chical architecture (Figure 3):

– level 1 : a control centre equipped with workstations (WS) for managing the
station and supervising the diagnosis and maintenance operations;

Tolerance of Design Faults 435

ELAC1
Control

Monitor

SEC1
Control

Monitor

ELAC2
Control

Monitor

SEC2
Control

Monitor

THS

Elevators

Left side stick
(co-pilot)

Right side stick
(pilot)

Mechanical
trim

THS: Trimmable Horizontal Stabilizer

Mechanical link

Fig. 2. Sketch of the Airbus 320 pitch control (adapted from [72])

– level 2 : a central processing unit, or safety nucleus (SN) of the CBI, in
charge of the overall management of the safety operations for the station
concerned;

– level 3 : a set of remote computers, called trackside units (TU), intended for
data acquisition and application of the orders provided by the SN processors
(localisation of the trains, operation of signals and switches).

Various forms of redundancy are used for each level:

– WS : simple dynamic redundancy,
– SN : triple modular redundancy (TMR) featuring code and data diversifica-

tion for each of the replicated sections Si, i = 1..3
– TU : self-checking redundancy (pair of computers).

We focus hereafter on the SN level, which constitutes the backbone of the
CBI. The three redundant sections of the SN elaborate a logical decision based
on standard majority voting and rely on a self-checking hardware device (exclu-
sion logic) that ensures the exclusion of the TMR module (section) declared as
failed. Each section is isolated from the others and has its own power supply.
It consists of a logical unit (LU) and a peripheral unit (PU). The SN layer
thus consists of six processing units interconnected by means of dedicated serial
lines, with optical coupling. The software architecture of each module is similar,
with the operating system, the applications and the data stored in read-only
memory. However, the application software is diversified: distinct programmer
teams, dissimilar languages, different coding of the data, storage of the code and

436 D. Powell et al.

Peripheral
 Unit 1 PU 2 PU 3

Logic
 Unit 1 LU 2 LU 3

Control center featuring monitoring workstations (WSs)
1

3
2

21 3 321

Exclusion
 Logic

 Trackside
 Units (TUs)

Isolation

Optical
coupling

Diversification: code
+ representation of
 static data

Self-testing
Programs

Supervision
and Diagnosis
Unit

 S1 S2 S3
SN

Fig. 3. The CBI Safety Nucleus (adapted from [58])

data segments at different address locations in each section. In addition, self-
testing routines are executed in each section to provide a form of “watchdog”
monitoring.

The SN layer is designed to provide both availability (via its TMR structure)
and safety (based on a “2-out-of-2 vote” to be described later). The elimina-
tion of the first failed section by the exclusion logic scheme removes the risk of

OR OR OR

Section 1 Enable Section 2 Enable Section 3 Enable

1=2 1=3 2=1 2=3 3=1 3=2

Section 1 Section 2 Section 3

1 2 3

AND
(Sequential)1=2

CPU CPU CPU

1=3 2=3AND
(Sequential)

AND
(Sequ.)

Fig. 4. Principle of the exclusion logic (adapted from [58])

Tolerance of Design Faults 437

common mode failure that could result from the subsequent failure of one of
the two remaining operational sections. Furthermore, the isolated section can be
readily accessed for diagnosis and maintenance, and later reintegration into the
operational system.

The principle of the exclusion logic (EL) device is depicted on Figure 4. It
consists of three identical modules that process the analog commands produced
by the sections of the SN, after a software-implemented vote. Information con-
cerning the agreement (resp. disagreement) of a section with the two others –
active-level signal (resp. passive-level signal) – is communicated to the EL at the
same time as the commands. Each module of the EL checks (sequential AND
function) for an agreement between the two corresponding input signals and ac-
tivates the enabling signal powering the drivers of the transmission modules of
the SN (communication with the WS ’s of the control centre and the TU ’s). In
case of disagreement, the power of the transmission device associated with the
failed section is cut off, which isolates it from the other two sections and from
the TU ’s.

2 Tolerance of Design Faults in Declarative Models for
Temporal Planning

In this section, we present a recent study on an application of design-fault tol-
erance in robotics [53,54]. We consider how diversification can be applied to the
declarative domain models that allow robots to autonomously establish a plan
of activities to reach specified goals in a partially-unknown environment.

2.1 The Problem: Deficiencies in Planning Domain Models

Fully autonomous systems, such as space rovers, robotic assistants for care of the
elderly, museum tour guides, and autonomous vehicles, should be able to choose
and execute high-level actions without any human supervision, in practice using
planners as a central decisional mechanism. However, one of the major stumbling
blocks to the adoption of these techniques in critical applications is the difficulty
of predicting and validating the behavior of such decisional software, especially
when faced with the open, unstructured and dynamic environments that are
their raison d’être.

Planning is the activity of producing a plan to reach a goal (or set of goals)
from a given state, using given action models. A planner typically consists of
two parts: a) a declarative domain model describing domain objects, possible
actions on these objects and the associated constraints, and b) a planning engine,
that can reason on the domain model and produce a plan of actions enabling
planning goals to be reached. Here, we consider planning carried out by searching
in plan space, as carried out by the IxTeT planner [27]. In this approach, CSP
(Constraint Satisfaction Problem) solving techniques are used to determine a
possible evolution of the system state that satisfies a set of constraints, some
of which specify the system goals. This is done by iteratively assigning possible
values to each variable and verifying that all constraints remain satisfied.

438 D. Powell et al.

At the time at which a plan is established, not everything may be known
about the environment nor its future evolution. Thus, planners seek to produce
flexible plans where as much latitude and scope for adaptation as possible are
left in the plan [27,59]. Moreover, adverse situations that appear during plan
execution, causing some of its actions to fail, can be tolerated through:

– Re-planning, which consists in developing a new plan from the current sys-
tem state and still unresolved goals. Depending on the complexity of the
planning model, re-planning may require a significant amount of processing.
Other system activities are thus generally halted during re-planning.

– Plan repair , which attempts to reduce the time lost in re-planning by sal-
vaging parts of the previous failed plan, and executing them while the rest
of the plan is being repaired. However, if reducing the salvaged plan conflicts
with unresolved goals, plan repair is stopped and re-planning is initiated.

In this respect, planning and plan execution can be thought of as a generalized
form of forward recovery, which will attain the assigned goals if a solution plan
exists and if it can be be found in time for it to be executed.

Among the various reasons that can prevent a planner from finding an ade-
quate plan are deficiencies in the heuristics that guide the search process and
deficiencies in the domain model itself, since the latter effectively defines what
plans the planner can produce. Indeed, the problem of planner validation has
received much attention, but it remains notoriously hard [28,33,40,63]. In the
next sub-section, we describe a complementary solution that aims to tolerate
residual planner design faults, focussing particularly on the domain model.

2.2 A Solution: Fault-Tolerant Planning

The general principle of the proposed mechanisms is to execute, sequentially or
concurrently, diversified variants of the planner, following approaches similar to
recovery blocks [65] and distributed recovery blocks [41]. In particular, diversity
is encouraged by forcing the use of different algorithms and variable domains,
and different parameters in the models and heuristics of the variants.

Implementing error detection for decisional mechanisms in general, and plan-
ners in particular, is difficult [55]. There are often many different valid plans,
which can be quite dissimilar. Therefore, error detection by comparison of redun-
dantly-produced plans is not a viable option2. Thus, we must implement error
detection by independent means. Four complementary error detection mecha-
nisms can be envisaged:

– a watchdog timer to detect when the search process is too slow or deadlocked;
– a plan analyzer as an acceptance test to check, before execution, that the

produced plan satisfies a number of constraints and properties;

2 For the same reason, N-version programming was excluded as a possible design-fault
tolerance option.

Tolerance of Design Faults 439

– a plan failure detector, a classic plan execution control mechanism needed to
detect whether a plan action has failed in order to trigger plan repair and/or
re-planning;

– an on-line goal checker that verifies whether goals are actually satisfied as
the plan is executed.

Recovery from detected errors, despite possible planner design-faults, relies on
the use of two (or more) planners using diversified knowledge (i.e., search heuris-
tics and/or domain model), managed by a coordinator component (called FT-
plan) that is sufficiently simple to be shown (or assumed) to be fault-free. Two
recovery strategies are possible, differing on whether the planners are executed
in sequence (like in classic recovery blocks) or in parallel (like in distributed re-
covery blocks). For space reasons, we only consider here the sequential strategy
(see Algorithm 1).

Basically, each time an error is detected, we switch to another planner until
all goals have been reached or until all planners fail in a row from the same
initial system state. In the latter case, no models allow the planner to tackle
the planning problem successfully: an exception must be raised to inform the
operator of mission failure and to allow the system to be put into a safe state (line
29). When all the planners have been used but some goals are still unsatisfied,
we revert to the initial set of planners (while block: lines 4 to 32).This algorithm
illustrates the use of all four error detection mechanisms: watchdog timer (lines
9 and 25), plan analyzer (line 14), plan failure detector (lines 16 and 18), on-line
goal checker (lines 4, 6 and 17).

Until all goals have been achieved, the proposed algorithm reuses planners
that may have been previously detected as failed (line 5). This makes sense
since (a) a perfectly correct plan can fail during execution due to an adverse
environmental situation, and (b) some planners, even faulty, can still be efficient
in situations that do not cause fault activation.

2.3 Assessment

We implemented a prototype version of the FTplan coordinator component and
integrated it in the LAAS architecture for autonomous systems [2], which has
been successfully applied to several mobile robots involved in real applications.
The FTplan prototype can coordinate a fault-tolerant configuration of two Ix-
TeT temporal planners [27]. It implements the sequential planning strategy of
Algorithm 1 and includes three of the four error detection mechanisms: watchdog
timer, plan failure detector, and on-line goal checker, but not a plan analyzer
(the design of which is a research topic in its own right). To evaluate the pro-
posed approach, we used two diverse declarative models (which we call Model1
and Model2) for autonomous planning of the missions of a planetary exploration
rover. The missions involve three sets of goals: (a) take photos of a set of sci-
ence targets (e.g., rocks) located at pre-defined coordinates with respect to the
rover’s initial position; (2) communicate with an overhead orbiter during pre-
defined communication windows, and (3) return to the initial position. While

440 D. Powell et al.

Algorithm 1. Sequential Planning Strategy
1: begin mission
2: exec failure ← NULL
3: failed planners ← ∅
4: while attainable goals $= ∅ do
5: candidates ← planners
6: while candidates $= ∅ ∧ attainable goals $= ∅ do
7: choose new planner k such that (k ∈ candidates) ∧ (k /∈ failed planners) ∧ [(k $=

exec failure) ∨ (k ∪ failed planners = candidates)]
8: candidates ← candidates\k
9: init watchdog(max duration)

10: send (plan request) to k

11: wait {for either of these two events}
12: ! receive (planf ound) from k
13: stop watchdog
14: if analyze(plan) = OK then
15: failed planners ← ∅
16: res exec ← k.execute plan()
17: update(attainable goals)
18: if res exec $= OK then
19: exec failure ← k
20: end if{if the plan fails, then attainable goals $= ∅ and the on-line goal checker will

loop to line 3 or line 4}
21: else
22: log(k.invalid plan)
23: failed planners ← failed planners ∪ k
24: end if
25: ! timeout watchdog
26: failed planners ← failed planners ∪ k
27: end wait

28: if failed planners = planners then
29: raise exception ’no remaining planners’ {the mission has failed}
30: end if
31: end while
32: end while
33: end mission

navigating to the science targets and back to its initial position, the robot must
move round any obstacles that it meets on this path. At the plan execution
level, the unknown obstacles create uncertainty as regards the outcome of action
executions, and can possibly prevent the rover from achieving some of its goals.

In our experiments, Model1 was a mature model that had been successfully
used several times both indoors and outdoors on a real robot. Model2 was a
new model, in which diversification with respect to Model1 was forced through
specific design choices. For example, the rover’s position is defined in Model1
using Cartesian coordinates whereas Model2 uses a symbolic representation, thus
implementing fundamentally different algorithms than those of the former. Both
models contain action descriptions for:

– movement initialization (allowing, in particular, recovery from any earlier
navigational errors),

– camera initialization,
– moving the camera,
– taking a photo,

Tolerance of Design Faults 441

– communicating with the orbiter,
– moving the rover from point A to point B.

In Model1, the points A and B may be anywhere, whereas in Model2 they
are specific symbolic points (such as the initial position of the system and the
positions of different goals). A second move action is defined with Model2 for
the case where the rover needs to move from an arbitrary point to a specific one
(typically needed when a previous move has failed).

To evaluate the efficacy of the fault-tolerance approach, we compared the
behavior of two simulated rovers in the presence of injected faults:

– Robot1 : using Model1 in a non-redundant planner
– RobotFT : using both Model1 and Model2 in redundant planners coordinated

by FTplan.

Faults were injected into Model1 on both robots by means of the Sesame muta-
tion tool [20] . The rovers were faced with four increasingly complex worlds (set
of obstacles): W1 − W4 and given four increasingly complex missions (sets of
photos and communication windows): M1 − M4, leading to a total of 16 world
× mission combinations. Figure 5 illustrates the most complex combination:
W4M4.

The experiments are inherently non-deterministic, due to asynchrony of the
various robot subsystems and in the underlying operating systems. Task schedul-
ing differences between similar experiments may degrade into task failures and

y (m)

x (m)
0 +6

0

+6

-6
-6

t (s)

0

400

800

communication
window

science photo
location

obstacle

Fig. 5. World W4M4. The mission starts and ends in the center of a 12m × 12m grid.
The robot should visit the 5 science photo locations, send data to the orbiter during the
4 communication windows and avoid the 5 long thin obsacles. The dotted line indicates
a possible robot itinerary ignoring obstacles.

442 D. Powell et al.

possibly unsatisfied goals, even in the absence of faults. To address this non-
determinacy, each basic experiment was executed three times, leading to a total
of 48 experiments per fault scenario. More repetition would of course be needed
for statistical inference on the basic experiments, but this would have led to a
total number of experiments higher than that which could have been carried out
with our available resources (including initialization and data treatment, each
basic experiment lasts about 20 minutes).

The overall results for 28 different mutations are summarized in Figure 6 (for
detailed results, see [53,54]). The figure shows bar graphs of the percentages
of satisfied goals and missions averaged over all four missions. We give separate
averages for the three simpler worlds (W1−W3) and for all four worlds together
(W1−W4), since it was often the case that even a fault-free planner was unable
to find a solution plan for world W4, with its numerous long thin obstacles (cf.
Figure 5).

These results show that, with the considered faultload:

– The redundant diversified models of the fault-tolerant RobotFT provide an
notable improvement to dependability in the presence of faults (bar graphs
labelled F): in all cases, the proportions of failed goals decrease compared to
the non-redundant Robot1.

– Even when considering the pessimistic measure of the proportion of failed
missions (a mission is considered as failed even if only a single elementary
goal is not achieved), the improvement procured by redundant diversified
models is appreciable: 41% in worlds W1−W3, 29% when world W4 is also
considered.

Note, however, that in the presence of injected faults, the fault-tolerant RobotFT
is less successful than a single fault-free model (compare RobotFT of the bar
graphs labelled F, with Robot1 of the bar graphs labelled ∅). This apparent

Ø

F

0 % 50 % 100 %

Photos

Ø

F

0 % 50 % 100 %

Photos

Robot 1 Robot FT

Ø

F

0 % 50 % 100 %

Communications with orbiter

Ø

F

0 % 50 % 100 %

Communications with orbiter

Ø

F

0 % 50 % 100 %

Returns to base

Ø

F

0 % 50 % 100 %

Returns to base

Ø

F

0 % 50 % 100 %

Fully-completed missions

Ø

F

0 % 50 % 100 %

Fully-completed missions

Worlds
W1-W3

Worlds
W1-W4

Fig. 6. Effectiveness of fault-tolerant planner (RobotFT) compared to baseline planner
(Robot1). The bar graphs show the percentages of satisfied goals (photos, communica-
tions and returns) and completed missions, without (∅) and with (F) injected faults.

Tolerance of Design Faults 443

decrease in dependability can be explained by the fact that incorrect plans are
only detected when their execution has failed, possibly rendering one or more
goals unachievable, despite recovery. This underlines the potential improvement
that could be obtained if FTplan were to include a plan analyzer to detect errors
in plans before they are executed.

3 Tolerance of Security Vulnerabilities in COTS
Operating Systems

This section presents an ongoing study on the use of design-fault tolerance tech-
niques to ensure security. Specifically, we consider how diversification can be
applied to provide protection against security vulnerabilities in commercial op-
erating systems when used in a critical application for the aviation industry.

3.1 The Problem: Operating System Vulnerabilities

Nowadays, the main threat against computer security is represented by malicious
software (malware) exploiting design flaws of existing commercial off-the-shelf
(COTS) operating systems. Indeed, COTS operating systems are too complex to
be free from design faults, despite some attempts to apply formal development
methods to at least parts of them (e.g., seL4 [42]). And even if formal verification
methods are applied, it is difficult to prove the absence of vulnerabilities: there
is no model suitable for expressing both the desired high-level properties and
the implementation of subtle hardware mechanisms (address space control [45],
interrupt-handling, or hardware management functions such as ACPI (Advanced
Configuration and Power Interface) [22], or even protection mechanisms [52]).
For instance, formal approaches that apply successive refinements of models
(e.g., the B method [1]) cannot descend to the level of COTS processors [36].

Nevertheless, COTS operating systems are attractive, even for moderately
critical applications, because they offer advanced facilities at a low cost, enabling
the easy development of efficient and high performance applications. They are
used in many different environments by very large numbers of people, and their
reliability increases with their maturity (design flaws are frequently identified
and corrected). On the other hand, the wide distribution of COTS operating
systems make it easy for potential attackers to obtain detailed knowledge of
their functionalities and vulnerabilities.

As for other design faults, tolerating COTS OS vulnerabilities relies on ex-
ecution diversity and adjudication of execution results to provide an error-free
result or to stop the execution (to provide a fail-safe behaviour). One way to
implement OS diversity is to develop diverse variants of applications, executed
on different operating systems, running on different hardware platforms [21].
But such an implementation would be more complex than necessary: to tolerate
OS vulnerabilities, the same application can be executed on different operating
systems. For that, the application needs to be developed independently of the
operating system that will execute it, by interfacing a generic library API, or a

444 D. Powell et al.

generic execution environment. This is the case for instance of Java programs,
designed to be run in a Java Virtual Machine (JVM), each operating system
implementing its own version of the JVM.

Similarly, it is not necessary to run the different operating systems on different
hardware platforms: most hardware platforms (Intel, AMD, ARM, etc.) support
several different operating systems. Moreover, in some cases it would be very
inconvenient for a user to cope with several independent and redundant human-
machine interfaces (screens, keyboards, mice, etc.) while interacting with a single
application. A better solution is thus to run a single application software over
diverse operating systems run by a single hardware platform. This is possible,
thanks to virtualization techniques, as explained in the next subsection.

3.2 A Solution: OS Diversification through Virtualization

Virtualization techniques were introduced for the first time by IBM in the sev-
enties [73] to emulate, for a given software component, the operation of the
underlying hardware. Over the last decade, these techniques have been studied
and developed to offer standardized layers of virtualization. For instance, in a
multitask operating system, every task has a “virtualized view” of the hardware
layer, since every task considers that it is running alone on the hardware. For
operating system diversification, we are interested in the notion of “system vir-
tual machine” [68], which allows many operating systems to be used in parallel
on the same physical machine (cf. Figure 7).

Figure 7 represents two types of Virtual Machine Monitors (VMM ’s). Type 2
VMM ’s are widespread. A type 2 VMM is installed as an application on a host
system, which can then launch and manage different operating systems. One
example of such a type 2 VMM would be, for example, the use of VMWare on

Fig. 7. Type 1 and Type 2 Virtual Machine Monitors

Tolerance of Design Faults 445

Linux to run a Windows operating system, but this does not help to tolerate
vulnerabilities of the host operating system (here Linux). More recently, type 1
VMM ’s (known also as hypervisors) have been developed to support different
operating systems while running directly over the bare hardware. One example
of such hypervisors is Xen [13].

The hypervisor technique offers complete isolation between the different vir-
tual machines, and also a means to control the virtual machines and their in-
teractions with input-output devices. In particular, when performing the same
application task simultaneously in two or more virtual machines with different
operating systems, the hypervisor can intercept all outputs from the different
virtual machines, compare them and decide which copy is to be transmitted to
the hardware outputs. Similarly, all inputs can be replicated by the hypervisor
before sending one copy to each virtual machine.

This virtualization technique has been proposed to implement aircraft main-
tenance tasks on a laptop [44]. Maintenance operations present an important
economic challenge for airline companies since these operations determine the
time needed by ground technicians to authorize take-off of the concerned air-
craft. The shorter this time, the more profitable the aircraft for the company.
Aircraft maintenance is ensured by operators who, using procedures set out in
maintenance manuals, analyze the aircraft flight reports and launch tests on the
components detected as potentially faulty. Currently, many maintenance man-
uals are still not electronic, and even the electronic ones are prohibited from
interacting directly with the aircraft in order to prevent any risk of corruption
of critical components. The presence of a human operator is currently the only
guarantee that maintenance operations follow a safe procedure that does not
corrupt critical systems.

For future aircraft, it is envisaged that the manuals will be stored on a Mainte-
nance Laptop (ML), which could be connected to the aircraft through Ethernet
or wireless connections. The maintenance operator would use the ML and move
freely in and around the aircraft. He would inspect directly the components
identified as faulty in flight reports, follow the procedures indicated on the ML,
and launch directly from the ML the set of tests that he formerly launched
from specific embedded devices. For this application, the main security focus is
communication between the maintenance laptop (running diversified COTS op-
erating systems) and the aircraft. In particular, the aircraft components should
be protected from illicit modification due to a compromised operating system.
Similarly, the human-machine interface (HMI) should be protected from falsifi-
cation by a compromised operating system.

An ML prototype has been developed, using the Xen hypervisor. The proto-
type consists of two identical copies of the maintenance task (written in Java),
respectively Task 1 and Task 1’, each running on its own virtual machine (VM)
with a different OS, and a human-machine interface, called MLI (ML Interface)
in Domain0 of Xen. Domain0 also supports result adjudication by a validation
object (VO) that compares the outputs from Task 1 and Task 1’ (see Figure 8).
The MLI can be described as follows:

446 D. Powell et al.

Fig. 8. Maintenance Laptop Implementation

– MLI provides the same GUI (Graphic User Interface) as in Task 1 and
Task 1’ programs. MLI has the same graphical components, with the same
graphic charter.

– MLI does not implement any function of Task 1 or Task 1’. It captures,
through an AspectJ wrapper, all ML inputs (keyboard, mouse, etc.) and
forwards them to the COTS VM ’s (cf. (1) (2) and (3) on Figure 8.

Once these inputs are forwarded to the COTS VM ’s, Task 1 and Task 1’ process
the inputs. Their results, consisting of graphic outputs and data to be sent to the
aircraft, are then captured (4) and forwarded to VO (5) for comparison. If there
is a difference between the two results, this would mean that at least one VM is
potentially corrupted, and is not generating the output it should. In this case,
both COTS VM ’s are stopped and an alert (6”) is displayed to the maintenance
operator (the operator would then reboot the ML, change his laptop, or give up
using a laptop and use the traditional on-board maintenance equipment). If no
difference is detected, the result is forwarded to MLI if it is a graphic display
output (6), or to the aircraft otherwise (6’). The validated graphic output is then
displayed by the MLI (7).

3.3 Assessment

A proof-of-concept prototype of the maintenance laptop has been developed. It
aims to demonstrate the application of OS diversity within a single computer
to tolerate COTS OS vulnerabilities. The idea is that when the same laptop is
used for tasks other than maintenance (e.g., browsing the Internet), it can be

Tolerance of Design Faults 447

contaminated by malware (e.g., Trojan Horses, viruses, worms, etc.) that can
compromise a COTS operating system. We claim that:

1. It is much more difficult to develop a malware able to compromise several
operating systems than one able to compromise a single OS.

2. Even if a malware was able to corrupt both operating systems running the
two copies Task 1 and Task 1’, it would have a different effect on Task 1 and
Task 1’ outputs, and thus the errors would be detected.

This claim has been validated by various OS attack experiments on the ML pro-
totype, e.g., changing the values to be displayed on the screen or the parameters
sent to or received from the aircraft.

However, such an implementation would not tolerate a malware corruption of
the hypervisor (here, Xen and its Domain0). We claim that it would be much
more difficult to compromise such a hypervisor than an operating system:

1. A hypervisor is usually much simpler than an operating system, and thus
much easier to validate. Green Hill Integrity 178B and Polixene are examples
of separation kernels and hypervisors that have been evaluated respectively
at EAL6 and EAL5 according to Common Criteria [35].

2. For this kind of application, the hypervisor is only active during maintenance
operations: before a maintenance operation, the laptop is booted in a secure
way to launch first the hypervisor and then create the virtual machines that
each load its own operating system. The hypervisor itself is protected from
a corrupted VM by its protection and separation mechanisms. When the
laptop is used for non-critical operations (e.g., for Internet browsing), it is
booted in the standard way, with a COTS operating system, which can be
compromised but cannot access the hypervisor.

4 Conclusion

The pioneering work of Elmendorf, Randell, Aviz̆ienis and Chen in the 1970’s
[26,65,9], on the notion of diversity to allow tolerance of design faults, laid the
foundations for over four decades of research. Despite the debate as to whether
it is cost-effective and worthwhile [43,31,76], we claim that design-fault tolerance
is not only beneficial, but well nigh indispensable when verification and testing
cannot be carried out with a degree of confidence that is commensurate with the
criticality of the considered applications. The industrial applications described
in Section 1.3 of this paper, and the recent research described in Sections 2
and 3, give credence to this claim. We also claim that “info-diversity”, like bio-
diversity, will be a necessary condition for survival of the human species in
an ever-changing world in which so many aspects of our lives are now fully-
dependent on information technology.

448 D. Powell et al.

References

1. Abrial, J.: The B-Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for
autonomy. International Journal of Robotic Research 17(4), 315–337 (1998)

3. Amman, P.E., Knight, J.C.: Data diversity: An approach to software fault toler-
ance. IEEE Trans. on Computers 37(4), 418–425 (1988)

4. Anderson, T., Barrett, P., Halliwell, D., Moulding, M.: Software fault tolerance: an
evaluation. IEEE Trans. on Software Engineering SE 11(12), 1502–1510 (1985)

5. Anderson, T., Lee, P.: Fault Tolerance - Principles and Practice. Prentice-Hall,
Englewood Cliffs (1981)

6. Arlat, J., Kanekawa, N., Amendola, A., Dufour, J.L., Hirao, Y., Profeta III, J.:
Dependability of railway control systems. In: 16th IEEE Int. Symp. on Fault-
Tolerant Computing (FTCS-16), pp. 150–155. IEEE CS Press, Vienna (1996)

7. Arlat, J., Kanoun, K., Laprie, J.C.: Dependability modeling and evaluation of
software fault-tolerant systems. IEEE Trans. on Computers 39(4), 504–513 (1990)

8. Avižienis, A.: The N-version approach to fault-tolerant systems. IEEE Trans. on
Software Engineering 11(12), 1491–1501 (1985)

9. Avižienis, A., Chen, L.: On the implementation of N-version programming for
software fault tolerance during execution. In: 1st IEEE-CS Int. Computer Software
and Applications Conference (COMPSAC 1977), pp. 149–155. IEEE CS Press,
Chicago (1977)

10. Avižienis, A., Kelly, J.: Fault-tolerance by design diversity: Concepts and experi-
ments. Computer 17(8), 67–80 (1984)

11. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and ter-
minology of dependable and secure computing. IEEE Trans. on Dependable and
Secure Computing 1(1), 11–33 (2004)

12. Avižienis, A., Lyu, M., Schutz, W., Tso, K., Voges, U.: DEDIX 87 - a supervisory
system for design diversity experiments at UCLA. In: Voges, U. (ed.) Software
Diversity in Computerized Control Systems, pp. 129–168. Springer, Wien (1988)

13. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: 19th ACM Symp.
on Operating Systems Principles (SOSP), pp. 164–177. ACM, New York (2003)

14. Bartlett, J., Gray, J., Horst, B.: Fault tolerance in Tandem computer systems.
In: Avižienis, A., Kopetz, H., Laprie, J.C. (eds.) The Evolution of Fault-Tolerant
Systems, pp. 55–76. Springer, Vienna (1987)

15. Beder, D., Randell, B., Romanovsky, A., Rubira, C.: On applying atomic actions
and dependable software architectures for developing complex systems. In: 4th
IEEE Int. Symp. on Object-Oriented Real-Time Distributed Computing, pp. 103–
112. IEEE CS Press, Magdeburg (2001)

16. Bishop, P., Esp, D., Barnes, M., Humphreys, P., Dahl, G., Lahti, J., Yoshimura,
S.: Project on diverse software - an experiment in software reliability. In: Safety of
Computer Control Systems (SAFECOMP), pp. 153–158 (1985)

17. Brière, D., Traverse, P.: Airbus A320/A330/A340 electrical flight controls - a family
of fault-tolerant systems. In: 23rd IEEE Int. Symp. on Fault-Tolerant Computing
(FTCS-23), pp. 616–623. IEEE CS Press, Toulouse (1993)

18. Castelli, V., Harper, R., Heidelberger, P., Hunter, S., Trivedi, K., Vaidyanathan,
K., Zeggert, W.: Proactive management of software aging. IBM Journal of Research
and Development 45(2), 311–332 (2001)

Tolerance of Design Faults 449

19. Crosby, P.B.: Cutting the cost of quality; the defect prevention workbook for man-
agers. Industrial Education Institute, Boston (1967)

20. Crouzet, Y., Waeselynck, H., Lussier, B., Powell, D.: The SESAME experience:
from assembly languages to declarative models. In: Mutation 2006 - The Second
Workshop on Mutation Analysis, 17th IEEE Int. Symp. on Software Reliability
Engineering (ISSRE 2006). IEEE, Raleigh (2006)

21. Deswarte, Y., Kanoun, K., Laprie, J.C.: Diversity against accidental and deliberate
faults. In: Amman, P., Barnes, B., Jajodia, S., Sibley, E. (eds.) Computer Security,
Dependability and Assurance: From Needs to Solutions, pp. 171–182. IEEE CS
Press, Los Alamitos (1999)

22. Duflot, L., Levillain, O., Morin, B.: ACPI: Design principles and concerns. In:
Chen, L., Mitchell, C., Martin, A. (eds.) Trust 2009. LNCS, vol. 5471, pp. 14–28.
Springer, Heidelberg (2009)

23. Dugan, J., Lyu, M.: Dependability modeling for fault-tolerant software and sys-
tems. In: Lyu, M. (ed.) Software Fault Tolerance, pp. 109–138. Wiley & Sons,
Chichester (1995)

24. Eckhardt, D., Caglayan, A., Knight, J., Lee, L., McAllister, D., Vouk, M., Kelly,
J.: An experimental evaluation of software redundancy as a strategy for improving
reliability. IEEE Trans. on Software Engineering 17(7), 692–6702 (1991)

25. Eckhardt, D., Lee, L.: A theoretical basis of multiversion software subject to coin-
cident errors. IEEE Trans. on Software Engineering SE-11, 1511–1517 (1985)

26. Elmendorf, W.: Fault-tolerant programming. In: 2nd IEEE Int. Symp. on Fault
Tolerant Computing (FTCS-2), pp. 79–83. IEEE CS Press, Newton (1972)

27. Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner.
In: 2nd Int. Conf. on Artificial Intelligence Planning Systems (AIPS 1994), pp. 61–
67. AIAA Press, Chicago (1994)

28. Goldberg, A., Havelund, K., McGann, C.: Runtime verification for autonomous
spacecraft software. In: IEEE Aerospace Conference, pp. 507–516 (2005)

29. Gray, J.: Why do computers stop and what can be done about it? In: 5th Symp.
on Reliability in Distributed Software and Database Systems, pp. 3–12. IEEE CS
Press, Los Angeles (1986)

30. Grnarov, A., Arlat, J., Avižienis, A.: On the performance of software fault-tolerant
strategies. In: 10th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-10), pp.
251–253. IEEE CS Press, Kyoto (1980)

31. Hatton, L.: N-version design vs. one good version. IEEE Software 14(6), 71–76
(1997)

32. Hennebert, C., Guiho, G.: SACEM: A fault-tolerant system for train speed control.
In: 23rd IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-23), pp. 624–628.
IEEE CS Press, Toulouse (1993)

33. Howey, R., Long, D., Fox, M.: VAL: Automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In: 16th IEEE International Conference
on Tools with Artificial Intelligence, pp. 294–301 (2004)

34. Huang, Y., Kintala, C., Kolettis, N., Fulton, N.: Software rejuvenation: Analysis,
module and applications. In: 25th IEEE Int. Symp. on Fault-Tolerant Computing
(FTCS-25), pp. 381–390. IEEE CS Press, Pasadena (1995)

35. ISO/IEC-15408: Common criteria for information technology security evaluation
36. Jaeger, E., Hardin, T.: A few remarks about formal development of secure systems.

In: 11th IEEE High Assurance Systems Engineering Symposium (HASE), pp. 165–
1174 (2008)

450 D. Powell et al.

37. Jalote, P., Huang, Y., KIntala, C.: A framework for understanding and handling
transient software failures. In: 2nd ISSAT Int. Conf. Reliability and Quality in
Design, Orlando, FL, USA, pp. 231–237 (1995)

38. Kanoun, K.: Real-world design diversity: a case study on cost. IEEE Software 18(4),
29–233 (2001)

39. Kelly, J., Eckhardt Jr., D.E., Vouk, M., McAllister, D., Caglayan, A.: A large
scale second generation experiment in multi-version software: description and early
results. In: 18th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-18), pp.
9–14. IEEE CS Press, Los Alamitos (1988)

40. Khatib, L., Muscettola, N., Havelund, K.: Mapping temporal planning constraints
into timed automata. In: 8th Int. Symp. on Temporal Representation and Reason-
ing (TIME 2001), pp. 21–27. IEEE, Cividale Del Friuli (2001)

41. Kim, K., Welch, H.: Distributed execution of recovery blocks: an approach to uni-
form treatment of hardware and software faults in real-time applications. IEEE
Trans. on Computers 38(5), 626–636 (1989)

42. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, F., Derrin, P., Elka-
duwe, F., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood,
S.: sel4: Formal verification of an OS kernel. In: 22nd Symp. on Operating Systems
Principles (SOSP), pp. 207–220. ACM, Big Sky (2009)

43. Knight, J., Leveson, N.: An experimental evaluation of the assumption of indepen-
dence in multi-version programming. IEEE Trans. on Software Engineering SE-
12(1), 96–109 (1986)

44. Laarouchi, Y., Deswarte, Y., Powell, D., Arlat, J., de Nadai, E.: Connecting com-
mercial computers to avionics systems. In: IEEE/AIAA 28th Digital Avionics Sys-
tems Conference (DASC 2009), Orlando, FL, USA, pp. 6.D.1–6.D.9 (2009)

45. Lacombe, E., Nicomette, V., Deswarte, Y.: Enforcing kernel constraints by
hardware-assisted virtualization. Journal in Computer Virology 7(1), 1–21 (2011)

46. Laprie, J.C.: Dependability: Basic concepts and associated terminology. Depend-
ability : Basic Concepts and Terminology LAAS-CNRS, 7 Ave. Colonel Roche,
31077 Toulouse, France, p. 33 (1990)

47. Laprie, J.C., Arlat, J., Béounes, C., Kanoun, K.: Definition and analysis of
hardware-and-software fault-tolerant architectures. Computer 23(7), 39–51 (1990)

48. Laprie, J.C., Arlat, J., Béounes, C., Kanoun, K.: Architectural issues in software
fault tolerance. In: Lyu, M. (ed.) Software Fault Tolerance, pp. 47–78. Wiley &
Sons, Chichester (1995)

49. Lardner, D.: Babbage’s calculating engine. Edinburgh Review 59, 263–327 (1834)
50. Leveson, N., Cha, S., Knight, J., Shimeall, T.: The use of self checks and voting

in software error detection: an empirical study. IEEE Transactions on Software
Engineering 16(4), 432–4443 (1990)

51. Littlewood, B., Popov, P., Strigini, L.: Assessment of the reliability of fault-tolerant
software: A bayesian approach. In: Koornneef, F., van der Meulen, M.J.P. (eds.)
SAFECOMP 2000. LNCS, vol. 1943, pp. 294–308. Springer, Heidelberg (2000)

52. Lone Sang, F., Lacombe, É., Nicomette, V., Deswarte, Y.: Exploiting an
I/OMMU vulnerability. In: 5th Int’l Conf. on Malicious and Unwanted Software
(MALWARE), pp. 7–14 (2010)

53. Lussier, B., Gallien, M., Guiochet, J., Ingrand, F., Killijian, M.O., Powell, D.:
Fault tolerant planning for critical robots. In: 37th Annual IEEE/IFIP Int. Conf.
on Dependable Systems and Networks (DSN 2007), pp. 144–153. IEEE CS Press,
Edinburgh (2007)

Tolerance of Design Faults 451

54. Lussier, B., Gallien, M., Guiochet, J., Ingrand, F., Killijian, M.O., Powell, D.:
Planning with diversified models for fault-tolerant robots. In: 17th. Int. Conf. on
Automated Planning and Scheduling (ICAPS), pp. 216–223. AAAI, Providence
(2007)

55. Lussier, B., Lampe, A., Chatila, R., Guiochet, J., Ingrand, F., Killijian, M.O., Pow-
ell, D.: Fault tolerance in autonomous systems: How and how much? In: 4th IARP
- IEEE/RAS - EURON Joint Workshop on Technical Challenges for Dependable
Robots in Human Environments, Nagoya, Japan (2005)

56. Meulen, M.J.P., van der Revilla, M.A.: The Effectiveness of Software Diversity
in a Large Population of Programs. IEEE Trans. on Software Engineering 34(6),
753–764 (2008)

57. Migneault, G.E.: The cost of software fault tolerance. In: AGARD Symposium on
Software Avionics, The Hague, The Netherlands, pp. 37/1–37/8 (1992)

58. Mongardi, G.: Dependable computing for railway control systems. In: 3rd IFIP
Working Conf. on Dependable Computing for Critical Applications (DCCA-3),
Palermo, Italy, pp. 255–273 (1993)

59. Muscettola, N., Dorais, G., Fry, C., Levinson, R., Plaunt, C.: IDEA: Planning at
the core of autonomous reactive agents. In: 3rd Int. NASA Workshop on Planning
and Scheduling for Space, Houston, TX, USA (2002)

60. Nguyen-Tuong, A., Evans, D., Knight, J., Cox, B., Davidson, J.: Security through
redundant data diversity. In: IEEE/IFIP Int. Conf. on Dependable Systems and
Networks, Ancorage, Alaska, USA, pp. 187–196 (2008)

61. Nicola, V., Goyal, A.: Modeling of correlated failures and community error recovery
in multiversion software. IEEE Trans. on Software Engineering 16(3), 350–359
(1990)

62. Oh, N., Mitra, S., McCluskey, E.: ED4I: Error detection by diverse data and du-
plicated instructions. IEEE Trans. on Computers 51(2), 180–199 (2002)

63. Penix, J., Pecheur, C., Havelund, K.: Using model checking to validate AI planner
domain models. In: 23rd Annual Software Engineering Workshop, NASA Goddard
(1998)

64. Popov, P., Strigini, L.: Assessing asymmetric fault-tolerant software. In: 21st Int.
Symp. on Software Reliability Engineering (ISSRE), pp. 41–450. IEEE CS Press,
Los Alamitos (2010)

65. Randell, B.: System structure for software fault tolerance. IEEE Trans. on Software
Engineering SE-1(2), 220–232 (1975)

66. Randell, B., Romanovsky, A., Rubira, C., Stroud, R., Wu, Z., Xu, J.: From recov-
ery blocks to coordinated atomic actions. In: Randell, B., Laprie, J.C., Kopetz,
H., Littlewood, B. (eds.) Predictably Dependable Computer Systems, pp. 87–101.
Springer, Heidelberg (1995)

67. Scott, R., Gault, J., McAllister, D.: Fault-tolerant software reliability modeling.
IEEE Trans. on Software Engineering SE-13(5), 582–592 (1987)

68. Smith, J., Nair, R.: Virtual Machines: Versatile Platforms for Systems and Pro-
cesses. Morgan Kaufmann, San Francisco (2005)

69. Sullivan, G.F., Masson, G.M.: Certification trails for data structures. In: 21st IEEE
Int. Symp. on Fault-Tolerant Computing (FTCS-21), pp. 240–247. IEEE CS Press,
Montreal (1991)

70. Tai, A., Meyer, J., Avižienis, A.: Performability enhancement of fault-tolerant soft-
ware. IEEE Trans. on Reliability 42(2), 227–2237 (1993)

71. Tomek, L., Muppala, J., Trivedi, K.: Analyses using reward nets. In: Lyu, M. (ed.)
Software Fault Tolerance, pp. 139–165. Wiley & Sons, Chichester (1995)

452 D. Powell et al.

72. Traverse, P., Lacaze, I., Souyris, J.: Airbus fly-by-wire: A total approach to depend-
ability. In: Jacquart, J. (ed.) Building the Information Society, 18th IFIP World
Computer Congress, pp. 191–212. Kluwer Awademic Publishers, Dordrecht (2004)

73. Varian, M.: VM and the VM community: Past, present, and future (1997),
http://web.me.com/melinda.varian/

74. Voges, U.: Software Diversity in Computerized Control Systems, vol. 2. Springer,
Heidelberg (1988)

75. Xia, C., Lyu, M.: An empirical study on reliability modeling for diverse software
systems. In: 15th Int. Symp. on Software Reliability Engineering (ISSRE), pp.
125–136 (2004)

76. Xia, C., Lyu, M., Vouk, M.: An experimental evaluation on reliability features of
N-version programming. In: 16th Int. Symp. on Software Reliability Engineering,
ISSRE, pp. 10pp.– 170 (2005)

77. Xu, J.: The t/(n−1)-diagnosability and its applications to fault tolerance. In: 21st
IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-21), pp. 496–503. IEEE CS
Press, Montreal (1991)

78. Yeh, Y.: Dependability of the 777 primary flight control system. In: Iyer, R., Mor-
ganti, M., Fuchs, W.K., Gligor, V. (eds.) Dependable Computing for Critical Ap-
plications (DCCA-5), pp. 3–17. IEEE CS Press, Los Alamitos (1998)

http://web.me.com/melinda.varian/

	Tolerance of Design Faults
	A Concise History of Design-Fault Tolerance
	Design-Fault Tolerance Techniques
	Design-Fault Tolerance Evaluation
	Design-Fault Tolerance Applications

	Tolerance of Design Faults in Declarative Models for Temporal Planning
	The Problem: Deficiencies in Planning Domain Models
	A Solution: Fault-Tolerant Planning
	Assessment

	Tolerance of Security Vulnerabilities in COTS Operating Systems
	The Problem: Operating System Vulnerabilities
	A Solution: OS Diversification through Virtualization
	Assessment

	Conclusion

